Turnpike in Lipschitz—nonlinear optimal control
We present a new proof of the turnpike property for nonlinear optimal control problems, when the running target is a steady control-state pair of the underlying system. Our strategy combines the construction of quasi-turnpike controls via controllability, and a bootstrap argument, and does not rely...
Saved in:
Published in | Nonlinearity Vol. 35; no. 4; pp. 1652 - 1701 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
07.04.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0951-7715 1361-6544 |
DOI | 10.1088/1361-6544/ac4e61 |
Cover
Loading…
Abstract | We present a new proof of the turnpike property for nonlinear optimal control problems, when the running target is a steady control-state pair of the underlying system. Our strategy combines the construction of quasi-turnpike controls via controllability, and a bootstrap argument, and does not rely on analyzing the optimality system or linearization techniques. This in turn allows us to address several optimal control problems for finite-dimensional, control-affine systems with globally Lipschitz (possibly nonsmooth) nonlinearities, without any smallness conditions on the initial data or the running target. These results are motivated by applications in machine learning through deep residual neural networks, which may be fit within our setting. We show that our methodology is applicable to controlled PDEs as well, such as the semilinear wave and heat equation with a globally Lipschitz nonlinearity, once again without any smallness assumptions. |
---|---|
AbstractList | We present a new proof of the turnpike property for nonlinear optimal control problems, when the running target is a steady control-state pair of the underlying system. Our strategy combines the construction of quasi-turnpike controls via controllability, and a bootstrap argument, and does not rely on analyzing the optimality system or linearization techniques. This in turn allows us to address several optimal control problems for finite-dimensional, control-affine systems with globally Lipschitz (possibly nonsmooth) nonlinearities, without any smallness conditions on the initial data or the running target. These results are motivated by applications in machine learning through deep residual neural networks, which may be fit within our setting. We show that our methodology is applicable to controlled PDEs as well, such as the semilinear wave and heat equation with a globally Lipschitz nonlinearity, once again without any smallness assumptions. |
Author | Esteve-Yagüe, Carlos Pighin, Dario Zuazua, Enrique Geshkovski, Borjan |
Author_xml | – sequence: 1 givenname: Carlos surname: Esteve-Yagüe fullname: Esteve-Yagüe, Carlos organization: Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain – sequence: 2 givenname: Borjan orcidid: 0000-0002-7890-3352 surname: Geshkovski fullname: Geshkovski, Borjan organization: Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain – sequence: 3 givenname: Dario surname: Pighin fullname: Pighin, Dario organization: Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain – sequence: 4 givenname: Enrique surname: Zuazua fullname: Zuazua, Enrique organization: Chair in Dynamics, Control, and Numerics, Alexander von Humboldt-Professorship, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany |
BookMark | eNp9kM1KxDAURoOMYGd077IPYJ3c5qfJUgZ1hIKbcR2StMGMtSlpXejKh_AJfRJTRlwIurpw-c7HPXeJFn3oW4TOAV8CFmINhEPBGaVrbWnL4QhlP6sFyrBkUFQVsBO0HMc9xgCiJBmC3UvsB__U5r7Paz-M9tFPb5_vH6m-832rYx6GyT_rLrehn2LoTtGx093Ynn3PFXq4ud5ttkV9f3u3uaoLSxifCuMo51VjpC4bKRhUlrrGNIwbqCrKS0aEJKUtHSdM2hRgRjgnS9JQToyWZIX4odfGMI6xdcr6SU9-vkL7TgFWs7iaLdVsqQ7iCcS_wCEmgfj6H3JxQHwY1D6klySzv-Nfk8trqA |
CODEN | NONLE5 |
CitedBy_id | crossref_primary_10_1017_S0962492922000046 crossref_primary_10_1017_S0956792524000871 crossref_primary_10_1109_TAC_2022_3181222 crossref_primary_10_1214_22_AAP1927 crossref_primary_10_1007_s10440_024_00640_7 crossref_primary_10_1016_j_sysconle_2022_105452 |
Cites_doi | 10.1051/cocv/2014014 10.1137/040610222 10.1137/19m1285354 10.1016/j.matpur.2020.02.001 10.1016/j.arcontrol.2017.04.002 10.1016/j.jde.2017.11.028 10.1051/cocv/2021030 10.1137/18m1223083 10.1137/120891174 10.3934/mcrf.2018041 10.1038/nature14539 10.1137/20m132818x 10.1016/j.jde.2014.09.005 10.1016/j.matpur.2017.07.002 10.1051/cocv/2020009 10.1016/j.jde.2019.11.064 10.1137/130907239 10.1137/16m1097638 10.1007/s40304-017-0103-z 10.1137/17m1134470 10.1016/j.sysconle.2016.02.001 10.1051/cocv/2021036 10.1137/1024101 10.1016/j.matpur.2020.03.006 10.1016/j.matpur.2020.08.006 10.1137/130950793 10.1007/s00021-018-0382-5 10.1051/cocv/2019033 |
ContentType | Journal Article |
Copyright | 2022 IOP Publishing Ltd & London Mathematical Society |
Copyright_xml | – notice: 2022 IOP Publishing Ltd & London Mathematical Society |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-6544/ac4e61 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Physics |
EISSN | 1361-6544 |
EndPage | 1701 |
ExternalDocumentID | 10_1088_1361_6544_ac4e61 nonac4e61 |
GrantInformation_xml | – fundername: European Commission grantid: 765579 funderid: https://doi.org/10.13039/501100000780 – fundername: Ministerio de Economía y Competitividad grantid: MTM2017-92996-C2-1-R funderid: https://doi.org/10.13039/501100003329 – fundername: H2020 European Research Council grantid: 694126 funderid: https://doi.org/10.13039/100010663 – fundername: Air Force Office of Scientific Research grantid: FA9550-18-1-0242 funderid: https://doi.org/10.13039/100000181 – fundername: Alexander von Humboldt-Stiftung funderid: https://doi.org/10.13039/100005156 – fundername: Deutsche Forschungsgemeinschaft grantid: 154 funderid: https://doi.org/10.13039/501100001659 |
GroupedDBID | -~X .DC 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP YQT ZMT AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c356t-bf4667db9a2d98517c4fdbd56b177462538932c2f6359c8515b8ff923d463ba93 |
IEDL.DBID | IOP |
ISSN | 0951-7715 |
IngestDate | Tue Jul 01 02:47:33 EDT 2025 Thu Apr 24 23:05:24 EDT 2025 Wed Aug 21 03:34:58 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-bf4667db9a2d98517c4fdbd56b177462538932c2f6359c8515b8ff923d463ba93 |
Notes | NON-104973.R2 London Mathematical Society |
ORCID | 0000-0002-7890-3352 |
OpenAccessLink | https://hal.science/hal-03018529v3/file/manuscript.pdf |
PageCount | 50 |
ParticipantIDs | crossref_citationtrail_10_1088_1361_6544_ac4e61 crossref_primary_10_1088_1361_6544_ac4e61 iop_journals_10_1088_1361_6544_ac4e61 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-07 |
PublicationDateYYYYMMDD | 2022-04-07 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-07 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | Nonlinearity |
PublicationTitleAbbrev | Non |
PublicationTitleAlternate | Nonlinearity |
PublicationYear | 2022 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Faulwasser (nonac4e61bib13) 2021 Grüne (nonac4e61bib19) 2020 Chen (nonac4e61bib7) 2018 Gugat (nonac4e61bib23) 2016; 90 Grüne (nonac4e61bib21) 2021; 27 Gugat (nonac4e61bib22) 2019; 57 LeCun (nonac4e61bib29) 2015; 521 Pighin (nonac4e61bib37) 2020 Mazari (nonac4e61bib33) 2020 Agrachev (nonac4e61bib1) 2019; vol 181 Porretta (nonac4e61bib39) 2013; 51 Beauchard (nonac4e61bib4) 2020; 136 Coron (nonac4e61bib8) 2007 Fu (nonac4e61bib14) 2007; 46 Jean (nonac4e61bib25) 2015; 53 Lin (nonac4e61bib30) 2018 Joly (nonac4e61bib26) 2014; 52 Ruiz-Balet (nonac4e61bib42) 2020; 143 Duprez (nonac4e61bib10) 2021 Geshkovski (nonac4e61bib17) 2021; 59 Tucsnak (nonac4e61bib47) 2009 Lions (nonac4e61bib31) 1988 Pighin (nonac4e61bib38) 2018; 8 Trélat (nonac4e61bib45) 2018; 56 Mazari (nonac4e61bib34) 2021; 81 Grüne (nonac4e61bib18) 2019; 57 Lions (nonac4e61bib32) 1982; 24 Geshkovski (nonac4e61bib16) 2021 Zhang (nonac4e61bib51) 2004 Grüne (nonac4e61bib20) 2020; 268 He (nonac4e61bib24) 2016 Yagüe (nonac4e61bib48) 2021 Porretta (nonac4e61bib40) 2016 Beauchard (nonac4e61bib3) 2018; 264 Trélat (nonac4e61bib46) 2015; 258 Weinan (nonac4e61bib11) 2017; 5 Pighin (nonac4e61bib36) 2021; 27 Zamorano (nonac4e61bib49) 2018; 20 Trélat (nonac4e61bib44) 2020 Geshkovski (nonac4e61bib15) 2020; 26 Zuazua (nonac4e61bib52) 1991; vol 10 Shalev-Shwartz (nonac4e61bib43) 2014 Kunisch (nonac4e61bib27) 2020; 138 Mazari (nonac4e61bib35) 2020 Cannarsa (nonac4e61bib5) 2017; 108 Esteve (nonac4e61bib12) 2020 Prandi (nonac4e61bib41) 2014; 20 Zuazua (nonac4e61bib53) 2007; vol 3 Cazenave (nonac4e61bib6) 2006; vol 164 Dupont (nonac4e61bib9) 2019; vol 32 Le Balc’h (nonac4e61bib28) 2020; 26 Amann (nonac4e61bib2) 1995; vol 1 Zhang (nonac4e61bib50) 2001; 27 Zuazua (nonac4e61bib54) 2017; 44 |
References_xml | – volume: 20 start-page: 1224 year: 2014 ident: nonac4e61bib41 article-title: Hölder equivalence of the value function for control-affine systems publication-title: ESAIM Control, Optim. Calc. Var. doi: 10.1051/cocv/2014014 – volume: 46 start-page: 1578 year: 2007 ident: nonac4e61bib14 article-title: Exact controllability for multidimensional semilinear hyperbolic equations publication-title: SIAM J. Control Optim. doi: 10.1137/040610222 – volume: 59 start-page: 1830 year: 2021 ident: nonac4e61bib17 article-title: Controllability of one-dimensional viscous free boundary flows publication-title: SIAM J. Control Optim. doi: 10.1137/19m1285354 – volume: 136 start-page: 22 year: 2020 ident: nonac4e61bib4 article-title: Unexpected quadratic behaviors for the small-time local null controllability of scalar-input parabolic equations publication-title: J. Math. Pure Appl. doi: 10.1016/j.matpur.2020.02.001 – year: 2021 ident: nonac4e61bib13 article-title: On the turnpike to design of deep neural nets: explicit depth bounds – volume: 44 start-page: 199 year: 2017 ident: nonac4e61bib54 article-title: Large time control and turnpike properties for wave equations publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2017.04.002 – volume: 264 start-page: 3704 year: 2018 ident: nonac4e61bib3 article-title: Quadratic obstructions to small-time local controllability for scalar-input systems publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2017.11.028 – year: 2014 ident: nonac4e61bib43 – start-page: 770 year: 2016 ident: nonac4e61bib24 article-title: Deep residual learning for image recognition – year: 1988 ident: nonac4e61bib31 – volume: 27 start-page: 56 year: 2021 ident: nonac4e61bib21 article-title: Abstract nonlinear sensitivity and turnpike analysis and an application to semilinear parabolic PDEs publication-title: ESAIM Control, Optim. Calc. Var. doi: 10.1051/cocv/2021030 – volume: 57 start-page: 2753 year: 2019 ident: nonac4e61bib18 article-title: Sensitivity analysis of optimal control for a class of parabolic PDEs motivated by model predictive control publication-title: SIAM J. Control Optim. doi: 10.1137/18m1223083 – volume: 52 start-page: 439 year: 2014 ident: nonac4e61bib26 article-title: A note on the semiglobal controllability of the semilinear wave equation publication-title: SIAM J. Control Optim. doi: 10.1137/120891174 – volume: vol 32 start-page: 3140 year: 2019 ident: nonac4e61bib9 article-title: Augmented neural ODEs – volume: 27 start-page: 95 year: 2001 ident: nonac4e61bib50 article-title: Exact controllability of semilinear plate equations publication-title: Asymptotic Anal. – volume: 8 start-page: 935 year: 2018 ident: nonac4e61bib38 article-title: Controllability under positivity constraints of semilinear heat equations publication-title: Math. Control Relat. Field. doi: 10.3934/mcrf.2018041 – volume: 521 start-page: 436 year: 2015 ident: nonac4e61bib29 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – year: 2021 ident: nonac4e61bib48 article-title: Sparse approximation in learning via neural ODEs – volume: 81 start-page: 153 year: 2021 ident: nonac4e61bib34 article-title: A fragmentation phenomenon for a nonenergetic optimal control problem: optimization of the total population size in logistic diffusive models publication-title: SIAM J. Appl. Math. doi: 10.1137/20m132818x – start-page: 6571 year: 2018 ident: nonac4e61bib7 article-title: Neural ordinary differential equations – volume: 258 start-page: 81 year: 2015 ident: nonac4e61bib46 article-title: The turnpike property in finite-dimensional nonlinear optimal control publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2014.09.005 – year: 2009 ident: nonac4e61bib47 – volume: 108 start-page: 425 year: 2017 ident: nonac4e61bib5 article-title: Multiplicative controllability for semilinear reaction–diffusion equations with finitely many changes of sign publication-title: J. Math. Pure Appl. doi: 10.1016/j.matpur.2017.07.002 – volume: 26 start-page: 85 year: 2020 ident: nonac4e61bib15 article-title: Null-controllability of perturbed porous medium gas flow publication-title: ESAIM Control, Optim. Calc. Var. doi: 10.1051/cocv/2020009 – year: 2020 ident: nonac4e61bib37 article-title: The turnpike with lack of observability – volume: 268 start-page: 7311 year: 2020 ident: nonac4e61bib20 article-title: Exponential sensitivity and turnpike analysis for linear quadratic optimal control of general evolution equations publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2019.11.064 – start-page: 67 year: 2016 ident: nonac4e61bib40 article-title: Remarks on long time versus steady state optimal control – year: 2020 ident: nonac4e61bib44 article-title: Linear turnpike theorem – year: 2020 ident: nonac4e61bib12 article-title: Large-time asymptotics in deep learning – start-page: p 173 year: 2004 ident: nonac4e61bib51 article-title: Exact controllability of the semi-linear wave equation – year: 2021 ident: nonac4e61bib10 article-title: Bilinear local controllability to the trajectories of the Fokker–Planck equation with a localized control publication-title: Ann. Inst. Fourier – volume: 51 start-page: 4242 year: 2013 ident: nonac4e61bib39 article-title: Long time versus steady state optimal control publication-title: SIAM J. Control Optim. doi: 10.1137/130907239 – volume: 56 start-page: 1222 year: 2018 ident: nonac4e61bib45 article-title: Steady-state and periodic exponential turnpike property for optimal control problems in Hilbert spaces publication-title: SIAM J. Control Optim. doi: 10.1137/16m1097638 – year: 2020 ident: nonac4e61bib33 article-title: Quantitative stability for eigenvalues of Schrödinger operator and application to the turnpike property for a bilinear optimal control problem – year: 2021 ident: nonac4e61bib16 article-title: Control in moving interfaces and deep learning – volume: 5 start-page: 1 year: 2017 ident: nonac4e61bib11 article-title: A proposal on machine learning via dynamical systems publication-title: Commun. Math. Stat. doi: 10.1007/s40304-017-0103-z – volume: vol 164 year: 2006 ident: nonac4e61bib6 – volume: 57 start-page: 264 year: 2019 ident: nonac4e61bib22 article-title: On the turnpike phenomenon for optimal boundary control problems with hyperbolic systems publication-title: SIAM J. Control Optim. doi: 10.1137/17m1134470 – volume: 90 start-page: 61 year: 2016 ident: nonac4e61bib23 article-title: Optimal Neumann control for the 1D wave equation: finite horizon, infinite horizon, boundary tracking terms and the turnpike property publication-title: Syst. Control Lett. doi: 10.1016/j.sysconle.2016.02.001 – volume: 27 start-page: 48 year: 2021 ident: nonac4e61bib36 article-title: The turnpike property in semilinear control publication-title: ESAIM Control, Optim. Calc. Var. doi: 10.1051/cocv/2021036 – volume: vol 3 start-page: 527 year: 2007 ident: nonac4e61bib53 article-title: Controllability and observability of partial differential equations: some results and open problems – volume: 24 start-page: 441 year: 1982 ident: nonac4e61bib32 article-title: On the existence of positive solutions of semilinear elliptic equations publication-title: SIAM Rev. doi: 10.1137/1024101 – volume: 138 start-page: 46 year: 2020 ident: nonac4e61bib27 article-title: Optimal control of an energy-critical semilinear wave equation in 3D with spatially integrated control constraints publication-title: J. Math. Pure Appl. doi: 10.1016/j.matpur.2020.03.006 – volume: vol 10 start-page: 357 year: 1991 ident: nonac4e61bib52 article-title: Exact boundary controllability for the semilinear wave equation – year: 2020 ident: nonac4e61bib35 article-title: Constrained control of gene-flow models – volume: 143 start-page: 345 year: 2020 ident: nonac4e61bib42 article-title: Control under constraints for multi-dimensional reaction-diffusion monostable and bistable equations publication-title: J. Math. Pure Appl. doi: 10.1016/j.matpur.2020.08.006 – volume: 53 start-page: 816 year: 2015 ident: nonac4e61bib25 article-title: Complexity of control-affine motion planning publication-title: SIAM J. Control Optim. doi: 10.1137/130950793 – year: 2020 ident: nonac4e61bib19 article-title: Efficient MPC for parabolic PDEs with goal oriented error estimation – year: 2007 ident: nonac4e61bib8 – start-page: 6169 year: 2018 ident: nonac4e61bib30 article-title: Resnet with one-neuron hidden layers is a universal approximator – volume: 20 start-page: 869 year: 2018 ident: nonac4e61bib49 article-title: Turnpike property for two-dimensional Navier–Stokes equations publication-title: J. Math. Fluid Mech. doi: 10.1007/s00021-018-0382-5 – volume: vol 1 year: 1995 ident: nonac4e61bib2 – volume: 26 start-page: 55 year: 2020 ident: nonac4e61bib28 article-title: Local controllability of reaction-diffusion systems around nonnegative stationary states publication-title: ESAIM Control, Optim. Calc. Var. doi: 10.1051/cocv/2019033 – volume: vol 181 year: 2019 ident: nonac4e61bib1 |
SSID | ssj0011823 |
Score | 2.3592608 |
Snippet | We present a new proof of the turnpike property for nonlinear optimal control problems, when the running target is a steady control-state pair of the... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1652 |
SubjectTerms | deep learning heat equation neural ODEs optimal control ResNets turnpike property wave equation |
Title | Turnpike in Lipschitz—nonlinear optimal control |
URI | https://iopscience.iop.org/article/10.1088/1361-6544/ac4e61 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qRdCDj6pYX-SgBw9pk-wjWTyJWIr4OrTQgxCyuwmGalva9NKTP8Jf6C9xNtmGKiriLYHZnWXY3fmGnfkGoRPwuTwOHKF5W5VNAu7bEXapTbFSXOAYtk2e5XvH2l1y3aO9Cjova2GGI3P1N-CzIAouTGgS4oKmi5lrM0pIM5Ik1qHPMg7AzejqvfuH8gkBgHPZR973XWreKL-b4ZNPWgK9Cy6mtYEe54srMkv6jWkmGnL2hbfxn6vfROsGeloXhegWqsSDGlpbICSEv9uSxXVSQyt5eqicbCO3A2NHaT-20oF1k4L6pzSbvb--DQqmjWhsDeHueYHpTe77Duq2rjqXbds0W7AlpiyzRUIY85Xgkac4wDBfkkQJRZnmpyIQJWlk40kvAYTCJQhQESQJwENFGBYRx7uoCjrjPWQ5JHEiztxYUgXRpoocP2fAhUCcChz5ddScmzuUholcN8R4DvMX8SAItZFCbaSwMFIdnZUjRgULxy-yp2D70BzFyY9y-3-UO0Crni550Nk6_iGqZuNpfARAJBPH-Yb7AHqa0wM |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4IRqMHH6gRnz3owUMpZR9tj0YlPhA5QMKtdnfbSFAgUC6c_BH-Qn-J03YhaNSYeGuT2Ucn251vMjPfAJygzfVCtywS3lZlUtdzzIDYzGREKU-QEI9NmuVb59ctettmbd3nNK2F6Q_01V_Cx4woOFOhTohzLZtw2-SMUiuQNOS2NVBRDhYZ4SSt4HtozMIICJ5nveQdx2Y6TvndLJ_sUg7XnjMz1XV4nG4wyy7plsaxKMnJF-7Gf3zBBqxpCGqcZ-KbsBD2CrA6R0yIb_czNtdRAZbSNFE52gK7iWMHnW5odHpGrYNbeOrEk_fXt17GuBEMjT7eQS84vc6B34ZW9ap5cW3qpgumJIzHpogo544SXlBRHsIxR9JICcV4wlNF0VtKEE5FViJEKp5EASbcKEKYqCgnIvDIDuRxzXAXjDKNyoHH7VAyhV6nCspOyoSLDjkTJHCKYE1V7kvNSJ40xnj208i46_qJovxEUX6mqCKczUYMMjaOX2RPUf--_iVHP8rt_VHuGJYbl1W_dlO_24eVSlIFkSTwOAeQj4fj8BCxSSyO0vP3AY4w2Gc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Turnpike+in+Lipschitz%E2%80%94nonlinear+optimal+control&rft.jtitle=Nonlinearity&rft.au=Esteve-Yag%C3%BCe%2C+Carlos&rft.au=Geshkovski%2C+Borjan&rft.au=Pighin%2C+Dario&rft.au=Zuazua%2C+Enrique&rft.date=2022-04-07&rft.issn=0951-7715&rft.eissn=1361-6544&rft.volume=35&rft.issue=4&rft.spage=1652&rft.epage=1701&rft_id=info:doi/10.1088%2F1361-6544%2Fac4e61&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6544_ac4e61 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-7715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-7715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-7715&client=summon |