Chaos Theory-Based Data-Mining Technique for Image Endmember Extraction: Laypunov Index and Correlation Dimension (L and D)

It is often hard to collect a large size of high-quality field samples as ground reference points (GRPs) to support image analysis. Endmember extraction (EE) is an important technique to obtain spectrally identifiable image pixels to provide a supplementary solution to field sampling. However, most...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 52; no. 4; pp. 1935 - 1947
Main Authors Zhang, Anbing, Xie, Yichun
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2013.2256790

Cover

Abstract It is often hard to collect a large size of high-quality field samples as ground reference points (GRPs) to support image analysis. Endmember extraction (EE) is an important technique to obtain spectrally identifiable image pixels to provide a supplementary solution to field sampling. However, most current EE methods are based on simplex models and thus rarely consider capricious occurrences in the data. The new approach developed in this paper synthesizes two quantitative measures of chaotic tendencies, Lyapunov index (L) and correlation dimension (D) into an integrated statistic, L and D for EE. L and D reconstructs a spectral dataset into phases, over which the chaotic or complex characteristics hidden in the dataset could be rearranged into predictable sequences. Therefore, better endmembers could be selected from the spectral or hyperspectral dataset. The usability and applicability of L and D are tested against the USGS standard spectral library first and then with a Hyperion image classification in Wulate Zhongqi (central county) of Inner Mongolia in China. L and D, along with four other methods, {\rm PPI}{+}{\rm n\hbox{-}DV}{+}{\rm GRPs} , SMACC, VCA, and {\rm PPI}{+}{\rm VCA} , is applied to extract endmembers, which are used as the surrogates of GRPs for creating the training and testing samples and classifying the Hyperion image with two classifiers, spectral angle mapper (SAM) and support vector machine (SVM). The classification results based on GRPs derived from L and D have the overall accuracy and kappa statistics, 81.93% and 0.7905 (by SAM) or 84.11% and 0.814% (by SVM), whereas the other four methods have lower accuracies.
AbstractList It is often hard to collect a large size of high-quality field samples as ground reference points (GRPs) to support image analysis. Endmember extraction (EE) is an important technique to obtain spectrally identifiable image pixels to provide a supplementary solution to field sampling. However, most current EE methods are based on simplex models and thus rarely consider capricious occurrences in the data. The new approach developed in this paper synthesizes two quantitative measures of chaotic tendencies, Lyapunov index (L) and correlation dimension (D) into an integrated statistic, L and D for EE. L and D reconstructs a spectral dataset into phases, over which the chaotic or complex characteristics hidden in the dataset could be rearranged into predictable sequences. Therefore, better endmembers could be selected from the spectral or hyperspectral dataset. The usability and applicability of L and D are tested against the USGS standard spectral library first and then with a Hyperion image classification in Wulate Zhongqi (central county) of Inner Mongolia in China. L and D, along with four other methods, [Formula Omitted], SMACC, VCA, and [Formula Omitted], is applied to extract endmembers, which are used as the surrogates of GRPs for creating the training and testing samples and classifying the Hyperion image with two classifiers, spectral angle mapper (SAM) and support vector machine (SVM). The classification results based on GRPs derived from L and D have the overall accuracy and kappa statistics, 81.93% and 0.7905 (by SAM) or 84.11% and 0.814% (by SVM), whereas the other four methods have lower accuracies.
It is often hard to collect a large size of high-quality field samples as ground reference points (GRPs) to support image analysis. Endmember extraction (EE) is an important technique to obtain spectrally identifiable image pixels to provide a supplementary solution to field sampling. However, most current EE methods are based on simplex models and thus rarely consider capricious occurrences in the data. The new approach developed in this paper synthesizes two quantitative measures of chaotic tendencies, Lyapunov index (L) and correlation dimension (D) into an integrated statistic, L and D for EE. L and D reconstructs a spectral dataset into phases, over which the chaotic or complex characteristics hidden in the dataset could be rearranged into predictable sequences. Therefore, better endmembers could be selected from the spectral or hyperspectral dataset. The usability and applicability of L and D are tested against the USGS standard spectral library first and then with a Hyperion image classification in Wulate Zhongqi (central county) of Inner Mongolia in China. L and D, along with four other methods, rm PPI + rm n hbox - DV + rm GRPs , SMACC, VCA, and rm PPI + rm VCA , is applied to extract endmembers, which are used as the surrogates of GRPs for creating the training and testing samples and classifying the Hyperion image with two classifiers, spectral angle mapper (SAM) and support vector machine (SVM). The classification results based on GRPs derived from L and D have the overall accuracy and kappa statistics, 81.93% and 0.7905 (by SAM) or 84.11% and 0.814% (by SVM), whereas the other four methods have lower accuracies.
Author Zhang, Anbing
Xie, Yichun
Author_xml – sequence: 1
  givenname: Anbing
  surname: Zhang
  fullname: Zhang, Anbing
  email: zhanganhua@sina.com
  organization: School of Hydropower, Hebei University of Engineering, Handan, China
– sequence: 2
  givenname: Yichun
  surname: Xie
  fullname: Xie, Yichun
  email: yxie@emich.edu
  organization: Department of Geography and Geology, Eastern Michigan University, Ypsilanti, MI, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28496217$$DView record in Pascal Francis
BookMark eNp9kU-P0zAQxS20SHQXPgDiYgkhLYcU24n_cYO2LJWKkKCcLSeebL1K7GKnaCu-PMm2cNgDpxlpfm80894luggxAEIvKZlTSvS77c2373NGaDlnjAupyRM0o5yrgoiqukAzQrUomNLsGbrM-Y4QWnEqZ-j3YmdjxtsdxHQsPtoMDi_tYIsvPvhwi7fQ7IL_eQDcxoTXvb0FvAquh76GhFf3Q7LN4GN4jzf2uD-E-Auvg4N7bIPDi5gSdHaa46XvIeSpu948DJdvn6Onre0yvDjXK_Tj02q7-Fxsvt6sFx82RVNyMRR1KagTVtdOSafr1tVcKiFBtbpVjHDu6tZqUolWkZaCaIQgteN1RZwiVLLyCl2f9u5THD_Jg-l9bqDrbIB4yIYKxaXkJStH9PUj9C4eUhivM7QaEVmqaqLenCmbG9u1yYbGZ7NPvrfpaJiqtGBUjpw8cU2KOSdoTeOHBztG23xnKDFTeGYKz0zhmXN4o5I-Uv5d_j_Nq5PGA8A_XnAmleblH4TcphA
CODEN IGRSD2
CitedBy_id crossref_primary_10_3390_su8030264
crossref_primary_10_1007_s12046_019_1116_y
crossref_primary_10_1016_j_asoc_2022_108602
crossref_primary_10_1109_JSTARS_2018_2872969
crossref_primary_10_1109_TGRS_2014_2380475
crossref_primary_10_1016_j_isprsjprs_2017_02_005
crossref_primary_10_1007_s11770_022_0986_7
crossref_primary_10_3390_su11030768
crossref_primary_10_35234_fumbd_570472
crossref_primary_10_1109_JSTARS_2018_2818939
crossref_primary_10_14358_PERS_81_1_69
crossref_primary_10_1109_JSTARS_2018_2856741
Cites_doi 10.1109/TGRS.2011.2108305
10.1080/01431160701408436
10.1109/TGRS.2002.805087
10.1007/BFb0091924
10.1016/j.rse.2006.11.002
10.1109/TGRS.2002.802494
10.1006/jare.2000.0771
10.1109/TGRS.2005.844293
10.1016/j.jaridenv.2004.01.004
10.1016/S0034-4257(95)00177-8
10.1002/ldr.680
10.1016/j.rse.2011.03.003
10.2307/2318254
10.1109/TGRS.2003.815018
10.1016/j.jfoodeng.2007.10.001
10.1109/IGARSS.2008.4778830
10.1016/j.isprsjprs.2006.09.004
10.1117/12.366289
10.1109/36.752192
10.1080/01431160210146631
10.1109/36.298007
10.1002/ldr.660
10.1109/TGRS.2003.820314
10.1016/j.patcog.2008.02.010
10.1109/LGRS.2004.841478
10.1109/TGRS.2002.804834
10.1016/j.patcog.2008.07.016
10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
10.1080/01431160600771561
10.1016/j.mcm.2009.10.023
10.1117/12.221352
10.1016/j.eswa.2006.01.055
10.1109/TGRS.2006.881803
10.1890/07-0992.1
10.1143/PTP.77.1
10.1117/12.543794
10.1109/TGRS.2008.2004708
10.1117/12.602373
10.1016/j.jaridenv.2005.03.028
10.1109/TGRS.2004.839806
10.1016/0167-2789(84)90269-0
10.1103/PhysRevLett.50.346
10.1109/36.841987
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
7SC
7SP
F28
JQ2
L~C
L~D
DOI 10.1109/TGRS.2013.2256790
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
ProQuest Computer Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database
Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Statistics
EISSN 1558-0644
EndPage 1947
ExternalDocumentID 3176488731
28496217
10_1109_TGRS_2013_2256790
6527895
Genre orig-research
GeographicLocations Mongolia
Far East
Asia
China
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
AAYOK
IQODW
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
7SC
7SP
F28
JQ2
L~C
L~D
ID FETCH-LOGICAL-c356t-b361d6a9bd87d9bfdb57867e8f9f82055dbfa9046f80f1e6c660bd5b40d801723
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Thu Sep 04 20:21:58 EDT 2025
Mon Jun 30 09:06:08 EDT 2025
Wed Apr 02 07:27:40 EDT 2025
Wed Sep 10 04:50:22 EDT 2025
Thu Apr 24 23:02:23 EDT 2025
Wed Aug 27 02:13:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords models
correlation dimension
grassland classification
sampling
testing
libraries
accuracy
mining
dessert steppe
classification
extraction
image analysis
quality
endmember extraction (EE)
steppes
grasslands
correlation
Chaos theory
standard samples
Lyapunov index
Pixel
theory
statistics
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-b361d6a9bd87d9bfdb57867e8f9f82055dbfa9046f80f1e6c660bd5b40d801723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1475373843
PQPubID 85465
PageCount 13
ParticipantIDs ieee_primary_6527895
proquest_journals_1475373843
crossref_citationtrail_10_1109_TGRS_2013_2256790
proquest_miscellaneous_1685775323
pascalfrancis_primary_28496217
crossref_primary_10_1109_TGRS_2013_2256790
PublicationCentury 2000
PublicationDate 2014-04-01
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2014
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
lu (ref44) 2002
ref59
jensen (ref5) 2005
ref58
bowles (ref23) 1995; 2553
ref55
ref10
winter (ref16) 1999; 3753
zhang (ref42) 2009; 38
ref19
ref18
lu (ref35) 2007; 28
chen (ref43) 2005; 25
huang (ref41) 2007; 23
ref51
ref50
(ref52) 2005
ref46
ref45
ref48
boardman (ref15) 1995
chang (ref11) 2003
zhang (ref47) 2007; 56
ref49
ref8
ref4
ref3
vapnik (ref54) 1998
ref6
gruninger (ref17) 2004; 5425
henry (ref40) 1996
ref34
ref37
ref36
(ref53) 2009
ref31
ref30
ref33
ref32
neville (ref22) 1999; 2
ref2
ref1
ref39
ref38
li (ref14) 2011; 15
ref24
ref26
ref25
ref20
ref21
ref28
ref27
ref29
ref60
guo (ref7) 2010; 51
su (ref9) 2008; 25
References_xml – ident: ref28
  doi: 10.1109/TGRS.2011.2108305
– ident: ref60
  doi: 10.1080/01431160701408436
– ident: ref30
  doi: 10.1109/TGRS.2002.805087
– ident: ref45
  doi: 10.1007/BFb0091924
– ident: ref50
  doi: 10.1016/j.rse.2006.11.002
– year: 1996
  ident: ref40
  publication-title: Analysis of Observed Chaotic Data
– ident: ref12
  doi: 10.1109/TGRS.2002.802494
– ident: ref1
  doi: 10.1006/jare.2000.0771
– ident: ref59
  doi: 10.1109/TGRS.2005.844293
– ident: ref32
  doi: 10.1016/j.jaridenv.2004.01.004
– ident: ref20
  doi: 10.1016/S0034-4257(95)00177-8
– volume: 23
  start-page: 135
  year: 2007
  ident: ref41
  article-title: Analysis of chaos characteristics and forecasting time-scale of the demand for big-medium-sized tractors
  publication-title: Trans Chinese Soc Agricultural Eng
– ident: ref31
  doi: 10.1080/01431160701408436
– volume: 56
  start-page: 65
  year: 2007
  ident: ref47
  article-title: Local support vector machine prediction of spatio-temporal chaotic time series
  publication-title: Acta Phys Sinica
– year: 1998
  ident: ref54
  publication-title: Statistical Learning Theory
– ident: ref34
  doi: 10.1002/ldr.680
– ident: ref27
  doi: 10.1016/j.rse.2011.03.003
– ident: ref37
  doi: 10.2307/2318254
– year: 2005
  ident: ref52
  publication-title: Landsat Image-Based LULC Changes of San Antonio Texas Using Advanced Atmospheric Correction and Object-Oriented Image Analysis Approaches
– ident: ref49
  doi: 10.1109/TGRS.2003.815018
– volume: 2
  start-page: 891
  year: 1999
  ident: ref22
  article-title: Automatic endmember extraction from hyperspectral data for mineral exploration
  publication-title: Proc 4th Int Airborne Remote Sens Conf Exhib 21st Can Symp Remote Sens
– ident: ref55
  doi: 10.1016/j.jfoodeng.2007.10.001
– ident: ref8
  doi: 10.1109/IGARSS.2008.4778830
– ident: ref58
  doi: 10.1016/j.isprsjprs.2006.09.004
– volume: 3753
  start-page: 266
  year: 1999
  ident: ref16
  article-title: N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyper spectral data
  publication-title: Proc SPIE
  doi: 10.1117/12.366289
– ident: ref24
  doi: 10.1109/36.752192
– ident: ref25
  doi: 10.1080/01431160210146631
– ident: ref18
  doi: 10.1109/36.298007
– ident: ref2
  doi: 10.1002/ldr.660
– ident: ref26
  doi: 10.1109/TGRS.2003.820314
– year: 2009
  ident: ref53
  publication-title: Atmospheric Correction Module QUAC and FLAASH User's Guide Version 4 7 Edition
– volume: 38
  start-page: 170
  year: 2009
  ident: ref42
  article-title: Chaotic characteristics and time-variable law of surface subsidence of goaf
  publication-title: J China Univ Mining Technol
– ident: ref56
  doi: 10.1016/j.patcog.2008.02.010
– start-page: 431
  year: 2005
  ident: ref5
  publication-title: Introductory Digital Image Processing A Remote Sensing Perspective
– volume: 15
  start-page: 659
  year: 2011
  ident: ref14
  article-title: The development and comparison of endmember extraction algorithms using hyperspectral imagery
  publication-title: J Remote Sens
– ident: ref57
  doi: 10.1109/LGRS.2004.841478
– ident: ref51
  doi: 10.1109/TGRS.2002.804834
– ident: ref3
  doi: 10.1016/j.patcog.2008.07.016
– ident: ref36
  doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
– volume: 28
  start-page: 963
  year: 2007
  ident: ref35
  article-title: Comparison between several feature extraction/classification methods for mapping complicated agricultural land use patches using airborne hyperspectral data
  publication-title: Int J Remote Sens
  doi: 10.1080/01431160600771561
– volume: 51
  start-page: 1408
  year: 2010
  ident: ref7
  article-title: Remote sensing image classification by the chaos genetic algorithm in monitoring land use changes
  publication-title: Math Comput Model
  doi: 10.1016/j.mcm.2009.10.023
– year: 2002
  ident: ref44
  publication-title: Analysis and Application of Chaotic Time Series
– volume: 2553
  start-page: 148
  year: 1995
  ident: ref23
  article-title: Use of filter vectors in hyperspectral data analysis
  publication-title: Proc SPIE
  doi: 10.1117/12.221352
– ident: ref6
  doi: 10.1016/j.eswa.2006.01.055
– ident: ref29
  doi: 10.1109/TGRS.2006.881803
– volume: 25
  start-page: 294
  year: 2008
  ident: ref9
  article-title: Study on feature extraction and experiment of hyper spectral data
  publication-title: Appl Res Comput
– ident: ref48
  doi: 10.1890/07-0992.1
– ident: ref46
  doi: 10.1143/PTP.77.1
– year: 2003
  ident: ref11
  publication-title: Hyper Spectral Imaging Techniques for Spectral Detection and Classification
– volume: 5425
  start-page: 1
  year: 2004
  ident: ref17
  article-title: The sequential maximum angle convex cone (SMACC) endmember model
  publication-title: Proc SPIE
  doi: 10.1117/12.543794
– ident: ref4
  doi: 10.1109/TGRS.2008.2004708
– ident: ref13
  doi: 10.1117/12.602373
– ident: ref33
  doi: 10.1016/j.jaridenv.2005.03.028
– volume: 25
  start-page: 101
  year: 2005
  ident: ref43
  article-title: Application of EMD to signal trend extraction
  publication-title: Journal of Vibration Measurement & Diagnosis
– ident: ref10
  doi: 10.1016/j.patcog.2008.07.016
– ident: ref19
  doi: 10.1109/TGRS.2004.839806
– ident: ref39
  doi: 10.1016/0167-2789(84)90269-0
– ident: ref38
  doi: 10.1103/PhysRevLett.50.346
– ident: ref21
  doi: 10.1109/36.841987
– start-page: 1
  year: 1995
  ident: ref15
  article-title: Mapping target signatures via partial unmixing of AVIRIS data
  publication-title: Summaries 6th Annu JPL Airborne Earth Science Workshop
SSID ssj0014517
Score 2.200158
Snippet It is often hard to collect a large size of high-quality field samples as ground reference points (GRPs) to support image analysis. Endmember extraction (EE)...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1935
SubjectTerms Accuracy
Applied geophysics
Chaos
Chaos theory
Correlation
correlation dimension
Data mining
Degradation
dessert steppe
Earth sciences
Earth, ocean, space
endmember extraction (EE)
Exact sciences and technology
Extraction
Feature extraction
Glass fiber reinforced plastics
grassland classification
Grasslands
Indexes
Internal geophysics
Lyapunov index
Samples
Spectra
Statistical methods
Statistics
Support vector machines
Training
Vegetation mapping
Title Chaos Theory-Based Data-Mining Technique for Image Endmember Extraction: Laypunov Index and Correlation Dimension (L and D)
URI https://ieeexplore.ieee.org/document/6527895
https://www.proquest.com/docview/1475373843
https://www.proquest.com/docview/1685775323
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFD60BUEfqraKqbWM4IOKs00ymUnGN93d2krXB91C38JcEbRJ6Sbi5c97JsmGekF8C8wJmeScnMucywfwxKucm9R4ykzqacZiS7WVCTVKZtYwbk0e-p0X78TxWfb2nJ9vwIuxF8Y51xWfuUm47HL5tjZtOCo7FDz0bfJN2EQx63u1xoxBxpOhNVpQDCLSIYOZxPJw-eb9h1DExSYovCIP6veaDepAVUJJpFrhV_E9nMUfmrkzN0e3YbHeaF9l8mnSNnpivv82w_F_3-QObA9-J3nVC8pd2HDVDty6No1wB2501aBmtQs_ph9VvSJ93z59jYbOkplqFF10cBJkuR78StDlJScXqJPIvLIXLqCLkPnX5qpvl3hJTtW3y7aqv5CTMJWRqMqSacAD6SvwyCxgC4TzOvL0tFucPbsHZ0fz5fSYDigNFFkpGqqZSKxQUtsit1J7q1EJiNwVXnp0Lzi32iuJYbgvYp84YYSIteU6i20RAlB2H7aqunIPgAgWO3QfUpUYninDpc-4F9agzyq4dTaCeM230gwjzAOSxueyC2ViWQZWl4HV5cDqCJ6Pt1z28zv-RbwbWDUSDlyK4OAX4RjX0bRLgTFdBPtraSkHFbDCmAojwZwVGYvg8biMP2_IyKjK1S3SiILnSJayvb8_-iHcxA0OpUL7sNVcte4RekGNPujE_ye2CQPh
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEB6VIgQ8cLQgDKUsEg-A2NTXrr28QZKSQNIHSKW-WXsKCWpXjY04_jyztmOVQ4g3SzuWj5mdY-f4AJ44mTEda0cTHTuaJqGhyoiIailSoxNmdOb7nZdHfHacvj1hJ1vwYuiFsda2xWd25C_bXL6pdOOPyg44832b7BJcRrufsq5ba8gZpCzqm6M5xTAi7nOYUSgOVm_ef_BlXMkIxZdnXgFfsEItrIovipRr_C-uA7T4Qze3BufwJiw3r9rVmXwaNbUa6e-_TXH832-5BTd6z5O86kTlNmzZcgeuX5hHuANX2npQvd6FH-OPslqTrnOfvkZTZ8hE1pIuW0AJstqMfiXo9JL5KWolMi3NqfX4ImT6tT7vGiZekoX8dtaU1Rcy93MZiSwNGXtEkK4Gj0w8uoA_sSNPF-3i5NkdOD6crsYz2uM0UGQmr6lKeGS4FMrkmRHKGYVqgGc2d8Khg8GYUU4KDMRdHrrIcs15qAxTaWhyH4Imd2G7rEp7DwhPQosORCwjzVKpmXApc9xo9Fo5M9YEEG74Vuh-iLnH0vhctMFMKArP6sKzuuhZHcDz4ZazboLHv4h3PasGwp5LAez_IhzDOhp3wTGqC2BvIy1FrwTWGFVhLJgleZoE8HhYxu3rczKytFWDNDxnGZLFyf2_P_oRXJ2tlotiMT969wCu4cv2hUN7sF2fN_Yh-kS12m-3wk9w9wcu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chaos+Theory-Based+Data-Mining+Technique+for+Image+Endmember+Extraction%3A+Laypunov+Index+and+Correlation+Dimension+%28L+and+D%29&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Zhang%2C+Anbing&rft.au=Xie%2C+Yichun&rft.date=2014-04-01&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=52&rft.issue=4&rft.spage=1935&rft.epage=1947&rft_id=info:doi/10.1109%2FTGRS.2013.2256790&rft.externalDocID=6527895
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon