Behaviors of dewaterability and heavy metals of waste activated sludge conditioned by heat-activated peroxymonosulfate oxidation
In this work, heat-activated peroxymonosulfate (heat-PMS) oxidation was used to condition waste activated sludge. The results showed that the optimal temperature and PMS dosage for sludge dewatering were 75 °C and 150 mg/g-volatile solids (VS), and the addition of rice husk (100–400 mg/g-VS) was fav...
Saved in:
Published in | Chemical papers Vol. 74; no. 2; pp. 641 - 650 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.02.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, heat-activated peroxymonosulfate (heat-PMS) oxidation was used to condition waste activated sludge. The results showed that the optimal temperature and PMS dosage for sludge dewatering were 75 °C and 150 mg/g-volatile solids (VS), and the addition of rice husk (100–400 mg/g-VS) was favorable to further enhance sludge dewaterability. Under optimal conditions, the capillary suction time reduction and water content of sludge cake were 82.4% and 65.8%, respectively. The significant improvement of sludge dewaterability was ascribed to the releases of extracellular polymeric substances (EPS)-bound water and cell water caused by the significant breakdown of tightly bound EPS, as well as the skeleton effect. In addition, heat-PMS oxidation has been demonstrated with the merits of improving the immobilization of heavy metals (HMs) and weakening their environmental risk. After conditioning, HMs solubilization was enhanced significantly and their leaching toxicity decreased obviously. Meanwhile, HMs were transformed into more stable forms. Therefore, heat-PMS oxidation might be a potential and desirable technology for sludge conditioning with respect to the enhancement of sludge dewaterability and the decrease of HMs environmental risk. |
---|---|
AbstractList | In this work, heat-activated peroxymonosulfate (heat-PMS) oxidation was used to condition waste activated sludge. The results showed that the optimal temperature and PMS dosage for sludge dewatering were 75 °C and 150 mg/g-volatile solids (VS), and the addition of rice husk (100–400 mg/g-VS) was favorable to further enhance sludge dewaterability. Under optimal conditions, the capillary suction time reduction and water content of sludge cake were 82.4% and 65.8%, respectively. The significant improvement of sludge dewaterability was ascribed to the releases of extracellular polymeric substances (EPS)-bound water and cell water caused by the significant breakdown of tightly bound EPS, as well as the skeleton effect. In addition, heat-PMS oxidation has been demonstrated with the merits of improving the immobilization of heavy metals (HMs) and weakening their environmental risk. After conditioning, HMs solubilization was enhanced significantly and their leaching toxicity decreased obviously. Meanwhile, HMs were transformed into more stable forms. Therefore, heat-PMS oxidation might be a potential and desirable technology for sludge conditioning with respect to the enhancement of sludge dewaterability and the decrease of HMs environmental risk. In this work, heat-activated peroxymonosulfate (heat-PMS) oxidation was used to condition waste activated sludge. The results showed that the optimal temperature and PMS dosage for sludge dewatering were 75 °C and 150 mg/g-volatile solids (VS), and the addition of rice husk (100–400 mg/g-VS) was favorable to further enhance sludge dewaterability. Under optimal conditions, the capillary suction time reduction and water content of sludge cake were 82.4% and 65.8%, respectively. The significant improvement of sludge dewaterability was ascribed to the releases of extracellular polymeric substances (EPS)-bound water and cell water caused by the significant breakdown of tightly bound EPS, as well as the skeleton effect. In addition, heat-PMS oxidation has been demonstrated with the merits of improving the immobilization of heavy metals (HMs) and weakening their environmental risk. After conditioning, HMs solubilization was enhanced significantly and their leaching toxicity decreased obviously. Meanwhile, HMs were transformed into more stable forms. Therefore, heat-PMS oxidation might be a potential and desirable technology for sludge conditioning with respect to the enhancement of sludge dewaterability and the decrease of HMs environmental risk. |
Author | Liu, Changgeng Xiang, Guoqi Zeng, Chenghua Huang, Zaichun Zhong, Yuquan Zhu, Xuejun |
Author_xml | – sequence: 1 givenname: Zaichun surname: Huang fullname: Huang, Zaichun organization: School of Biological and Chemical Engineering, Panzhihua University – sequence: 2 givenname: Changgeng orcidid: 0000-0002-4899-0985 surname: Liu fullname: Liu, Changgeng email: changwyx@163.com organization: School of Biological and Chemical Engineering, Panzhihua University – sequence: 3 givenname: Xuejun surname: Zhu fullname: Zhu, Xuejun organization: School of Biological and Chemical Engineering, Panzhihua University – sequence: 4 givenname: Guoqi surname: Xiang fullname: Xiang, Guoqi organization: Office of Educational Administration, Panzhihua University – sequence: 5 givenname: Chenghua surname: Zeng fullname: Zeng, Chenghua organization: School of Biological and Chemical Engineering, Panzhihua University – sequence: 6 givenname: Yuquan surname: Zhong fullname: Zhong, Yuquan organization: Office of Scientific Research, Panzhihua University |
BookMark | eNp9kM1KJDEQgIO44Kz6AnsKeM5a6Z90clxFXUHYy3oO1UlaIz2dMcmM9tE38Vn2yTYzsyDswVOg-L5K8X0lh1OYHCHfOHznAN154lwowYArBqB4xdQBWfC6FkxB1x6SRdXKlnWVgiNympLvoWm6upKiW5C3C_eIGx9iomGg1r1gdhF7P_o8U5wsfXS4menSZRx3yAum7P68o8l-U1hL07i2D46aMFmffbnM0n7eapl9QCsXw-u8DFNI63EoIxpevcUtf0K-DGW3O_33HpP766vflz_Z3a-b28sfd8zUrcisRyNNj50QYCtAqbgxlnNspR2ccgB9aWCVVVIOQjW94koOgKgkdgM4qI_J2X7vKobntUtZP4V1nMqXuqqbbQ7ZiELJPWViSCm6QRufd3fmiH7UHPS2ud4316W53jXXqqjVf-oq-iXG-XOp3kupwNODix9XfWL9Ba_Jmuo |
CitedBy_id | crossref_primary_10_1007_s13369_022_07398_w crossref_primary_10_1080_09593330_2022_2129457 crossref_primary_10_1007_s11270_023_06555_7 crossref_primary_10_1007_s11356_021_18068_z crossref_primary_10_1016_j_scitotenv_2023_167106 crossref_primary_10_1016_j_cclet_2022_01_029 crossref_primary_10_1016_j_jhazmat_2021_128001 crossref_primary_10_1007_s11356_021_15391_3 crossref_primary_10_1016_j_cej_2021_132438 crossref_primary_10_1016_j_chemosphere_2021_133198 |
Cites_doi | 10.1021/acs.est.8b00310 10.1111/wej.12167 10.1016/j.cej.2015.11.037 10.1016/j.serj.2015.10.005 10.1016/s0043-1354(01)00477-8 10.1016/j.watres.2006.06.037 10.1016/j.cej.2016.01.103 10.1016/j.watres.2018.01.062 10.1021/cr00033a006 10.1021/acs.est.6b00019 10.1016/j.cej.2019.01.047 10.1016/j.jenvman.2008.11.005 10.1016/j.wasman.2005.09.017 10.1016/j.fuel.2018.04.045 10.1016/j.watres.2011.09.015 10.1016/j.cej.2017.10.162 10.1016/j.pecs.2008.06.002 10.1016/j.ultsonch.2017.07.028 10.1016/j.watres.2016.11.034 10.1016/j.biortech.2018.04.050 10.1016/j.ibiod.2015.07.008 10.1002/jctb.5108 10.1016/j.watres.2018.01.072 10.1016/j.watres.2016.09.030 10.1016/j.wasman.2019.06.025 10.1016/j.chemosphere.2011.07.039 10.1016/j.jenvman.2017.10.070 10.1016/j.chemosphere.2018.05.162 10.1016/j.energy.2018.04.100 10.1016/j.scitotenv.2018.06.337 10.1016/j.apsusc.2017.08.115 10.1016/j.biortech.2016.01.088 10.1016/j.jhazmat.2012.04.028 10.1007/s11696-017-0228-2 10.1016/j.jes.2014.05.039 10.1039/a807854h 10.1016/j.chemosphere.2013.02.001 10.1016/j.biortech.2012.01.170 10.1021/acssuschemeng.8b02086 10.1016/j.coal.2011.10.006 10.1016/j.biortech.2016.02.025 10.1039/C8CS00376A 10.1021/ac60111a017 10.1021/es980559n 10.1016/j.cej.2018.11.139 10.1016/0043-1354(95)00323-1 10.1016/j.biortech.2013.07.043 |
ContentType | Journal Article |
Copyright | Institute of Chemistry, Slovak Academy of Sciences 2019 2019© Institute of Chemistry, Slovak Academy of Sciences 2019 |
Copyright_xml | – notice: Institute of Chemistry, Slovak Academy of Sciences 2019 – notice: 2019© Institute of Chemistry, Slovak Academy of Sciences 2019 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1007/s11696-019-00912-9 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1336-9075 |
EndPage | 650 |
ExternalDocumentID | 10_1007_s11696_019_00912_9 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 21607088 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Applied Basic Research Program of Sichuan Province grantid: 2018JY0303 funderid: http://dx.doi.org/10.13039/100012551 |
GroupedDBID | -58 -5G -BR -Y2 .86 .VR 06D 0VY 1N0 29B 2JY 2LR 2VQ 2WC 2~H 30V 4.4 406 408 40D 53G 5GY 5VS 67Z 6J9 6NX 8FE 8FG 8TC 8UJ 95. 95~ AAAVM AACDK AAFPC AAJBT AAQCX AASML AASQH AATNV AATVU AAXMT AAYQN AAYZH ABAKF ABAQN ABFKT ABFTV ABJCF ABJNI ABJOX ABKCH ABMNI ABOCM ABQBU ABRQL ABTEG ABTKH ABTMW ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACOMO ACPIV ACREN ACZBO ACZOJ ADGYE ADHHG ADINQ ADKNI ADOZN ADTPH ADURQ ADYFF AEBTG AEFQL AEGNC AEMSY AENEX AEOHA AEPYU AESKC AEXYK AFBAA AFBBN AFCXV AFGCZ AFKRA AFQWF AFWTZ AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHKAY AIGIU AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR BA0 BENPR BGLVJ BGNMA CAG CCPQU COF CS3 DPUIP EBLON FIGPU G-Y G-Z GJIRD GQ6 GQ7 H13 HCIFZ HG6 HLICF HMJXF HZ~ IAO IEA IHE IJ- IKXTQ ISR ITC IWAJR IXC IXE IY9 IZQ I~X I~Z JZLTJ KDC KOV L6V LLZTM M4Y M7S MA- NPVJJ NQJWS NU0 O9- O9J OAM OK1 P2P P9N PF0 PT4 PTHSS QD8 QOS R9I RNS ROL RPX RSV S1Z S27 S3B SCM SDH SHX SJYHP SNE SOJ SZN T13 TSK TSV TUC U2A UG4 VC2 WK8 ~A9 AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEXIE AEZWR AFDZB AFHIU AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SR 7U5 8BQ 8FD ABRTQ JG9 L7M |
ID | FETCH-LOGICAL-c356t-bac8cba7660d20a891ccd11a58dfe9e00b696d9d988f694b9198f0aa98a7f0e03 |
IEDL.DBID | U2A |
ISSN | 2585-7290 0366-6352 |
IngestDate | Wed Aug 13 02:37:36 EDT 2025 Tue Jul 01 03:17:04 EDT 2025 Thu Apr 24 23:00:53 EDT 2025 Fri Feb 21 02:37:17 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Heat/peroxymonosulfate Waste activated sludge Advanced oxidation Dewatering Heavy metals |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-bac8cba7660d20a891ccd11a58dfe9e00b696d9d988f694b9198f0aa98a7f0e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4899-0985 |
PQID | 2343286846 |
PQPubID | 2039839 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2343286846 crossref_citationtrail_10_1007_s11696_019_00912_9 crossref_primary_10_1007_s11696_019_00912_9 springer_journals_10_1007_s11696_019_00912_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Chemical papers |
PublicationTitleAbbrev | Chem. Pap |
PublicationYear | 2020 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | IzquierdoMQuerolXLeaching behaviour of elements from coal combustion fly ash: an overviewInt J Coal Geol20129454661:CAS:528:DC%2BC38XlvFehsr0%3D10.1016/j.coal.2011.10.006 OncuNBBalciogluIAMicrowave-assisted chemical oxidation of biological waste sludge: simultaneous micropollutant degradation and sludge solubilizationBioresour Technol20131461261341:CAS:528:DC%2BC3sXhsVejtbnE10.1016/j.biortech.2013.07.043 UdayangaWDCVekshaAGiannisALisakGChangVWCLimTTFate and distribution of heavy metals during thermal processing of sewage sludgeFuel20182267217441:CAS:528:DC%2BC1cXotlGrtrs%3D10.1016/j.fuel.2018.04.045 CaiMQHuJQWellsGSeoYSpinneyRHoSHDionysiouDDSuJXiaoRWeiZUnderstanding mechanisms of synergy between acidification and ultrasound treatments for activated sludge dewatering: from bench to pilot-scale investigationEnviron Sci Technol2018527431343231:CAS:528:DC%2BC1cXktFKhsro%3D10.1021/acs.est.8b0031029518313 GuoJChenCJiangSZhouYFeasibility and mechanism of combined conditioning with coagulant and flocculant to enhance sludge dewateringACS Sustain Chem Eng20186810758107651:CAS:528:DC%2BC1cXhtlSqtbrE10.1021/acssuschemeng.8b02086 LinkDDWalterPJKingstonHMDevelopment and validation of the new EPA microwave-assisted beach method 3051AEnviron Sci Technol19983222362836321:CAS:528:DyaK1cXmtVelt7s%3D10.1021/es980559n LiuCWuBChenXEXieSWaste activated sludge pretreatment by Fe(II)-activated peroxymonosulfate oxidation under mild temperatureChem Pap20177112234323511:CAS:528:DC%2BC2sXhtVSht77J10.1007/s11696-017-0228-2 XiaoKChenYJiangXYangQSeowWYZhuWZhouYVariations in physical, chemical and biological properties in relation to sludge dewaterability under Fe(II)-oxone conditioningWater Res201710913231:CAS:528:DC%2BC28XhvV2itbbO10.1016/j.watres.2016.11.03427866102 LiuYWangLMaJZhaoXHuangZMahadevanGDQiJImprovement of settleability and dewaterability of sludge by newly prepared alkaline ferrate solutionChem Eng J201628711181:CAS:528:DC%2BC2MXhvVChsL%2FK10.1016/j.cej.2015.11.037 KwonEELeeTOkYSTsangDCWParkCLeeJEffects of calcium carbonate on pyrolysis of sewage sludgeEnergy20181537267311:CAS:528:DC%2BC1cXot1ynu7w%3D10.1016/j.energy.2018.04.100 Burgos-CastilloRSillanpääMBrillasESirésIRemoval of metals and phosphorus recovery from urban anaerobically digested sludge by electro-Fenton treatmentSci Total Environ20186441731821:CAS:528:DC%2BC1cXht1Ont7nL10.1016/j.scitotenv.2018.06.33729981517 GholikandiGBZakizadehNMasihiHApplication of peroxymonosulfate-ozone advanced oxidation process for simultaneous waste-activated sludge stabilization and dewatering purposes: a comparative studyJ Environ Manag20182065235311:CAS:528:DC%2BC2sXhsl2jsbbO10.1016/j.jenvman.2017.10.070 LiuJYangQWangDLiXZhongYLiXDengYWangLYiKZengGEnhanced dewaterability of waste activated sludge by Fe(II)-activated peroxymonosulfate oxidationBioresour Technol20162061341401:CAS:528:DC%2BC28Xhsl2qtr0%3D10.1016/j.biortech.2016.01.08826851897 LiuCEnhancement of dewaterability and heavy metals solubilization of waste activated sludge conditioned by natural vanadium-titanium magnetite-activated peroxymonosulfate oxidation with rice huskChem Eng J20193592172241:CAS:528:DC%2BC1cXitlShtL3O10.1016/j.cej.2018.11.139 WacławekSGrübelKDennisPVinodVTPČerníkMA novel approach for simultaneous improvement of dewaterability, post-digestion liquor properties and toluene removal from anaerobically digested sludgeChem Eng J20162911921981:CAS:528:DC%2BC28Xit1Sgs7g%3D10.1016/j.cej.2016.01.103 APHAStandard methods for examination of water and wastewater199820WashingtonAmerican Public Health Association, Elsevier B.V HeiLLeeCCCWangHLinXYChenXHWuQTUsing a high biomass plant Pennisetum hydridum to phyto-treat fresh municipal sewage sludgeBioresour Technol20162172522561:CAS:528:DC%2BC28XisV2ksbo%3D10.1016/j.biortech.2016.02.02526897473 ZhangLZhuYZhangJZengGDongHCaoWFangWChengYWangYNingQImpacts of iron oxide nanoparticles on organic matter degradation and microbial enzyme activities during agricultural waste compostingWaste Manag2019952892971:CAS:528:DC%2BC1MXhtF2kt77I10.1016/j.wasman.2019.06.02531351614 LiuCWuBChenXESulfate radical-based oxidation for sludge treatment: a reviewChem Eng J20183358658751:CAS:528:DC%2BC2sXhvVSktbfF10.1016/j.cej.2017.10.162 ZhuCZhangPWangHYeJConditioning of sewage sludge via combined ultrasonication-flocculation-skeleton building to improve sludge dewaterabilityUltrason Sonochem2018403533601:CAS:528:DC%2BC2sXht1Gku7vP10.1016/j.ultsonch.2017.07.02828946434 BalciogluIAOncuNBMercanNBeneficial effects of treating waste secondary sludge with thermally activated persulfateJ Chem Technol Biotechnol2017926119212021:CAS:528:DC%2BC28XhslWisL%2FJ10.1002/jctb.5108 WangHZengZXuPLiLZengGXiaoRTangZHuangDTangLLaiCJiangDLiuYYiHQinLYeSRenXTangWRecent progress in covalent organic framework thin films: fabrications, applications and perspectivesChem Soc Rev2019484885161:CAS:528:DC%2BC1cXisFCktLbK10.1039/C8CS00376A30565610 DengYEzyskeCMSulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachateWater Res20114518618961941:CAS:528:DC%2BC3MXhtlWmurjI10.1016/j.watres.2011.09.01521959093 KimMSLeeKMKimHELeeHJLeeCLeeCDisintegration of waste activated sludge by thermally-activated persulfates for enhanced dewaterabilityEnviron Sci Technol20165013710671151:CAS:528:DC%2BC28XptlOgs7w%3D10.1021/acs.est.6b0001927268462 AppelsLBaeyensJDegreveJDewilRPrinciples and potential of the anaerobic digestion of waste-activated sludgeProg Energy Combust Sci20083467557811:CAS:528:DC%2BD1cXht1ShsrrI10.1016/j.pecs.2008.06.002 MikkelsenLHKeidingKPhysico-chemical characteristics of full scale sewage sludges with implications to dewateringWater Res20023610245124621:CAS:528:DC%2BD38XktFaqtr0%3D10.1016/s0043-1354(01)00477-812153011 FrolundBPalmgrenRKeidingKNielsenPHExtraction of extracellular polymers from activated sludge using a cation exchange resinWater Res19963081749175810.1016/0043-1354(95)00323-1 LiXYYangSFInfluence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludgeWater Res2007415102210301:CAS:528:DC%2BD2sXhsFCnsLc%3D10.1016/j.watres.2006.06.03716952388 LiuCLaiLYangXSewage sludge conditioning by Fe(II)-activated persulphate oxidation combined with skeleton builders for enhancing dewaterabilityWater Environ J2016301–2961011:CAS:528:DC%2BC28XhtlOqtbnP10.1111/wej.12167 ZhaoSFengCWangDLiuYShenZSalinity increases the mobility of Cd, Cu, Mn, and Pb in the sediments of Yangtze Estuary: relative role of sediments’ properties and metal speciationChemosphere20139179779841:CAS:528:DC%2BC3sXjvFCgsr0%3D10.1016/j.chemosphere.2013.02.00123478125 YuGBLiuYYuSWuSCLeungAOWLuoXSXuBLiHBWongMHInconsistency and comprehensiveness of risk assessments for heavy metals in urban surface sedimentsChemosphere2011856108010871:CAS:528:DC%2BC3MXhsVehsrfI10.1016/j.chemosphere.2011.07.03921862100 CaiMWangQWellsGDionysiouDDSongZJinMHuJHoSHXiaoRWeiZImproving dewaterability and filterability of waste activated sludge by electrochemical Fenton pretreatmentChem Eng J20193625255361:CAS:528:DC%2BC1MXhsFyqsLY%3D10.1016/j.cej.2019.01.047 RauretGLopez-SanchezJFSahuquilloARubioRDavidsonCUreAQuevauvillerPImprovement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materialsJ Environ Monit19991157611:CAS:528:DyaK1MXhtFartrg%3D10.1039/a807854h11529080 XiongTYuanXChenXWuZWangHLengLWangHJiangLZengGInsight into highly efficient removal of cadmium and methylene blue by eco-friendly magnesium silicate-hydrothermal carbon compositeAppl Surf Sci2018427110711171:CAS:528:DC%2BC2sXhsVKls7fN10.1016/j.apsusc.2017.08.115 LeeKMKimMSLeeCOxidative treatment of waste activated sludge by different activated persulfate systems for enhancing sludge dewaterabilitySustain Environ Res20162641771831:CAS:528:DC%2BC2sXhvFOnsbnE10.1016/j.serj.2015.10.005 LiYYuanXWangDWangHWuZJiangLMoDYangGGuanRZengGRecyclable zero-valent iron activating peroxymonosulfate synchronously combined with thermal treatment enhances sludge dewaterability by altering physicochemical and biological propertiesBioresour Technol20182622943011:CAS:528:DC%2BC1cXosFSrsbg%3D10.1016/j.biortech.2018.04.05029729607 ZhenGLuXSuLKobayashiTKumarGZhouTXuKLiYYZhuXZhaoYUnraveling the catalyzing behaviors of different iron species (Fe2+ vs. Fe0) in activating persulfate-based oxidation process with implications to waste activated sludge dewaterabilityWater Res20181341011141:CAS:528:DC%2BC1cXit12ku7g%3D10.1016/j.watres.2018.01.07229407644 BabelSDaceraDMHeavy metal removal from contaminated sludge for land application: a reviewWaste Manag200626998810041:CAS:528:DC%2BD28XnslGmtbc%3D10.1016/j.wasman.2005.09.01716298121 XiongQZhouMLiuMJiangSHouHThe transformation behaviors of heavy metals and dewaterability of sewage sludge during the dual conditioning with Fe2+-sodium persulfate oxidation and rice huskChemosphere2018208931001:CAS:528:DC%2BC1cXhtVKrsL3N10.1016/j.chemosphere.2018.05.16229860149 YeJHuARenGChenMTangJZhangPZhouSHeZEnhancing sludge methanogenesis with improved redox activity of extracellular polymeric substances by hematite in red mudWater Res201813454621:CAS:528:DC%2BC1cXit1Ghtrk%3D10.1016/j.watres.2018.01.06229407651 ZhenGLuXZhaoYChaiXNiuDEnhanced dewaterability of sewage sludge in the presence of Fe(II)-activated persulfate oxidationBioresour Technol20121162592651:CAS:528:DC%2BC38XotVamsLw%3D10.1016/j.biortech.2012.01.17022542138 XiaoKChenYJiangXTyagiVKZhouYCharacterization of key organic compounds affecting sludge dewaterability during ultrasonication and acidification treatmentsWater Res20161054704781:CAS:528:DC%2BC28XhsFGqsbfL10.1016/j.watres.2016.09.03027668991 BrandtCVan EldikRTransition metal-catalyzed oxidation of sulfur(IV) oxides. Atmospheric-relevant processes and mechanismsChem Rev19959511191901:CAS:528:DyaK2MXjtF2ru7g%3D10.1021/cr00033a006 PathakADastidarMGSreekrishnanTRBioleaching of heavy metals from sewage sludge: a reviewJ Environ Man M Cai (912_CR8) 2019; 362 C Liu (912_CR24) 2015; 28 B Frolund (912_CR11) 1996; 30 GB Gholikandi (912_CR12) 2018; 206 S Babel (912_CR3) 2006; 26 C Liu (912_CR29) 2018; 335 EE Kwon (912_CR17) 2018; 153 G Zhen (912_CR46) 2012; 116 M Izquierdo (912_CR15) 2012; 94 G Zhen (912_CR47) 2018; 134 W Ren (912_CR34) 2015; 104 C Brandt (912_CR5) 1995; 95 R Burgos-Castillo (912_CR6) 2018; 644 L Zhang (912_CR44) 2019; 95 Y Deng (912_CR9) 2011; 45 DD Link (912_CR21) 1998; 32 A Pathak (912_CR32) 2009; 90 MS Kim (912_CR16) 2016; 50 S Wacławek (912_CR36) 2016; 291 S Zhao (912_CR45) 2013; 91 Y Liu (912_CR27) 2016; 287 Y Li (912_CR20) 2018; 262 IA Balcioglu (912_CR4) 2017; 92 GB Yu (912_CR43) 2011; 85 J Ye (912_CR42) 2018; 134 XY Li (912_CR19) 2007; 41 KM Lee (912_CR18) 2016; 26 F Liu (912_CR23) 2012; 221 WDC Udayanga (912_CR35) 2018; 226 K Xiao (912_CR39) 2017; 109 Q Xiong (912_CR40) 2018; 208 APHA (912_CR1) 1998 L Hei (912_CR14) 2016; 217 C Liu (912_CR22) 2019; 359 C Zhu (912_CR48) 2018; 40 MQ Cai (912_CR7) 2018; 52 C Liu (912_CR28) 2017; 71 T Xiong (912_CR41) 2018; 427 NB Oncu (912_CR31) 2013; 146 L Appels (912_CR2) 2008; 34 LH Mikkelsen (912_CR30) 2002; 36 M Dubois (912_CR10) 1956; 28 G Rauret (912_CR33) 1999; 1 K Xiao (912_CR38) 2016; 105 J Liu (912_CR26) 2016; 206 J Guo (912_CR13) 2018; 6 C Liu (912_CR25) 2016; 30 H Wang (912_CR37) 2019; 48 |
References_xml | – reference: PathakADastidarMGSreekrishnanTRBioleaching of heavy metals from sewage sludge: a reviewJ Environ Manag2009908234323531:CAS:528:DC%2BD1MXos1ektL4%3D10.1016/j.jenvman.2008.11.005 – reference: LiuCZhangPZengCZengGXuGHuangYFeasibility of bioleaching combined with Fenton oxidation to improve sewage sludge dewaterabilityJ Environ Sci20152837421:CAS:528:DC%2BC1cXitlCks7bN10.1016/j.jes.2014.05.039 – reference: ZhaoSFengCWangDLiuYShenZSalinity increases the mobility of Cd, Cu, Mn, and Pb in the sediments of Yangtze Estuary: relative role of sediments’ properties and metal speciationChemosphere20139179779841:CAS:528:DC%2BC3sXjvFCgsr0%3D10.1016/j.chemosphere.2013.02.00123478125 – reference: LinkDDWalterPJKingstonHMDevelopment and validation of the new EPA microwave-assisted beach method 3051AEnviron Sci Technol19983222362836321:CAS:528:DyaK1cXmtVelt7s%3D10.1021/es980559n – reference: LiuCWuBChenXESulfate radical-based oxidation for sludge treatment: a reviewChem Eng J20183358658751:CAS:528:DC%2BC2sXhvVSktbfF10.1016/j.cej.2017.10.162 – reference: WacławekSGrübelKDennisPVinodVTPČerníkMA novel approach for simultaneous improvement of dewaterability, post-digestion liquor properties and toluene removal from anaerobically digested sludgeChem Eng J20162911921981:CAS:528:DC%2BC28Xit1Sgs7g%3D10.1016/j.cej.2016.01.103 – reference: BrandtCVan EldikRTransition metal-catalyzed oxidation of sulfur(IV) oxides. Atmospheric-relevant processes and mechanismsChem Rev19959511191901:CAS:528:DyaK2MXjtF2ru7g%3D10.1021/cr00033a006 – reference: XiongQZhouMLiuMJiangSHouHThe transformation behaviors of heavy metals and dewaterability of sewage sludge during the dual conditioning with Fe2+-sodium persulfate oxidation and rice huskChemosphere2018208931001:CAS:528:DC%2BC1cXhtVKrsL3N10.1016/j.chemosphere.2018.05.16229860149 – reference: ZhenGLuXSuLKobayashiTKumarGZhouTXuKLiYYZhuXZhaoYUnraveling the catalyzing behaviors of different iron species (Fe2+ vs. Fe0) in activating persulfate-based oxidation process with implications to waste activated sludge dewaterabilityWater Res20181341011141:CAS:528:DC%2BC1cXit12ku7g%3D10.1016/j.watres.2018.01.07229407644 – reference: LeeKMKimMSLeeCOxidative treatment of waste activated sludge by different activated persulfate systems for enhancing sludge dewaterabilitySustain Environ Res20162641771831:CAS:528:DC%2BC2sXhvFOnsbnE10.1016/j.serj.2015.10.005 – reference: XiaoKChenYJiangXYangQSeowWYZhuWZhouYVariations in physical, chemical and biological properties in relation to sludge dewaterability under Fe(II)-oxone conditioningWater Res201710913231:CAS:528:DC%2BC28XhvV2itbbO10.1016/j.watres.2016.11.03427866102 – reference: LiYYuanXWangDWangHWuZJiangLMoDYangGGuanRZengGRecyclable zero-valent iron activating peroxymonosulfate synchronously combined with thermal treatment enhances sludge dewaterability by altering physicochemical and biological propertiesBioresour Technol20182622943011:CAS:528:DC%2BC1cXosFSrsbg%3D10.1016/j.biortech.2018.04.05029729607 – reference: KimMSLeeKMKimHELeeHJLeeCLeeCDisintegration of waste activated sludge by thermally-activated persulfates for enhanced dewaterabilityEnviron Sci Technol20165013710671151:CAS:528:DC%2BC28XptlOgs7w%3D10.1021/acs.est.6b0001927268462 – reference: LiuJYangQWangDLiXZhongYLiXDengYWangLYiKZengGEnhanced dewaterability of waste activated sludge by Fe(II)-activated peroxymonosulfate oxidationBioresour Technol20162061341401:CAS:528:DC%2BC28Xhsl2qtr0%3D10.1016/j.biortech.2016.01.08826851897 – reference: APHAStandard methods for examination of water and wastewater199820WashingtonAmerican Public Health Association, Elsevier B.V – reference: GholikandiGBZakizadehNMasihiHApplication of peroxymonosulfate-ozone advanced oxidation process for simultaneous waste-activated sludge stabilization and dewatering purposes: a comparative studyJ Environ Manag20182065235311:CAS:528:DC%2BC2sXhsl2jsbbO10.1016/j.jenvman.2017.10.070 – reference: LiXYYangSFInfluence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludgeWater Res2007415102210301:CAS:528:DC%2BD2sXhsFCnsLc%3D10.1016/j.watres.2006.06.03716952388 – reference: YeJHuARenGChenMTangJZhangPZhouSHeZEnhancing sludge methanogenesis with improved redox activity of extracellular polymeric substances by hematite in red mudWater Res201813454621:CAS:528:DC%2BC1cXit1Ghtrk%3D10.1016/j.watres.2018.01.06229407651 – reference: DengYEzyskeCMSulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachateWater Res20114518618961941:CAS:528:DC%2BC3MXhtlWmurjI10.1016/j.watres.2011.09.01521959093 – reference: GuoJChenCJiangSZhouYFeasibility and mechanism of combined conditioning with coagulant and flocculant to enhance sludge dewateringACS Sustain Chem Eng20186810758107651:CAS:528:DC%2BC1cXhtlSqtbrE10.1021/acssuschemeng.8b02086 – reference: XiongTYuanXChenXWuZWangHLengLWangHJiangLZengGInsight into highly efficient removal of cadmium and methylene blue by eco-friendly magnesium silicate-hydrothermal carbon compositeAppl Surf Sci2018427110711171:CAS:528:DC%2BC2sXhsVKls7fN10.1016/j.apsusc.2017.08.115 – reference: RenWZhouZZhuYJiangLMWeiHNiuTFuPQiuZEffect of sulfate radical oxidation on disintegration of waste activated sludgeInt Biodeterior Biodegrad20151043843901:CAS:528:DC%2BC2MXht1Gqsr%2FN10.1016/j.ibiod.2015.07.008 – reference: Burgos-CastilloRSillanpääMBrillasESirésIRemoval of metals and phosphorus recovery from urban anaerobically digested sludge by electro-Fenton treatmentSci Total Environ20186441731821:CAS:528:DC%2BC1cXht1Ont7nL10.1016/j.scitotenv.2018.06.33729981517 – reference: OncuNBBalciogluIAMicrowave-assisted chemical oxidation of biological waste sludge: simultaneous micropollutant degradation and sludge solubilizationBioresour Technol20131461261341:CAS:528:DC%2BC3sXhsVejtbnE10.1016/j.biortech.2013.07.043 – reference: DuboisMGillesKAHamiltonJKRebersPASmithFColorimetric method for determination of sugars and related substancesAnal Chem19562833503561:CAS:528:DyaG28XjvFynsg%3D%3D10.1021/ac60111a017 – reference: CaiMWangQWellsGDionysiouDDSongZJinMHuJHoSHXiaoRWeiZImproving dewaterability and filterability of waste activated sludge by electrochemical Fenton pretreatmentChem Eng J20193625255361:CAS:528:DC%2BC1MXhsFyqsLY%3D10.1016/j.cej.2019.01.047 – reference: LiuYWangLMaJZhaoXHuangZMahadevanGDQiJImprovement of settleability and dewaterability of sludge by newly prepared alkaline ferrate solutionChem Eng J201628711181:CAS:528:DC%2BC2MXhvVChsL%2FK10.1016/j.cej.2015.11.037 – reference: XiaoKChenYJiangXTyagiVKZhouYCharacterization of key organic compounds affecting sludge dewaterability during ultrasonication and acidification treatmentsWater Res20161054704781:CAS:528:DC%2BC28XhsFGqsbfL10.1016/j.watres.2016.09.03027668991 – reference: BabelSDaceraDMHeavy metal removal from contaminated sludge for land application: a reviewWaste Manag200626998810041:CAS:528:DC%2BD28XnslGmtbc%3D10.1016/j.wasman.2005.09.01716298121 – reference: LiuCEnhancement of dewaterability and heavy metals solubilization of waste activated sludge conditioned by natural vanadium-titanium magnetite-activated peroxymonosulfate oxidation with rice huskChem Eng J20193592172241:CAS:528:DC%2BC1cXitlShtL3O10.1016/j.cej.2018.11.139 – reference: ZhenGLuXZhaoYChaiXNiuDEnhanced dewaterability of sewage sludge in the presence of Fe(II)-activated persulfate oxidationBioresour Technol20121162592651:CAS:528:DC%2BC38XotVamsLw%3D10.1016/j.biortech.2012.01.17022542138 – reference: CaiMQHuJQWellsGSeoYSpinneyRHoSHDionysiouDDSuJXiaoRWeiZUnderstanding mechanisms of synergy between acidification and ultrasound treatments for activated sludge dewatering: from bench to pilot-scale investigationEnviron Sci Technol2018527431343231:CAS:528:DC%2BC1cXktFKhsro%3D10.1021/acs.est.8b0031029518313 – reference: BalciogluIAOncuNBMercanNBeneficial effects of treating waste secondary sludge with thermally activated persulfateJ Chem Technol Biotechnol2017926119212021:CAS:528:DC%2BC28XhslWisL%2FJ10.1002/jctb.5108 – reference: LiuCLaiLYangXSewage sludge conditioning by Fe(II)-activated persulphate oxidation combined with skeleton builders for enhancing dewaterabilityWater Environ J2016301–2961011:CAS:528:DC%2BC28XhtlOqtbnP10.1111/wej.12167 – reference: ZhangLZhuYZhangJZengGDongHCaoWFangWChengYWangYNingQImpacts of iron oxide nanoparticles on organic matter degradation and microbial enzyme activities during agricultural waste compostingWaste Manag2019952892971:CAS:528:DC%2BC1MXhtF2kt77I10.1016/j.wasman.2019.06.02531351614 – reference: MikkelsenLHKeidingKPhysico-chemical characteristics of full scale sewage sludges with implications to dewateringWater Res20023610245124621:CAS:528:DC%2BD38XktFaqtr0%3D10.1016/s0043-1354(01)00477-812153011 – reference: YuGBLiuYYuSWuSCLeungAOWLuoXSXuBLiHBWongMHInconsistency and comprehensiveness of risk assessments for heavy metals in urban surface sedimentsChemosphere2011856108010871:CAS:528:DC%2BC3MXhsVehsrfI10.1016/j.chemosphere.2011.07.03921862100 – reference: ZhuCZhangPWangHYeJConditioning of sewage sludge via combined ultrasonication-flocculation-skeleton building to improve sludge dewaterabilityUltrason Sonochem2018403533601:CAS:528:DC%2BC2sXht1Gku7vP10.1016/j.ultsonch.2017.07.02828946434 – reference: AppelsLBaeyensJDegreveJDewilRPrinciples and potential of the anaerobic digestion of waste-activated sludgeProg Energy Combust Sci20083467557811:CAS:528:DC%2BD1cXht1ShsrrI10.1016/j.pecs.2008.06.002 – reference: UdayangaWDCVekshaAGiannisALisakGChangVWCLimTTFate and distribution of heavy metals during thermal processing of sewage sludgeFuel20182267217441:CAS:528:DC%2BC1cXotlGrtrs%3D10.1016/j.fuel.2018.04.045 – reference: HeiLLeeCCCWangHLinXYChenXHWuQTUsing a high biomass plant Pennisetum hydridum to phyto-treat fresh municipal sewage sludgeBioresour Technol20162172522561:CAS:528:DC%2BC28XisV2ksbo%3D10.1016/j.biortech.2016.02.02526897473 – reference: KwonEELeeTOkYSTsangDCWParkCLeeJEffects of calcium carbonate on pyrolysis of sewage sludgeEnergy20181537267311:CAS:528:DC%2BC1cXot1ynu7w%3D10.1016/j.energy.2018.04.100 – reference: LiuFZhouLZhouJSongXWangDImprovement of sludge dewaterability and removal of sludge-borne metals by bioleaching at optimum pHJ Hazard Mater20122211701771:CAS:528:DC%2BC38XntFyhurY%3D10.1016/j.jhazmat.2012.04.02822560175 – reference: LiuCWuBChenXEXieSWaste activated sludge pretreatment by Fe(II)-activated peroxymonosulfate oxidation under mild temperatureChem Pap20177112234323511:CAS:528:DC%2BC2sXhtVSht77J10.1007/s11696-017-0228-2 – reference: RauretGLopez-SanchezJFSahuquilloARubioRDavidsonCUreAQuevauvillerPImprovement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materialsJ Environ Monit19991157611:CAS:528:DyaK1MXhtFartrg%3D10.1039/a807854h11529080 – reference: FrolundBPalmgrenRKeidingKNielsenPHExtraction of extracellular polymers from activated sludge using a cation exchange resinWater Res19963081749175810.1016/0043-1354(95)00323-1 – reference: WangHZengZXuPLiLZengGXiaoRTangZHuangDTangLLaiCJiangDLiuYYiHQinLYeSRenXTangWRecent progress in covalent organic framework thin films: fabrications, applications and perspectivesChem Soc Rev2019484885161:CAS:528:DC%2BC1cXisFCktLbK10.1039/C8CS00376A30565610 – reference: IzquierdoMQuerolXLeaching behaviour of elements from coal combustion fly ash: an overviewInt J Coal Geol20129454661:CAS:528:DC%2BC38XlvFehsr0%3D10.1016/j.coal.2011.10.006 – volume: 52 start-page: 4313 issue: 7 year: 2018 ident: 912_CR7 publication-title: Environ Sci Technol doi: 10.1021/acs.est.8b00310 – volume: 30 start-page: 96 issue: 1–2 year: 2016 ident: 912_CR25 publication-title: Water Environ J doi: 10.1111/wej.12167 – volume: 287 start-page: 11 year: 2016 ident: 912_CR27 publication-title: Chem Eng J doi: 10.1016/j.cej.2015.11.037 – volume: 26 start-page: 177 issue: 4 year: 2016 ident: 912_CR18 publication-title: Sustain Environ Res doi: 10.1016/j.serj.2015.10.005 – volume: 36 start-page: 2451 issue: 10 year: 2002 ident: 912_CR30 publication-title: Water Res doi: 10.1016/s0043-1354(01)00477-8 – volume: 41 start-page: 1022 issue: 5 year: 2007 ident: 912_CR19 publication-title: Water Res doi: 10.1016/j.watres.2006.06.037 – volume: 291 start-page: 192 year: 2016 ident: 912_CR36 publication-title: Chem Eng J doi: 10.1016/j.cej.2016.01.103 – volume: 134 start-page: 54 year: 2018 ident: 912_CR42 publication-title: Water Res doi: 10.1016/j.watres.2018.01.062 – volume: 95 start-page: 119 issue: 1 year: 1995 ident: 912_CR5 publication-title: Chem Rev doi: 10.1021/cr00033a006 – volume: 50 start-page: 7106 issue: 13 year: 2016 ident: 912_CR16 publication-title: Environ Sci Technol doi: 10.1021/acs.est.6b00019 – volume-title: Standard methods for examination of water and wastewater year: 1998 ident: 912_CR1 – volume: 362 start-page: 525 year: 2019 ident: 912_CR8 publication-title: Chem Eng J doi: 10.1016/j.cej.2019.01.047 – volume: 90 start-page: 2343 issue: 8 year: 2009 ident: 912_CR32 publication-title: J Environ Manag doi: 10.1016/j.jenvman.2008.11.005 – volume: 26 start-page: 988 issue: 9 year: 2006 ident: 912_CR3 publication-title: Waste Manag doi: 10.1016/j.wasman.2005.09.017 – volume: 226 start-page: 721 year: 2018 ident: 912_CR35 publication-title: Fuel doi: 10.1016/j.fuel.2018.04.045 – volume: 45 start-page: 6189 issue: 18 year: 2011 ident: 912_CR9 publication-title: Water Res doi: 10.1016/j.watres.2011.09.015 – volume: 335 start-page: 865 year: 2018 ident: 912_CR29 publication-title: Chem Eng J doi: 10.1016/j.cej.2017.10.162 – volume: 34 start-page: 755 issue: 6 year: 2008 ident: 912_CR2 publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2008.06.002 – volume: 40 start-page: 353 year: 2018 ident: 912_CR48 publication-title: Ultrason Sonochem doi: 10.1016/j.ultsonch.2017.07.028 – volume: 109 start-page: 13 year: 2017 ident: 912_CR39 publication-title: Water Res doi: 10.1016/j.watres.2016.11.034 – volume: 262 start-page: 294 year: 2018 ident: 912_CR20 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2018.04.050 – volume: 104 start-page: 384 year: 2015 ident: 912_CR34 publication-title: Int Biodeterior Biodegrad doi: 10.1016/j.ibiod.2015.07.008 – volume: 92 start-page: 1192 issue: 6 year: 2017 ident: 912_CR4 publication-title: J Chem Technol Biotechnol doi: 10.1002/jctb.5108 – volume: 134 start-page: 101 year: 2018 ident: 912_CR47 publication-title: Water Res doi: 10.1016/j.watres.2018.01.072 – volume: 105 start-page: 470 year: 2016 ident: 912_CR38 publication-title: Water Res doi: 10.1016/j.watres.2016.09.030 – volume: 95 start-page: 289 year: 2019 ident: 912_CR44 publication-title: Waste Manag doi: 10.1016/j.wasman.2019.06.025 – volume: 85 start-page: 1080 issue: 6 year: 2011 ident: 912_CR43 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.07.039 – volume: 206 start-page: 523 year: 2018 ident: 912_CR12 publication-title: J Environ Manag doi: 10.1016/j.jenvman.2017.10.070 – volume: 208 start-page: 93 year: 2018 ident: 912_CR40 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.05.162 – volume: 153 start-page: 726 year: 2018 ident: 912_CR17 publication-title: Energy doi: 10.1016/j.energy.2018.04.100 – volume: 644 start-page: 173 year: 2018 ident: 912_CR6 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.06.337 – volume: 427 start-page: 1107 year: 2018 ident: 912_CR41 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2017.08.115 – volume: 206 start-page: 134 year: 2016 ident: 912_CR26 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2016.01.088 – volume: 221 start-page: 170 year: 2012 ident: 912_CR23 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2012.04.028 – volume: 71 start-page: 2343 issue: 12 year: 2017 ident: 912_CR28 publication-title: Chem Pap doi: 10.1007/s11696-017-0228-2 – volume: 28 start-page: 37 year: 2015 ident: 912_CR24 publication-title: J Environ Sci doi: 10.1016/j.jes.2014.05.039 – volume: 1 start-page: 57 issue: 1 year: 1999 ident: 912_CR33 publication-title: J Environ Monit doi: 10.1039/a807854h – volume: 91 start-page: 977 issue: 7 year: 2013 ident: 912_CR45 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.02.001 – volume: 116 start-page: 259 year: 2012 ident: 912_CR46 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2012.01.170 – volume: 6 start-page: 10758 issue: 8 year: 2018 ident: 912_CR13 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.8b02086 – volume: 94 start-page: 54 year: 2012 ident: 912_CR15 publication-title: Int J Coal Geol doi: 10.1016/j.coal.2011.10.006 – volume: 217 start-page: 252 year: 2016 ident: 912_CR14 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2016.02.025 – volume: 48 start-page: 488 year: 2019 ident: 912_CR37 publication-title: Chem Soc Rev doi: 10.1039/C8CS00376A – volume: 28 start-page: 350 issue: 3 year: 1956 ident: 912_CR10 publication-title: Anal Chem doi: 10.1021/ac60111a017 – volume: 32 start-page: 3628 issue: 22 year: 1998 ident: 912_CR21 publication-title: Environ Sci Technol doi: 10.1021/es980559n – volume: 359 start-page: 217 year: 2019 ident: 912_CR22 publication-title: Chem Eng J doi: 10.1016/j.cej.2018.11.139 – volume: 30 start-page: 1749 issue: 8 year: 1996 ident: 912_CR11 publication-title: Water Res doi: 10.1016/0043-1354(95)00323-1 – volume: 146 start-page: 126 year: 2013 ident: 912_CR31 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2013.07.043 |
SSID | ssib044732867 ssj0044050 ssib029106359 |
Score | 2.2793367 |
Snippet | In this work, heat-activated peroxymonosulfate (heat-PMS) oxidation was used to condition waste activated sludge. The results showed that the optimal... In this work, heat-activated peroxymonosulfate (heat-PMS) oxidation was used to condition waste activated sludge. The results showed that the optimal... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 641 |
SubjectTerms | Activated sludge Biochemistry Biotechnology Chemistry Chemistry and Materials Science Chemistry/Food Science Conditioning Heavy metals Industrial Chemistry/Chemical Engineering Leaching Materials Science Medicinal Chemistry Moisture content Original Paper Oxidation Sludge Solubilization Suction Toxicity |
Title | Behaviors of dewaterability and heavy metals of waste activated sludge conditioned by heat-activated peroxymonosulfate oxidation |
URI | https://link.springer.com/article/10.1007/s11696-019-00912-9 https://www.proquest.com/docview/2343286846 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46D3oRf-J0Sg7eNJDENk2OY2yIoCcHu5W0SUSYm9hOt4vgf-Lf4l_mS3-sKCp4bV_akpf2fa953_cQOmXMhNQqSrgxjgSpFURRQ4lUEG81jWxU9Dq8vhGXw-BqFI4qUlhWV7vXW5LFl7ohuzHhC2Y96QaCHCdqFa2FkLv7Qq4h79ariEMAhCi6DNJB4PVoxDINCwCi-D8vHICyb-RKKyrNz_f4Gq4aDPpt27SIRoMttFnBSNwt_b6NVuxkB6336u5tu-itEj58yvDUYWNftKcaF5WwC6wnBsNH-HmBHyyA78LkRYO_P949z-EZbA3OxjNzZzHky6bUMzI4WfhhOWmMvMz4fAFLeZrNxg4O4en8vmzTtIeGg_5t75JU7RZIehGKnCQ6lWmiIyGo4VRLxdLUMKZDaZxVltIE5sYoo6R0QgWJYko6qrWSOnLU0ot91JrA0xwgLCKtE-kCIyJINzmVmglqneZKpDbkQRuxelbjtNIi9y0xxnGjouw9EYMn4sITsWqjs-WYx1KJ40_rTu2suHors5h7Fq0UALna6Lx2YHP696sd_s_8CG1wn5YXxd0d1MqfZvYYsEuenKDV69f-SbFgPwERMeW- |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELb4GWBB_IpCAQ9sYMk2iWOPFaIqUJhaqVvkxDZCKi1q2kJH3oRn4ck4p0kjECCxJuck8l1839n33SF0ypgJqVWUcGMcCVIriKKGEqnA32oa2SjvdXh3L1rd4KYX9gpSWFZmu5dHkvlKXZHdmPAJs550A06OE7WMVgEMSG_LXd4orYiDAwQvunDSQeDr0YhFGBYARPE7LxyAsm_kSgsqzc_v-OquKgz67dg090bNTbRRwEjcmOt9Cy3ZwTZauyy7t-2gt6Lw4SjDQ4eNfdGeapxnws6wHhgMi_B0hp8sgO9c5EWDvj_ePc9hCrIGZ_2JebAY4mUzr2dkcDLzw8akEvJlxl9nYMrDbNJ3cAkPXx_nbZp2Ubd51blskaLdAkkvQjEmiU5lmuhICGo41VKxNDWM6VAaZ5WlNIG5McooKZ1QQaKYko5qraSOHLX0Yg-tDOBr9hEWkdaJdIEREYSbnErNBLVOcyVSG_Kghlg5q3Fa1CL3LTH6cVVF2WsiBk3EuSZiVUNnizHP80ocf0rXS2XFxV-ZxdyzaKUAyFVD56UCq9u_P-3gf-InaK3VuWvH7ev720O0zn2Inid619HKeDSxR4BjxslxbrafoxbngA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYKlVouqA-qLtDWB27FwvY6jn1EwIo-QD10JW6Rk7ER0nYXsVlgj_wTfgu_jHEeG4poJa7JOIk8k8zneL5vCNkSAhLuLWcSIDBVeM0sB86MxXzreOrTqtfh0bE-HKrvJ8nJAxZ_Ve3ebknWnIao0jQud84h7HTEN6Fj8Wwk4GDCk8wukZcqsoExoodyt40oickQM-oiYSsVtWn0YkmmEK7EvzASQXNs6sobWs3T9_g7dXV49NEWapWZBm_IagMp6W4dA2_JCz9-R17vtZ3c3pObRgTxYkongYK_cpF2XFXFzqkbA8UP8uWc_vEIxCuTK4e-v7uNnIdLtAU6Hc3g1FOcJKi1jYDm8zisZJ1RlBy_nmNYT6azUcBDdHJ9VrdsWiPDwcHvvUPWtF5gRT_RJctdYYrcpVpzkNwZK4oChHCJgeCt5zzHuQEL1pigrcqtsCZw56xxaeCe9z-Q5TE-zUdCdepcboICneLSU3LjhOY-OGl14ROpekS0s5oVjS55bI8xyjpF5eiJDD2RVZ7IbI98XYw5r1U5_mu92Tora97QaSYjo9ZohF89st06sDv976utP8_8C3n1a3-Q_fx2_GODrMi4Wq9qvjfJcnkx858Q0pT55ypq7wHzc-uz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Behaviors+of+dewaterability+and+heavy+metals+of+waste%C2%A0activated+sludge+conditioned+by+heat-activated+peroxymonosulfate+oxidation&rft.jtitle=Chemical+papers&rft.au=Huang%2C+Zaichun&rft.au=Liu%2C+Changgeng&rft.au=Zhu%2C+Xuejun&rft.au=Xiang%2C+Guoqi&rft.date=2020-02-01&rft.pub=Springer+International+Publishing&rft.issn=2585-7290&rft.eissn=1336-9075&rft.volume=74&rft.issue=2&rft.spage=641&rft.epage=650&rft_id=info:doi/10.1007%2Fs11696-019-00912-9&rft.externalDocID=10_1007_s11696_019_00912_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2585-7290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2585-7290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2585-7290&client=summon |