Phytoplankton adaptation in ecosystem models

•we compare two different approaches to model trait value changes in unicellular asexual planktonic organisms.•the individual based (MuSe-IBM) and the compartment based (MuSe-MCM) approach show essentially identical results for a suite of model experiments.•MuSe-IBM and MuSe-MCM reproduce a variety...

Full description

Saved in:
Bibliographic Details
Published inJournal of theoretical biology Vol. 468; pp. 60 - 71
Main Authors Beckmann, Aike, Schaum, C-Elisa, Hense, Inga
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 07.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •we compare two different approaches to model trait value changes in unicellular asexual planktonic organisms.•the individual based (MuSe-IBM) and the compartment based (MuSe-MCM) approach show essentially identical results for a suite of model experiments.•MuSe-IBM and MuSe-MCM reproduce a variety of well-known and plausible features of phytoplankton response to temperature changes.•MuSe-IBM and MuSe-MCM are useful for investigating the evolutionary path of populations and suitable to tackle a wide variety of questions in the field of planktonic evolutionary science. We compare two different approaches to model adaptation of phytoplankton through trait value changes. Both consider mutation and selection (MuSe) but differ with respect to the underlying conceptual framework. The first one (MuSe-IBM) explicitly considers a population of individuals that are subject to random mutation during cell division. The second is a deterministic multi-compartment model (MuSe-MCM) that considers numerous genotypes of the population and where mutations are treated as a transfer of biomass between neighboring genotypes (i.e., a diffusion of characteristics in trait space). Focusing on the adaptation of optimal temperature, we show model results for different scenarios: a sudden change in environmental temperature, a seasonal variation and high frequency fluctuations. In addition, we investigate the effect of different shapes of thermal reaction norms as well as the role of alternating growth and resting phases on the adaptation process. For all cases, the differences between MuSe-IBM and MuSe-MCM are found to be negligible. Both models produce a number of well-known and plausible features. While the IBM has the advantage of including more mechanistic (i.e., probabilistic) processes, the MCM is much less computationally demanding and therefore suitable for implementation in three-dimensional ecosystem models.
AbstractList •we compare two different approaches to model trait value changes in unicellular asexual planktonic organisms.•the individual based (MuSe-IBM) and the compartment based (MuSe-MCM) approach show essentially identical results for a suite of model experiments.•MuSe-IBM and MuSe-MCM reproduce a variety of well-known and plausible features of phytoplankton response to temperature changes.•MuSe-IBM and MuSe-MCM are useful for investigating the evolutionary path of populations and suitable to tackle a wide variety of questions in the field of planktonic evolutionary science. We compare two different approaches to model adaptation of phytoplankton through trait value changes. Both consider mutation and selection (MuSe) but differ with respect to the underlying conceptual framework. The first one (MuSe-IBM) explicitly considers a population of individuals that are subject to random mutation during cell division. The second is a deterministic multi-compartment model (MuSe-MCM) that considers numerous genotypes of the population and where mutations are treated as a transfer of biomass between neighboring genotypes (i.e., a diffusion of characteristics in trait space). Focusing on the adaptation of optimal temperature, we show model results for different scenarios: a sudden change in environmental temperature, a seasonal variation and high frequency fluctuations. In addition, we investigate the effect of different shapes of thermal reaction norms as well as the role of alternating growth and resting phases on the adaptation process. For all cases, the differences between MuSe-IBM and MuSe-MCM are found to be negligible. Both models produce a number of well-known and plausible features. While the IBM has the advantage of including more mechanistic (i.e., probabilistic) processes, the MCM is much less computationally demanding and therefore suitable for implementation in three-dimensional ecosystem models.
We compare two different approaches to model adaptation of phytoplankton through trait value changes. Both consider mutation and selection (MuSe) but differ with respect to the underlying conceptual framework. The first one (MuSe-IBM) explicitly considers a population of individuals that are subject to random mutation during cell division. The second is a deterministic multi-compartment model (MuSe-MCM) that considers numerous genotypes of the population and where mutations are treated as a transfer of biomass between neighboring genotypes (i.e., a diffusion of characteristics in trait space). Focusing on the adaptation of optimal temperature, we show model results for different scenarios: a sudden change in environmental temperature, a seasonal variation and high frequency fluctuations. In addition, we investigate the effect of different shapes of thermal reaction norms as well as the role of alternating growth and resting phases on the adaptation process. For all cases, the differences between MuSe-IBM and MuSe-MCM are found to be negligible. Both models produce a number of well-known and plausible features. While the IBM has the advantage of including more mechanistic (i.e., probabilistic) processes, the MCM is much less computationally demanding and therefore suitable for implementation in three-dimensional ecosystem models.We compare two different approaches to model adaptation of phytoplankton through trait value changes. Both consider mutation and selection (MuSe) but differ with respect to the underlying conceptual framework. The first one (MuSe-IBM) explicitly considers a population of individuals that are subject to random mutation during cell division. The second is a deterministic multi-compartment model (MuSe-MCM) that considers numerous genotypes of the population and where mutations are treated as a transfer of biomass between neighboring genotypes (i.e., a diffusion of characteristics in trait space). Focusing on the adaptation of optimal temperature, we show model results for different scenarios: a sudden change in environmental temperature, a seasonal variation and high frequency fluctuations. In addition, we investigate the effect of different shapes of thermal reaction norms as well as the role of alternating growth and resting phases on the adaptation process. For all cases, the differences between MuSe-IBM and MuSe-MCM are found to be negligible. Both models produce a number of well-known and plausible features. While the IBM has the advantage of including more mechanistic (i.e., probabilistic) processes, the MCM is much less computationally demanding and therefore suitable for implementation in three-dimensional ecosystem models.
We compare two different approaches to model adaptation of phytoplankton through trait value changes. Both consider mutation and selection (MuSe) but differ with respect to the underlying conceptual framework. The first one (MuSe-IBM) explicitly considers a population of individuals that are subject to random mutation during cell division. The second is a deterministic multi-compartment model (MuSe-MCM) that considers numerous genotypes of the population and where mutations are treated as a transfer of biomass between neighboring genotypes (i.e., a diffusion of characteristics in trait space). Focusing on the adaptation of optimal temperature, we show model results for different scenarios: a sudden change in environmental temperature, a seasonal variation and high frequency fluctuations. In addition, we investigate the effect of different shapes of thermal reaction norms as well as the role of alternating growth and resting phases on the adaptation process. For all cases, the differences between MuSe-IBM and MuSe-MCM are found to be negligible. Both models produce a number of well-known and plausible features. While the IBM has the advantage of including more mechanistic (i.e., probabilistic) processes, the MCM is much less computationally demanding and therefore suitable for implementation in three-dimensional ecosystem models.
Author Schaum, C-Elisa
Hense, Inga
Beckmann, Aike
Author_xml – sequence: 1
  givenname: Aike
  surname: Beckmann
  fullname: Beckmann, Aike
  organization: AIONATEM, Hamburg, Germany
– sequence: 2
  givenname: C-Elisa
  surname: Schaum
  fullname: Schaum, C-Elisa
  organization: IMF, CEN, Universität Hamburg, Olbersweg 24, Germany
– sequence: 3
  givenname: Inga
  orcidid: 0000-0001-7322-680X
  surname: Hense
  fullname: Hense, Inga
  email: inga.hense@uni-hamburg.de
  organization: IMF, CEN, Universität Hamburg, Grosse Elbstrasse 133, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30796940$$D View this record in MEDLINE/PubMed
BookMark eNp9kLtOwzAUQC1URB_wAwyoIwMJtuNHLLGgipdUCQaYLce5EQ5JXGIXqX9PqgADQyff4Zyr6zNHk853gNA5wSnBRFzXaR0Ll1JMVIpJihk5QjOCFU9yzsgEzTCmNOFEZVM0D6HGGCuWiRM0zbBUQjE8Q1cv77voN43pPqLvlqY0m2iiG0bXLcH6sAsR2mXrS2jCKTquTBPg7OddoLf7u9fVY7J-fnha3a4Tm3ERE1vlgoKsJKM8l7IUrDLGcMVYxQjlgAuaK6q4IsQaya2oClFlxoAAZS0vswW6HPduev-5hRB164KFZrgS_DZoSnLOhaRcDujFD7otWij1pnet6Xf694cDQEfA9j6EHqo_hGC9z6hrvc-o9xk1JnrIOEj5P8m6MUvsjWsOqzejOvSCLwe9DtZBZ6F0PdioS-8O6d_MHIzV
CitedBy_id crossref_primary_10_1002_lno_12200
crossref_primary_10_5194_bg_21_5591_2024
crossref_primary_10_5194_gmd_14_1949_2021
crossref_primary_10_1016_j_mib_2022_102151
crossref_primary_10_1098_rspb_2021_0940
crossref_primary_10_1016_j_ecolmodel_2020_109244
crossref_primary_10_1002_lno_12559
crossref_primary_10_1016_j_ecolmodel_2019_03_006
crossref_primary_10_1038_s41396_021_01166_8
crossref_primary_10_1111_ele_14061
crossref_primary_10_1126_sciadv_abc9123
crossref_primary_10_1073_pnas_2007388118
crossref_primary_10_1146_annurev_marine_112122_105229
Cites_doi 10.1038/nature18959
10.1111/ele.12545
10.1098/rstb.2016.0399
10.1002/ece3.1959
10.1111/ele.12063
10.1016/j.pocean.2005.04.003
10.1098/rstb.2012.0080
10.2307/1934226
10.1038/nature20803
10.2307/5061
10.1016/j.ifacol.2015.05.059
10.1016/j.ecolmodel.2015.09.003
10.4319/lo.2008.53.4.1227
10.1111/gcb.14065
10.1126/science.272.5269.1802
10.3389/fevo.2014.00059
10.1038/s41559-018-0474-x
10.1126/science.1203105
10.1016/S0304-3800(02)00008-X
10.1111/ele.12813
10.1034/j.1600-0706.2001.940201.x
10.1073/pnas.91.15.6808
10.1111/j.1365-294X.2005.02526.x
10.1038/ngeo1441
10.1111/geb.12387
10.1126/science.1224836
10.1111/eva.12362
10.1111/eva.12403
10.1002/lno.10639
10.1038/srep34170
10.1073/pnas.1408589111
10.1023/A:1000675521611
10.1016/j.tree.2012.06.001
10.3354/meps09912
10.1016/j.jtbi.2013.05.005
10.1038/nclimate1588
10.1073/pnas.1414752112
10.1038/nclimate1774
10.1111/gcb.14360
10.1098/rstb.2012.0437
10.1111/j.1461-0248.2005.00812.x
10.1086/285610
10.1073/pnas.0803032105
10.1016/j.ecolmodel.2011.10.001
10.1086/692067
10.1038/nclimate2379
10.4319/lo.2007.52.4.1533
10.1371/journal.pone.0179751
10.1111/j.1558-5646.2012.01697.x
10.1002/ece3.2172
10.1111/j.1558-5646.1993.tb01254.x
10.1086/444442
10.1098/rsif.2015.0056
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.jtbi.2019.01.041
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1095-8541
EndPage 71
ExternalDocumentID 30796940
10_1016_j_jtbi_2019_01_041
S0022519319300335
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLV
IHE
J1W
KOM
LG5
LW8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPCBC
SSA
SSZ
T5K
TN5
YQT
ZMT
ZU3
~02
~G-
.GJ
29L
3O-
53G
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
AEIPS
AETEA
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
FA8
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEW
SSH
UQL
VH1
WUQ
XPP
ZGI
ZXP
ZY4
~KM
NPM
7X8
ID FETCH-LOGICAL-c356t-cf862e7f7425877d64faaa5944f4125e0b289295911ca75c6fb6f3aae6e9cc5d3
IEDL.DBID .~1
ISSN 0022-5193
1095-8541
IngestDate Fri Jul 11 09:42:01 EDT 2025
Thu Apr 03 07:01:35 EDT 2025
Thu Apr 24 22:56:40 EDT 2025
Tue Jul 01 03:11:04 EDT 2025
Fri Feb 23 02:26:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Adaptive evolution
Multi-compartment model (MCM)
NPZD-Type model
Trait diffusion model
Thermal adaptation
Individual based model (IBM)
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-cf862e7f7425877d64faaa5944f4125e0b289295911ca75c6fb6f3aae6e9cc5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7322-680X
PMID 30796940
PQID 2185567257
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2185567257
pubmed_primary_30796940
crossref_primary_10_1016_j_jtbi_2019_01_041
crossref_citationtrail_10_1016_j_jtbi_2019_01_041
elsevier_sciencedirect_doi_10_1016_j_jtbi_2019_01_041
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-07
PublicationDateYYYYMMDD 2019-05-07
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-07
  day: 07
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of theoretical biology
PublicationTitleAlternate J Theor Biol
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Moisan, Moisan, Abbott (bib0041) 2002; 153
Klauschies, Vasseur, Gaedke (bib0028) 2016; 6
Schaum, Buckling, Smirnoff, Studholme, Yvon-Durocher (bib0048) 2018; 9
O’Donnell, Hamman, Johnson, Kremer, Klausmeier, Litchman (bib0014) 2018
Romero-Mujalli, Jeltsch, Tiedemann (bib0042) 2018
Tong, Gao, Hutchins (bib0058) 2018; 24
Kremer, Klausmeier (bib0029) 2013; 339
Godhe, Rynearson (bib0018) 2017; 372
Bell (bib0005) 2012; 368
Elena, Cooper, Lenski (bib0015) 1996; 272
Abrams (bib0001) 2001; 94
Rynearson, Armbrust (bib0045) 2005; 14
Kawecki, Lenski, Ebert, Hollis, Olivieri, Whitlock (bib0026) 2012; 27
Grimaud, LeGuennec, Ayata, Mairet, Sciandra, Bernard (bib0019) 2015; 48
Tenaillon, Barrick, Ribeck, Deatherage, Blanchard, Dasgupta, Wu, Wielgoss, Cruveiller, Médigue, Schneider (bib0055) 2016; 536
Botero, Weissing, Wright, Rubenstein (bib0007) 2015; 112
Wolf, Hoppe, Rost (bib0059) 2018; 63
Clark, Daines, Lenton, Watson, Williams (bib0010) 2011; 222
Kremer, Klausmeier (bib0030) 2017; 20
Norberg, Urban, Vellend, Klausmeier, Loeuille (bib0043) 2012; 2
Carvalho (bib0009) 1987; 56
Lenski, Travisano (bib0033) 1994; 91
Eppley (bib0017) 1972; 70
Padfield, Yvon-Durocher, Buckling, Jennings, Yvon-Durocher (bib0044) 2016; 19
Thomas, Kremer, Klausmeier, Litchman (bib0056) 2012; 338
Hinners, Kremp, Hense (bib0023) 2017; 284
Hellweger, Kravchuk, Novotny, Gladyshev (bib0021) 2008; 53
Irwin, Finkel, Müller-Karger, Ghinaglia (bib0024) 2015; 112
Barton, Pershing, Litchman, Record, Edwards, Finkel, Kirboe, Ward (bib0004) 2013; 16
Bach, Lohbeck, Reusch, Riebesell (bib0003) 2018; 2
Mock, Otillar, Strauss, McMullan, Paajanen, Schmutz, Salamov, Sanges, Toseland, Ward, Allen, Dupont, Frickenhaus, Maumus, Veluchamy, Wu, Barry, Falciatore, Ferrante, Fortunato, Glöckner, Gruber, Hipkin, Janech, Kroth, Leese, Lindquist, Lyon, Martin, Mayer, Parker, Quesneville, Raymond, Uhlig, Valasand, Valentin, Worden, Armbrust, Clark, Bowler, Green, Moulton, Oosterhout, Grigoriev (bib0040) 2017; 541
Listmann, LeRoch, Schlüter, Thomas, Reusch (bib0034) 2016; 9
Smith, Vallina, Merico (bib0053) 2016; 6
Lynch, Lande (bib0038) 1993
Hense, Beckmann (bib0022) 2015; 317
Lohbeck, Riebesell, Reusch (bib0036) 2012; 5
King (bib0027) 1972; 53
Woods (bib0060) 2005; 67
Schaum, Rost, Millar, Collins (bib0049) 2013; 3
Bell, Gonzalez (bib0006) 2011; 332
Lenski, Mongold, Sniegowski, Travisano, Vasi, Gerrish, Schmidt (bib0032) 1998; 73
Ellner, Hairston (bib0016) 1994; 14
Shoresh, Hegreness, Kishony (bib0052) 2008; 105
Tatters, Roleda, Schnetzer, Fu, Hurd, Boyd, Caron, Lie, Hoffmann, Hutchins (bib0054) 2013; 368
Merico, Brandt, Smith, Oliver (bib0039) 2014; 2
Denman (bib0013) 2017; 3
Luxem, Ellwood, Strzepek (bib0037) 2017; 12
Thomas, Kremer, Litchman (bib0057) 2016; 25
Schaum, Barton, Bestion, Buckling, Garcia-Carreras, Lopez, Lowe, Pawar, Smirnoff, Trimmer, Yvon-Durocher (bib0047) 2017; 1
Schlüter, Lohbeck, Gutowska, Gröger, Riebesell, Reusch (bib0051) 2014; 4
Bruggeman, Kooijman (bib0008) 2007; 52
Collins (bib0011) 2016; 9
Abrams, Harada, Matsuda (bib0002) 1993; 47
Litchman, Edwards, Klausmeier, Thomas (bib0035) 2012; 470
Hairston, Ellner, Geber, Yoshido, Fox (bib0020) 2005; 8
Lachapelle, Bell (bib0031) 2012; 66
DeLong, Gibert (bib0012) 2016; 6
Jiang, Schofield, Falkowski (bib0025) 2005; 166
Sauterey, Ward, Rault, Bowler, Claessen (bib0046) 2017; 190
Scheinin, Riebesell, Rynearson, Lohbeck, Collins (bib0050) 2015; 12
Mock (10.1016/j.jtbi.2019.01.041_bib0040) 2017; 541
Thomas (10.1016/j.jtbi.2019.01.041_bib0056) 2012; 338
Bruggeman (10.1016/j.jtbi.2019.01.041_bib0008) 2007; 52
Lachapelle (10.1016/j.jtbi.2019.01.041_bib0031) 2012; 66
Godhe (10.1016/j.jtbi.2019.01.041_bib0018) 2017; 372
Bell (10.1016/j.jtbi.2019.01.041_bib0005) 2012; 368
Wolf (10.1016/j.jtbi.2019.01.041_bib0059) 2018; 63
Hairston (10.1016/j.jtbi.2019.01.041_bib0020) 2005; 8
Woods (10.1016/j.jtbi.2019.01.041_bib0060) 2005; 67
Lynch (10.1016/j.jtbi.2019.01.041_bib0038) 1993
Denman (10.1016/j.jtbi.2019.01.041_bib0013) 2017; 3
Bach (10.1016/j.jtbi.2019.01.041_bib0003) 2018; 2
Botero (10.1016/j.jtbi.2019.01.041_bib0007) 2015; 112
Elena (10.1016/j.jtbi.2019.01.041_bib0015) 1996; 272
Romero-Mujalli (10.1016/j.jtbi.2019.01.041_sbref0042) 2018
Grimaud (10.1016/j.jtbi.2019.01.041_bib0019) 2015; 48
Kawecki (10.1016/j.jtbi.2019.01.041_bib0026) 2012; 27
Jiang (10.1016/j.jtbi.2019.01.041_bib0025) 2005; 166
Abrams (10.1016/j.jtbi.2019.01.041_bib0002) 1993; 47
Irwin (10.1016/j.jtbi.2019.01.041_bib0024) 2015; 112
Barton (10.1016/j.jtbi.2019.01.041_bib0004) 2013; 16
Lenski (10.1016/j.jtbi.2019.01.041_bib0032) 1998; 73
Shoresh (10.1016/j.jtbi.2019.01.041_bib0052) 2008; 105
Merico (10.1016/j.jtbi.2019.01.041_bib0039) 2014; 2
Litchman (10.1016/j.jtbi.2019.01.041_bib0035) 2012; 470
Collins (10.1016/j.jtbi.2019.01.041_bib0011) 2016; 9
Carvalho (10.1016/j.jtbi.2019.01.041_bib0009) 1987; 56
King (10.1016/j.jtbi.2019.01.041_bib0027) 1972; 53
Padfield (10.1016/j.jtbi.2019.01.041_bib0044) 2016; 19
Tatters (10.1016/j.jtbi.2019.01.041_bib0054) 2013; 368
Scheinin (10.1016/j.jtbi.2019.01.041_bib0050) 2015; 12
O’Donnell (10.1016/j.jtbi.2019.01.041_sbref0014) 2018
Abrams (10.1016/j.jtbi.2019.01.041_bib0001) 2001; 94
Schaum (10.1016/j.jtbi.2019.01.041_bib0047) 2017; 1
Clark (10.1016/j.jtbi.2019.01.041_bib0010) 2011; 222
Rynearson (10.1016/j.jtbi.2019.01.041_bib0045) 2005; 14
Luxem (10.1016/j.jtbi.2019.01.041_bib0037) 2017; 12
Hellweger (10.1016/j.jtbi.2019.01.041_bib0021) 2008; 53
Ellner (10.1016/j.jtbi.2019.01.041_bib0016) 1994; 14
Eppley (10.1016/j.jtbi.2019.01.041_bib0017) 1972; 70
Hinners (10.1016/j.jtbi.2019.01.041_bib0023) 2017; 284
Sauterey (10.1016/j.jtbi.2019.01.041_bib0046) 2017; 190
Schlüter (10.1016/j.jtbi.2019.01.041_bib0051) 2014; 4
Tong (10.1016/j.jtbi.2019.01.041_bib0058) 2018; 24
Norberg (10.1016/j.jtbi.2019.01.041_bib0043) 2012; 2
Lenski (10.1016/j.jtbi.2019.01.041_bib0033) 1994; 91
Bell (10.1016/j.jtbi.2019.01.041_bib0006) 2011; 332
Lohbeck (10.1016/j.jtbi.2019.01.041_bib0036) 2012; 5
DeLong (10.1016/j.jtbi.2019.01.041_bib0012) 2016; 6
Kremer (10.1016/j.jtbi.2019.01.041_bib0029) 2013; 339
Smith (10.1016/j.jtbi.2019.01.041_bib0053) 2016; 6
Hense (10.1016/j.jtbi.2019.01.041_bib0022) 2015; 317
Listmann (10.1016/j.jtbi.2019.01.041_bib0034) 2016; 9
Moisan (10.1016/j.jtbi.2019.01.041_bib0041) 2002; 153
Tenaillon (10.1016/j.jtbi.2019.01.041_bib0055) 2016; 536
Klauschies (10.1016/j.jtbi.2019.01.041_bib0028) 2016; 6
Thomas (10.1016/j.jtbi.2019.01.041_bib0057) 2016; 25
Schaum (10.1016/j.jtbi.2019.01.041_bib0048) 2018; 9
Schaum (10.1016/j.jtbi.2019.01.041_bib0049) 2013; 3
Kremer (10.1016/j.jtbi.2019.01.041_bib0030) 2017; 20
References_xml – volume: 56
  start-page: 69
  year: 1987
  end-page: 478
  ident: bib0009
  article-title: The clonal ecology of
  publication-title: J. Anim. Ecol.
– volume: 47
  start-page: 982
  year: 1993
  end-page: 985
  ident: bib0002
  article-title: On the relationship between quantitative genetic and ess models
  publication-title: Evolution
– volume: 3
  year: 2017
  ident: bib0013
  article-title: A model simulation of the adaptive evolution through mutation of the coccolithophore
  publication-title: Front. Mar. Sci.
– volume: 12
  start-page: 20150056
  year: 2015
  ident: bib0050
  article-title: Experimental evolution gone wild
  publication-title: Journal of The Royal Society Interface
– volume: 1
  year: 2017
  ident: bib0047
  article-title: Adaptation of phytoplankton to a decade of experimental warming linked to increased photosynthesis
  publication-title: Nat. Ecol. Evol.
– volume: 272
  start-page: 1802
  year: 1996
  end-page: 1804
  ident: bib0015
  article-title: Punctuated evolution caused by selection of rare beneficial mutations
  publication-title: Science
– volume: 536
  start-page: 165
  year: 2016
  end-page: 170
  ident: bib0055
  article-title: Tempo and mode of genome evolution in a 50,000-generation experiment
  publication-title: Nature
– volume: 112
  start-page: 184
  year: 2015
  end-page: 189
  ident: bib0007
  article-title: Evolutionary tipping points in the capacity to adapt to environmental change
  publication-title: Procee. Natl. Acad. Sci.
– volume: 70
  start-page: 1063
  year: 1972
  end-page: 1085
  ident: bib0017
  article-title: Temperature and phytoplankton growth in the sea
  publication-title: Fish. Bull.
– volume: 48
  start-page: 228
  year: 2015
  end-page: 233
  ident: bib0019
  article-title: Modelling the effect of temperature on phytoplankton growth across the global ocean
  publication-title: IFAC-PapersOnLine
– volume: 4
  start-page: 1024
  year: 2014
  end-page: 1030
  ident: bib0051
  article-title: Adaptation of a globally important coccolithophore to ocean warming and acidification
  publication-title: Nat. Clim. Chang.
– volume: 63
  start-page: 397
  year: 2018
  end-page: 411
  ident: bib0059
  article-title: Resilience by diversity: large intraspecific differences in climate change responses of an arctic diatom
  publication-title: Limnol. Oceanogr.
– volume: 3
  start-page: 298
  year: 2013
  end-page: 302
  ident: bib0049
  article-title: Variation in plastic responses of a globally distributed picoplankton species to ocean acidification
  publication-title: Nat. Clim. Chang.
– volume: 541
  start-page: 536
  year: 2017
  end-page: 540
  ident: bib0040
  article-title: Evolutionary genomics of the cold-adapted diatom
  publication-title: Nature
– volume: 6
  start-page: 4141
  year: 2016
  end-page: 4159
  ident: bib0028
  article-title: Trait adaptation promotes species coexistence in diverse predator and prey communities
  publication-title: Ecol. Evol.
– volume: 6
  start-page: 34170
  year: 2016
  ident: bib0053
  article-title: Phytoplankton size-diversity mediates an emergent trade-off in ecosystem functioning for rare versus frequent disturbances
  publication-title: Sci. Rep.
– volume: 73
  start-page: 35
  year: 1998
  end-page: 47
  ident: bib0032
  article-title: Evolution of competitive fitness in experimental populations of
  publication-title: Antonie Van Leeuwenhoek
– volume: 112
  start-page: 5762
  year: 2015
  end-page: 5766
  ident: bib0024
  article-title: Phytoplankton adapt to changing ocean environments
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 470
  start-page: 235
  year: 2012
  end-page: 248
  ident: bib0035
  article-title: Phytoplankton niches, traits and eco-evolutionary responses to global environmental change
  publication-title: Mar. Ecol. Prog. Ser.
– volume: 67
  start-page: 84
  year: 2005
  end-page: 159
  ident: bib0060
  article-title: The Lagrangian ensemble metamodel for simulating plankton ecosystems
  publication-title: Prog. Oceanogr.
– volume: 105
  start-page: 12365
  year: 2008
  end-page: 12369
  ident: bib0052
  article-title: Evolution exacerbates the paradox of the plankton
  publication-title: Procee. Natl. Acad. Sci.
– volume: 8
  start-page: 1114
  year: 2005
  end-page: 1127
  ident: bib0020
  article-title: Rapid evolution and the convergence of ecological and evolutionary time scales
  publication-title: Ecol. Lett.
– volume: 284
  start-page: 1471
  year: 2017
  end-page: 2954
  ident: bib0023
  article-title: Evolution in temperature-dependent phytoplankton traits revealed from a sediment archive: do reaction norms tell the whole story?
  publication-title: Procee. Roy. Soc. B
– volume: 52
  start-page: 1533
  year: 2007
  end-page: 1544
  ident: bib0008
  article-title: A biodiversity-inspired approach to aquatic ecosystem modeling
  publication-title: Limnol. Oceanogr.
– volume: 222
  start-page: 3823
  year: 2011
  end-page: 3837
  ident: bib0010
  article-title: Individual-based modelling of adaptation in marine microbial populations using genetically defined physiological parameters
  publication-title: Ecol. Modell.
– volume: 5
  start-page: 346
  year: 2012
  end-page: 351
  ident: bib0036
  article-title: Adaptive evolution of a key phytoplankton species to ocean acidification
  publication-title: Nat. Geosci.
– volume: 19
  start-page: 133
  year: 2016
  end-page: 142
  ident: bib0044
  article-title: Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton
  publication-title: Ecol. Lett.
– volume: 94
  start-page: 209
  year: 2001
  end-page: 218
  ident: bib0001
  article-title: Describing and quantifying interspecific interactions: a commentary on recent approaches
  publication-title: Oikos
– volume: 190
  start-page: 116
  year: 2017
  end-page: 130
  ident: bib0046
  article-title: The implications of eco-evolutionary processes for the emergence of marine plankton community biogeography
  publication-title: Am. Nat.
– volume: 9
  year: 2018
  ident: bib0048
  article-title: Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom
  publication-title: Nat. Commun.
– volume: 2
  start-page: 611
  year: 2018
  end-page: 613
  ident: bib0003
  article-title: Rapid evolution of highly variable competitive abilities in a key phytoplankton species
  publication-title: Nat. Ecol. Evol.
– volume: 368
  start-page: 20120437
  year: 2013
  ident: bib0054
  article-title: Short- and long-term conditioning of a temperate marine diatom community to acidification and warming
  publication-title: Philos. Trans. Roy. Soc. B
– volume: 153
  start-page: 197
  year: 2002
  end-page: 215
  ident: bib0041
  article-title: Modelling the effect of temperature on the maximum growth rates of phytoplankton populations
  publication-title: Ecol. Modell.
– volume: 317
  start-page: 66
  year: 2015
  end-page: 82
  ident: bib0022
  article-title: A theoretical investigation of the diatom cell size reduction–restitution cycle
  publication-title: Ecol. Modell.
– volume: 53
  start-page: 408
  year: 1972
  end-page: 418
  ident: bib0027
  article-title: Adaptation of rotifers to seasonal variation
  publication-title: Ecology
– start-page: 571
  year: 1993
  ident: bib0038
  article-title: Evolution and extinction in response to environmental change
  publication-title: Biotic interactions and global change
– volume: 53
  start-page: 1227
  year: 2008
  end-page: 1241
  ident: bib0021
  article-title: Agent-based modeling of the complex life cycle of a cyanobacterium (
  publication-title: Limnol. Oceanogr.
– volume: 9
  start-page: 1156
  year: 2016
  end-page: 1164
  ident: bib0034
  article-title: Swift thermal reaction norm evolution in a key marine phytoplankton species
  publication-title: Evol. Appl.
– volume: 20
  start-page: 1158
  year: 2017
  end-page: 1168
  ident: bib0030
  article-title: Species packing in ecoâvolutionary models of seasonally fluctuating environments
  publication-title: Ecol. Lett.
– volume: 27
  start-page: 547
  year: 2012
  end-page: 560
  ident: bib0026
  article-title: Experimental evolution
  publication-title: Trend. Ecol. Evol.
– volume: 66
  start-page: 3508
  year: 2012
  end-page: 3518
  ident: bib0031
  article-title: Evolutionary rescue of sexual and asexual populations in a deteriorating environment
  publication-title: Evolution
– volume: 368
  start-page: 20120080
  year: 2012
  ident: bib0005
  article-title: Evolutionary rescue and the limits of adaptation
  publication-title: Philos. Trans. Roy. Soc. B Biol. Sci.
– volume: 339
  start-page: 14
  year: 2013
  end-page: 25
  ident: bib0029
  article-title: Coexistence in a variable environment: eco-evolutionary perspectives
  publication-title: J. Theor. Biol.
– volume: 25
  start-page: 75
  year: 2016
  end-page: 86
  ident: bib0057
  article-title: Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits
  publication-title: Global Ecol. Biogeogr.
– volume: 9
  start-page: 1179
  year: 2016
  end-page: 1188
  ident: bib0011
  article-title: Growth rate evolution in improved environments under Prodigal Son dynamics
  publication-title: Evol. Appl.
– volume: 2
  start-page: 59
  year: 2014
  ident: bib0039
  article-title: Sustaining diversity in trait-based models of phytoplankton communities
  publication-title: Front. Ecol. Evol.
– year: 2018
  ident: bib0014
  article-title: Rapid thermal adaptation in a marine diatom reveals constraints and tradeoffs
  publication-title: Glob. Chang. Biol
– volume: 6
  start-page: 935
  year: 2016
  end-page: 945
  ident: bib0012
  article-title: Gillespie ecoevolutionary models (gem s) reveal the role of heritable trait variation in ecoevolutionary dynamics
  publication-title: Ecol. Evol.
– volume: 332
  start-page: 1327
  year: 2011
  end-page: 1330
  ident: bib0006
  article-title: Adaptation and evolutionary rescue in metapopulations experiencing environmental deterioration
  publication-title: Science
– volume: 338
  start-page: 1085
  year: 2012
  end-page: 1088
  ident: bib0056
  article-title: A global pattern of thermal adaptation in marine phytoplankton
  publication-title: Science
– volume: 14
  start-page: 1631
  year: 2005
  end-page: 1640
  ident: bib0045
  article-title: Maintenance of clonal diversity during a spring bloom of the centric diatom
  publication-title: Mol. Ecol.
– volume: 372
  start-page: 20160399
  year: 2017
  ident: bib0018
  article-title: The role of intraspecific variation in the ecological and evolutionary success of diatoms in changing environments
  publication-title: Philos. Trans. Roy. Soc. B Biol. Sci.
– volume: 166
  start-page: 496
  year: 2005
  end-page: 505
  ident: bib0025
  article-title: Adaptive evolution of phytoplankton cell size
  publication-title: Am. Nat.
– volume: 14
  start-page: 403
  year: 1994
  end-page: 417
  ident: bib0016
  article-title: Role of overlapping generations in maintaining genetic variation in a fluctuating environment
  publication-title: Am. Nat.
– volume: 2
  start-page: 747
  year: 2012
  end-page: 751
  ident: bib0043
  article-title: Eco-evolutionary responses of biodiversity to climate change
  publication-title: Nat. Clim. Chang.
– volume: 24
  start-page: 3055
  year: 2018
  end-page: 3064
  ident: bib0058
  article-title: Adaptive evolution in the coccolithophore gephyrocapsa oceanica following 1,000 generations of selection under elevated co2
  publication-title: Glob. Chang. Biol.
– start-page: 1
  year: 2018
  end-page: 12
  ident: bib0042
  article-title: Individual-based modeling of eco-evolutionary dynamics: state of the art and future directions
  publication-title: Reg. Environ. Change
– volume: 12
  start-page: e0179751
  year: 2017
  ident: bib0037
  article-title: Intraspecific variability in
  publication-title: PLoS ONE
– volume: 91
  start-page: 6808
  year: 1994
  end-page: 6814
  ident: bib0033
  article-title: Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations
  publication-title: Procee. Natl. Acad. Sci.
– volume: 16
  start-page: 522
  year: 2013
  end-page: 534
  ident: bib0004
  article-title: The biogeography of marine plankton traits
  publication-title: Ecol. Lett.
– volume: 536
  start-page: 165
  year: 2016
  ident: 10.1016/j.jtbi.2019.01.041_bib0055
  article-title: Tempo and mode of genome evolution in a 50,000-generation experiment
  publication-title: Nature
  doi: 10.1038/nature18959
– volume: 19
  start-page: 133
  year: 2016
  ident: 10.1016/j.jtbi.2019.01.041_bib0044
  article-title: Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12545
– volume: 372
  start-page: 20160399
  year: 2017
  ident: 10.1016/j.jtbi.2019.01.041_bib0018
  article-title: The role of intraspecific variation in the ecological and evolutionary success of diatoms in changing environments
  publication-title: Philos. Trans. Roy. Soc. B Biol. Sci.
  doi: 10.1098/rstb.2016.0399
– volume: 6
  start-page: 935
  year: 2016
  ident: 10.1016/j.jtbi.2019.01.041_bib0012
  article-title: Gillespie ecoevolutionary models (gem s) reveal the role of heritable trait variation in ecoevolutionary dynamics
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.1959
– volume: 16
  start-page: 522
  year: 2013
  ident: 10.1016/j.jtbi.2019.01.041_bib0004
  article-title: The biogeography of marine plankton traits
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12063
– volume: 67
  start-page: 84
  year: 2005
  ident: 10.1016/j.jtbi.2019.01.041_bib0060
  article-title: The Lagrangian ensemble metamodel for simulating plankton ecosystems
  publication-title: Prog. Oceanogr.
  doi: 10.1016/j.pocean.2005.04.003
– volume: 368
  start-page: 20120080
  year: 2012
  ident: 10.1016/j.jtbi.2019.01.041_bib0005
  article-title: Evolutionary rescue and the limits of adaptation
  publication-title: Philos. Trans. Roy. Soc. B Biol. Sci.
  doi: 10.1098/rstb.2012.0080
– volume: 53
  start-page: 408
  year: 1972
  ident: 10.1016/j.jtbi.2019.01.041_bib0027
  article-title: Adaptation of rotifers to seasonal variation
  publication-title: Ecology
  doi: 10.2307/1934226
– volume: 541
  start-page: 536
  year: 2017
  ident: 10.1016/j.jtbi.2019.01.041_bib0040
  article-title: Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus
  publication-title: Nature
  doi: 10.1038/nature20803
– volume: 56
  start-page: 69
  year: 1987
  ident: 10.1016/j.jtbi.2019.01.041_bib0009
  article-title: The clonal ecology of Daphnia magna(Crustacea: Cladocera): II. Thermal differentiation among seasonal clones
  publication-title: J. Anim. Ecol.
  doi: 10.2307/5061
– volume: 48
  start-page: 228
  year: 2015
  ident: 10.1016/j.jtbi.2019.01.041_bib0019
  article-title: Modelling the effect of temperature on phytoplankton growth across the global ocean
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2015.05.059
– volume: 317
  start-page: 66
  year: 2015
  ident: 10.1016/j.jtbi.2019.01.041_bib0022
  article-title: A theoretical investigation of the diatom cell size reduction–restitution cycle
  publication-title: Ecol. Modell.
  doi: 10.1016/j.ecolmodel.2015.09.003
– start-page: 1
  year: 2018
  ident: 10.1016/j.jtbi.2019.01.041_sbref0042
  article-title: Individual-based modeling of eco-evolutionary dynamics: state of the art and future directions
  publication-title: Reg. Environ. Change
– volume: 53
  start-page: 1227
  year: 2008
  ident: 10.1016/j.jtbi.2019.01.041_bib0021
  article-title: Agent-based modeling of the complex life cycle of a cyanobacterium (Anabaena) in a shallow reservoir
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2008.53.4.1227
– volume: 24
  start-page: 3055
  year: 2018
  ident: 10.1016/j.jtbi.2019.01.041_bib0058
  article-title: Adaptive evolution in the coccolithophore gephyrocapsa oceanica following 1,000 generations of selection under elevated co2
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14065
– volume: 272
  start-page: 1802
  year: 1996
  ident: 10.1016/j.jtbi.2019.01.041_bib0015
  article-title: Punctuated evolution caused by selection of rare beneficial mutations
  publication-title: Science
  doi: 10.1126/science.272.5269.1802
– volume: 2
  start-page: 59
  year: 2014
  ident: 10.1016/j.jtbi.2019.01.041_bib0039
  article-title: Sustaining diversity in trait-based models of phytoplankton communities
  publication-title: Front. Ecol. Evol.
  doi: 10.3389/fevo.2014.00059
– volume: 2
  start-page: 611
  year: 2018
  ident: 10.1016/j.jtbi.2019.01.041_bib0003
  article-title: Rapid evolution of highly variable competitive abilities in a key phytoplankton species
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-018-0474-x
– start-page: 571
  year: 1993
  ident: 10.1016/j.jtbi.2019.01.041_bib0038
  article-title: Evolution and extinction in response to environmental change
– volume: 332
  start-page: 1327
  year: 2011
  ident: 10.1016/j.jtbi.2019.01.041_bib0006
  article-title: Adaptation and evolutionary rescue in metapopulations experiencing environmental deterioration
  publication-title: Science
  doi: 10.1126/science.1203105
– volume: 153
  start-page: 197
  year: 2002
  ident: 10.1016/j.jtbi.2019.01.041_bib0041
  article-title: Modelling the effect of temperature on the maximum growth rates of phytoplankton populations
  publication-title: Ecol. Modell.
  doi: 10.1016/S0304-3800(02)00008-X
– volume: 20
  start-page: 1158
  year: 2017
  ident: 10.1016/j.jtbi.2019.01.041_bib0030
  article-title: Species packing in ecoâvolutionary models of seasonally fluctuating environments
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12813
– volume: 94
  start-page: 209
  year: 2001
  ident: 10.1016/j.jtbi.2019.01.041_bib0001
  article-title: Describing and quantifying interspecific interactions: a commentary on recent approaches
  publication-title: Oikos
  doi: 10.1034/j.1600-0706.2001.940201.x
– volume: 91
  start-page: 6808
  year: 1994
  ident: 10.1016/j.jtbi.2019.01.041_bib0033
  article-title: Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations
  publication-title: Procee. Natl. Acad. Sci.
  doi: 10.1073/pnas.91.15.6808
– volume: 14
  start-page: 1631
  year: 2005
  ident: 10.1016/j.jtbi.2019.01.041_bib0045
  article-title: Maintenance of clonal diversity during a spring bloom of the centric diatom ditylumbrightwellii
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294X.2005.02526.x
– volume: 5
  start-page: 346
  year: 2012
  ident: 10.1016/j.jtbi.2019.01.041_bib0036
  article-title: Adaptive evolution of a key phytoplankton species to ocean acidification
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1441
– volume: 25
  start-page: 75
  year: 2016
  ident: 10.1016/j.jtbi.2019.01.041_bib0057
  article-title: Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits
  publication-title: Global Ecol. Biogeogr.
  doi: 10.1111/geb.12387
– volume: 338
  start-page: 1085
  year: 2012
  ident: 10.1016/j.jtbi.2019.01.041_bib0056
  article-title: A global pattern of thermal adaptation in marine phytoplankton
  publication-title: Science
  doi: 10.1126/science.1224836
– volume: 9
  start-page: 1156
  year: 2016
  ident: 10.1016/j.jtbi.2019.01.041_bib0034
  article-title: Swift thermal reaction norm evolution in a key marine phytoplankton species
  publication-title: Evol. Appl.
  doi: 10.1111/eva.12362
– volume: 9
  start-page: 1179
  year: 2016
  ident: 10.1016/j.jtbi.2019.01.041_bib0011
  article-title: Growth rate evolution in improved environments under Prodigal Son dynamics
  publication-title: Evol. Appl.
  doi: 10.1111/eva.12403
– volume: 63
  start-page: 397
  year: 2018
  ident: 10.1016/j.jtbi.2019.01.041_bib0059
  article-title: Resilience by diversity: large intraspecific differences in climate change responses of an arctic diatom
  publication-title: Limnol. Oceanogr.
  doi: 10.1002/lno.10639
– volume: 6
  start-page: 34170
  year: 2016
  ident: 10.1016/j.jtbi.2019.01.041_bib0053
  article-title: Phytoplankton size-diversity mediates an emergent trade-off in ecosystem functioning for rare versus frequent disturbances
  publication-title: Sci. Rep.
  doi: 10.1038/srep34170
– volume: 112
  start-page: 184
  year: 2015
  ident: 10.1016/j.jtbi.2019.01.041_bib0007
  article-title: Evolutionary tipping points in the capacity to adapt to environmental change
  publication-title: Procee. Natl. Acad. Sci.
  doi: 10.1073/pnas.1408589111
– volume: 73
  start-page: 35
  year: 1998
  ident: 10.1016/j.jtbi.2019.01.041_bib0032
  article-title: Evolution of competitive fitness in experimental populations of E. coli: what makes one genotype a better competitor than another?
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1023/A:1000675521611
– volume: 284
  start-page: 1471
  year: 2017
  ident: 10.1016/j.jtbi.2019.01.041_bib0023
  article-title: Evolution in temperature-dependent phytoplankton traits revealed from a sediment archive: do reaction norms tell the whole story?
  publication-title: Procee. Roy. Soc. B
– volume: 27
  start-page: 547
  year: 2012
  ident: 10.1016/j.jtbi.2019.01.041_bib0026
  article-title: Experimental evolution
  publication-title: Trend. Ecol. Evol.
  doi: 10.1016/j.tree.2012.06.001
– volume: 470
  start-page: 235
  year: 2012
  ident: 10.1016/j.jtbi.2019.01.041_bib0035
  article-title: Phytoplankton niches, traits and eco-evolutionary responses to global environmental change
  publication-title: Mar. Ecol. Prog. Ser.
  doi: 10.3354/meps09912
– volume: 339
  start-page: 14
  year: 2013
  ident: 10.1016/j.jtbi.2019.01.041_bib0029
  article-title: Coexistence in a variable environment: eco-evolutionary perspectives
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2013.05.005
– volume: 2
  start-page: 747
  year: 2012
  ident: 10.1016/j.jtbi.2019.01.041_bib0043
  article-title: Eco-evolutionary responses of biodiversity to climate change
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate1588
– volume: 112
  start-page: 5762
  year: 2015
  ident: 10.1016/j.jtbi.2019.01.041_bib0024
  article-title: Phytoplankton adapt to changing ocean environments
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1414752112
– volume: 3
  start-page: 298
  year: 2013
  ident: 10.1016/j.jtbi.2019.01.041_bib0049
  article-title: Variation in plastic responses of a globally distributed picoplankton species to ocean acidification
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate1774
– volume: 70
  start-page: 1063
  year: 1972
  ident: 10.1016/j.jtbi.2019.01.041_bib0017
  article-title: Temperature and phytoplankton growth in the sea
  publication-title: Fish. Bull.
– year: 2018
  ident: 10.1016/j.jtbi.2019.01.041_sbref0014
  article-title: Rapid thermal adaptation in a marine diatom reveals constraints and tradeoffs
  publication-title: Glob. Chang. Biol
  doi: 10.1111/gcb.14360
– volume: 368
  start-page: 20120437
  year: 2013
  ident: 10.1016/j.jtbi.2019.01.041_bib0054
  article-title: Short- and long-term conditioning of a temperate marine diatom community to acidification and warming
  publication-title: Philos. Trans. Roy. Soc. B
  doi: 10.1098/rstb.2012.0437
– volume: 8
  start-page: 1114
  year: 2005
  ident: 10.1016/j.jtbi.2019.01.041_bib0020
  article-title: Rapid evolution and the convergence of ecological and evolutionary time scales
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2005.00812.x
– volume: 14
  start-page: 403
  year: 1994
  ident: 10.1016/j.jtbi.2019.01.041_bib0016
  article-title: Role of overlapping generations in maintaining genetic variation in a fluctuating environment
  publication-title: Am. Nat.
  doi: 10.1086/285610
– volume: 9
  issue: 1719
  year: 2018
  ident: 10.1016/j.jtbi.2019.01.041_bib0048
  article-title: Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom
  publication-title: Nat. Commun.
– volume: 105
  start-page: 12365
  year: 2008
  ident: 10.1016/j.jtbi.2019.01.041_bib0052
  article-title: Evolution exacerbates the paradox of the plankton
  publication-title: Procee. Natl. Acad. Sci.
  doi: 10.1073/pnas.0803032105
– volume: 222
  start-page: 3823
  year: 2011
  ident: 10.1016/j.jtbi.2019.01.041_bib0010
  article-title: Individual-based modelling of adaptation in marine microbial populations using genetically defined physiological parameters
  publication-title: Ecol. Modell.
  doi: 10.1016/j.ecolmodel.2011.10.001
– volume: 190
  start-page: 116
  year: 2017
  ident: 10.1016/j.jtbi.2019.01.041_bib0046
  article-title: The implications of eco-evolutionary processes for the emergence of marine plankton community biogeography
  publication-title: Am. Nat.
  doi: 10.1086/692067
– volume: 1
  issue: 0094
  year: 2017
  ident: 10.1016/j.jtbi.2019.01.041_bib0047
  article-title: Adaptation of phytoplankton to a decade of experimental warming linked to increased photosynthesis
  publication-title: Nat. Ecol. Evol.
– volume: 4
  start-page: 1024
  year: 2014
  ident: 10.1016/j.jtbi.2019.01.041_bib0051
  article-title: Adaptation of a globally important coccolithophore to ocean warming and acidification
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate2379
– volume: 52
  start-page: 1533
  year: 2007
  ident: 10.1016/j.jtbi.2019.01.041_bib0008
  article-title: A biodiversity-inspired approach to aquatic ecosystem modeling
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2007.52.4.1533
– volume: 12
  start-page: e0179751
  year: 2017
  ident: 10.1016/j.jtbi.2019.01.041_bib0037
  article-title: Intraspecific variability in PhaeocystisAntarctica’s response to iron and light stress
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0179751
– volume: 66
  start-page: 3508
  year: 2012
  ident: 10.1016/j.jtbi.2019.01.041_bib0031
  article-title: Evolutionary rescue of sexual and asexual populations in a deteriorating environment
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.2012.01697.x
– volume: 6
  start-page: 4141
  year: 2016
  ident: 10.1016/j.jtbi.2019.01.041_bib0028
  article-title: Trait adaptation promotes species coexistence in diverse predator and prey communities
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.2172
– volume: 47
  start-page: 982
  year: 1993
  ident: 10.1016/j.jtbi.2019.01.041_bib0002
  article-title: On the relationship between quantitative genetic and ess models
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.1993.tb01254.x
– volume: 166
  start-page: 496
  year: 2005
  ident: 10.1016/j.jtbi.2019.01.041_bib0025
  article-title: Adaptive evolution of phytoplankton cell size
  publication-title: Am. Nat.
  doi: 10.1086/444442
– volume: 12
  start-page: 20150056
  year: 2015
  ident: 10.1016/j.jtbi.2019.01.041_bib0050
  article-title: Experimental evolution gone wild
  publication-title: Journal of The Royal Society Interface
  doi: 10.1098/rsif.2015.0056
– volume: 3
  issue: 286
  year: 2017
  ident: 10.1016/j.jtbi.2019.01.041_bib0013
  article-title: A model simulation of the adaptive evolution through mutation of the coccolithophore Emilianiahuxleyi based on a published laboratory study
  publication-title: Front. Mar. Sci.
SSID ssj0009436
Score 2.3573456
Snippet •we compare two different approaches to model trait value changes in unicellular asexual planktonic organisms.•the individual based (MuSe-IBM) and the...
We compare two different approaches to model adaptation of phytoplankton through trait value changes. Both consider mutation and selection (MuSe) but differ...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 60
SubjectTerms Adaptive evolution
Individual based model (IBM)
Multi-compartment model (MCM)
NPZD-Type model
Thermal adaptation
Trait diffusion model
Title Phytoplankton adaptation in ecosystem models
URI https://dx.doi.org/10.1016/j.jtbi.2019.01.041
https://www.ncbi.nlm.nih.gov/pubmed/30796940
https://www.proquest.com/docview/2185567257
Volume 468
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lIngR39ZHWcGbrt1Hkm2OpShVoXiw0FtIsgluLdtit4de_O1OsrsVD-3B4y4JCTOTLzPkmxmEbonUlEgV-woT4QP6aV8YClGrJEbFWJJAOJbvkA5G-GVMxg3Ur3NhLK2ywv4S0x1aV386lTQ78yyzOb6RTbsEG4ptRzKbaI5xYq384fuX5sGwaxPoWOt2dJU4U3K8JoXMLL2LudKdONx0OW1yPt0l9HSA9ivv0euVGzxEDZ0fod2yn-TqGN2_fayK2Xwq8k9w6TyRinn50u5luQdxZlm22XPdbxYnaPT0-N4f-FU7BF_FhBa-MhB96MRAMEu6SZJSbIQQhGFsMLgpOpAQPEWMAHwpkRBFjaQmFkJTzZQiaXyKmvks1-fIS2LJIh2GNOgyHIqoC6cwFdh04TpPNaMtFNZy4KqqFW5bVkx5TQqbcCs7bmXHg5CD7Frobj1nXlbK2Dqa1OLlf_TNAcq3zrupdcHhINjXDZHr2XLBwVchhCYAQS10VippvQ8AMkYZDi7-ueol2rNfjuiYXKFm8bXU1-CMFLLtrK2NdnrPr4PhD0X32-0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgCMEF8WY8i8QNKto1TpcjmkDjNXHYJG5RkiZigLoJyoF_j9MHiMM4cG1rNbKTz7by2QY4QW05apOEhqEKCf1sqBynrFWjMwnTGKmS5Tvg_RG7ecTHOeg1tTCeVlljf4XpJVrXT85rbZ5Px2Nf49vxZZe0hxI_kQznYcF3p8IWLFxc3_YHP713WTkpsCSue4G6dqaieT0XeuwZXqLs3sniWf5pVvxZ-qGrVVipA8jgolrjGszZfB0Wq5GSnxtw9vD0WUymryp_oaguUJmaVpftwTgPKNWsOjcH5QCc900YXV0Oe_2wnogQmgR5ERpHCYhNHeWz2E3TjDOnlELBmGMUqdhIU_7UEUgIZlSKhjvNXaKU5VYYg1myBa18ktsdCNJEi46NYx51BYtVp0sHMVPMdcmjZ1bwNsSNHqSp24X7qRWvsuGFPUuvO-l1J6NYku7acPotM62aZfz5NTbqlb9MLgnN_5Q7bmwh6Sz4Cw6V28nHu6RwBZGnhEJt2K6M9L0OwjLBBYt2__nXI1jqD-_v5N314HYPlv2bkveY7kOrePuwBxSbFPqw3ntf4P7eng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phytoplankton+adaptation+in+ecosystem+models&rft.jtitle=Journal+of+theoretical+biology&rft.au=Beckmann%2C+Aike&rft.au=Schaum%2C+C-Elisa&rft.au=Hense%2C+Inga&rft.date=2019-05-07&rft.issn=1095-8541&rft.eissn=1095-8541&rft.volume=468&rft.spage=60&rft_id=info:doi/10.1016%2Fj.jtbi.2019.01.041&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5193&client=summon