Chaos Theory-Based Data-Mining Technique for Image Endmember Extraction: Laypunov Index and Correlation Dimension (L and D)
It is often hard to collect a large size of high-quality field samples as ground reference points (GRPs) to support image analysis. Endmember extraction (EE) is an important technique to obtain spectrally identifiable image pixels to provide a supplementary solution to field sampling. However, most...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 52; no. 4; pp. 1935 - 1947 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.04.2014
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0196-2892 1558-0644 |
DOI | 10.1109/TGRS.2013.2256790 |
Cover
Abstract | It is often hard to collect a large size of high-quality field samples as ground reference points (GRPs) to support image analysis. Endmember extraction (EE) is an important technique to obtain spectrally identifiable image pixels to provide a supplementary solution to field sampling. However, most current EE methods are based on simplex models and thus rarely consider capricious occurrences in the data. The new approach developed in this paper synthesizes two quantitative measures of chaotic tendencies, Lyapunov index (L) and correlation dimension (D) into an integrated statistic, L and D for EE. L and D reconstructs a spectral dataset into phases, over which the chaotic or complex characteristics hidden in the dataset could be rearranged into predictable sequences. Therefore, better endmembers could be selected from the spectral or hyperspectral dataset. The usability and applicability of L and D are tested against the USGS standard spectral library first and then with a Hyperion image classification in Wulate Zhongqi (central county) of Inner Mongolia in China. L and D, along with four other methods, {\rm PPI}{+}{\rm n\hbox{-}DV}{+}{\rm GRPs} , SMACC, VCA, and {\rm PPI}{+}{\rm VCA} , is applied to extract endmembers, which are used as the surrogates of GRPs for creating the training and testing samples and classifying the Hyperion image with two classifiers, spectral angle mapper (SAM) and support vector machine (SVM). The classification results based on GRPs derived from L and D have the overall accuracy and kappa statistics, 81.93% and 0.7905 (by SAM) or 84.11% and 0.814% (by SVM), whereas the other four methods have lower accuracies. |
---|---|
AbstractList | It is often hard to collect a large size of high-quality field samples as ground reference points (GRPs) to support image analysis. Endmember extraction (EE) is an important technique to obtain spectrally identifiable image pixels to provide a supplementary solution to field sampling. However, most current EE methods are based on simplex models and thus rarely consider capricious occurrences in the data. The new approach developed in this paper synthesizes two quantitative measures of chaotic tendencies, Lyapunov index (L) and correlation dimension (D) into an integrated statistic, L and D for EE. L and D reconstructs a spectral dataset into phases, over which the chaotic or complex characteristics hidden in the dataset could be rearranged into predictable sequences. Therefore, better endmembers could be selected from the spectral or hyperspectral dataset. The usability and applicability of L and D are tested against the USGS standard spectral library first and then with a Hyperion image classification in Wulate Zhongqi (central county) of Inner Mongolia in China. L and D, along with four other methods, [Formula Omitted], SMACC, VCA, and [Formula Omitted], is applied to extract endmembers, which are used as the surrogates of GRPs for creating the training and testing samples and classifying the Hyperion image with two classifiers, spectral angle mapper (SAM) and support vector machine (SVM). The classification results based on GRPs derived from L and D have the overall accuracy and kappa statistics, 81.93% and 0.7905 (by SAM) or 84.11% and 0.814% (by SVM), whereas the other four methods have lower accuracies. It is often hard to collect a large size of high-quality field samples as ground reference points (GRPs) to support image analysis. Endmember extraction (EE) is an important technique to obtain spectrally identifiable image pixels to provide a supplementary solution to field sampling. However, most current EE methods are based on simplex models and thus rarely consider capricious occurrences in the data. The new approach developed in this paper synthesizes two quantitative measures of chaotic tendencies, Lyapunov index (L) and correlation dimension (D) into an integrated statistic, L and D for EE. L and D reconstructs a spectral dataset into phases, over which the chaotic or complex characteristics hidden in the dataset could be rearranged into predictable sequences. Therefore, better endmembers could be selected from the spectral or hyperspectral dataset. The usability and applicability of L and D are tested against the USGS standard spectral library first and then with a Hyperion image classification in Wulate Zhongqi (central county) of Inner Mongolia in China. L and D, along with four other methods, rm PPI + rm n hbox - DV + rm GRPs , SMACC, VCA, and rm PPI + rm VCA , is applied to extract endmembers, which are used as the surrogates of GRPs for creating the training and testing samples and classifying the Hyperion image with two classifiers, spectral angle mapper (SAM) and support vector machine (SVM). The classification results based on GRPs derived from L and D have the overall accuracy and kappa statistics, 81.93% and 0.7905 (by SAM) or 84.11% and 0.814% (by SVM), whereas the other four methods have lower accuracies. |
Author | Zhang, Anbing Xie, Yichun |
Author_xml | – sequence: 1 givenname: Anbing surname: Zhang fullname: Zhang, Anbing email: zhanganhua@sina.com organization: School of Hydropower, Hebei University of Engineering, Handan, China – sequence: 2 givenname: Yichun surname: Xie fullname: Xie, Yichun email: yxie@emich.edu organization: Department of Geography and Geology, Eastern Michigan University, Ypsilanti, MI, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28496217$$DView record in Pascal Francis |
BookMark | eNp9kU-P0zAQxS20SHQXPgDiYgkhLYcU24n_cYO2LJWKkKCcLSeebL1K7GKnaCu-PMm2cNgDpxlpfm80894luggxAEIvKZlTSvS77c2373NGaDlnjAupyRM0o5yrgoiqukAzQrUomNLsGbrM-Y4QWnEqZ-j3YmdjxtsdxHQsPtoMDi_tYIsvPvhwi7fQ7IL_eQDcxoTXvb0FvAquh76GhFf3Q7LN4GN4jzf2uD-E-Auvg4N7bIPDi5gSdHaa46XvIeSpu948DJdvn6Onre0yvDjXK_Tj02q7-Fxsvt6sFx82RVNyMRR1KagTVtdOSafr1tVcKiFBtbpVjHDu6tZqUolWkZaCaIQgteN1RZwiVLLyCl2f9u5THD_Jg-l9bqDrbIB4yIYKxaXkJStH9PUj9C4eUhivM7QaEVmqaqLenCmbG9u1yYbGZ7NPvrfpaJiqtGBUjpw8cU2KOSdoTeOHBztG23xnKDFTeGYKz0zhmXN4o5I-Uv5d_j_Nq5PGA8A_XnAmleblH4TcphA |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_3390_su8030264 crossref_primary_10_1007_s12046_019_1116_y crossref_primary_10_1016_j_asoc_2022_108602 crossref_primary_10_1109_JSTARS_2018_2872969 crossref_primary_10_1109_TGRS_2014_2380475 crossref_primary_10_1016_j_isprsjprs_2017_02_005 crossref_primary_10_1007_s11770_022_0986_7 crossref_primary_10_3390_su11030768 crossref_primary_10_35234_fumbd_570472 crossref_primary_10_1109_JSTARS_2018_2818939 crossref_primary_10_14358_PERS_81_1_69 crossref_primary_10_1109_JSTARS_2018_2856741 |
Cites_doi | 10.1109/TGRS.2011.2108305 10.1080/01431160701408436 10.1109/TGRS.2002.805087 10.1007/BFb0091924 10.1016/j.rse.2006.11.002 10.1109/TGRS.2002.802494 10.1006/jare.2000.0771 10.1109/TGRS.2005.844293 10.1016/j.jaridenv.2004.01.004 10.1016/S0034-4257(95)00177-8 10.1002/ldr.680 10.1016/j.rse.2011.03.003 10.2307/2318254 10.1109/TGRS.2003.815018 10.1016/j.jfoodeng.2007.10.001 10.1109/IGARSS.2008.4778830 10.1016/j.isprsjprs.2006.09.004 10.1117/12.366289 10.1109/36.752192 10.1080/01431160210146631 10.1109/36.298007 10.1002/ldr.660 10.1109/TGRS.2003.820314 10.1016/j.patcog.2008.02.010 10.1109/LGRS.2004.841478 10.1109/TGRS.2002.804834 10.1016/j.patcog.2008.07.016 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 10.1080/01431160600771561 10.1016/j.mcm.2009.10.023 10.1117/12.221352 10.1016/j.eswa.2006.01.055 10.1109/TGRS.2006.881803 10.1890/07-0992.1 10.1143/PTP.77.1 10.1117/12.543794 10.1109/TGRS.2008.2004708 10.1117/12.602373 10.1016/j.jaridenv.2005.03.028 10.1109/TGRS.2004.839806 10.1016/0167-2789(84)90269-0 10.1103/PhysRevLett.50.346 10.1109/36.841987 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014 |
DBID | 97E RIA RIE AAYXX CITATION IQODW 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 7SC 7SP F28 JQ2 L~C L~D |
DOI | 10.1109/TGRS.2013.2256790 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering ProQuest Computer Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics Statistics |
EISSN | 1558-0644 |
EndPage | 1947 |
ExternalDocumentID | 3176488731 28496217 10_1109_TGRS_2013_2256790 6527895 |
Genre | orig-research |
GeographicLocations | Mongolia Far East Asia China |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION AAYOK IQODW RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 7SC 7SP F28 JQ2 L~C L~D |
ID | FETCH-LOGICAL-c356t-b361d6a9bd87d9bfdb57867e8f9f82055dbfa9046f80f1e6c660bd5b40d801723 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Thu Sep 04 20:21:58 EDT 2025 Mon Jun 30 09:06:08 EDT 2025 Wed Apr 02 07:27:40 EDT 2025 Wed Sep 10 04:50:22 EDT 2025 Thu Apr 24 23:02:23 EDT 2025 Wed Aug 27 02:13:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | models correlation dimension grassland classification sampling testing libraries accuracy mining dessert steppe classification extraction image analysis quality endmember extraction (EE) steppes grasslands correlation Chaos theory standard samples Lyapunov index Pixel theory statistics |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-b361d6a9bd87d9bfdb57867e8f9f82055dbfa9046f80f1e6c660bd5b40d801723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1475373843 |
PQPubID | 85465 |
PageCount | 13 |
ParticipantIDs | ieee_primary_6527895 proquest_journals_1475373843 crossref_citationtrail_10_1109_TGRS_2013_2256790 proquest_miscellaneous_1685775323 pascalfrancis_primary_28496217 crossref_primary_10_1109_TGRS_2013_2256790 |
PublicationCentury | 2000 |
PublicationDate | 2014-04-01 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2014 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 lu (ref44) 2002 ref59 jensen (ref5) 2005 ref58 bowles (ref23) 1995; 2553 ref55 ref10 winter (ref16) 1999; 3753 zhang (ref42) 2009; 38 ref19 ref18 lu (ref35) 2007; 28 chen (ref43) 2005; 25 huang (ref41) 2007; 23 ref51 ref50 (ref52) 2005 ref46 ref45 ref48 boardman (ref15) 1995 chang (ref11) 2003 zhang (ref47) 2007; 56 ref49 ref8 ref4 ref3 vapnik (ref54) 1998 ref6 gruninger (ref17) 2004; 5425 henry (ref40) 1996 ref34 ref37 ref36 (ref53) 2009 ref31 ref30 ref33 ref32 neville (ref22) 1999; 2 ref2 ref1 ref39 ref38 li (ref14) 2011; 15 ref24 ref26 ref25 ref20 ref21 ref28 ref27 ref29 ref60 guo (ref7) 2010; 51 su (ref9) 2008; 25 |
References_xml | – ident: ref28 doi: 10.1109/TGRS.2011.2108305 – ident: ref60 doi: 10.1080/01431160701408436 – ident: ref30 doi: 10.1109/TGRS.2002.805087 – ident: ref45 doi: 10.1007/BFb0091924 – ident: ref50 doi: 10.1016/j.rse.2006.11.002 – year: 1996 ident: ref40 publication-title: Analysis of Observed Chaotic Data – ident: ref12 doi: 10.1109/TGRS.2002.802494 – ident: ref1 doi: 10.1006/jare.2000.0771 – ident: ref59 doi: 10.1109/TGRS.2005.844293 – ident: ref32 doi: 10.1016/j.jaridenv.2004.01.004 – ident: ref20 doi: 10.1016/S0034-4257(95)00177-8 – volume: 23 start-page: 135 year: 2007 ident: ref41 article-title: Analysis of chaos characteristics and forecasting time-scale of the demand for big-medium-sized tractors publication-title: Trans Chinese Soc Agricultural Eng – ident: ref31 doi: 10.1080/01431160701408436 – volume: 56 start-page: 65 year: 2007 ident: ref47 article-title: Local support vector machine prediction of spatio-temporal chaotic time series publication-title: Acta Phys Sinica – year: 1998 ident: ref54 publication-title: Statistical Learning Theory – ident: ref34 doi: 10.1002/ldr.680 – ident: ref27 doi: 10.1016/j.rse.2011.03.003 – ident: ref37 doi: 10.2307/2318254 – year: 2005 ident: ref52 publication-title: Landsat Image-Based LULC Changes of San Antonio Texas Using Advanced Atmospheric Correction and Object-Oriented Image Analysis Approaches – ident: ref49 doi: 10.1109/TGRS.2003.815018 – volume: 2 start-page: 891 year: 1999 ident: ref22 article-title: Automatic endmember extraction from hyperspectral data for mineral exploration publication-title: Proc 4th Int Airborne Remote Sens Conf Exhib 21st Can Symp Remote Sens – ident: ref55 doi: 10.1016/j.jfoodeng.2007.10.001 – ident: ref8 doi: 10.1109/IGARSS.2008.4778830 – ident: ref58 doi: 10.1016/j.isprsjprs.2006.09.004 – volume: 3753 start-page: 266 year: 1999 ident: ref16 article-title: N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyper spectral data publication-title: Proc SPIE doi: 10.1117/12.366289 – ident: ref24 doi: 10.1109/36.752192 – ident: ref25 doi: 10.1080/01431160210146631 – ident: ref18 doi: 10.1109/36.298007 – ident: ref2 doi: 10.1002/ldr.660 – ident: ref26 doi: 10.1109/TGRS.2003.820314 – year: 2009 ident: ref53 publication-title: Atmospheric Correction Module QUAC and FLAASH User's Guide Version 4 7 Edition – volume: 38 start-page: 170 year: 2009 ident: ref42 article-title: Chaotic characteristics and time-variable law of surface subsidence of goaf publication-title: J China Univ Mining Technol – ident: ref56 doi: 10.1016/j.patcog.2008.02.010 – start-page: 431 year: 2005 ident: ref5 publication-title: Introductory Digital Image Processing A Remote Sensing Perspective – volume: 15 start-page: 659 year: 2011 ident: ref14 article-title: The development and comparison of endmember extraction algorithms using hyperspectral imagery publication-title: J Remote Sens – ident: ref57 doi: 10.1109/LGRS.2004.841478 – ident: ref51 doi: 10.1109/TGRS.2002.804834 – ident: ref3 doi: 10.1016/j.patcog.2008.07.016 – ident: ref36 doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 – volume: 28 start-page: 963 year: 2007 ident: ref35 article-title: Comparison between several feature extraction/classification methods for mapping complicated agricultural land use patches using airborne hyperspectral data publication-title: Int J Remote Sens doi: 10.1080/01431160600771561 – volume: 51 start-page: 1408 year: 2010 ident: ref7 article-title: Remote sensing image classification by the chaos genetic algorithm in monitoring land use changes publication-title: Math Comput Model doi: 10.1016/j.mcm.2009.10.023 – year: 2002 ident: ref44 publication-title: Analysis and Application of Chaotic Time Series – volume: 2553 start-page: 148 year: 1995 ident: ref23 article-title: Use of filter vectors in hyperspectral data analysis publication-title: Proc SPIE doi: 10.1117/12.221352 – ident: ref6 doi: 10.1016/j.eswa.2006.01.055 – ident: ref29 doi: 10.1109/TGRS.2006.881803 – volume: 25 start-page: 294 year: 2008 ident: ref9 article-title: Study on feature extraction and experiment of hyper spectral data publication-title: Appl Res Comput – ident: ref48 doi: 10.1890/07-0992.1 – ident: ref46 doi: 10.1143/PTP.77.1 – year: 2003 ident: ref11 publication-title: Hyper Spectral Imaging Techniques for Spectral Detection and Classification – volume: 5425 start-page: 1 year: 2004 ident: ref17 article-title: The sequential maximum angle convex cone (SMACC) endmember model publication-title: Proc SPIE doi: 10.1117/12.543794 – ident: ref4 doi: 10.1109/TGRS.2008.2004708 – ident: ref13 doi: 10.1117/12.602373 – ident: ref33 doi: 10.1016/j.jaridenv.2005.03.028 – volume: 25 start-page: 101 year: 2005 ident: ref43 article-title: Application of EMD to signal trend extraction publication-title: Journal of Vibration Measurement & Diagnosis – ident: ref10 doi: 10.1016/j.patcog.2008.07.016 – ident: ref19 doi: 10.1109/TGRS.2004.839806 – ident: ref39 doi: 10.1016/0167-2789(84)90269-0 – ident: ref38 doi: 10.1103/PhysRevLett.50.346 – ident: ref21 doi: 10.1109/36.841987 – start-page: 1 year: 1995 ident: ref15 article-title: Mapping target signatures via partial unmixing of AVIRIS data publication-title: Summaries 6th Annu JPL Airborne Earth Science Workshop |
SSID | ssj0014517 |
Score | 2.200158 |
Snippet | It is often hard to collect a large size of high-quality field samples as ground reference points (GRPs) to support image analysis. Endmember extraction (EE)... |
SourceID | proquest pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1935 |
SubjectTerms | Accuracy Applied geophysics Chaos Chaos theory Correlation correlation dimension Data mining Degradation dessert steppe Earth sciences Earth, ocean, space endmember extraction (EE) Exact sciences and technology Extraction Feature extraction Glass fiber reinforced plastics grassland classification Grasslands Indexes Internal geophysics Lyapunov index Samples Spectra Statistical methods Statistics Support vector machines Training Vegetation mapping |
Title | Chaos Theory-Based Data-Mining Technique for Image Endmember Extraction: Laypunov Index and Correlation Dimension (L and D) |
URI | https://ieeexplore.ieee.org/document/6527895 https://www.proquest.com/docview/1475373843 https://www.proquest.com/docview/1685775323 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFD60BUEfqraKqbWM4IOKs00ymUnGN93d2krXB91C38JcEbRJ6Sbi5c97JsmGekF8C8wJmeScnMucywfwxKucm9R4ykzqacZiS7WVCTVKZtYwbk0e-p0X78TxWfb2nJ9vwIuxF8Y51xWfuUm47HL5tjZtOCo7FDz0bfJN2EQx63u1xoxBxpOhNVpQDCLSIYOZxPJw-eb9h1DExSYovCIP6veaDepAVUJJpFrhV_E9nMUfmrkzN0e3YbHeaF9l8mnSNnpivv82w_F_3-QObA9-J3nVC8pd2HDVDty6No1wB2501aBmtQs_ph9VvSJ93z59jYbOkplqFF10cBJkuR78StDlJScXqJPIvLIXLqCLkPnX5qpvl3hJTtW3y7aqv5CTMJWRqMqSacAD6SvwyCxgC4TzOvL0tFucPbsHZ0fz5fSYDigNFFkpGqqZSKxQUtsit1J7q1EJiNwVXnp0Lzi32iuJYbgvYp84YYSIteU6i20RAlB2H7aqunIPgAgWO3QfUpUYninDpc-4F9agzyq4dTaCeM230gwjzAOSxueyC2ViWQZWl4HV5cDqCJ6Pt1z28zv-RbwbWDUSDlyK4OAX4RjX0bRLgTFdBPtraSkHFbDCmAojwZwVGYvg8biMP2_IyKjK1S3SiILnSJayvb8_-iHcxA0OpUL7sNVcte4RekGNPujE_ye2CQPh |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEB6VIgQ8cLQgDKUsEg-A2NTXrr28QZKSQNIHSKW-WXsKCWpXjY04_jyztmOVQ4g3SzuWj5mdY-f4AJ44mTEda0cTHTuaJqGhyoiIailSoxNmdOb7nZdHfHacvj1hJ1vwYuiFsda2xWd25C_bXL6pdOOPyg44832b7BJcRrufsq5ba8gZpCzqm6M5xTAi7nOYUSgOVm_ef_BlXMkIxZdnXgFfsEItrIovipRr_C-uA7T4Qze3BufwJiw3r9rVmXwaNbUa6e-_TXH832-5BTd6z5O86kTlNmzZcgeuX5hHuANX2npQvd6FH-OPslqTrnOfvkZTZ8hE1pIuW0AJstqMfiXo9JL5KWolMi3NqfX4ImT6tT7vGiZekoX8dtaU1Rcy93MZiSwNGXtEkK4Gj0w8uoA_sSNPF-3i5NkdOD6crsYz2uM0UGQmr6lKeGS4FMrkmRHKGYVqgGc2d8Khg8GYUU4KDMRdHrrIcs15qAxTaWhyH4Imd2G7rEp7DwhPQosORCwjzVKpmXApc9xo9Fo5M9YEEG74Vuh-iLnH0vhctMFMKArP6sKzuuhZHcDz4ZazboLHv4h3PasGwp5LAez_IhzDOhp3wTGqC2BvIy1FrwTWGFVhLJgleZoE8HhYxu3rczKytFWDNDxnGZLFyf2_P_oRXJ2tlotiMT969wCu4cv2hUN7sF2fN_Yh-kS12m-3wk9w9wcu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chaos+Theory-Based+Data-Mining+Technique+for+Image+Endmember+Extraction%3A+Laypunov+Index+and+Correlation+Dimension+%28L+and+D%29&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Zhang%2C+Anbing&rft.au=Xie%2C+Yichun&rft.date=2014-04-01&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=52&rft.issue=4&rft.spage=1935&rft.epage=1947&rft_id=info:doi/10.1109%2FTGRS.2013.2256790&rft.externalDocID=6527895 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |