Behaviors of dewaterability and heavy metals of waste activated sludge conditioned by heat-activated peroxymonosulfate oxidation

In this work, heat-activated peroxymonosulfate (heat-PMS) oxidation was used to condition waste activated sludge. The results showed that the optimal temperature and PMS dosage for sludge dewatering were 75 °C and 150 mg/g-volatile solids (VS), and the addition of rice husk (100–400 mg/g-VS) was fav...

Full description

Saved in:
Bibliographic Details
Published inChemical papers Vol. 74; no. 2; pp. 641 - 650
Main Authors Huang, Zaichun, Liu, Changgeng, Zhu, Xuejun, Xiang, Guoqi, Zeng, Chenghua, Zhong, Yuquan
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, heat-activated peroxymonosulfate (heat-PMS) oxidation was used to condition waste activated sludge. The results showed that the optimal temperature and PMS dosage for sludge dewatering were 75 °C and 150 mg/g-volatile solids (VS), and the addition of rice husk (100–400 mg/g-VS) was favorable to further enhance sludge dewaterability. Under optimal conditions, the capillary suction time reduction and water content of sludge cake were 82.4% and 65.8%, respectively. The significant improvement of sludge dewaterability was ascribed to the releases of extracellular polymeric substances (EPS)-bound water and cell water caused by the significant breakdown of tightly bound EPS, as well as the skeleton effect. In addition, heat-PMS oxidation has been demonstrated with the merits of improving the immobilization of heavy metals (HMs) and weakening their environmental risk. After conditioning, HMs solubilization was enhanced significantly and their leaching toxicity decreased obviously. Meanwhile, HMs were transformed into more stable forms. Therefore, heat-PMS oxidation might be a potential and desirable technology for sludge conditioning with respect to the enhancement of sludge dewaterability and the decrease of HMs environmental risk.
AbstractList In this work, heat-activated peroxymonosulfate (heat-PMS) oxidation was used to condition waste activated sludge. The results showed that the optimal temperature and PMS dosage for sludge dewatering were 75 °C and 150 mg/g-volatile solids (VS), and the addition of rice husk (100–400 mg/g-VS) was favorable to further enhance sludge dewaterability. Under optimal conditions, the capillary suction time reduction and water content of sludge cake were 82.4% and 65.8%, respectively. The significant improvement of sludge dewaterability was ascribed to the releases of extracellular polymeric substances (EPS)-bound water and cell water caused by the significant breakdown of tightly bound EPS, as well as the skeleton effect. In addition, heat-PMS oxidation has been demonstrated with the merits of improving the immobilization of heavy metals (HMs) and weakening their environmental risk. After conditioning, HMs solubilization was enhanced significantly and their leaching toxicity decreased obviously. Meanwhile, HMs were transformed into more stable forms. Therefore, heat-PMS oxidation might be a potential and desirable technology for sludge conditioning with respect to the enhancement of sludge dewaterability and the decrease of HMs environmental risk.
In this work, heat-activated peroxymonosulfate (heat-PMS) oxidation was used to condition waste activated sludge. The results showed that the optimal temperature and PMS dosage for sludge dewatering were 75 °C and 150 mg/g-volatile solids (VS), and the addition of rice husk (100–400 mg/g-VS) was favorable to further enhance sludge dewaterability. Under optimal conditions, the capillary suction time reduction and water content of sludge cake were 82.4% and 65.8%, respectively. The significant improvement of sludge dewaterability was ascribed to the releases of extracellular polymeric substances (EPS)-bound water and cell water caused by the significant breakdown of tightly bound EPS, as well as the skeleton effect. In addition, heat-PMS oxidation has been demonstrated with the merits of improving the immobilization of heavy metals (HMs) and weakening their environmental risk. After conditioning, HMs solubilization was enhanced significantly and their leaching toxicity decreased obviously. Meanwhile, HMs were transformed into more stable forms. Therefore, heat-PMS oxidation might be a potential and desirable technology for sludge conditioning with respect to the enhancement of sludge dewaterability and the decrease of HMs environmental risk.
Author Liu, Changgeng
Xiang, Guoqi
Zeng, Chenghua
Huang, Zaichun
Zhong, Yuquan
Zhu, Xuejun
Author_xml – sequence: 1
  givenname: Zaichun
  surname: Huang
  fullname: Huang, Zaichun
  organization: School of Biological and Chemical Engineering, Panzhihua University
– sequence: 2
  givenname: Changgeng
  orcidid: 0000-0002-4899-0985
  surname: Liu
  fullname: Liu, Changgeng
  email: changwyx@163.com
  organization: School of Biological and Chemical Engineering, Panzhihua University
– sequence: 3
  givenname: Xuejun
  surname: Zhu
  fullname: Zhu, Xuejun
  organization: School of Biological and Chemical Engineering, Panzhihua University
– sequence: 4
  givenname: Guoqi
  surname: Xiang
  fullname: Xiang, Guoqi
  organization: Office of Educational Administration, Panzhihua University
– sequence: 5
  givenname: Chenghua
  surname: Zeng
  fullname: Zeng, Chenghua
  organization: School of Biological and Chemical Engineering, Panzhihua University
– sequence: 6
  givenname: Yuquan
  surname: Zhong
  fullname: Zhong, Yuquan
  organization: Office of Scientific Research, Panzhihua University
BookMark eNp9kM1KJDEQgIO44Kz6AnsKeM5a6Z90clxFXUHYy3oO1UlaIz2dMcmM9tE38Vn2yTYzsyDswVOg-L5K8X0lh1OYHCHfOHznAN154lwowYArBqB4xdQBWfC6FkxB1x6SRdXKlnWVgiNympLvoWm6upKiW5C3C_eIGx9iomGg1r1gdhF7P_o8U5wsfXS4menSZRx3yAum7P68o8l-U1hL07i2D46aMFmffbnM0n7eapl9QCsXw-u8DFNI63EoIxpevcUtf0K-DGW3O_33HpP766vflz_Z3a-b28sfd8zUrcisRyNNj50QYCtAqbgxlnNspR2ccgB9aWCVVVIOQjW94koOgKgkdgM4qI_J2X7vKobntUtZP4V1nMqXuqqbbQ7ZiELJPWViSCm6QRufd3fmiH7UHPS2ud4316W53jXXqqjVf-oq-iXG-XOp3kupwNODix9XfWL9Ba_Jmuo
CitedBy_id crossref_primary_10_1007_s13369_022_07398_w
crossref_primary_10_1080_09593330_2022_2129457
crossref_primary_10_1007_s11270_023_06555_7
crossref_primary_10_1007_s11356_021_18068_z
crossref_primary_10_1016_j_scitotenv_2023_167106
crossref_primary_10_1016_j_cclet_2022_01_029
crossref_primary_10_1016_j_jhazmat_2021_128001
crossref_primary_10_1007_s11356_021_15391_3
crossref_primary_10_1016_j_cej_2021_132438
crossref_primary_10_1016_j_chemosphere_2021_133198
Cites_doi 10.1021/acs.est.8b00310
10.1111/wej.12167
10.1016/j.cej.2015.11.037
10.1016/j.serj.2015.10.005
10.1016/s0043-1354(01)00477-8
10.1016/j.watres.2006.06.037
10.1016/j.cej.2016.01.103
10.1016/j.watres.2018.01.062
10.1021/cr00033a006
10.1021/acs.est.6b00019
10.1016/j.cej.2019.01.047
10.1016/j.jenvman.2008.11.005
10.1016/j.wasman.2005.09.017
10.1016/j.fuel.2018.04.045
10.1016/j.watres.2011.09.015
10.1016/j.cej.2017.10.162
10.1016/j.pecs.2008.06.002
10.1016/j.ultsonch.2017.07.028
10.1016/j.watres.2016.11.034
10.1016/j.biortech.2018.04.050
10.1016/j.ibiod.2015.07.008
10.1002/jctb.5108
10.1016/j.watres.2018.01.072
10.1016/j.watres.2016.09.030
10.1016/j.wasman.2019.06.025
10.1016/j.chemosphere.2011.07.039
10.1016/j.jenvman.2017.10.070
10.1016/j.chemosphere.2018.05.162
10.1016/j.energy.2018.04.100
10.1016/j.scitotenv.2018.06.337
10.1016/j.apsusc.2017.08.115
10.1016/j.biortech.2016.01.088
10.1016/j.jhazmat.2012.04.028
10.1007/s11696-017-0228-2
10.1016/j.jes.2014.05.039
10.1039/a807854h
10.1016/j.chemosphere.2013.02.001
10.1016/j.biortech.2012.01.170
10.1021/acssuschemeng.8b02086
10.1016/j.coal.2011.10.006
10.1016/j.biortech.2016.02.025
10.1039/C8CS00376A
10.1021/ac60111a017
10.1021/es980559n
10.1016/j.cej.2018.11.139
10.1016/0043-1354(95)00323-1
10.1016/j.biortech.2013.07.043
ContentType Journal Article
Copyright Institute of Chemistry, Slovak Academy of Sciences 2019
2019© Institute of Chemistry, Slovak Academy of Sciences 2019
Copyright_xml – notice: Institute of Chemistry, Slovak Academy of Sciences 2019
– notice: 2019© Institute of Chemistry, Slovak Academy of Sciences 2019
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1007/s11696-019-00912-9
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1336-9075
EndPage 650
ExternalDocumentID 10_1007_s11696_019_00912_9
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 21607088
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Applied Basic Research Program of Sichuan Province
  grantid: 2018JY0303
  funderid: http://dx.doi.org/10.13039/100012551
GroupedDBID -58
-5G
-BR
-Y2
.86
.VR
06D
0VY
1N0
29B
2JY
2LR
2VQ
2WC
2~H
30V
4.4
406
408
40D
53G
5GY
5VS
67Z
6J9
6NX
8FE
8FG
8TC
8UJ
95.
95~
AAAVM
AACDK
AAFPC
AAJBT
AAQCX
AASML
AASQH
AATNV
AATVU
AAXMT
AAYQN
AAYZH
ABAKF
ABAQN
ABFKT
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABOCM
ABQBU
ABRQL
ABTEG
ABTKH
ABTMW
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACOMO
ACPIV
ACREN
ACZBO
ACZOJ
ADGYE
ADHHG
ADINQ
ADKNI
ADOZN
ADTPH
ADURQ
ADYFF
AEBTG
AEFQL
AEGNC
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEXYK
AFBAA
AFBBN
AFCXV
AFGCZ
AFKRA
AFQWF
AFWTZ
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHBYD
AHKAY
AIGIU
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
BA0
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
DPUIP
EBLON
FIGPU
G-Y
G-Z
GJIRD
GQ6
GQ7
H13
HCIFZ
HG6
HLICF
HMJXF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
ISR
ITC
IWAJR
IXC
IXE
IY9
IZQ
I~X
I~Z
JZLTJ
KDC
KOV
L6V
LLZTM
M4Y
M7S
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
OAM
OK1
P2P
P9N
PF0
PT4
PTHSS
QD8
QOS
R9I
RNS
ROL
RPX
RSV
S1Z
S27
S3B
SCM
SDH
SHX
SJYHP
SNE
SOJ
SZN
T13
TSK
TSV
TUC
U2A
UG4
VC2
WK8
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEXIE
AEZWR
AFDZB
AFHIU
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SR
7U5
8BQ
8FD
ABRTQ
JG9
L7M
ID FETCH-LOGICAL-c356t-bac8cba7660d20a891ccd11a58dfe9e00b696d9d988f694b9198f0aa98a7f0e03
IEDL.DBID U2A
ISSN 2585-7290
0366-6352
IngestDate Wed Aug 13 02:37:36 EDT 2025
Tue Jul 01 03:17:04 EDT 2025
Thu Apr 24 23:00:53 EDT 2025
Fri Feb 21 02:37:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Heat/peroxymonosulfate
Waste activated sludge
Advanced oxidation
Dewatering
Heavy metals
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-bac8cba7660d20a891ccd11a58dfe9e00b696d9d988f694b9198f0aa98a7f0e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4899-0985
PQID 2343286846
PQPubID 2039839
PageCount 10
ParticipantIDs proquest_journals_2343286846
crossref_citationtrail_10_1007_s11696_019_00912_9
crossref_primary_10_1007_s11696_019_00912_9
springer_journals_10_1007_s11696_019_00912_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Chemical papers
PublicationTitleAbbrev Chem. Pap
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References IzquierdoMQuerolXLeaching behaviour of elements from coal combustion fly ash: an overviewInt J Coal Geol20129454661:CAS:528:DC%2BC38XlvFehsr0%3D10.1016/j.coal.2011.10.006
OncuNBBalciogluIAMicrowave-assisted chemical oxidation of biological waste sludge: simultaneous micropollutant degradation and sludge solubilizationBioresour Technol20131461261341:CAS:528:DC%2BC3sXhsVejtbnE10.1016/j.biortech.2013.07.043
UdayangaWDCVekshaAGiannisALisakGChangVWCLimTTFate and distribution of heavy metals during thermal processing of sewage sludgeFuel20182267217441:CAS:528:DC%2BC1cXotlGrtrs%3D10.1016/j.fuel.2018.04.045
CaiMQHuJQWellsGSeoYSpinneyRHoSHDionysiouDDSuJXiaoRWeiZUnderstanding mechanisms of synergy between acidification and ultrasound treatments for activated sludge dewatering: from bench to pilot-scale investigationEnviron Sci Technol2018527431343231:CAS:528:DC%2BC1cXktFKhsro%3D10.1021/acs.est.8b0031029518313
GuoJChenCJiangSZhouYFeasibility and mechanism of combined conditioning with coagulant and flocculant to enhance sludge dewateringACS Sustain Chem Eng20186810758107651:CAS:528:DC%2BC1cXhtlSqtbrE10.1021/acssuschemeng.8b02086
LinkDDWalterPJKingstonHMDevelopment and validation of the new EPA microwave-assisted beach method 3051AEnviron Sci Technol19983222362836321:CAS:528:DyaK1cXmtVelt7s%3D10.1021/es980559n
LiuCWuBChenXEXieSWaste activated sludge pretreatment by Fe(II)-activated peroxymonosulfate oxidation under mild temperatureChem Pap20177112234323511:CAS:528:DC%2BC2sXhtVSht77J10.1007/s11696-017-0228-2
XiaoKChenYJiangXYangQSeowWYZhuWZhouYVariations in physical, chemical and biological properties in relation to sludge dewaterability under Fe(II)-oxone conditioningWater Res201710913231:CAS:528:DC%2BC28XhvV2itbbO10.1016/j.watres.2016.11.03427866102
LiuYWangLMaJZhaoXHuangZMahadevanGDQiJImprovement of settleability and dewaterability of sludge by newly prepared alkaline ferrate solutionChem Eng J201628711181:CAS:528:DC%2BC2MXhvVChsL%2FK10.1016/j.cej.2015.11.037
KwonEELeeTOkYSTsangDCWParkCLeeJEffects of calcium carbonate on pyrolysis of sewage sludgeEnergy20181537267311:CAS:528:DC%2BC1cXot1ynu7w%3D10.1016/j.energy.2018.04.100
Burgos-CastilloRSillanpääMBrillasESirésIRemoval of metals and phosphorus recovery from urban anaerobically digested sludge by electro-Fenton treatmentSci Total Environ20186441731821:CAS:528:DC%2BC1cXht1Ont7nL10.1016/j.scitotenv.2018.06.33729981517
GholikandiGBZakizadehNMasihiHApplication of peroxymonosulfate-ozone advanced oxidation process for simultaneous waste-activated sludge stabilization and dewatering purposes: a comparative studyJ Environ Manag20182065235311:CAS:528:DC%2BC2sXhsl2jsbbO10.1016/j.jenvman.2017.10.070
LiuJYangQWangDLiXZhongYLiXDengYWangLYiKZengGEnhanced dewaterability of waste activated sludge by Fe(II)-activated peroxymonosulfate oxidationBioresour Technol20162061341401:CAS:528:DC%2BC28Xhsl2qtr0%3D10.1016/j.biortech.2016.01.08826851897
LiuCEnhancement of dewaterability and heavy metals solubilization of waste activated sludge conditioned by natural vanadium-titanium magnetite-activated peroxymonosulfate oxidation with rice huskChem Eng J20193592172241:CAS:528:DC%2BC1cXitlShtL3O10.1016/j.cej.2018.11.139
WacławekSGrübelKDennisPVinodVTPČerníkMA novel approach for simultaneous improvement of dewaterability, post-digestion liquor properties and toluene removal from anaerobically digested sludgeChem Eng J20162911921981:CAS:528:DC%2BC28Xit1Sgs7g%3D10.1016/j.cej.2016.01.103
APHAStandard methods for examination of water and wastewater199820WashingtonAmerican Public Health Association, Elsevier B.V
HeiLLeeCCCWangHLinXYChenXHWuQTUsing a high biomass plant Pennisetum hydridum to phyto-treat fresh municipal sewage sludgeBioresour Technol20162172522561:CAS:528:DC%2BC28XisV2ksbo%3D10.1016/j.biortech.2016.02.02526897473
ZhangLZhuYZhangJZengGDongHCaoWFangWChengYWangYNingQImpacts of iron oxide nanoparticles on organic matter degradation and microbial enzyme activities during agricultural waste compostingWaste Manag2019952892971:CAS:528:DC%2BC1MXhtF2kt77I10.1016/j.wasman.2019.06.02531351614
LiuCWuBChenXESulfate radical-based oxidation for sludge treatment: a reviewChem Eng J20183358658751:CAS:528:DC%2BC2sXhvVSktbfF10.1016/j.cej.2017.10.162
ZhuCZhangPWangHYeJConditioning of sewage sludge via combined ultrasonication-flocculation-skeleton building to improve sludge dewaterabilityUltrason Sonochem2018403533601:CAS:528:DC%2BC2sXht1Gku7vP10.1016/j.ultsonch.2017.07.02828946434
BalciogluIAOncuNBMercanNBeneficial effects of treating waste secondary sludge with thermally activated persulfateJ Chem Technol Biotechnol2017926119212021:CAS:528:DC%2BC28XhslWisL%2FJ10.1002/jctb.5108
WangHZengZXuPLiLZengGXiaoRTangZHuangDTangLLaiCJiangDLiuYYiHQinLYeSRenXTangWRecent progress in covalent organic framework thin films: fabrications, applications and perspectivesChem Soc Rev2019484885161:CAS:528:DC%2BC1cXisFCktLbK10.1039/C8CS00376A30565610
DengYEzyskeCMSulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachateWater Res20114518618961941:CAS:528:DC%2BC3MXhtlWmurjI10.1016/j.watres.2011.09.01521959093
KimMSLeeKMKimHELeeHJLeeCLeeCDisintegration of waste activated sludge by thermally-activated persulfates for enhanced dewaterabilityEnviron Sci Technol20165013710671151:CAS:528:DC%2BC28XptlOgs7w%3D10.1021/acs.est.6b0001927268462
AppelsLBaeyensJDegreveJDewilRPrinciples and potential of the anaerobic digestion of waste-activated sludgeProg Energy Combust Sci20083467557811:CAS:528:DC%2BD1cXht1ShsrrI10.1016/j.pecs.2008.06.002
MikkelsenLHKeidingKPhysico-chemical characteristics of full scale sewage sludges with implications to dewateringWater Res20023610245124621:CAS:528:DC%2BD38XktFaqtr0%3D10.1016/s0043-1354(01)00477-812153011
FrolundBPalmgrenRKeidingKNielsenPHExtraction of extracellular polymers from activated sludge using a cation exchange resinWater Res19963081749175810.1016/0043-1354(95)00323-1
LiXYYangSFInfluence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludgeWater Res2007415102210301:CAS:528:DC%2BD2sXhsFCnsLc%3D10.1016/j.watres.2006.06.03716952388
LiuCLaiLYangXSewage sludge conditioning by Fe(II)-activated persulphate oxidation combined with skeleton builders for enhancing dewaterabilityWater Environ J2016301–2961011:CAS:528:DC%2BC28XhtlOqtbnP10.1111/wej.12167
ZhaoSFengCWangDLiuYShenZSalinity increases the mobility of Cd, Cu, Mn, and Pb in the sediments of Yangtze Estuary: relative role of sediments’ properties and metal speciationChemosphere20139179779841:CAS:528:DC%2BC3sXjvFCgsr0%3D10.1016/j.chemosphere.2013.02.00123478125
YuGBLiuYYuSWuSCLeungAOWLuoXSXuBLiHBWongMHInconsistency and comprehensiveness of risk assessments for heavy metals in urban surface sedimentsChemosphere2011856108010871:CAS:528:DC%2BC3MXhsVehsrfI10.1016/j.chemosphere.2011.07.03921862100
CaiMWangQWellsGDionysiouDDSongZJinMHuJHoSHXiaoRWeiZImproving dewaterability and filterability of waste activated sludge by electrochemical Fenton pretreatmentChem Eng J20193625255361:CAS:528:DC%2BC1MXhsFyqsLY%3D10.1016/j.cej.2019.01.047
RauretGLopez-SanchezJFSahuquilloARubioRDavidsonCUreAQuevauvillerPImprovement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materialsJ Environ Monit19991157611:CAS:528:DyaK1MXhtFartrg%3D10.1039/a807854h11529080
XiongTYuanXChenXWuZWangHLengLWangHJiangLZengGInsight into highly efficient removal of cadmium and methylene blue by eco-friendly magnesium silicate-hydrothermal carbon compositeAppl Surf Sci2018427110711171:CAS:528:DC%2BC2sXhsVKls7fN10.1016/j.apsusc.2017.08.115
LeeKMKimMSLeeCOxidative treatment of waste activated sludge by different activated persulfate systems for enhancing sludge dewaterabilitySustain Environ Res20162641771831:CAS:528:DC%2BC2sXhvFOnsbnE10.1016/j.serj.2015.10.005
LiYYuanXWangDWangHWuZJiangLMoDYangGGuanRZengGRecyclable zero-valent iron activating peroxymonosulfate synchronously combined with thermal treatment enhances sludge dewaterability by altering physicochemical and biological propertiesBioresour Technol20182622943011:CAS:528:DC%2BC1cXosFSrsbg%3D10.1016/j.biortech.2018.04.05029729607
ZhenGLuXSuLKobayashiTKumarGZhouTXuKLiYYZhuXZhaoYUnraveling the catalyzing behaviors of different iron species (Fe2+ vs. Fe0) in activating persulfate-based oxidation process with implications to waste activated sludge dewaterabilityWater Res20181341011141:CAS:528:DC%2BC1cXit12ku7g%3D10.1016/j.watres.2018.01.07229407644
BabelSDaceraDMHeavy metal removal from contaminated sludge for land application: a reviewWaste Manag200626998810041:CAS:528:DC%2BD28XnslGmtbc%3D10.1016/j.wasman.2005.09.01716298121
XiongQZhouMLiuMJiangSHouHThe transformation behaviors of heavy metals and dewaterability of sewage sludge during the dual conditioning with Fe2+-sodium persulfate oxidation and rice huskChemosphere2018208931001:CAS:528:DC%2BC1cXhtVKrsL3N10.1016/j.chemosphere.2018.05.16229860149
YeJHuARenGChenMTangJZhangPZhouSHeZEnhancing sludge methanogenesis with improved redox activity of extracellular polymeric substances by hematite in red mudWater Res201813454621:CAS:528:DC%2BC1cXit1Ghtrk%3D10.1016/j.watres.2018.01.06229407651
ZhenGLuXZhaoYChaiXNiuDEnhanced dewaterability of sewage sludge in the presence of Fe(II)-activated persulfate oxidationBioresour Technol20121162592651:CAS:528:DC%2BC38XotVamsLw%3D10.1016/j.biortech.2012.01.17022542138
XiaoKChenYJiangXTyagiVKZhouYCharacterization of key organic compounds affecting sludge dewaterability during ultrasonication and acidification treatmentsWater Res20161054704781:CAS:528:DC%2BC28XhsFGqsbfL10.1016/j.watres.2016.09.03027668991
BrandtCVan EldikRTransition metal-catalyzed oxidation of sulfur(IV) oxides. Atmospheric-relevant processes and mechanismsChem Rev19959511191901:CAS:528:DyaK2MXjtF2ru7g%3D10.1021/cr00033a006
PathakADastidarMGSreekrishnanTRBioleaching of heavy metals from sewage sludge: a reviewJ Environ Man
M Cai (912_CR8) 2019; 362
C Liu (912_CR24) 2015; 28
B Frolund (912_CR11) 1996; 30
GB Gholikandi (912_CR12) 2018; 206
S Babel (912_CR3) 2006; 26
C Liu (912_CR29) 2018; 335
EE Kwon (912_CR17) 2018; 153
G Zhen (912_CR46) 2012; 116
M Izquierdo (912_CR15) 2012; 94
G Zhen (912_CR47) 2018; 134
W Ren (912_CR34) 2015; 104
C Brandt (912_CR5) 1995; 95
R Burgos-Castillo (912_CR6) 2018; 644
L Zhang (912_CR44) 2019; 95
Y Deng (912_CR9) 2011; 45
DD Link (912_CR21) 1998; 32
A Pathak (912_CR32) 2009; 90
MS Kim (912_CR16) 2016; 50
S Wacławek (912_CR36) 2016; 291
S Zhao (912_CR45) 2013; 91
Y Liu (912_CR27) 2016; 287
Y Li (912_CR20) 2018; 262
IA Balcioglu (912_CR4) 2017; 92
GB Yu (912_CR43) 2011; 85
J Ye (912_CR42) 2018; 134
XY Li (912_CR19) 2007; 41
KM Lee (912_CR18) 2016; 26
F Liu (912_CR23) 2012; 221
WDC Udayanga (912_CR35) 2018; 226
K Xiao (912_CR39) 2017; 109
Q Xiong (912_CR40) 2018; 208
APHA (912_CR1) 1998
L Hei (912_CR14) 2016; 217
C Liu (912_CR22) 2019; 359
C Zhu (912_CR48) 2018; 40
MQ Cai (912_CR7) 2018; 52
C Liu (912_CR28) 2017; 71
T Xiong (912_CR41) 2018; 427
NB Oncu (912_CR31) 2013; 146
L Appels (912_CR2) 2008; 34
LH Mikkelsen (912_CR30) 2002; 36
M Dubois (912_CR10) 1956; 28
G Rauret (912_CR33) 1999; 1
K Xiao (912_CR38) 2016; 105
J Liu (912_CR26) 2016; 206
J Guo (912_CR13) 2018; 6
C Liu (912_CR25) 2016; 30
H Wang (912_CR37) 2019; 48
References_xml – reference: PathakADastidarMGSreekrishnanTRBioleaching of heavy metals from sewage sludge: a reviewJ Environ Manag2009908234323531:CAS:528:DC%2BD1MXos1ektL4%3D10.1016/j.jenvman.2008.11.005
– reference: LiuCZhangPZengCZengGXuGHuangYFeasibility of bioleaching combined with Fenton oxidation to improve sewage sludge dewaterabilityJ Environ Sci20152837421:CAS:528:DC%2BC1cXitlCks7bN10.1016/j.jes.2014.05.039
– reference: ZhaoSFengCWangDLiuYShenZSalinity increases the mobility of Cd, Cu, Mn, and Pb in the sediments of Yangtze Estuary: relative role of sediments’ properties and metal speciationChemosphere20139179779841:CAS:528:DC%2BC3sXjvFCgsr0%3D10.1016/j.chemosphere.2013.02.00123478125
– reference: LinkDDWalterPJKingstonHMDevelopment and validation of the new EPA microwave-assisted beach method 3051AEnviron Sci Technol19983222362836321:CAS:528:DyaK1cXmtVelt7s%3D10.1021/es980559n
– reference: LiuCWuBChenXESulfate radical-based oxidation for sludge treatment: a reviewChem Eng J20183358658751:CAS:528:DC%2BC2sXhvVSktbfF10.1016/j.cej.2017.10.162
– reference: WacławekSGrübelKDennisPVinodVTPČerníkMA novel approach for simultaneous improvement of dewaterability, post-digestion liquor properties and toluene removal from anaerobically digested sludgeChem Eng J20162911921981:CAS:528:DC%2BC28Xit1Sgs7g%3D10.1016/j.cej.2016.01.103
– reference: BrandtCVan EldikRTransition metal-catalyzed oxidation of sulfur(IV) oxides. Atmospheric-relevant processes and mechanismsChem Rev19959511191901:CAS:528:DyaK2MXjtF2ru7g%3D10.1021/cr00033a006
– reference: XiongQZhouMLiuMJiangSHouHThe transformation behaviors of heavy metals and dewaterability of sewage sludge during the dual conditioning with Fe2+-sodium persulfate oxidation and rice huskChemosphere2018208931001:CAS:528:DC%2BC1cXhtVKrsL3N10.1016/j.chemosphere.2018.05.16229860149
– reference: ZhenGLuXSuLKobayashiTKumarGZhouTXuKLiYYZhuXZhaoYUnraveling the catalyzing behaviors of different iron species (Fe2+ vs. Fe0) in activating persulfate-based oxidation process with implications to waste activated sludge dewaterabilityWater Res20181341011141:CAS:528:DC%2BC1cXit12ku7g%3D10.1016/j.watres.2018.01.07229407644
– reference: LeeKMKimMSLeeCOxidative treatment of waste activated sludge by different activated persulfate systems for enhancing sludge dewaterabilitySustain Environ Res20162641771831:CAS:528:DC%2BC2sXhvFOnsbnE10.1016/j.serj.2015.10.005
– reference: XiaoKChenYJiangXYangQSeowWYZhuWZhouYVariations in physical, chemical and biological properties in relation to sludge dewaterability under Fe(II)-oxone conditioningWater Res201710913231:CAS:528:DC%2BC28XhvV2itbbO10.1016/j.watres.2016.11.03427866102
– reference: LiYYuanXWangDWangHWuZJiangLMoDYangGGuanRZengGRecyclable zero-valent iron activating peroxymonosulfate synchronously combined with thermal treatment enhances sludge dewaterability by altering physicochemical and biological propertiesBioresour Technol20182622943011:CAS:528:DC%2BC1cXosFSrsbg%3D10.1016/j.biortech.2018.04.05029729607
– reference: KimMSLeeKMKimHELeeHJLeeCLeeCDisintegration of waste activated sludge by thermally-activated persulfates for enhanced dewaterabilityEnviron Sci Technol20165013710671151:CAS:528:DC%2BC28XptlOgs7w%3D10.1021/acs.est.6b0001927268462
– reference: LiuJYangQWangDLiXZhongYLiXDengYWangLYiKZengGEnhanced dewaterability of waste activated sludge by Fe(II)-activated peroxymonosulfate oxidationBioresour Technol20162061341401:CAS:528:DC%2BC28Xhsl2qtr0%3D10.1016/j.biortech.2016.01.08826851897
– reference: APHAStandard methods for examination of water and wastewater199820WashingtonAmerican Public Health Association, Elsevier B.V
– reference: GholikandiGBZakizadehNMasihiHApplication of peroxymonosulfate-ozone advanced oxidation process for simultaneous waste-activated sludge stabilization and dewatering purposes: a comparative studyJ Environ Manag20182065235311:CAS:528:DC%2BC2sXhsl2jsbbO10.1016/j.jenvman.2017.10.070
– reference: LiXYYangSFInfluence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludgeWater Res2007415102210301:CAS:528:DC%2BD2sXhsFCnsLc%3D10.1016/j.watres.2006.06.03716952388
– reference: YeJHuARenGChenMTangJZhangPZhouSHeZEnhancing sludge methanogenesis with improved redox activity of extracellular polymeric substances by hematite in red mudWater Res201813454621:CAS:528:DC%2BC1cXit1Ghtrk%3D10.1016/j.watres.2018.01.06229407651
– reference: DengYEzyskeCMSulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachateWater Res20114518618961941:CAS:528:DC%2BC3MXhtlWmurjI10.1016/j.watres.2011.09.01521959093
– reference: GuoJChenCJiangSZhouYFeasibility and mechanism of combined conditioning with coagulant and flocculant to enhance sludge dewateringACS Sustain Chem Eng20186810758107651:CAS:528:DC%2BC1cXhtlSqtbrE10.1021/acssuschemeng.8b02086
– reference: XiongTYuanXChenXWuZWangHLengLWangHJiangLZengGInsight into highly efficient removal of cadmium and methylene blue by eco-friendly magnesium silicate-hydrothermal carbon compositeAppl Surf Sci2018427110711171:CAS:528:DC%2BC2sXhsVKls7fN10.1016/j.apsusc.2017.08.115
– reference: RenWZhouZZhuYJiangLMWeiHNiuTFuPQiuZEffect of sulfate radical oxidation on disintegration of waste activated sludgeInt Biodeterior Biodegrad20151043843901:CAS:528:DC%2BC2MXht1Gqsr%2FN10.1016/j.ibiod.2015.07.008
– reference: Burgos-CastilloRSillanpääMBrillasESirésIRemoval of metals and phosphorus recovery from urban anaerobically digested sludge by electro-Fenton treatmentSci Total Environ20186441731821:CAS:528:DC%2BC1cXht1Ont7nL10.1016/j.scitotenv.2018.06.33729981517
– reference: OncuNBBalciogluIAMicrowave-assisted chemical oxidation of biological waste sludge: simultaneous micropollutant degradation and sludge solubilizationBioresour Technol20131461261341:CAS:528:DC%2BC3sXhsVejtbnE10.1016/j.biortech.2013.07.043
– reference: DuboisMGillesKAHamiltonJKRebersPASmithFColorimetric method for determination of sugars and related substancesAnal Chem19562833503561:CAS:528:DyaG28XjvFynsg%3D%3D10.1021/ac60111a017
– reference: CaiMWangQWellsGDionysiouDDSongZJinMHuJHoSHXiaoRWeiZImproving dewaterability and filterability of waste activated sludge by electrochemical Fenton pretreatmentChem Eng J20193625255361:CAS:528:DC%2BC1MXhsFyqsLY%3D10.1016/j.cej.2019.01.047
– reference: LiuYWangLMaJZhaoXHuangZMahadevanGDQiJImprovement of settleability and dewaterability of sludge by newly prepared alkaline ferrate solutionChem Eng J201628711181:CAS:528:DC%2BC2MXhvVChsL%2FK10.1016/j.cej.2015.11.037
– reference: XiaoKChenYJiangXTyagiVKZhouYCharacterization of key organic compounds affecting sludge dewaterability during ultrasonication and acidification treatmentsWater Res20161054704781:CAS:528:DC%2BC28XhsFGqsbfL10.1016/j.watres.2016.09.03027668991
– reference: BabelSDaceraDMHeavy metal removal from contaminated sludge for land application: a reviewWaste Manag200626998810041:CAS:528:DC%2BD28XnslGmtbc%3D10.1016/j.wasman.2005.09.01716298121
– reference: LiuCEnhancement of dewaterability and heavy metals solubilization of waste activated sludge conditioned by natural vanadium-titanium magnetite-activated peroxymonosulfate oxidation with rice huskChem Eng J20193592172241:CAS:528:DC%2BC1cXitlShtL3O10.1016/j.cej.2018.11.139
– reference: ZhenGLuXZhaoYChaiXNiuDEnhanced dewaterability of sewage sludge in the presence of Fe(II)-activated persulfate oxidationBioresour Technol20121162592651:CAS:528:DC%2BC38XotVamsLw%3D10.1016/j.biortech.2012.01.17022542138
– reference: CaiMQHuJQWellsGSeoYSpinneyRHoSHDionysiouDDSuJXiaoRWeiZUnderstanding mechanisms of synergy between acidification and ultrasound treatments for activated sludge dewatering: from bench to pilot-scale investigationEnviron Sci Technol2018527431343231:CAS:528:DC%2BC1cXktFKhsro%3D10.1021/acs.est.8b0031029518313
– reference: BalciogluIAOncuNBMercanNBeneficial effects of treating waste secondary sludge with thermally activated persulfateJ Chem Technol Biotechnol2017926119212021:CAS:528:DC%2BC28XhslWisL%2FJ10.1002/jctb.5108
– reference: LiuCLaiLYangXSewage sludge conditioning by Fe(II)-activated persulphate oxidation combined with skeleton builders for enhancing dewaterabilityWater Environ J2016301–2961011:CAS:528:DC%2BC28XhtlOqtbnP10.1111/wej.12167
– reference: ZhangLZhuYZhangJZengGDongHCaoWFangWChengYWangYNingQImpacts of iron oxide nanoparticles on organic matter degradation and microbial enzyme activities during agricultural waste compostingWaste Manag2019952892971:CAS:528:DC%2BC1MXhtF2kt77I10.1016/j.wasman.2019.06.02531351614
– reference: MikkelsenLHKeidingKPhysico-chemical characteristics of full scale sewage sludges with implications to dewateringWater Res20023610245124621:CAS:528:DC%2BD38XktFaqtr0%3D10.1016/s0043-1354(01)00477-812153011
– reference: YuGBLiuYYuSWuSCLeungAOWLuoXSXuBLiHBWongMHInconsistency and comprehensiveness of risk assessments for heavy metals in urban surface sedimentsChemosphere2011856108010871:CAS:528:DC%2BC3MXhsVehsrfI10.1016/j.chemosphere.2011.07.03921862100
– reference: ZhuCZhangPWangHYeJConditioning of sewage sludge via combined ultrasonication-flocculation-skeleton building to improve sludge dewaterabilityUltrason Sonochem2018403533601:CAS:528:DC%2BC2sXht1Gku7vP10.1016/j.ultsonch.2017.07.02828946434
– reference: AppelsLBaeyensJDegreveJDewilRPrinciples and potential of the anaerobic digestion of waste-activated sludgeProg Energy Combust Sci20083467557811:CAS:528:DC%2BD1cXht1ShsrrI10.1016/j.pecs.2008.06.002
– reference: UdayangaWDCVekshaAGiannisALisakGChangVWCLimTTFate and distribution of heavy metals during thermal processing of sewage sludgeFuel20182267217441:CAS:528:DC%2BC1cXotlGrtrs%3D10.1016/j.fuel.2018.04.045
– reference: HeiLLeeCCCWangHLinXYChenXHWuQTUsing a high biomass plant Pennisetum hydridum to phyto-treat fresh municipal sewage sludgeBioresour Technol20162172522561:CAS:528:DC%2BC28XisV2ksbo%3D10.1016/j.biortech.2016.02.02526897473
– reference: KwonEELeeTOkYSTsangDCWParkCLeeJEffects of calcium carbonate on pyrolysis of sewage sludgeEnergy20181537267311:CAS:528:DC%2BC1cXot1ynu7w%3D10.1016/j.energy.2018.04.100
– reference: LiuFZhouLZhouJSongXWangDImprovement of sludge dewaterability and removal of sludge-borne metals by bioleaching at optimum pHJ Hazard Mater20122211701771:CAS:528:DC%2BC38XntFyhurY%3D10.1016/j.jhazmat.2012.04.02822560175
– reference: LiuCWuBChenXEXieSWaste activated sludge pretreatment by Fe(II)-activated peroxymonosulfate oxidation under mild temperatureChem Pap20177112234323511:CAS:528:DC%2BC2sXhtVSht77J10.1007/s11696-017-0228-2
– reference: RauretGLopez-SanchezJFSahuquilloARubioRDavidsonCUreAQuevauvillerPImprovement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materialsJ Environ Monit19991157611:CAS:528:DyaK1MXhtFartrg%3D10.1039/a807854h11529080
– reference: FrolundBPalmgrenRKeidingKNielsenPHExtraction of extracellular polymers from activated sludge using a cation exchange resinWater Res19963081749175810.1016/0043-1354(95)00323-1
– reference: WangHZengZXuPLiLZengGXiaoRTangZHuangDTangLLaiCJiangDLiuYYiHQinLYeSRenXTangWRecent progress in covalent organic framework thin films: fabrications, applications and perspectivesChem Soc Rev2019484885161:CAS:528:DC%2BC1cXisFCktLbK10.1039/C8CS00376A30565610
– reference: IzquierdoMQuerolXLeaching behaviour of elements from coal combustion fly ash: an overviewInt J Coal Geol20129454661:CAS:528:DC%2BC38XlvFehsr0%3D10.1016/j.coal.2011.10.006
– volume: 52
  start-page: 4313
  issue: 7
  year: 2018
  ident: 912_CR7
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.8b00310
– volume: 30
  start-page: 96
  issue: 1–2
  year: 2016
  ident: 912_CR25
  publication-title: Water Environ J
  doi: 10.1111/wej.12167
– volume: 287
  start-page: 11
  year: 2016
  ident: 912_CR27
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2015.11.037
– volume: 26
  start-page: 177
  issue: 4
  year: 2016
  ident: 912_CR18
  publication-title: Sustain Environ Res
  doi: 10.1016/j.serj.2015.10.005
– volume: 36
  start-page: 2451
  issue: 10
  year: 2002
  ident: 912_CR30
  publication-title: Water Res
  doi: 10.1016/s0043-1354(01)00477-8
– volume: 41
  start-page: 1022
  issue: 5
  year: 2007
  ident: 912_CR19
  publication-title: Water Res
  doi: 10.1016/j.watres.2006.06.037
– volume: 291
  start-page: 192
  year: 2016
  ident: 912_CR36
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2016.01.103
– volume: 134
  start-page: 54
  year: 2018
  ident: 912_CR42
  publication-title: Water Res
  doi: 10.1016/j.watres.2018.01.062
– volume: 95
  start-page: 119
  issue: 1
  year: 1995
  ident: 912_CR5
  publication-title: Chem Rev
  doi: 10.1021/cr00033a006
– volume: 50
  start-page: 7106
  issue: 13
  year: 2016
  ident: 912_CR16
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.6b00019
– volume-title: Standard methods for examination of water and wastewater
  year: 1998
  ident: 912_CR1
– volume: 362
  start-page: 525
  year: 2019
  ident: 912_CR8
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2019.01.047
– volume: 90
  start-page: 2343
  issue: 8
  year: 2009
  ident: 912_CR32
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2008.11.005
– volume: 26
  start-page: 988
  issue: 9
  year: 2006
  ident: 912_CR3
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2005.09.017
– volume: 226
  start-page: 721
  year: 2018
  ident: 912_CR35
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.04.045
– volume: 45
  start-page: 6189
  issue: 18
  year: 2011
  ident: 912_CR9
  publication-title: Water Res
  doi: 10.1016/j.watres.2011.09.015
– volume: 335
  start-page: 865
  year: 2018
  ident: 912_CR29
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2017.10.162
– volume: 34
  start-page: 755
  issue: 6
  year: 2008
  ident: 912_CR2
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2008.06.002
– volume: 40
  start-page: 353
  year: 2018
  ident: 912_CR48
  publication-title: Ultrason Sonochem
  doi: 10.1016/j.ultsonch.2017.07.028
– volume: 109
  start-page: 13
  year: 2017
  ident: 912_CR39
  publication-title: Water Res
  doi: 10.1016/j.watres.2016.11.034
– volume: 262
  start-page: 294
  year: 2018
  ident: 912_CR20
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2018.04.050
– volume: 104
  start-page: 384
  year: 2015
  ident: 912_CR34
  publication-title: Int Biodeterior Biodegrad
  doi: 10.1016/j.ibiod.2015.07.008
– volume: 92
  start-page: 1192
  issue: 6
  year: 2017
  ident: 912_CR4
  publication-title: J Chem Technol Biotechnol
  doi: 10.1002/jctb.5108
– volume: 134
  start-page: 101
  year: 2018
  ident: 912_CR47
  publication-title: Water Res
  doi: 10.1016/j.watres.2018.01.072
– volume: 105
  start-page: 470
  year: 2016
  ident: 912_CR38
  publication-title: Water Res
  doi: 10.1016/j.watres.2016.09.030
– volume: 95
  start-page: 289
  year: 2019
  ident: 912_CR44
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2019.06.025
– volume: 85
  start-page: 1080
  issue: 6
  year: 2011
  ident: 912_CR43
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.07.039
– volume: 206
  start-page: 523
  year: 2018
  ident: 912_CR12
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2017.10.070
– volume: 208
  start-page: 93
  year: 2018
  ident: 912_CR40
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.05.162
– volume: 153
  start-page: 726
  year: 2018
  ident: 912_CR17
  publication-title: Energy
  doi: 10.1016/j.energy.2018.04.100
– volume: 644
  start-page: 173
  year: 2018
  ident: 912_CR6
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.06.337
– volume: 427
  start-page: 1107
  year: 2018
  ident: 912_CR41
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2017.08.115
– volume: 206
  start-page: 134
  year: 2016
  ident: 912_CR26
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2016.01.088
– volume: 221
  start-page: 170
  year: 2012
  ident: 912_CR23
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2012.04.028
– volume: 71
  start-page: 2343
  issue: 12
  year: 2017
  ident: 912_CR28
  publication-title: Chem Pap
  doi: 10.1007/s11696-017-0228-2
– volume: 28
  start-page: 37
  year: 2015
  ident: 912_CR24
  publication-title: J Environ Sci
  doi: 10.1016/j.jes.2014.05.039
– volume: 1
  start-page: 57
  issue: 1
  year: 1999
  ident: 912_CR33
  publication-title: J Environ Monit
  doi: 10.1039/a807854h
– volume: 91
  start-page: 977
  issue: 7
  year: 2013
  ident: 912_CR45
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.02.001
– volume: 116
  start-page: 259
  year: 2012
  ident: 912_CR46
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2012.01.170
– volume: 6
  start-page: 10758
  issue: 8
  year: 2018
  ident: 912_CR13
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.8b02086
– volume: 94
  start-page: 54
  year: 2012
  ident: 912_CR15
  publication-title: Int J Coal Geol
  doi: 10.1016/j.coal.2011.10.006
– volume: 217
  start-page: 252
  year: 2016
  ident: 912_CR14
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2016.02.025
– volume: 48
  start-page: 488
  year: 2019
  ident: 912_CR37
  publication-title: Chem Soc Rev
  doi: 10.1039/C8CS00376A
– volume: 28
  start-page: 350
  issue: 3
  year: 1956
  ident: 912_CR10
  publication-title: Anal Chem
  doi: 10.1021/ac60111a017
– volume: 32
  start-page: 3628
  issue: 22
  year: 1998
  ident: 912_CR21
  publication-title: Environ Sci Technol
  doi: 10.1021/es980559n
– volume: 359
  start-page: 217
  year: 2019
  ident: 912_CR22
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2018.11.139
– volume: 30
  start-page: 1749
  issue: 8
  year: 1996
  ident: 912_CR11
  publication-title: Water Res
  doi: 10.1016/0043-1354(95)00323-1
– volume: 146
  start-page: 126
  year: 2013
  ident: 912_CR31
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2013.07.043
SSID ssib044732867
ssj0044050
ssib029106359
Score 2.2793367
Snippet In this work, heat-activated peroxymonosulfate (heat-PMS) oxidation was used to condition waste activated sludge. The results showed that the optimal...
In this work, heat-activated peroxymonosulfate (heat-PMS) oxidation was used to condition waste activated sludge. The results showed that the optimal...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 641
SubjectTerms Activated sludge
Biochemistry
Biotechnology
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Conditioning
Heavy metals
Industrial Chemistry/Chemical Engineering
Leaching
Materials Science
Medicinal Chemistry
Moisture content
Original Paper
Oxidation
Sludge
Solubilization
Suction
Toxicity
Title Behaviors of dewaterability and heavy metals of waste activated sludge conditioned by heat-activated peroxymonosulfate oxidation
URI https://link.springer.com/article/10.1007/s11696-019-00912-9
https://www.proquest.com/docview/2343286846
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46D3oRf-J0Sg7eNJDENk2OY2yIoCcHu5W0SUSYm9hOt4vgf-Lf4l_mS3-sKCp4bV_akpf2fa953_cQOmXMhNQqSrgxjgSpFURRQ4lUEG81jWxU9Dq8vhGXw-BqFI4qUlhWV7vXW5LFl7ohuzHhC2Y96QaCHCdqFa2FkLv7Qq4h79ariEMAhCi6DNJB4PVoxDINCwCi-D8vHICyb-RKKyrNz_f4Gq4aDPpt27SIRoMttFnBSNwt_b6NVuxkB6336u5tu-itEj58yvDUYWNftKcaF5WwC6wnBsNH-HmBHyyA78LkRYO_P949z-EZbA3OxjNzZzHky6bUMzI4WfhhOWmMvMz4fAFLeZrNxg4O4en8vmzTtIeGg_5t75JU7RZIehGKnCQ6lWmiIyGo4VRLxdLUMKZDaZxVltIE5sYoo6R0QgWJYko6qrWSOnLU0ot91JrA0xwgLCKtE-kCIyJINzmVmglqneZKpDbkQRuxelbjtNIi9y0xxnGjouw9EYMn4sITsWqjs-WYx1KJ40_rTu2suHors5h7Fq0UALna6Lx2YHP696sd_s_8CG1wn5YXxd0d1MqfZvYYsEuenKDV69f-SbFgPwERMeW-
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELb4GWBB_IpCAQ9sYMk2iWOPFaIqUJhaqVvkxDZCKi1q2kJH3oRn4ck4p0kjECCxJuck8l1839n33SF0ypgJqVWUcGMcCVIriKKGEqnA32oa2SjvdXh3L1rd4KYX9gpSWFZmu5dHkvlKXZHdmPAJs550A06OE7WMVgEMSG_LXd4orYiDAwQvunDSQeDr0YhFGBYARPE7LxyAsm_kSgsqzc_v-OquKgz67dg090bNTbRRwEjcmOt9Cy3ZwTZauyy7t-2gt6Lw4SjDQ4eNfdGeapxnws6wHhgMi_B0hp8sgO9c5EWDvj_ePc9hCrIGZ_2JebAY4mUzr2dkcDLzw8akEvJlxl9nYMrDbNJ3cAkPXx_nbZp2Ubd51blskaLdAkkvQjEmiU5lmuhICGo41VKxNDWM6VAaZ5WlNIG5McooKZ1QQaKYko5qraSOHLX0Yg-tDOBr9hEWkdaJdIEREYSbnErNBLVOcyVSG_Kghlg5q3Fa1CL3LTH6cVVF2WsiBk3EuSZiVUNnizHP80ocf0rXS2XFxV-ZxdyzaKUAyFVD56UCq9u_P-3gf-InaK3VuWvH7ev720O0zn2Inid619HKeDSxR4BjxslxbrafoxbngA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYKlVouqA-qLtDWB27FwvY6jn1EwIo-QD10JW6Rk7ER0nYXsVlgj_wTfgu_jHEeG4poJa7JOIk8k8zneL5vCNkSAhLuLWcSIDBVeM0sB86MxXzreOrTqtfh0bE-HKrvJ8nJAxZ_Ve3ebknWnIao0jQud84h7HTEN6Fj8Wwk4GDCk8wukZcqsoExoodyt40oickQM-oiYSsVtWn0YkmmEK7EvzASQXNs6sobWs3T9_g7dXV49NEWapWZBm_IagMp6W4dA2_JCz9-R17vtZ3c3pObRgTxYkongYK_cpF2XFXFzqkbA8UP8uWc_vEIxCuTK4e-v7uNnIdLtAU6Hc3g1FOcJKi1jYDm8zisZJ1RlBy_nmNYT6azUcBDdHJ9VrdsWiPDwcHvvUPWtF5gRT_RJctdYYrcpVpzkNwZK4oChHCJgeCt5zzHuQEL1pigrcqtsCZw56xxaeCe9z-Q5TE-zUdCdepcboICneLSU3LjhOY-OGl14ROpekS0s5oVjS55bI8xyjpF5eiJDD2RVZ7IbI98XYw5r1U5_mu92Tora97QaSYjo9ZohF89st06sDv976utP8_8C3n1a3-Q_fx2_GODrMi4Wq9qvjfJcnkx858Q0pT55ypq7wHzc-uz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Behaviors+of+dewaterability+and+heavy+metals+of+waste%C2%A0activated+sludge+conditioned+by+heat-activated+peroxymonosulfate+oxidation&rft.jtitle=Chemical+papers&rft.au=Huang%2C+Zaichun&rft.au=Liu%2C+Changgeng&rft.au=Zhu%2C+Xuejun&rft.au=Xiang%2C+Guoqi&rft.date=2020-02-01&rft.pub=Springer+International+Publishing&rft.issn=2585-7290&rft.eissn=1336-9075&rft.volume=74&rft.issue=2&rft.spage=641&rft.epage=650&rft_id=info:doi/10.1007%2Fs11696-019-00912-9&rft.externalDocID=10_1007_s11696_019_00912_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2585-7290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2585-7290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2585-7290&client=summon