Phytoplankton adaptation in ecosystem models
•we compare two different approaches to model trait value changes in unicellular asexual planktonic organisms.•the individual based (MuSe-IBM) and the compartment based (MuSe-MCM) approach show essentially identical results for a suite of model experiments.•MuSe-IBM and MuSe-MCM reproduce a variety...
Saved in:
Published in | Journal of theoretical biology Vol. 468; pp. 60 - 71 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
07.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •we compare two different approaches to model trait value changes in unicellular asexual planktonic organisms.•the individual based (MuSe-IBM) and the compartment based (MuSe-MCM) approach show essentially identical results for a suite of model experiments.•MuSe-IBM and MuSe-MCM reproduce a variety of well-known and plausible features of phytoplankton response to temperature changes.•MuSe-IBM and MuSe-MCM are useful for investigating the evolutionary path of populations and suitable to tackle a wide variety of questions in the field of planktonic evolutionary science.
We compare two different approaches to model adaptation of phytoplankton through trait value changes. Both consider mutation and selection (MuSe) but differ with respect to the underlying conceptual framework. The first one (MuSe-IBM) explicitly considers a population of individuals that are subject to random mutation during cell division. The second is a deterministic multi-compartment model (MuSe-MCM) that considers numerous genotypes of the population and where mutations are treated as a transfer of biomass between neighboring genotypes (i.e., a diffusion of characteristics in trait space). Focusing on the adaptation of optimal temperature, we show model results for different scenarios: a sudden change in environmental temperature, a seasonal variation and high frequency fluctuations. In addition, we investigate the effect of different shapes of thermal reaction norms as well as the role of alternating growth and resting phases on the adaptation process. For all cases, the differences between MuSe-IBM and MuSe-MCM are found to be negligible. Both models produce a number of well-known and plausible features. While the IBM has the advantage of including more mechanistic (i.e., probabilistic) processes, the MCM is much less computationally demanding and therefore suitable for implementation in three-dimensional ecosystem models. |
---|---|
AbstractList | •we compare two different approaches to model trait value changes in unicellular asexual planktonic organisms.•the individual based (MuSe-IBM) and the compartment based (MuSe-MCM) approach show essentially identical results for a suite of model experiments.•MuSe-IBM and MuSe-MCM reproduce a variety of well-known and plausible features of phytoplankton response to temperature changes.•MuSe-IBM and MuSe-MCM are useful for investigating the evolutionary path of populations and suitable to tackle a wide variety of questions in the field of planktonic evolutionary science.
We compare two different approaches to model adaptation of phytoplankton through trait value changes. Both consider mutation and selection (MuSe) but differ with respect to the underlying conceptual framework. The first one (MuSe-IBM) explicitly considers a population of individuals that are subject to random mutation during cell division. The second is a deterministic multi-compartment model (MuSe-MCM) that considers numerous genotypes of the population and where mutations are treated as a transfer of biomass between neighboring genotypes (i.e., a diffusion of characteristics in trait space). Focusing on the adaptation of optimal temperature, we show model results for different scenarios: a sudden change in environmental temperature, a seasonal variation and high frequency fluctuations. In addition, we investigate the effect of different shapes of thermal reaction norms as well as the role of alternating growth and resting phases on the adaptation process. For all cases, the differences between MuSe-IBM and MuSe-MCM are found to be negligible. Both models produce a number of well-known and plausible features. While the IBM has the advantage of including more mechanistic (i.e., probabilistic) processes, the MCM is much less computationally demanding and therefore suitable for implementation in three-dimensional ecosystem models. We compare two different approaches to model adaptation of phytoplankton through trait value changes. Both consider mutation and selection (MuSe) but differ with respect to the underlying conceptual framework. The first one (MuSe-IBM) explicitly considers a population of individuals that are subject to random mutation during cell division. The second is a deterministic multi-compartment model (MuSe-MCM) that considers numerous genotypes of the population and where mutations are treated as a transfer of biomass between neighboring genotypes (i.e., a diffusion of characteristics in trait space). Focusing on the adaptation of optimal temperature, we show model results for different scenarios: a sudden change in environmental temperature, a seasonal variation and high frequency fluctuations. In addition, we investigate the effect of different shapes of thermal reaction norms as well as the role of alternating growth and resting phases on the adaptation process. For all cases, the differences between MuSe-IBM and MuSe-MCM are found to be negligible. Both models produce a number of well-known and plausible features. While the IBM has the advantage of including more mechanistic (i.e., probabilistic) processes, the MCM is much less computationally demanding and therefore suitable for implementation in three-dimensional ecosystem models.We compare two different approaches to model adaptation of phytoplankton through trait value changes. Both consider mutation and selection (MuSe) but differ with respect to the underlying conceptual framework. The first one (MuSe-IBM) explicitly considers a population of individuals that are subject to random mutation during cell division. The second is a deterministic multi-compartment model (MuSe-MCM) that considers numerous genotypes of the population and where mutations are treated as a transfer of biomass between neighboring genotypes (i.e., a diffusion of characteristics in trait space). Focusing on the adaptation of optimal temperature, we show model results for different scenarios: a sudden change in environmental temperature, a seasonal variation and high frequency fluctuations. In addition, we investigate the effect of different shapes of thermal reaction norms as well as the role of alternating growth and resting phases on the adaptation process. For all cases, the differences between MuSe-IBM and MuSe-MCM are found to be negligible. Both models produce a number of well-known and plausible features. While the IBM has the advantage of including more mechanistic (i.e., probabilistic) processes, the MCM is much less computationally demanding and therefore suitable for implementation in three-dimensional ecosystem models. We compare two different approaches to model adaptation of phytoplankton through trait value changes. Both consider mutation and selection (MuSe) but differ with respect to the underlying conceptual framework. The first one (MuSe-IBM) explicitly considers a population of individuals that are subject to random mutation during cell division. The second is a deterministic multi-compartment model (MuSe-MCM) that considers numerous genotypes of the population and where mutations are treated as a transfer of biomass between neighboring genotypes (i.e., a diffusion of characteristics in trait space). Focusing on the adaptation of optimal temperature, we show model results for different scenarios: a sudden change in environmental temperature, a seasonal variation and high frequency fluctuations. In addition, we investigate the effect of different shapes of thermal reaction norms as well as the role of alternating growth and resting phases on the adaptation process. For all cases, the differences between MuSe-IBM and MuSe-MCM are found to be negligible. Both models produce a number of well-known and plausible features. While the IBM has the advantage of including more mechanistic (i.e., probabilistic) processes, the MCM is much less computationally demanding and therefore suitable for implementation in three-dimensional ecosystem models. |
Author | Schaum, C-Elisa Hense, Inga Beckmann, Aike |
Author_xml | – sequence: 1 givenname: Aike surname: Beckmann fullname: Beckmann, Aike organization: AIONATEM, Hamburg, Germany – sequence: 2 givenname: C-Elisa surname: Schaum fullname: Schaum, C-Elisa organization: IMF, CEN, Universität Hamburg, Olbersweg 24, Germany – sequence: 3 givenname: Inga orcidid: 0000-0001-7322-680X surname: Hense fullname: Hense, Inga email: inga.hense@uni-hamburg.de organization: IMF, CEN, Universität Hamburg, Grosse Elbstrasse 133, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30796940$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kLtOwzAUQC1URB_wAwyoIwMJtuNHLLGgipdUCQaYLce5EQ5JXGIXqX9PqgADQyff4Zyr6zNHk853gNA5wSnBRFzXaR0Ll1JMVIpJihk5QjOCFU9yzsgEzTCmNOFEZVM0D6HGGCuWiRM0zbBUQjE8Q1cv77voN43pPqLvlqY0m2iiG0bXLcH6sAsR2mXrS2jCKTquTBPg7OddoLf7u9fVY7J-fnha3a4Tm3ERE1vlgoKsJKM8l7IUrDLGcMVYxQjlgAuaK6q4IsQaya2oClFlxoAAZS0vswW6HPduev-5hRB164KFZrgS_DZoSnLOhaRcDujFD7otWij1pnet6Xf694cDQEfA9j6EHqo_hGC9z6hrvc-o9xk1JnrIOEj5P8m6MUvsjWsOqzejOvSCLwe9DtZBZ6F0PdioS-8O6d_MHIzV |
CitedBy_id | crossref_primary_10_1002_lno_12200 crossref_primary_10_5194_bg_21_5591_2024 crossref_primary_10_5194_gmd_14_1949_2021 crossref_primary_10_1016_j_mib_2022_102151 crossref_primary_10_1098_rspb_2021_0940 crossref_primary_10_1016_j_ecolmodel_2020_109244 crossref_primary_10_1002_lno_12559 crossref_primary_10_1016_j_ecolmodel_2019_03_006 crossref_primary_10_1038_s41396_021_01166_8 crossref_primary_10_1111_ele_14061 crossref_primary_10_1126_sciadv_abc9123 crossref_primary_10_1073_pnas_2007388118 crossref_primary_10_1146_annurev_marine_112122_105229 |
Cites_doi | 10.1038/nature18959 10.1111/ele.12545 10.1098/rstb.2016.0399 10.1002/ece3.1959 10.1111/ele.12063 10.1016/j.pocean.2005.04.003 10.1098/rstb.2012.0080 10.2307/1934226 10.1038/nature20803 10.2307/5061 10.1016/j.ifacol.2015.05.059 10.1016/j.ecolmodel.2015.09.003 10.4319/lo.2008.53.4.1227 10.1111/gcb.14065 10.1126/science.272.5269.1802 10.3389/fevo.2014.00059 10.1038/s41559-018-0474-x 10.1126/science.1203105 10.1016/S0304-3800(02)00008-X 10.1111/ele.12813 10.1034/j.1600-0706.2001.940201.x 10.1073/pnas.91.15.6808 10.1111/j.1365-294X.2005.02526.x 10.1038/ngeo1441 10.1111/geb.12387 10.1126/science.1224836 10.1111/eva.12362 10.1111/eva.12403 10.1002/lno.10639 10.1038/srep34170 10.1073/pnas.1408589111 10.1023/A:1000675521611 10.1016/j.tree.2012.06.001 10.3354/meps09912 10.1016/j.jtbi.2013.05.005 10.1038/nclimate1588 10.1073/pnas.1414752112 10.1038/nclimate1774 10.1111/gcb.14360 10.1098/rstb.2012.0437 10.1111/j.1461-0248.2005.00812.x 10.1086/285610 10.1073/pnas.0803032105 10.1016/j.ecolmodel.2011.10.001 10.1086/692067 10.1038/nclimate2379 10.4319/lo.2007.52.4.1533 10.1371/journal.pone.0179751 10.1111/j.1558-5646.2012.01697.x 10.1002/ece3.2172 10.1111/j.1558-5646.1993.tb01254.x 10.1086/444442 10.1098/rsif.2015.0056 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.jtbi.2019.01.041 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1095-8541 |
EndPage | 71 |
ExternalDocumentID | 30796940 10_1016_j_jtbi_2019_01_041 S0022519319300335 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HLV IHE J1W KOM LG5 LW8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SAB SCC SDF SDG SDP SES SPCBC SSA SSZ T5K TN5 YQT ZMT ZU3 ~02 ~G- .GJ 29L 3O- 53G AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO AEIPS AETEA AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF FA8 FEDTE FGOYB G-2 HVGLF HZ~ H~9 MVM OHT R2- SEW SSH UQL VH1 WUQ XPP ZGI ZXP ZY4 ~KM NPM 7X8 |
ID | FETCH-LOGICAL-c356t-cf862e7f7425877d64faaa5944f4125e0b289295911ca75c6fb6f3aae6e9cc5d3 |
IEDL.DBID | .~1 |
ISSN | 0022-5193 1095-8541 |
IngestDate | Fri Jul 11 09:42:01 EDT 2025 Thu Apr 03 07:01:35 EDT 2025 Thu Apr 24 22:56:40 EDT 2025 Tue Jul 01 03:11:04 EDT 2025 Fri Feb 23 02:26:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Adaptive evolution Multi-compartment model (MCM) NPZD-Type model Trait diffusion model Thermal adaptation Individual based model (IBM) |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-cf862e7f7425877d64faaa5944f4125e0b289295911ca75c6fb6f3aae6e9cc5d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7322-680X |
PMID | 30796940 |
PQID | 2185567257 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2185567257 pubmed_primary_30796940 crossref_primary_10_1016_j_jtbi_2019_01_041 crossref_citationtrail_10_1016_j_jtbi_2019_01_041 elsevier_sciencedirect_doi_10_1016_j_jtbi_2019_01_041 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-07 |
PublicationDateYYYYMMDD | 2019-05-07 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of theoretical biology |
PublicationTitleAlternate | J Theor Biol |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Moisan, Moisan, Abbott (bib0041) 2002; 153 Klauschies, Vasseur, Gaedke (bib0028) 2016; 6 Schaum, Buckling, Smirnoff, Studholme, Yvon-Durocher (bib0048) 2018; 9 O’Donnell, Hamman, Johnson, Kremer, Klausmeier, Litchman (bib0014) 2018 Romero-Mujalli, Jeltsch, Tiedemann (bib0042) 2018 Tong, Gao, Hutchins (bib0058) 2018; 24 Kremer, Klausmeier (bib0029) 2013; 339 Godhe, Rynearson (bib0018) 2017; 372 Bell (bib0005) 2012; 368 Elena, Cooper, Lenski (bib0015) 1996; 272 Abrams (bib0001) 2001; 94 Rynearson, Armbrust (bib0045) 2005; 14 Kawecki, Lenski, Ebert, Hollis, Olivieri, Whitlock (bib0026) 2012; 27 Grimaud, LeGuennec, Ayata, Mairet, Sciandra, Bernard (bib0019) 2015; 48 Tenaillon, Barrick, Ribeck, Deatherage, Blanchard, Dasgupta, Wu, Wielgoss, Cruveiller, Médigue, Schneider (bib0055) 2016; 536 Botero, Weissing, Wright, Rubenstein (bib0007) 2015; 112 Wolf, Hoppe, Rost (bib0059) 2018; 63 Clark, Daines, Lenton, Watson, Williams (bib0010) 2011; 222 Kremer, Klausmeier (bib0030) 2017; 20 Norberg, Urban, Vellend, Klausmeier, Loeuille (bib0043) 2012; 2 Carvalho (bib0009) 1987; 56 Lenski, Travisano (bib0033) 1994; 91 Eppley (bib0017) 1972; 70 Padfield, Yvon-Durocher, Buckling, Jennings, Yvon-Durocher (bib0044) 2016; 19 Thomas, Kremer, Klausmeier, Litchman (bib0056) 2012; 338 Hinners, Kremp, Hense (bib0023) 2017; 284 Hellweger, Kravchuk, Novotny, Gladyshev (bib0021) 2008; 53 Irwin, Finkel, Müller-Karger, Ghinaglia (bib0024) 2015; 112 Barton, Pershing, Litchman, Record, Edwards, Finkel, Kirboe, Ward (bib0004) 2013; 16 Bach, Lohbeck, Reusch, Riebesell (bib0003) 2018; 2 Mock, Otillar, Strauss, McMullan, Paajanen, Schmutz, Salamov, Sanges, Toseland, Ward, Allen, Dupont, Frickenhaus, Maumus, Veluchamy, Wu, Barry, Falciatore, Ferrante, Fortunato, Glöckner, Gruber, Hipkin, Janech, Kroth, Leese, Lindquist, Lyon, Martin, Mayer, Parker, Quesneville, Raymond, Uhlig, Valasand, Valentin, Worden, Armbrust, Clark, Bowler, Green, Moulton, Oosterhout, Grigoriev (bib0040) 2017; 541 Listmann, LeRoch, Schlüter, Thomas, Reusch (bib0034) 2016; 9 Smith, Vallina, Merico (bib0053) 2016; 6 Lynch, Lande (bib0038) 1993 Hense, Beckmann (bib0022) 2015; 317 Lohbeck, Riebesell, Reusch (bib0036) 2012; 5 King (bib0027) 1972; 53 Woods (bib0060) 2005; 67 Schaum, Rost, Millar, Collins (bib0049) 2013; 3 Bell, Gonzalez (bib0006) 2011; 332 Lenski, Mongold, Sniegowski, Travisano, Vasi, Gerrish, Schmidt (bib0032) 1998; 73 Ellner, Hairston (bib0016) 1994; 14 Shoresh, Hegreness, Kishony (bib0052) 2008; 105 Tatters, Roleda, Schnetzer, Fu, Hurd, Boyd, Caron, Lie, Hoffmann, Hutchins (bib0054) 2013; 368 Merico, Brandt, Smith, Oliver (bib0039) 2014; 2 Denman (bib0013) 2017; 3 Luxem, Ellwood, Strzepek (bib0037) 2017; 12 Thomas, Kremer, Litchman (bib0057) 2016; 25 Schaum, Barton, Bestion, Buckling, Garcia-Carreras, Lopez, Lowe, Pawar, Smirnoff, Trimmer, Yvon-Durocher (bib0047) 2017; 1 Schlüter, Lohbeck, Gutowska, Gröger, Riebesell, Reusch (bib0051) 2014; 4 Bruggeman, Kooijman (bib0008) 2007; 52 Collins (bib0011) 2016; 9 Abrams, Harada, Matsuda (bib0002) 1993; 47 Litchman, Edwards, Klausmeier, Thomas (bib0035) 2012; 470 Hairston, Ellner, Geber, Yoshido, Fox (bib0020) 2005; 8 Lachapelle, Bell (bib0031) 2012; 66 DeLong, Gibert (bib0012) 2016; 6 Jiang, Schofield, Falkowski (bib0025) 2005; 166 Sauterey, Ward, Rault, Bowler, Claessen (bib0046) 2017; 190 Scheinin, Riebesell, Rynearson, Lohbeck, Collins (bib0050) 2015; 12 Mock (10.1016/j.jtbi.2019.01.041_bib0040) 2017; 541 Thomas (10.1016/j.jtbi.2019.01.041_bib0056) 2012; 338 Bruggeman (10.1016/j.jtbi.2019.01.041_bib0008) 2007; 52 Lachapelle (10.1016/j.jtbi.2019.01.041_bib0031) 2012; 66 Godhe (10.1016/j.jtbi.2019.01.041_bib0018) 2017; 372 Bell (10.1016/j.jtbi.2019.01.041_bib0005) 2012; 368 Wolf (10.1016/j.jtbi.2019.01.041_bib0059) 2018; 63 Hairston (10.1016/j.jtbi.2019.01.041_bib0020) 2005; 8 Woods (10.1016/j.jtbi.2019.01.041_bib0060) 2005; 67 Lynch (10.1016/j.jtbi.2019.01.041_bib0038) 1993 Denman (10.1016/j.jtbi.2019.01.041_bib0013) 2017; 3 Bach (10.1016/j.jtbi.2019.01.041_bib0003) 2018; 2 Botero (10.1016/j.jtbi.2019.01.041_bib0007) 2015; 112 Elena (10.1016/j.jtbi.2019.01.041_bib0015) 1996; 272 Romero-Mujalli (10.1016/j.jtbi.2019.01.041_sbref0042) 2018 Grimaud (10.1016/j.jtbi.2019.01.041_bib0019) 2015; 48 Kawecki (10.1016/j.jtbi.2019.01.041_bib0026) 2012; 27 Jiang (10.1016/j.jtbi.2019.01.041_bib0025) 2005; 166 Abrams (10.1016/j.jtbi.2019.01.041_bib0002) 1993; 47 Irwin (10.1016/j.jtbi.2019.01.041_bib0024) 2015; 112 Barton (10.1016/j.jtbi.2019.01.041_bib0004) 2013; 16 Lenski (10.1016/j.jtbi.2019.01.041_bib0032) 1998; 73 Shoresh (10.1016/j.jtbi.2019.01.041_bib0052) 2008; 105 Merico (10.1016/j.jtbi.2019.01.041_bib0039) 2014; 2 Litchman (10.1016/j.jtbi.2019.01.041_bib0035) 2012; 470 Collins (10.1016/j.jtbi.2019.01.041_bib0011) 2016; 9 Carvalho (10.1016/j.jtbi.2019.01.041_bib0009) 1987; 56 King (10.1016/j.jtbi.2019.01.041_bib0027) 1972; 53 Padfield (10.1016/j.jtbi.2019.01.041_bib0044) 2016; 19 Tatters (10.1016/j.jtbi.2019.01.041_bib0054) 2013; 368 Scheinin (10.1016/j.jtbi.2019.01.041_bib0050) 2015; 12 O’Donnell (10.1016/j.jtbi.2019.01.041_sbref0014) 2018 Abrams (10.1016/j.jtbi.2019.01.041_bib0001) 2001; 94 Schaum (10.1016/j.jtbi.2019.01.041_bib0047) 2017; 1 Clark (10.1016/j.jtbi.2019.01.041_bib0010) 2011; 222 Rynearson (10.1016/j.jtbi.2019.01.041_bib0045) 2005; 14 Luxem (10.1016/j.jtbi.2019.01.041_bib0037) 2017; 12 Hellweger (10.1016/j.jtbi.2019.01.041_bib0021) 2008; 53 Ellner (10.1016/j.jtbi.2019.01.041_bib0016) 1994; 14 Eppley (10.1016/j.jtbi.2019.01.041_bib0017) 1972; 70 Hinners (10.1016/j.jtbi.2019.01.041_bib0023) 2017; 284 Sauterey (10.1016/j.jtbi.2019.01.041_bib0046) 2017; 190 Schlüter (10.1016/j.jtbi.2019.01.041_bib0051) 2014; 4 Tong (10.1016/j.jtbi.2019.01.041_bib0058) 2018; 24 Norberg (10.1016/j.jtbi.2019.01.041_bib0043) 2012; 2 Lenski (10.1016/j.jtbi.2019.01.041_bib0033) 1994; 91 Bell (10.1016/j.jtbi.2019.01.041_bib0006) 2011; 332 Lohbeck (10.1016/j.jtbi.2019.01.041_bib0036) 2012; 5 DeLong (10.1016/j.jtbi.2019.01.041_bib0012) 2016; 6 Kremer (10.1016/j.jtbi.2019.01.041_bib0029) 2013; 339 Smith (10.1016/j.jtbi.2019.01.041_bib0053) 2016; 6 Hense (10.1016/j.jtbi.2019.01.041_bib0022) 2015; 317 Listmann (10.1016/j.jtbi.2019.01.041_bib0034) 2016; 9 Moisan (10.1016/j.jtbi.2019.01.041_bib0041) 2002; 153 Tenaillon (10.1016/j.jtbi.2019.01.041_bib0055) 2016; 536 Klauschies (10.1016/j.jtbi.2019.01.041_bib0028) 2016; 6 Thomas (10.1016/j.jtbi.2019.01.041_bib0057) 2016; 25 Schaum (10.1016/j.jtbi.2019.01.041_bib0048) 2018; 9 Schaum (10.1016/j.jtbi.2019.01.041_bib0049) 2013; 3 Kremer (10.1016/j.jtbi.2019.01.041_bib0030) 2017; 20 |
References_xml | – volume: 56 start-page: 69 year: 1987 end-page: 478 ident: bib0009 article-title: The clonal ecology of publication-title: J. Anim. Ecol. – volume: 47 start-page: 982 year: 1993 end-page: 985 ident: bib0002 article-title: On the relationship between quantitative genetic and ess models publication-title: Evolution – volume: 3 year: 2017 ident: bib0013 article-title: A model simulation of the adaptive evolution through mutation of the coccolithophore publication-title: Front. Mar. Sci. – volume: 12 start-page: 20150056 year: 2015 ident: bib0050 article-title: Experimental evolution gone wild publication-title: Journal of The Royal Society Interface – volume: 1 year: 2017 ident: bib0047 article-title: Adaptation of phytoplankton to a decade of experimental warming linked to increased photosynthesis publication-title: Nat. Ecol. Evol. – volume: 272 start-page: 1802 year: 1996 end-page: 1804 ident: bib0015 article-title: Punctuated evolution caused by selection of rare beneficial mutations publication-title: Science – volume: 536 start-page: 165 year: 2016 end-page: 170 ident: bib0055 article-title: Tempo and mode of genome evolution in a 50,000-generation experiment publication-title: Nature – volume: 112 start-page: 184 year: 2015 end-page: 189 ident: bib0007 article-title: Evolutionary tipping points in the capacity to adapt to environmental change publication-title: Procee. Natl. Acad. Sci. – volume: 70 start-page: 1063 year: 1972 end-page: 1085 ident: bib0017 article-title: Temperature and phytoplankton growth in the sea publication-title: Fish. Bull. – volume: 48 start-page: 228 year: 2015 end-page: 233 ident: bib0019 article-title: Modelling the effect of temperature on phytoplankton growth across the global ocean publication-title: IFAC-PapersOnLine – volume: 4 start-page: 1024 year: 2014 end-page: 1030 ident: bib0051 article-title: Adaptation of a globally important coccolithophore to ocean warming and acidification publication-title: Nat. Clim. Chang. – volume: 63 start-page: 397 year: 2018 end-page: 411 ident: bib0059 article-title: Resilience by diversity: large intraspecific differences in climate change responses of an arctic diatom publication-title: Limnol. Oceanogr. – volume: 3 start-page: 298 year: 2013 end-page: 302 ident: bib0049 article-title: Variation in plastic responses of a globally distributed picoplankton species to ocean acidification publication-title: Nat. Clim. Chang. – volume: 541 start-page: 536 year: 2017 end-page: 540 ident: bib0040 article-title: Evolutionary genomics of the cold-adapted diatom publication-title: Nature – volume: 6 start-page: 4141 year: 2016 end-page: 4159 ident: bib0028 article-title: Trait adaptation promotes species coexistence in diverse predator and prey communities publication-title: Ecol. Evol. – volume: 6 start-page: 34170 year: 2016 ident: bib0053 article-title: Phytoplankton size-diversity mediates an emergent trade-off in ecosystem functioning for rare versus frequent disturbances publication-title: Sci. Rep. – volume: 73 start-page: 35 year: 1998 end-page: 47 ident: bib0032 article-title: Evolution of competitive fitness in experimental populations of publication-title: Antonie Van Leeuwenhoek – volume: 112 start-page: 5762 year: 2015 end-page: 5766 ident: bib0024 article-title: Phytoplankton adapt to changing ocean environments publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 470 start-page: 235 year: 2012 end-page: 248 ident: bib0035 article-title: Phytoplankton niches, traits and eco-evolutionary responses to global environmental change publication-title: Mar. Ecol. Prog. Ser. – volume: 67 start-page: 84 year: 2005 end-page: 159 ident: bib0060 article-title: The Lagrangian ensemble metamodel for simulating plankton ecosystems publication-title: Prog. Oceanogr. – volume: 105 start-page: 12365 year: 2008 end-page: 12369 ident: bib0052 article-title: Evolution exacerbates the paradox of the plankton publication-title: Procee. Natl. Acad. Sci. – volume: 8 start-page: 1114 year: 2005 end-page: 1127 ident: bib0020 article-title: Rapid evolution and the convergence of ecological and evolutionary time scales publication-title: Ecol. Lett. – volume: 284 start-page: 1471 year: 2017 end-page: 2954 ident: bib0023 article-title: Evolution in temperature-dependent phytoplankton traits revealed from a sediment archive: do reaction norms tell the whole story? publication-title: Procee. Roy. Soc. B – volume: 52 start-page: 1533 year: 2007 end-page: 1544 ident: bib0008 article-title: A biodiversity-inspired approach to aquatic ecosystem modeling publication-title: Limnol. Oceanogr. – volume: 222 start-page: 3823 year: 2011 end-page: 3837 ident: bib0010 article-title: Individual-based modelling of adaptation in marine microbial populations using genetically defined physiological parameters publication-title: Ecol. Modell. – volume: 5 start-page: 346 year: 2012 end-page: 351 ident: bib0036 article-title: Adaptive evolution of a key phytoplankton species to ocean acidification publication-title: Nat. Geosci. – volume: 19 start-page: 133 year: 2016 end-page: 142 ident: bib0044 article-title: Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton publication-title: Ecol. Lett. – volume: 94 start-page: 209 year: 2001 end-page: 218 ident: bib0001 article-title: Describing and quantifying interspecific interactions: a commentary on recent approaches publication-title: Oikos – volume: 190 start-page: 116 year: 2017 end-page: 130 ident: bib0046 article-title: The implications of eco-evolutionary processes for the emergence of marine plankton community biogeography publication-title: Am. Nat. – volume: 9 year: 2018 ident: bib0048 article-title: Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom publication-title: Nat. Commun. – volume: 2 start-page: 611 year: 2018 end-page: 613 ident: bib0003 article-title: Rapid evolution of highly variable competitive abilities in a key phytoplankton species publication-title: Nat. Ecol. Evol. – volume: 368 start-page: 20120437 year: 2013 ident: bib0054 article-title: Short- and long-term conditioning of a temperate marine diatom community to acidification and warming publication-title: Philos. Trans. Roy. Soc. B – volume: 153 start-page: 197 year: 2002 end-page: 215 ident: bib0041 article-title: Modelling the effect of temperature on the maximum growth rates of phytoplankton populations publication-title: Ecol. Modell. – volume: 317 start-page: 66 year: 2015 end-page: 82 ident: bib0022 article-title: A theoretical investigation of the diatom cell size reduction–restitution cycle publication-title: Ecol. Modell. – volume: 53 start-page: 408 year: 1972 end-page: 418 ident: bib0027 article-title: Adaptation of rotifers to seasonal variation publication-title: Ecology – start-page: 571 year: 1993 ident: bib0038 article-title: Evolution and extinction in response to environmental change publication-title: Biotic interactions and global change – volume: 53 start-page: 1227 year: 2008 end-page: 1241 ident: bib0021 article-title: Agent-based modeling of the complex life cycle of a cyanobacterium ( publication-title: Limnol. Oceanogr. – volume: 9 start-page: 1156 year: 2016 end-page: 1164 ident: bib0034 article-title: Swift thermal reaction norm evolution in a key marine phytoplankton species publication-title: Evol. Appl. – volume: 20 start-page: 1158 year: 2017 end-page: 1168 ident: bib0030 article-title: Species packing in ecoâvolutionary models of seasonally fluctuating environments publication-title: Ecol. Lett. – volume: 27 start-page: 547 year: 2012 end-page: 560 ident: bib0026 article-title: Experimental evolution publication-title: Trend. Ecol. Evol. – volume: 66 start-page: 3508 year: 2012 end-page: 3518 ident: bib0031 article-title: Evolutionary rescue of sexual and asexual populations in a deteriorating environment publication-title: Evolution – volume: 368 start-page: 20120080 year: 2012 ident: bib0005 article-title: Evolutionary rescue and the limits of adaptation publication-title: Philos. Trans. Roy. Soc. B Biol. Sci. – volume: 339 start-page: 14 year: 2013 end-page: 25 ident: bib0029 article-title: Coexistence in a variable environment: eco-evolutionary perspectives publication-title: J. Theor. Biol. – volume: 25 start-page: 75 year: 2016 end-page: 86 ident: bib0057 article-title: Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits publication-title: Global Ecol. Biogeogr. – volume: 9 start-page: 1179 year: 2016 end-page: 1188 ident: bib0011 article-title: Growth rate evolution in improved environments under Prodigal Son dynamics publication-title: Evol. Appl. – volume: 2 start-page: 59 year: 2014 ident: bib0039 article-title: Sustaining diversity in trait-based models of phytoplankton communities publication-title: Front. Ecol. Evol. – year: 2018 ident: bib0014 article-title: Rapid thermal adaptation in a marine diatom reveals constraints and tradeoffs publication-title: Glob. Chang. Biol – volume: 6 start-page: 935 year: 2016 end-page: 945 ident: bib0012 article-title: Gillespie ecoevolutionary models (gem s) reveal the role of heritable trait variation in ecoevolutionary dynamics publication-title: Ecol. Evol. – volume: 332 start-page: 1327 year: 2011 end-page: 1330 ident: bib0006 article-title: Adaptation and evolutionary rescue in metapopulations experiencing environmental deterioration publication-title: Science – volume: 338 start-page: 1085 year: 2012 end-page: 1088 ident: bib0056 article-title: A global pattern of thermal adaptation in marine phytoplankton publication-title: Science – volume: 14 start-page: 1631 year: 2005 end-page: 1640 ident: bib0045 article-title: Maintenance of clonal diversity during a spring bloom of the centric diatom publication-title: Mol. Ecol. – volume: 372 start-page: 20160399 year: 2017 ident: bib0018 article-title: The role of intraspecific variation in the ecological and evolutionary success of diatoms in changing environments publication-title: Philos. Trans. Roy. Soc. B Biol. Sci. – volume: 166 start-page: 496 year: 2005 end-page: 505 ident: bib0025 article-title: Adaptive evolution of phytoplankton cell size publication-title: Am. Nat. – volume: 14 start-page: 403 year: 1994 end-page: 417 ident: bib0016 article-title: Role of overlapping generations in maintaining genetic variation in a fluctuating environment publication-title: Am. Nat. – volume: 2 start-page: 747 year: 2012 end-page: 751 ident: bib0043 article-title: Eco-evolutionary responses of biodiversity to climate change publication-title: Nat. Clim. Chang. – volume: 24 start-page: 3055 year: 2018 end-page: 3064 ident: bib0058 article-title: Adaptive evolution in the coccolithophore gephyrocapsa oceanica following 1,000 generations of selection under elevated co2 publication-title: Glob. Chang. Biol. – start-page: 1 year: 2018 end-page: 12 ident: bib0042 article-title: Individual-based modeling of eco-evolutionary dynamics: state of the art and future directions publication-title: Reg. Environ. Change – volume: 12 start-page: e0179751 year: 2017 ident: bib0037 article-title: Intraspecific variability in publication-title: PLoS ONE – volume: 91 start-page: 6808 year: 1994 end-page: 6814 ident: bib0033 article-title: Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations publication-title: Procee. Natl. Acad. Sci. – volume: 16 start-page: 522 year: 2013 end-page: 534 ident: bib0004 article-title: The biogeography of marine plankton traits publication-title: Ecol. Lett. – volume: 536 start-page: 165 year: 2016 ident: 10.1016/j.jtbi.2019.01.041_bib0055 article-title: Tempo and mode of genome evolution in a 50,000-generation experiment publication-title: Nature doi: 10.1038/nature18959 – volume: 19 start-page: 133 year: 2016 ident: 10.1016/j.jtbi.2019.01.041_bib0044 article-title: Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton publication-title: Ecol. Lett. doi: 10.1111/ele.12545 – volume: 372 start-page: 20160399 year: 2017 ident: 10.1016/j.jtbi.2019.01.041_bib0018 article-title: The role of intraspecific variation in the ecological and evolutionary success of diatoms in changing environments publication-title: Philos. Trans. Roy. Soc. B Biol. Sci. doi: 10.1098/rstb.2016.0399 – volume: 6 start-page: 935 year: 2016 ident: 10.1016/j.jtbi.2019.01.041_bib0012 article-title: Gillespie ecoevolutionary models (gem s) reveal the role of heritable trait variation in ecoevolutionary dynamics publication-title: Ecol. Evol. doi: 10.1002/ece3.1959 – volume: 16 start-page: 522 year: 2013 ident: 10.1016/j.jtbi.2019.01.041_bib0004 article-title: The biogeography of marine plankton traits publication-title: Ecol. Lett. doi: 10.1111/ele.12063 – volume: 67 start-page: 84 year: 2005 ident: 10.1016/j.jtbi.2019.01.041_bib0060 article-title: The Lagrangian ensemble metamodel for simulating plankton ecosystems publication-title: Prog. Oceanogr. doi: 10.1016/j.pocean.2005.04.003 – volume: 368 start-page: 20120080 year: 2012 ident: 10.1016/j.jtbi.2019.01.041_bib0005 article-title: Evolutionary rescue and the limits of adaptation publication-title: Philos. Trans. Roy. Soc. B Biol. Sci. doi: 10.1098/rstb.2012.0080 – volume: 53 start-page: 408 year: 1972 ident: 10.1016/j.jtbi.2019.01.041_bib0027 article-title: Adaptation of rotifers to seasonal variation publication-title: Ecology doi: 10.2307/1934226 – volume: 541 start-page: 536 year: 2017 ident: 10.1016/j.jtbi.2019.01.041_bib0040 article-title: Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus publication-title: Nature doi: 10.1038/nature20803 – volume: 56 start-page: 69 year: 1987 ident: 10.1016/j.jtbi.2019.01.041_bib0009 article-title: The clonal ecology of Daphnia magna(Crustacea: Cladocera): II. Thermal differentiation among seasonal clones publication-title: J. Anim. Ecol. doi: 10.2307/5061 – volume: 48 start-page: 228 year: 2015 ident: 10.1016/j.jtbi.2019.01.041_bib0019 article-title: Modelling the effect of temperature on phytoplankton growth across the global ocean publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2015.05.059 – volume: 317 start-page: 66 year: 2015 ident: 10.1016/j.jtbi.2019.01.041_bib0022 article-title: A theoretical investigation of the diatom cell size reduction–restitution cycle publication-title: Ecol. Modell. doi: 10.1016/j.ecolmodel.2015.09.003 – start-page: 1 year: 2018 ident: 10.1016/j.jtbi.2019.01.041_sbref0042 article-title: Individual-based modeling of eco-evolutionary dynamics: state of the art and future directions publication-title: Reg. Environ. Change – volume: 53 start-page: 1227 year: 2008 ident: 10.1016/j.jtbi.2019.01.041_bib0021 article-title: Agent-based modeling of the complex life cycle of a cyanobacterium (Anabaena) in a shallow reservoir publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2008.53.4.1227 – volume: 24 start-page: 3055 year: 2018 ident: 10.1016/j.jtbi.2019.01.041_bib0058 article-title: Adaptive evolution in the coccolithophore gephyrocapsa oceanica following 1,000 generations of selection under elevated co2 publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14065 – volume: 272 start-page: 1802 year: 1996 ident: 10.1016/j.jtbi.2019.01.041_bib0015 article-title: Punctuated evolution caused by selection of rare beneficial mutations publication-title: Science doi: 10.1126/science.272.5269.1802 – volume: 2 start-page: 59 year: 2014 ident: 10.1016/j.jtbi.2019.01.041_bib0039 article-title: Sustaining diversity in trait-based models of phytoplankton communities publication-title: Front. Ecol. Evol. doi: 10.3389/fevo.2014.00059 – volume: 2 start-page: 611 year: 2018 ident: 10.1016/j.jtbi.2019.01.041_bib0003 article-title: Rapid evolution of highly variable competitive abilities in a key phytoplankton species publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-018-0474-x – start-page: 571 year: 1993 ident: 10.1016/j.jtbi.2019.01.041_bib0038 article-title: Evolution and extinction in response to environmental change – volume: 332 start-page: 1327 year: 2011 ident: 10.1016/j.jtbi.2019.01.041_bib0006 article-title: Adaptation and evolutionary rescue in metapopulations experiencing environmental deterioration publication-title: Science doi: 10.1126/science.1203105 – volume: 153 start-page: 197 year: 2002 ident: 10.1016/j.jtbi.2019.01.041_bib0041 article-title: Modelling the effect of temperature on the maximum growth rates of phytoplankton populations publication-title: Ecol. Modell. doi: 10.1016/S0304-3800(02)00008-X – volume: 20 start-page: 1158 year: 2017 ident: 10.1016/j.jtbi.2019.01.041_bib0030 article-title: Species packing in ecoâvolutionary models of seasonally fluctuating environments publication-title: Ecol. Lett. doi: 10.1111/ele.12813 – volume: 94 start-page: 209 year: 2001 ident: 10.1016/j.jtbi.2019.01.041_bib0001 article-title: Describing and quantifying interspecific interactions: a commentary on recent approaches publication-title: Oikos doi: 10.1034/j.1600-0706.2001.940201.x – volume: 91 start-page: 6808 year: 1994 ident: 10.1016/j.jtbi.2019.01.041_bib0033 article-title: Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations publication-title: Procee. Natl. Acad. Sci. doi: 10.1073/pnas.91.15.6808 – volume: 14 start-page: 1631 year: 2005 ident: 10.1016/j.jtbi.2019.01.041_bib0045 article-title: Maintenance of clonal diversity during a spring bloom of the centric diatom ditylumbrightwellii publication-title: Mol. Ecol. doi: 10.1111/j.1365-294X.2005.02526.x – volume: 5 start-page: 346 year: 2012 ident: 10.1016/j.jtbi.2019.01.041_bib0036 article-title: Adaptive evolution of a key phytoplankton species to ocean acidification publication-title: Nat. Geosci. doi: 10.1038/ngeo1441 – volume: 25 start-page: 75 year: 2016 ident: 10.1016/j.jtbi.2019.01.041_bib0057 article-title: Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits publication-title: Global Ecol. Biogeogr. doi: 10.1111/geb.12387 – volume: 338 start-page: 1085 year: 2012 ident: 10.1016/j.jtbi.2019.01.041_bib0056 article-title: A global pattern of thermal adaptation in marine phytoplankton publication-title: Science doi: 10.1126/science.1224836 – volume: 9 start-page: 1156 year: 2016 ident: 10.1016/j.jtbi.2019.01.041_bib0034 article-title: Swift thermal reaction norm evolution in a key marine phytoplankton species publication-title: Evol. Appl. doi: 10.1111/eva.12362 – volume: 9 start-page: 1179 year: 2016 ident: 10.1016/j.jtbi.2019.01.041_bib0011 article-title: Growth rate evolution in improved environments under Prodigal Son dynamics publication-title: Evol. Appl. doi: 10.1111/eva.12403 – volume: 63 start-page: 397 year: 2018 ident: 10.1016/j.jtbi.2019.01.041_bib0059 article-title: Resilience by diversity: large intraspecific differences in climate change responses of an arctic diatom publication-title: Limnol. Oceanogr. doi: 10.1002/lno.10639 – volume: 6 start-page: 34170 year: 2016 ident: 10.1016/j.jtbi.2019.01.041_bib0053 article-title: Phytoplankton size-diversity mediates an emergent trade-off in ecosystem functioning for rare versus frequent disturbances publication-title: Sci. Rep. doi: 10.1038/srep34170 – volume: 112 start-page: 184 year: 2015 ident: 10.1016/j.jtbi.2019.01.041_bib0007 article-title: Evolutionary tipping points in the capacity to adapt to environmental change publication-title: Procee. Natl. Acad. Sci. doi: 10.1073/pnas.1408589111 – volume: 73 start-page: 35 year: 1998 ident: 10.1016/j.jtbi.2019.01.041_bib0032 article-title: Evolution of competitive fitness in experimental populations of E. coli: what makes one genotype a better competitor than another? publication-title: Antonie Van Leeuwenhoek doi: 10.1023/A:1000675521611 – volume: 284 start-page: 1471 year: 2017 ident: 10.1016/j.jtbi.2019.01.041_bib0023 article-title: Evolution in temperature-dependent phytoplankton traits revealed from a sediment archive: do reaction norms tell the whole story? publication-title: Procee. Roy. Soc. B – volume: 27 start-page: 547 year: 2012 ident: 10.1016/j.jtbi.2019.01.041_bib0026 article-title: Experimental evolution publication-title: Trend. Ecol. Evol. doi: 10.1016/j.tree.2012.06.001 – volume: 470 start-page: 235 year: 2012 ident: 10.1016/j.jtbi.2019.01.041_bib0035 article-title: Phytoplankton niches, traits and eco-evolutionary responses to global environmental change publication-title: Mar. Ecol. Prog. Ser. doi: 10.3354/meps09912 – volume: 339 start-page: 14 year: 2013 ident: 10.1016/j.jtbi.2019.01.041_bib0029 article-title: Coexistence in a variable environment: eco-evolutionary perspectives publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2013.05.005 – volume: 2 start-page: 747 year: 2012 ident: 10.1016/j.jtbi.2019.01.041_bib0043 article-title: Eco-evolutionary responses of biodiversity to climate change publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate1588 – volume: 112 start-page: 5762 year: 2015 ident: 10.1016/j.jtbi.2019.01.041_bib0024 article-title: Phytoplankton adapt to changing ocean environments publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1414752112 – volume: 3 start-page: 298 year: 2013 ident: 10.1016/j.jtbi.2019.01.041_bib0049 article-title: Variation in plastic responses of a globally distributed picoplankton species to ocean acidification publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate1774 – volume: 70 start-page: 1063 year: 1972 ident: 10.1016/j.jtbi.2019.01.041_bib0017 article-title: Temperature and phytoplankton growth in the sea publication-title: Fish. Bull. – year: 2018 ident: 10.1016/j.jtbi.2019.01.041_sbref0014 article-title: Rapid thermal adaptation in a marine diatom reveals constraints and tradeoffs publication-title: Glob. Chang. Biol doi: 10.1111/gcb.14360 – volume: 368 start-page: 20120437 year: 2013 ident: 10.1016/j.jtbi.2019.01.041_bib0054 article-title: Short- and long-term conditioning of a temperate marine diatom community to acidification and warming publication-title: Philos. Trans. Roy. Soc. B doi: 10.1098/rstb.2012.0437 – volume: 8 start-page: 1114 year: 2005 ident: 10.1016/j.jtbi.2019.01.041_bib0020 article-title: Rapid evolution and the convergence of ecological and evolutionary time scales publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2005.00812.x – volume: 14 start-page: 403 year: 1994 ident: 10.1016/j.jtbi.2019.01.041_bib0016 article-title: Role of overlapping generations in maintaining genetic variation in a fluctuating environment publication-title: Am. Nat. doi: 10.1086/285610 – volume: 9 issue: 1719 year: 2018 ident: 10.1016/j.jtbi.2019.01.041_bib0048 article-title: Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom publication-title: Nat. Commun. – volume: 105 start-page: 12365 year: 2008 ident: 10.1016/j.jtbi.2019.01.041_bib0052 article-title: Evolution exacerbates the paradox of the plankton publication-title: Procee. Natl. Acad. Sci. doi: 10.1073/pnas.0803032105 – volume: 222 start-page: 3823 year: 2011 ident: 10.1016/j.jtbi.2019.01.041_bib0010 article-title: Individual-based modelling of adaptation in marine microbial populations using genetically defined physiological parameters publication-title: Ecol. Modell. doi: 10.1016/j.ecolmodel.2011.10.001 – volume: 190 start-page: 116 year: 2017 ident: 10.1016/j.jtbi.2019.01.041_bib0046 article-title: The implications of eco-evolutionary processes for the emergence of marine plankton community biogeography publication-title: Am. Nat. doi: 10.1086/692067 – volume: 1 issue: 0094 year: 2017 ident: 10.1016/j.jtbi.2019.01.041_bib0047 article-title: Adaptation of phytoplankton to a decade of experimental warming linked to increased photosynthesis publication-title: Nat. Ecol. Evol. – volume: 4 start-page: 1024 year: 2014 ident: 10.1016/j.jtbi.2019.01.041_bib0051 article-title: Adaptation of a globally important coccolithophore to ocean warming and acidification publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate2379 – volume: 52 start-page: 1533 year: 2007 ident: 10.1016/j.jtbi.2019.01.041_bib0008 article-title: A biodiversity-inspired approach to aquatic ecosystem modeling publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2007.52.4.1533 – volume: 12 start-page: e0179751 year: 2017 ident: 10.1016/j.jtbi.2019.01.041_bib0037 article-title: Intraspecific variability in PhaeocystisAntarctica’s response to iron and light stress publication-title: PLoS ONE doi: 10.1371/journal.pone.0179751 – volume: 66 start-page: 3508 year: 2012 ident: 10.1016/j.jtbi.2019.01.041_bib0031 article-title: Evolutionary rescue of sexual and asexual populations in a deteriorating environment publication-title: Evolution doi: 10.1111/j.1558-5646.2012.01697.x – volume: 6 start-page: 4141 year: 2016 ident: 10.1016/j.jtbi.2019.01.041_bib0028 article-title: Trait adaptation promotes species coexistence in diverse predator and prey communities publication-title: Ecol. Evol. doi: 10.1002/ece3.2172 – volume: 47 start-page: 982 year: 1993 ident: 10.1016/j.jtbi.2019.01.041_bib0002 article-title: On the relationship between quantitative genetic and ess models publication-title: Evolution doi: 10.1111/j.1558-5646.1993.tb01254.x – volume: 166 start-page: 496 year: 2005 ident: 10.1016/j.jtbi.2019.01.041_bib0025 article-title: Adaptive evolution of phytoplankton cell size publication-title: Am. Nat. doi: 10.1086/444442 – volume: 12 start-page: 20150056 year: 2015 ident: 10.1016/j.jtbi.2019.01.041_bib0050 article-title: Experimental evolution gone wild publication-title: Journal of The Royal Society Interface doi: 10.1098/rsif.2015.0056 – volume: 3 issue: 286 year: 2017 ident: 10.1016/j.jtbi.2019.01.041_bib0013 article-title: A model simulation of the adaptive evolution through mutation of the coccolithophore Emilianiahuxleyi based on a published laboratory study publication-title: Front. Mar. Sci. |
SSID | ssj0009436 |
Score | 2.3573456 |
Snippet | •we compare two different approaches to model trait value changes in unicellular asexual planktonic organisms.•the individual based (MuSe-IBM) and the... We compare two different approaches to model adaptation of phytoplankton through trait value changes. Both consider mutation and selection (MuSe) but differ... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 60 |
SubjectTerms | Adaptive evolution Individual based model (IBM) Multi-compartment model (MCM) NPZD-Type model Thermal adaptation Trait diffusion model |
Title | Phytoplankton adaptation in ecosystem models |
URI | https://dx.doi.org/10.1016/j.jtbi.2019.01.041 https://www.ncbi.nlm.nih.gov/pubmed/30796940 https://www.proquest.com/docview/2185567257 |
Volume | 468 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lIngR39ZHWcGbrt1Hkm2OpShVoXiw0FtIsgluLdtit4de_O1OsrsVD-3B4y4JCTOTLzPkmxmEbonUlEgV-woT4QP6aV8YClGrJEbFWJJAOJbvkA5G-GVMxg3Ur3NhLK2ywv4S0x1aV386lTQ78yyzOb6RTbsEG4ptRzKbaI5xYq384fuX5sGwaxPoWOt2dJU4U3K8JoXMLL2LudKdONx0OW1yPt0l9HSA9ivv0euVGzxEDZ0fod2yn-TqGN2_fayK2Xwq8k9w6TyRinn50u5luQdxZlm22XPdbxYnaPT0-N4f-FU7BF_FhBa-MhB96MRAMEu6SZJSbIQQhGFsMLgpOpAQPEWMAHwpkRBFjaQmFkJTzZQiaXyKmvks1-fIS2LJIh2GNOgyHIqoC6cwFdh04TpPNaMtFNZy4KqqFW5bVkx5TQqbcCs7bmXHg5CD7Frobj1nXlbK2Dqa1OLlf_TNAcq3zrupdcHhINjXDZHr2XLBwVchhCYAQS10VippvQ8AMkYZDi7-ueol2rNfjuiYXKFm8bXU1-CMFLLtrK2NdnrPr4PhD0X32-0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgCMEF8WY8i8QNKto1TpcjmkDjNXHYJG5RkiZigLoJyoF_j9MHiMM4cG1rNbKTz7by2QY4QW05apOEhqEKCf1sqBynrFWjMwnTGKmS5Tvg_RG7ecTHOeg1tTCeVlljf4XpJVrXT85rbZ5Px2Nf49vxZZe0hxI_kQznYcF3p8IWLFxc3_YHP713WTkpsCSue4G6dqaieT0XeuwZXqLs3sniWf5pVvxZ-qGrVVipA8jgolrjGszZfB0Wq5GSnxtw9vD0WUymryp_oaguUJmaVpftwTgPKNWsOjcH5QCc900YXV0Oe_2wnogQmgR5ERpHCYhNHeWz2E3TjDOnlELBmGMUqdhIU_7UEUgIZlSKhjvNXaKU5VYYg1myBa18ktsdCNJEi46NYx51BYtVp0sHMVPMdcmjZ1bwNsSNHqSp24X7qRWvsuGFPUuvO-l1J6NYku7acPotM62aZfz5NTbqlb9MLgnN_5Q7bmwh6Sz4Cw6V28nHu6RwBZGnhEJt2K6M9L0OwjLBBYt2__nXI1jqD-_v5N314HYPlv2bkveY7kOrePuwBxSbFPqw3ntf4P7eng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phytoplankton+adaptation+in+ecosystem+models&rft.jtitle=Journal+of+theoretical+biology&rft.au=Beckmann%2C+Aike&rft.au=Schaum%2C+C-Elisa&rft.au=Hense%2C+Inga&rft.date=2019-05-07&rft.issn=1095-8541&rft.eissn=1095-8541&rft.volume=468&rft.spage=60&rft_id=info:doi/10.1016%2Fj.jtbi.2019.01.041&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5193&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5193&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5193&client=summon |