Turnpike in Lipschitz—nonlinear optimal control

We present a new proof of the turnpike property for nonlinear optimal control problems, when the running target is a steady control-state pair of the underlying system. Our strategy combines the construction of quasi-turnpike controls via controllability, and a bootstrap argument, and does not rely...

Full description

Saved in:
Bibliographic Details
Published inNonlinearity Vol. 35; no. 4; pp. 1652 - 1701
Main Authors Esteve-Yagüe, Carlos, Geshkovski, Borjan, Pighin, Dario, Zuazua, Enrique
Format Journal Article
LanguageEnglish
Published IOP Publishing 07.04.2022
Subjects
Online AccessGet full text
ISSN0951-7715
1361-6544
DOI10.1088/1361-6544/ac4e61

Cover

Loading…
Abstract We present a new proof of the turnpike property for nonlinear optimal control problems, when the running target is a steady control-state pair of the underlying system. Our strategy combines the construction of quasi-turnpike controls via controllability, and a bootstrap argument, and does not rely on analyzing the optimality system or linearization techniques. This in turn allows us to address several optimal control problems for finite-dimensional, control-affine systems with globally Lipschitz (possibly nonsmooth) nonlinearities, without any smallness conditions on the initial data or the running target. These results are motivated by applications in machine learning through deep residual neural networks, which may be fit within our setting. We show that our methodology is applicable to controlled PDEs as well, such as the semilinear wave and heat equation with a globally Lipschitz nonlinearity, once again without any smallness assumptions.
AbstractList We present a new proof of the turnpike property for nonlinear optimal control problems, when the running target is a steady control-state pair of the underlying system. Our strategy combines the construction of quasi-turnpike controls via controllability, and a bootstrap argument, and does not rely on analyzing the optimality system or linearization techniques. This in turn allows us to address several optimal control problems for finite-dimensional, control-affine systems with globally Lipschitz (possibly nonsmooth) nonlinearities, without any smallness conditions on the initial data or the running target. These results are motivated by applications in machine learning through deep residual neural networks, which may be fit within our setting. We show that our methodology is applicable to controlled PDEs as well, such as the semilinear wave and heat equation with a globally Lipschitz nonlinearity, once again without any smallness assumptions.
Author Esteve-Yagüe, Carlos
Pighin, Dario
Zuazua, Enrique
Geshkovski, Borjan
Author_xml – sequence: 1
  givenname: Carlos
  surname: Esteve-Yagüe
  fullname: Esteve-Yagüe, Carlos
  organization: Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
– sequence: 2
  givenname: Borjan
  orcidid: 0000-0002-7890-3352
  surname: Geshkovski
  fullname: Geshkovski, Borjan
  organization: Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
– sequence: 3
  givenname: Dario
  surname: Pighin
  fullname: Pighin, Dario
  organization: Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
– sequence: 4
  givenname: Enrique
  surname: Zuazua
  fullname: Zuazua, Enrique
  organization: Chair in Dynamics, Control, and Numerics, Alexander von Humboldt-Professorship, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
BookMark eNp9kM1KxDAURoOMYGd077IPYJ3c5qfJUgZ1hIKbcR2StMGMtSlpXejKh_AJfRJTRlwIurpw-c7HPXeJFn3oW4TOAV8CFmINhEPBGaVrbWnL4QhlP6sFyrBkUFQVsBO0HMc9xgCiJBmC3UvsB__U5r7Paz-M9tFPb5_vH6m-832rYx6GyT_rLrehn2LoTtGx093Ynn3PFXq4ud5ttkV9f3u3uaoLSxifCuMo51VjpC4bKRhUlrrGNIwbqCrKS0aEJKUtHSdM2hRgRjgnS9JQToyWZIX4odfGMI6xdcr6SU9-vkL7TgFWs7iaLdVsqQ7iCcS_wCEmgfj6H3JxQHwY1D6klySzv-Nfk8trqA
CODEN NONLE5
CitedBy_id crossref_primary_10_1017_S0962492922000046
crossref_primary_10_1017_S0956792524000871
crossref_primary_10_1109_TAC_2022_3181222
crossref_primary_10_1214_22_AAP1927
crossref_primary_10_1007_s10440_024_00640_7
crossref_primary_10_1016_j_sysconle_2022_105452
Cites_doi 10.1051/cocv/2014014
10.1137/040610222
10.1137/19m1285354
10.1016/j.matpur.2020.02.001
10.1016/j.arcontrol.2017.04.002
10.1016/j.jde.2017.11.028
10.1051/cocv/2021030
10.1137/18m1223083
10.1137/120891174
10.3934/mcrf.2018041
10.1038/nature14539
10.1137/20m132818x
10.1016/j.jde.2014.09.005
10.1016/j.matpur.2017.07.002
10.1051/cocv/2020009
10.1016/j.jde.2019.11.064
10.1137/130907239
10.1137/16m1097638
10.1007/s40304-017-0103-z
10.1137/17m1134470
10.1016/j.sysconle.2016.02.001
10.1051/cocv/2021036
10.1137/1024101
10.1016/j.matpur.2020.03.006
10.1016/j.matpur.2020.08.006
10.1137/130950793
10.1007/s00021-018-0382-5
10.1051/cocv/2019033
ContentType Journal Article
Copyright 2022 IOP Publishing Ltd & London Mathematical Society
Copyright_xml – notice: 2022 IOP Publishing Ltd & London Mathematical Society
DBID AAYXX
CITATION
DOI 10.1088/1361-6544/ac4e61
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Physics
EISSN 1361-6544
EndPage 1701
ExternalDocumentID 10_1088_1361_6544_ac4e61
nonac4e61
GrantInformation_xml – fundername: European Commission
  grantid: 765579
  funderid: https://doi.org/10.13039/501100000780
– fundername: Ministerio de Economía y Competitividad
  grantid: MTM2017-92996-C2-1-R
  funderid: https://doi.org/10.13039/501100003329
– fundername: H2020 European Research Council
  grantid: 694126
  funderid: https://doi.org/10.13039/100010663
– fundername: Air Force Office of Scientific Research
  grantid: FA9550-18-1-0242
  funderid: https://doi.org/10.13039/100000181
– fundername: Alexander von Humboldt-Stiftung
  funderid: https://doi.org/10.13039/100005156
– fundername: Deutsche Forschungsgemeinschaft
  grantid: 154
  funderid: https://doi.org/10.13039/501100001659
GroupedDBID -~X
.DC
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
YQT
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c356t-bf4667db9a2d98517c4fdbd56b177462538932c2f6359c8515b8ff923d463ba93
IEDL.DBID IOP
ISSN 0951-7715
IngestDate Tue Jul 01 02:47:33 EDT 2025
Thu Apr 24 23:05:24 EDT 2025
Wed Aug 21 03:34:58 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-bf4667db9a2d98517c4fdbd56b177462538932c2f6359c8515b8ff923d463ba93
Notes NON-104973.R2
London Mathematical Society
ORCID 0000-0002-7890-3352
OpenAccessLink https://hal.science/hal-03018529v3/file/manuscript.pdf
PageCount 50
ParticipantIDs crossref_citationtrail_10_1088_1361_6544_ac4e61
crossref_primary_10_1088_1361_6544_ac4e61
iop_journals_10_1088_1361_6544_ac4e61
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-07
PublicationDateYYYYMMDD 2022-04-07
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-07
  day: 07
PublicationDecade 2020
PublicationTitle Nonlinearity
PublicationTitleAbbrev Non
PublicationTitleAlternate Nonlinearity
PublicationYear 2022
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Faulwasser (nonac4e61bib13) 2021
Grüne (nonac4e61bib19) 2020
Chen (nonac4e61bib7) 2018
Gugat (nonac4e61bib23) 2016; 90
Grüne (nonac4e61bib21) 2021; 27
Gugat (nonac4e61bib22) 2019; 57
LeCun (nonac4e61bib29) 2015; 521
Pighin (nonac4e61bib37) 2020
Mazari (nonac4e61bib33) 2020
Agrachev (nonac4e61bib1) 2019; vol 181
Porretta (nonac4e61bib39) 2013; 51
Beauchard (nonac4e61bib4) 2020; 136
Coron (nonac4e61bib8) 2007
Fu (nonac4e61bib14) 2007; 46
Jean (nonac4e61bib25) 2015; 53
Lin (nonac4e61bib30) 2018
Joly (nonac4e61bib26) 2014; 52
Ruiz-Balet (nonac4e61bib42) 2020; 143
Duprez (nonac4e61bib10) 2021
Geshkovski (nonac4e61bib17) 2021; 59
Tucsnak (nonac4e61bib47) 2009
Lions (nonac4e61bib31) 1988
Pighin (nonac4e61bib38) 2018; 8
Trélat (nonac4e61bib45) 2018; 56
Mazari (nonac4e61bib34) 2021; 81
Grüne (nonac4e61bib18) 2019; 57
Lions (nonac4e61bib32) 1982; 24
Geshkovski (nonac4e61bib16) 2021
Zhang (nonac4e61bib51) 2004
Grüne (nonac4e61bib20) 2020; 268
He (nonac4e61bib24) 2016
Yagüe (nonac4e61bib48) 2021
Porretta (nonac4e61bib40) 2016
Beauchard (nonac4e61bib3) 2018; 264
Trélat (nonac4e61bib46) 2015; 258
Weinan (nonac4e61bib11) 2017; 5
Pighin (nonac4e61bib36) 2021; 27
Zamorano (nonac4e61bib49) 2018; 20
Trélat (nonac4e61bib44) 2020
Geshkovski (nonac4e61bib15) 2020; 26
Zuazua (nonac4e61bib52) 1991; vol 10
Shalev-Shwartz (nonac4e61bib43) 2014
Kunisch (nonac4e61bib27) 2020; 138
Mazari (nonac4e61bib35) 2020
Cannarsa (nonac4e61bib5) 2017; 108
Esteve (nonac4e61bib12) 2020
Prandi (nonac4e61bib41) 2014; 20
Zuazua (nonac4e61bib53) 2007; vol 3
Cazenave (nonac4e61bib6) 2006; vol 164
Dupont (nonac4e61bib9) 2019; vol 32
Le Balc’h (nonac4e61bib28) 2020; 26
Amann (nonac4e61bib2) 1995; vol 1
Zhang (nonac4e61bib50) 2001; 27
Zuazua (nonac4e61bib54) 2017; 44
References_xml – volume: 20
  start-page: 1224
  year: 2014
  ident: nonac4e61bib41
  article-title: Hölder equivalence of the value function for control-affine systems
  publication-title: ESAIM Control, Optim. Calc. Var.
  doi: 10.1051/cocv/2014014
– volume: 46
  start-page: 1578
  year: 2007
  ident: nonac4e61bib14
  article-title: Exact controllability for multidimensional semilinear hyperbolic equations
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/040610222
– volume: 59
  start-page: 1830
  year: 2021
  ident: nonac4e61bib17
  article-title: Controllability of one-dimensional viscous free boundary flows
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/19m1285354
– volume: 136
  start-page: 22
  year: 2020
  ident: nonac4e61bib4
  article-title: Unexpected quadratic behaviors for the small-time local null controllability of scalar-input parabolic equations
  publication-title: J. Math. Pure Appl.
  doi: 10.1016/j.matpur.2020.02.001
– year: 2021
  ident: nonac4e61bib13
  article-title: On the turnpike to design of deep neural nets: explicit depth bounds
– volume: 44
  start-page: 199
  year: 2017
  ident: nonac4e61bib54
  article-title: Large time control and turnpike properties for wave equations
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2017.04.002
– volume: 264
  start-page: 3704
  year: 2018
  ident: nonac4e61bib3
  article-title: Quadratic obstructions to small-time local controllability for scalar-input systems
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2017.11.028
– year: 2014
  ident: nonac4e61bib43
– start-page: 770
  year: 2016
  ident: nonac4e61bib24
  article-title: Deep residual learning for image recognition
– year: 1988
  ident: nonac4e61bib31
– volume: 27
  start-page: 56
  year: 2021
  ident: nonac4e61bib21
  article-title: Abstract nonlinear sensitivity and turnpike analysis and an application to semilinear parabolic PDEs
  publication-title: ESAIM Control, Optim. Calc. Var.
  doi: 10.1051/cocv/2021030
– volume: 57
  start-page: 2753
  year: 2019
  ident: nonac4e61bib18
  article-title: Sensitivity analysis of optimal control for a class of parabolic PDEs motivated by model predictive control
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/18m1223083
– volume: 52
  start-page: 439
  year: 2014
  ident: nonac4e61bib26
  article-title: A note on the semiglobal controllability of the semilinear wave equation
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/120891174
– volume: vol 32
  start-page: 3140
  year: 2019
  ident: nonac4e61bib9
  article-title: Augmented neural ODEs
– volume: 27
  start-page: 95
  year: 2001
  ident: nonac4e61bib50
  article-title: Exact controllability of semilinear plate equations
  publication-title: Asymptotic Anal.
– volume: 8
  start-page: 935
  year: 2018
  ident: nonac4e61bib38
  article-title: Controllability under positivity constraints of semilinear heat equations
  publication-title: Math. Control Relat. Field.
  doi: 10.3934/mcrf.2018041
– volume: 521
  start-page: 436
  year: 2015
  ident: nonac4e61bib29
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2021
  ident: nonac4e61bib48
  article-title: Sparse approximation in learning via neural ODEs
– volume: 81
  start-page: 153
  year: 2021
  ident: nonac4e61bib34
  article-title: A fragmentation phenomenon for a nonenergetic optimal control problem: optimization of the total population size in logistic diffusive models
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/20m132818x
– start-page: 6571
  year: 2018
  ident: nonac4e61bib7
  article-title: Neural ordinary differential equations
– volume: 258
  start-page: 81
  year: 2015
  ident: nonac4e61bib46
  article-title: The turnpike property in finite-dimensional nonlinear optimal control
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2014.09.005
– year: 2009
  ident: nonac4e61bib47
– volume: 108
  start-page: 425
  year: 2017
  ident: nonac4e61bib5
  article-title: Multiplicative controllability for semilinear reaction–diffusion equations with finitely many changes of sign
  publication-title: J. Math. Pure Appl.
  doi: 10.1016/j.matpur.2017.07.002
– volume: 26
  start-page: 85
  year: 2020
  ident: nonac4e61bib15
  article-title: Null-controllability of perturbed porous medium gas flow
  publication-title: ESAIM Control, Optim. Calc. Var.
  doi: 10.1051/cocv/2020009
– year: 2020
  ident: nonac4e61bib37
  article-title: The turnpike with lack of observability
– volume: 268
  start-page: 7311
  year: 2020
  ident: nonac4e61bib20
  article-title: Exponential sensitivity and turnpike analysis for linear quadratic optimal control of general evolution equations
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2019.11.064
– start-page: 67
  year: 2016
  ident: nonac4e61bib40
  article-title: Remarks on long time versus steady state optimal control
– year: 2020
  ident: nonac4e61bib44
  article-title: Linear turnpike theorem
– year: 2020
  ident: nonac4e61bib12
  article-title: Large-time asymptotics in deep learning
– start-page: p 173
  year: 2004
  ident: nonac4e61bib51
  article-title: Exact controllability of the semi-linear wave equation
– year: 2021
  ident: nonac4e61bib10
  article-title: Bilinear local controllability to the trajectories of the Fokker–Planck equation with a localized control
  publication-title: Ann. Inst. Fourier
– volume: 51
  start-page: 4242
  year: 2013
  ident: nonac4e61bib39
  article-title: Long time versus steady state optimal control
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/130907239
– volume: 56
  start-page: 1222
  year: 2018
  ident: nonac4e61bib45
  article-title: Steady-state and periodic exponential turnpike property for optimal control problems in Hilbert spaces
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/16m1097638
– year: 2020
  ident: nonac4e61bib33
  article-title: Quantitative stability for eigenvalues of Schrödinger operator and application to the turnpike property for a bilinear optimal control problem
– year: 2021
  ident: nonac4e61bib16
  article-title: Control in moving interfaces and deep learning
– volume: 5
  start-page: 1
  year: 2017
  ident: nonac4e61bib11
  article-title: A proposal on machine learning via dynamical systems
  publication-title: Commun. Math. Stat.
  doi: 10.1007/s40304-017-0103-z
– volume: vol 164
  year: 2006
  ident: nonac4e61bib6
– volume: 57
  start-page: 264
  year: 2019
  ident: nonac4e61bib22
  article-title: On the turnpike phenomenon for optimal boundary control problems with hyperbolic systems
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/17m1134470
– volume: 90
  start-page: 61
  year: 2016
  ident: nonac4e61bib23
  article-title: Optimal Neumann control for the 1D wave equation: finite horizon, infinite horizon, boundary tracking terms and the turnpike property
  publication-title: Syst. Control Lett.
  doi: 10.1016/j.sysconle.2016.02.001
– volume: 27
  start-page: 48
  year: 2021
  ident: nonac4e61bib36
  article-title: The turnpike property in semilinear control
  publication-title: ESAIM Control, Optim. Calc. Var.
  doi: 10.1051/cocv/2021036
– volume: vol 3
  start-page: 527
  year: 2007
  ident: nonac4e61bib53
  article-title: Controllability and observability of partial differential equations: some results and open problems
– volume: 24
  start-page: 441
  year: 1982
  ident: nonac4e61bib32
  article-title: On the existence of positive solutions of semilinear elliptic equations
  publication-title: SIAM Rev.
  doi: 10.1137/1024101
– volume: 138
  start-page: 46
  year: 2020
  ident: nonac4e61bib27
  article-title: Optimal control of an energy-critical semilinear wave equation in 3D with spatially integrated control constraints
  publication-title: J. Math. Pure Appl.
  doi: 10.1016/j.matpur.2020.03.006
– volume: vol 10
  start-page: 357
  year: 1991
  ident: nonac4e61bib52
  article-title: Exact boundary controllability for the semilinear wave equation
– year: 2020
  ident: nonac4e61bib35
  article-title: Constrained control of gene-flow models
– volume: 143
  start-page: 345
  year: 2020
  ident: nonac4e61bib42
  article-title: Control under constraints for multi-dimensional reaction-diffusion monostable and bistable equations
  publication-title: J. Math. Pure Appl.
  doi: 10.1016/j.matpur.2020.08.006
– volume: 53
  start-page: 816
  year: 2015
  ident: nonac4e61bib25
  article-title: Complexity of control-affine motion planning
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/130950793
– year: 2020
  ident: nonac4e61bib19
  article-title: Efficient MPC for parabolic PDEs with goal oriented error estimation
– year: 2007
  ident: nonac4e61bib8
– start-page: 6169
  year: 2018
  ident: nonac4e61bib30
  article-title: Resnet with one-neuron hidden layers is a universal approximator
– volume: 20
  start-page: 869
  year: 2018
  ident: nonac4e61bib49
  article-title: Turnpike property for two-dimensional Navier–Stokes equations
  publication-title: J. Math. Fluid Mech.
  doi: 10.1007/s00021-018-0382-5
– volume: vol 1
  year: 1995
  ident: nonac4e61bib2
– volume: 26
  start-page: 55
  year: 2020
  ident: nonac4e61bib28
  article-title: Local controllability of reaction-diffusion systems around nonnegative stationary states
  publication-title: ESAIM Control, Optim. Calc. Var.
  doi: 10.1051/cocv/2019033
– volume: vol 181
  year: 2019
  ident: nonac4e61bib1
SSID ssj0011823
Score 2.3592608
Snippet We present a new proof of the turnpike property for nonlinear optimal control problems, when the running target is a steady control-state pair of the...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 1652
SubjectTerms deep learning
heat equation
neural ODEs
optimal control
ResNets
turnpike property
wave equation
Title Turnpike in Lipschitz—nonlinear optimal control
URI https://iopscience.iop.org/article/10.1088/1361-6544/ac4e61
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qRdCDj6pYX-SgBw9pk-wjWTyJWIr4OrTQgxCyuwmGalva9NKTP8Jf6C9xNtmGKiriLYHZnWXY3fmGnfkGoRPwuTwOHKF5W5VNAu7bEXapTbFSXOAYtk2e5XvH2l1y3aO9Cjova2GGI3P1N-CzIAouTGgS4oKmi5lrM0pIM5Ik1qHPMg7AzejqvfuH8gkBgHPZR973XWreKL-b4ZNPWgK9Cy6mtYEe54srMkv6jWkmGnL2hbfxn6vfROsGeloXhegWqsSDGlpbICSEv9uSxXVSQyt5eqicbCO3A2NHaT-20oF1k4L6pzSbvb--DQqmjWhsDeHueYHpTe77Duq2rjqXbds0W7AlpiyzRUIY85Xgkac4wDBfkkQJRZnmpyIQJWlk40kvAYTCJQhQESQJwENFGBYRx7uoCjrjPWQ5JHEiztxYUgXRpoocP2fAhUCcChz5ddScmzuUholcN8R4DvMX8SAItZFCbaSwMFIdnZUjRgULxy-yp2D70BzFyY9y-3-UO0Crni550Nk6_iGqZuNpfARAJBPH-Yb7AHqa0wM
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4IRqMHH6gRnz3owUMpZR9tj0YlPhA5QMKtdnfbSFAgUC6c_BH-Qn-J03YhaNSYeGuT2Ucn251vMjPfAJygzfVCtywS3lZlUtdzzIDYzGREKU-QEI9NmuVb59ctettmbd3nNK2F6Q_01V_Cx4woOFOhTohzLZtw2-SMUiuQNOS2NVBRDhYZ4SSt4HtozMIICJ5nveQdx2Y6TvndLJ_sUg7XnjMz1XV4nG4wyy7plsaxKMnJF-7Gf3zBBqxpCGqcZ-KbsBD2CrA6R0yIb_czNtdRAZbSNFE52gK7iWMHnW5odHpGrYNbeOrEk_fXt17GuBEMjT7eQS84vc6B34ZW9ap5cW3qpgumJIzHpogo544SXlBRHsIxR9JICcV4wlNF0VtKEE5FViJEKp5EASbcKEKYqCgnIvDIDuRxzXAXjDKNyoHH7VAyhV6nCspOyoSLDjkTJHCKYE1V7kvNSJ40xnj208i46_qJovxEUX6mqCKczUYMMjaOX2RPUf--_iVHP8rt_VHuGJYbl1W_dlO_24eVSlIFkSTwOAeQj4fj8BCxSSyO0vP3AY4w2Gc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Turnpike+in+Lipschitz%E2%80%94nonlinear+optimal+control&rft.jtitle=Nonlinearity&rft.au=Esteve-Yag%C3%BCe%2C+Carlos&rft.au=Geshkovski%2C+Borjan&rft.au=Pighin%2C+Dario&rft.au=Zuazua%2C+Enrique&rft.date=2022-04-07&rft.issn=0951-7715&rft.eissn=1361-6544&rft.volume=35&rft.issue=4&rft.spage=1652&rft.epage=1701&rft_id=info:doi/10.1088%2F1361-6544%2Fac4e61&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6544_ac4e61
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-7715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-7715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-7715&client=summon