On explicit stability conditions for a linear fractional difference system
The paper describes the stability area for the difference system (Δαy)(n + 1 − α) = Ay(n), n= 0, 1,..., with the Caputo forward difference operator Δα of a real order α ∈ (0, 1) and a real constant matrix A. Contrary to the existing result on this topic, our stability conditions are fully explicit a...
Saved in:
Published in | Fractional calculus & applied analysis Vol. 18; no. 3; pp. 651 - 672 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Warsaw
Versita
01.06.2015
De Gruyter Open Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The paper describes the stability area for the difference system (Δαy)(n + 1 − α) = Ay(n), n= 0, 1,..., with the Caputo forward difference operator Δα of a real order α ∈ (0, 1) and a real constant matrix A. Contrary to the existing result on this topic, our stability conditions are fully explicit and involve the decay rate of the solutions. Some comparisons with a difference system of the Riemann- Liouville type are discussed as well, including related consequences and illustrating examples. |
---|---|
AbstractList | The paper describes the stability area for the difference system (Δ[α]y)(n + 1 - α) = Ay(n), n= 0, 1, . . . , with the Caputo forward difference operator Δ[α] of a real order α ∈ (0, 1) and a real constant matrix A. Contrary to the existing result on this topic, our stability conditions are fully explicit and involve the decay rate of the solutions. Some comparisons with a difference system of the Riemann- Liouville type are discussed as well, including related consequences and illustrating examples. The paper describes the stability area for the difference system (Δ y)(n + 1 − α) = Ay(n), n= 0, 1, . . . , with the Caputo forward difference operator Δ of a real order α ∈ (0, 1) and a real constant matrix A. Contrary to the existing result on this topic, our stability conditions are fully explicit and involve the decay rate of the solutions. Some comparisons with a difference system of the Riemann- Liouville type are discussed as well, including related consequences and illustrating examples. The paper describes the stability area for the difference system (Δαy)(n + 1 − α) = Ay(n), n= 0, 1,..., with the Caputo forward difference operator Δα of a real order α ∈ (0, 1) and a real constant matrix A. Contrary to the existing result on this topic, our stability conditions are fully explicit and involve the decay rate of the solutions. Some comparisons with a difference system of the Riemann- Liouville type are discussed as well, including related consequences and illustrating examples. |
Author | Győri, István Nechvátal, Ludĕk Čermák, Jan |
Author_xml | – sequence: 1 givenname: Jan surname: Čermák fullname: Čermák, Jan email: cermak.j@fme.vutbr.cz organization: Institute of Mathematics, Brno University of Technology – sequence: 2 givenname: István surname: Győri fullname: Győri, István organization: Department of Mathematics, University of Pannonia Pf 158 – sequence: 3 givenname: Ludĕk surname: Nechvátal fullname: Nechvátal, Ludĕk organization: Institute of Mathematics, Brno University of Technology Technická 2 |
BookMark | eNqFkM9LwzAYhoNMcM4dvQc8dyZpvrbDkwx_MthFzyVLvoxI184kQ_ffm1oPIoqnfIT3SZ7vPSWjtmuRkHPOZhw4XFqtMsE4ZIxJdkTGPOcyE0LI0efMMyZBnpBpCG7NQEoGcyjH5HHVUnzfNU67SENUa9e4eKC6a42LrmsDtZ2nijauReWp9Ur316qhxlmLHluNNBxCxO0ZObaqCTj9Oifk-fbmaXGfLVd3D4vrZaZzKGKmlMBCzkstUfCyLJJzabkBI7m0AELLillTglBrAblRc40VT_IGjVYIZT4hF8O7O9-97jHE-qXb-6QUal6VAua55JBS-ZDSvgvBo63Thqp3j165puas7nurU29131vd95ao7Ae1826r_OHP_NWQf1NNRG9w4_eHNHxT-o3jVV4AT_RsoEP6pd38i-Uf9uOTXQ |
CitedBy_id | crossref_primary_10_1109_ACCESS_2020_3015773 crossref_primary_10_1155_2022_2881207 crossref_primary_10_1016_j_cnsns_2022_106587 crossref_primary_10_3390_e22121344 crossref_primary_10_1155_2020_2935192 crossref_primary_10_1515_ijnsns_2019_0004 crossref_primary_10_3934_math_2023035 crossref_primary_10_1186_s13662_018_1764_y crossref_primary_10_3934_math_20231571 crossref_primary_10_3390_fractalfract7020120 crossref_primary_10_1007_s40435_016_0239_9 crossref_primary_10_1016_j_cam_2017_10_021 crossref_primary_10_1063_5_0005059 crossref_primary_10_1155_2018_2950357 crossref_primary_10_1186_s13662_020_03086_x crossref_primary_10_1016_j_aej_2023_05_078 crossref_primary_10_1063_5_0218662 crossref_primary_10_1515_ijnsns_2020_0180 crossref_primary_10_3390_electronics9122179 crossref_primary_10_53391_mmnsa_1484994 crossref_primary_10_3390_math11030727 crossref_primary_10_1002_mma_4287 crossref_primary_10_1063_5_0004884 crossref_primary_10_1155_2020_2924169 crossref_primary_10_1186_s13662_019_2064_x crossref_primary_10_1016_j_amc_2020_125118 crossref_primary_10_3390_math11194166 crossref_primary_10_1007_s11071_023_08359_0 crossref_primary_10_1016_j_ijleo_2019_163698 crossref_primary_10_1140_epjp_s13360_022_02472_6 crossref_primary_10_1186_s13662_023_03786_0 crossref_primary_10_3390_math11204332 crossref_primary_10_1515_fca_2018_0037 crossref_primary_10_3390_math8101754 crossref_primary_10_1016_j_amc_2020_125759 crossref_primary_10_3390_e20100720 crossref_primary_10_3390_e20090710 crossref_primary_10_1016_j_chaos_2019_04_002 crossref_primary_10_1142_S021812742050217X crossref_primary_10_1063_5_0098375 crossref_primary_10_3934_dcdsb_2017164 crossref_primary_10_1515_phys_2019_0099 crossref_primary_10_1140_epjst_e2020_900193_4 crossref_primary_10_1515_fca_2019_0084 crossref_primary_10_1016_j_cnsns_2022_106760 crossref_primary_10_1142_S0218348X21020035 crossref_primary_10_1109_TCSII_2023_3322741 crossref_primary_10_1080_10236198_2023_2211168 crossref_primary_10_1088_1402_4896_ad6c8f crossref_primary_10_1038_s41598_024_60268_3 crossref_primary_10_1002_mma_6337 crossref_primary_10_1038_s41598_023_48873_0 crossref_primary_10_1109_TSIPN_2024_3402354 crossref_primary_10_1016_j_neunet_2023_08_041 crossref_primary_10_3390_math9182204 crossref_primary_10_1016_j_physa_2021_126100 crossref_primary_10_1016_j_amc_2018_12_039 crossref_primary_10_1088_1402_4896_aca531 crossref_primary_10_1142_S0218348X21400375 crossref_primary_10_3390_math8050843 crossref_primary_10_1007_s10255_021_1029_5 crossref_primary_10_1093_imamci_dnad021 crossref_primary_10_1016_j_chaos_2023_113401 crossref_primary_10_1515_fca_2018_0021 crossref_primary_10_1155_2022_8249215 crossref_primary_10_1063_5_0196723 crossref_primary_10_3390_app8122640 crossref_primary_10_1016_j_cnsns_2017_01_002 crossref_primary_10_1080_25765299_2024_2386735 crossref_primary_10_1515_fca_2019_0069 crossref_primary_10_1016_j_ifacol_2024_08_179 crossref_primary_10_3390_fractalfract8010069 crossref_primary_10_1088_1674_1056_ab820d crossref_primary_10_1051_m2an_2019055 crossref_primary_10_1109_TCSI_2023_3281639 crossref_primary_10_1016_j_amc_2022_127053 crossref_primary_10_1142_S0218348X2140034X crossref_primary_10_1007_s11071_023_08972_z crossref_primary_10_1515_fca_2021_0013 crossref_primary_10_51537_chaos_1300754 crossref_primary_10_1007_s12043_018_1712_0 crossref_primary_10_1007_s00009_018_1258_x crossref_primary_10_1016_j_cnsns_2019_104901 crossref_primary_10_1140_epjs_s11734_023_00917_2 crossref_primary_10_1016_j_cnsns_2021_105697 crossref_primary_10_2478_ama_2023_0021 crossref_primary_10_1016_j_rineng_2025_104450 crossref_primary_10_1080_10236198_2023_2198043 crossref_primary_10_1016_j_cam_2019_03_031 crossref_primary_10_1016_j_amc_2020_125423 crossref_primary_10_1016_j_neucom_2023_126961 crossref_primary_10_1080_10236198_2023_2172334 crossref_primary_10_1007_s40435_018_0426_y crossref_primary_10_1016_j_chaos_2023_113816 crossref_primary_10_1142_S0218348X21400351 crossref_primary_10_3390_e24030320 crossref_primary_10_3390_fractalfract7100728 crossref_primary_10_1016_j_isatra_2024_04_032 crossref_primary_10_1016_j_rinp_2023_107030 crossref_primary_10_1038_s41598_023_45227_8 crossref_primary_10_1088_1402_4896_acf969 crossref_primary_10_1515_fca_2017_0013 crossref_primary_10_1016_j_chaos_2023_114113 crossref_primary_10_3934_dcdsb_2020302 crossref_primary_10_1007_s11071_022_07766_z crossref_primary_10_1016_j_heliyon_2024_e40659 crossref_primary_10_1088_1402_4896_ad8703 crossref_primary_10_3390_fractalfract7090655 crossref_primary_10_3390_math10132224 crossref_primary_10_3390_fractalfract7010068 crossref_primary_10_1016_j_aej_2021_06_073 crossref_primary_10_1109_TCSI_2021_3053701 crossref_primary_10_1016_j_physa_2016_05_045 crossref_primary_10_1088_1402_4896_ac518f crossref_primary_10_1016_j_cnsns_2025_108747 crossref_primary_10_1186_s13662_019_2343_6 crossref_primary_10_1007_s11071_023_08311_2 crossref_primary_10_1016_j_rinp_2022_105797 crossref_primary_10_1515_phys_2024_0066 crossref_primary_10_1016_j_rinp_2023_106467 crossref_primary_10_1016_j_rinp_2023_107023 crossref_primary_10_11948_2018_1707 crossref_primary_10_1063_5_0139967 crossref_primary_10_1016_j_padiff_2023_100604 crossref_primary_10_1007_s40096_021_00442_0 crossref_primary_10_1142_S0218348X21400338 crossref_primary_10_3390_electronics9050748 crossref_primary_10_3390_sym17030455 crossref_primary_10_1016_j_amc_2024_129176 crossref_primary_10_1142_S0218348X2240134X crossref_primary_10_1186_s40064_016_2820_2 crossref_primary_10_1515_fca_2019_0044 crossref_primary_10_1216_rmj_2024_54_895 crossref_primary_10_1016_j_cnsns_2017_09_001 crossref_primary_10_1007_s13540_023_00189_6 crossref_primary_10_1515_fca_2020_0028 crossref_primary_10_1007_s40435_024_01509_1 crossref_primary_10_1016_j_aml_2020_106296 crossref_primary_10_1142_S021812742550049X crossref_primary_10_1016_j_amc_2023_128111 crossref_primary_10_1080_03081079_2023_2223755 crossref_primary_10_1142_S0218348X21400326 crossref_primary_10_1088_1674_1056_ad5d96 crossref_primary_10_1007_s10958_024_06973_w crossref_primary_10_1007_s11075_022_01379_8 crossref_primary_10_1016_j_chaos_2022_112451 crossref_primary_10_1109_TCSII_2023_3271712 crossref_primary_10_3390_fractalfract7010049 crossref_primary_10_1007_s00034_016_0291_x crossref_primary_10_1016_j_chaos_2018_12_019 crossref_primary_10_1016_j_cam_2019_112633 crossref_primary_10_1016_j_cjph_2024_07_043 crossref_primary_10_1142_S0218127419500780 crossref_primary_10_3390_math10020213 crossref_primary_10_3390_sym12060879 crossref_primary_10_1016_j_physa_2020_124993 crossref_primary_10_3390_sym17030352 crossref_primary_10_1007_s11071_022_08086_y crossref_primary_10_1142_S0218348X22501456 |
Cites_doi | 10.2478/s13540-013-0039-2 10.1016/j.camwa.2011.03.036 10.1216/RMJ-2011-41-2-353 10.1142/9069 10.1016/j.cam.2008.03.025 10.1007/s11071-012-0601-1 10.1080/10236190600986594 10.1007/978-3-642-18101-6 10.1142/S1402925110000593 10.2298/AADM110131002F 10.1080/10236199608808074 10.1140/epjst/e2011-01379-1 10.1137/0517050 10.1093/imanum/6.1.87 10.1007/s00009-006-0097-3 10.1016/j.amc.2012.12.019 |
ContentType | Journal Article |
Copyright | Diogenes Co., Sofia 2015 Copyright Walter de Gruyter GmbH 2015 |
Copyright_xml | – notice: Diogenes Co., Sofia 2015 – notice: Copyright Walter de Gruyter GmbH 2015 |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1515/fca-2015-0040 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1314-2224 |
EndPage | 672 |
ExternalDocumentID | 4317543521 10_1515_fca_2015_0040 10_1515_fca_2015_0040183651 |
GroupedDBID | 06D 0VY 2LR 2WC 30V 3V. 4.4 406 408 8FE 8FG 9-A AACDK AAFPC AAGVJ AAIAL AAJBT AAONY AAPJK AAQCX AARHV AASML AASQH AATNV AAXCG AAYZH ABAKF ABAQN ABFKT ABJCF ABJNI ABRQL ABSOE ABTKH ABUWG ABYKJ ACAOD ACBXY ACDTI ACEFL ACGFS ACIPV ACIWK ACMKP ACPIV ACXLN ACZBO ACZOJ ADGQD ADGYE ADINQ ADJVZ ADOZN AEFQL AEKEB AEMSY AENEX AEQDQ AERZL AESKC AFBAA AFBBN AFCXV AFGNR AFKRA AFLOW AFWTZ AGJBK AGMZJ AGQEE AHBYD AHSBF AIAKS AIGIU AIKXB AKXKS ALMA_UNASSIGNED_HOLDINGS ALUKF AMAVY AMKLP AMXSW AMYLF ARAPS ASPBG AVWKF AZFZN AZMOX AZQEC BAKPI BAPOH BBCWN BCIFA BENPR BGLVJ BGNMA BLHJL BPHCQ CCPQU CFGNV DPUIP DWQXO EBLON EBS EJD FEDTE FIGPU GNUQQ GQ7 H13 HCIFZ HF~ HMJXF HVGLF HZ~ IAO IWAJR IY9 J9A JZLTJ K6V K7- KOV L6V LLZTM LO0 M0N M4Y M7S NPVJJ NQJWS NU0 OK1 P9R PQQKQ PROAC PTHSS QD8 R9I ROL RSV S1Z S27 S3B SHX SJN SJYHP SMT SOJ T13 TR2 U2A VC2 WK8 WTRAM ~A9 ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA PHGZM PHGZT PQGLB AAYXX AFOHR CITATION 7SC 7TB 7XB 8AL 8FD 8FK ABRTQ FR3 JQ2 KR7 L7M L~C L~D P62 PKEHL PQEST PQUKI PRINS PUEGO Q9U |
ID | FETCH-LOGICAL-c356t-aa2e6497c4e217760157f1d5d414f552c480fd752ab253da9ce81045dedcae573 |
IEDL.DBID | U2A |
ISSN | 1311-0454 |
IngestDate | Wed Aug 27 14:44:46 EDT 2025 Tue Jul 01 00:57:06 EDT 2025 Thu Apr 24 23:04:37 EDT 2025 Thu Jul 10 10:39:03 EDT 2025 Fri Feb 21 02:47:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Caputo difference operator Riemann-Liouville difference operator Primary 26A33 Secondary 34A08, 39A12, 39A30 asymptotic stability fractional-order difference system |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-aa2e6497c4e217760157f1d5d414f552c480fd752ab253da9ce81045dedcae573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1872593415 |
PQPubID | 2039846 |
PageCount | 22 |
ParticipantIDs | proquest_journals_1872593415 crossref_citationtrail_10_1515_fca_2015_0040 crossref_primary_10_1515_fca_2015_0040 walterdegruyter_journals_10_1515_fca_2015_0040183651 springer_journals_10_1515_fca_2015_0040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-01 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Warsaw |
PublicationPlace_xml | – name: Warsaw – name: Heidelberg |
PublicationSubtitle | An International Journal for Theory and Applications |
PublicationTitle | Fractional calculus & applied analysis |
PublicationTitleAbbrev | FCAA |
PublicationYear | 2015 |
Publisher | Versita De Gruyter Open Nature Publishing Group |
Publisher_xml | – name: Versita – name: De Gruyter Open – name: Nature Publishing Group |
References | Apostol (CR4) 1974 Lubich (CR18) 1986; 17 Petráš (CR21) 2009; 12 Petráš (CR22) 2011 Elaydi, Murakami (CR11) 1996; 2 Li, Ma (CR16) 2013; 71 Lubich (CR19) 1986; 6 Abu-Saris, Al-Mdallal (CR2) 2013; 16 (CR7) 2011; 2011 Atici, Eloe (CR5) 2007; 2 CR15 Čermák, Kisela, Nechvátal (CR8) 2013; 219 Podlubný (CR23) 1999 Matignon (CR20) 1996; 2 Elaydi (CR10) 2005 Li, Zhang (CR17) 2011; 193 Galeone, Garrappa (CR14) 2009; 228 Abdeljawad (CR1) 2011; 62 Ferreira, Torres (CR12) 2011; 5 Zhou (CR24) 2014 Atici, Eloe (CR6) 2011; 41 Galeone, Garrappa (CR13) 2006; 3 Appleby, Gyori, Reynolds (CR3) 2006; 12 Čermák, Nechvátal (CR9) 2010; 17 Y Zhou (180309_CR24) 2014 CP Li (180309_CR16) 2013; 71 I Petráš (180309_CR22) 2011 C Lubich (180309_CR19) 1986; 6 S Elaydi (180309_CR11) 1996; 2 I Petráš (180309_CR21) 2009; 12 CP Li (180309_CR17) 2011; 193 FM Atici (180309_CR5) 2007; 2 RAC Ferreira (180309_CR12) 2011; 5 J Čermák (180309_CR8) 2013; 219 180309_CR15 FM Atici (180309_CR6) 2011; 41 D Matignon (180309_CR20) 1996; 2 J Čermák (180309_CR9) 2010; 17 (180309_CR7) 2011; 2011 L Galeone (180309_CR14) 2009; 228 I Podlubný (180309_CR23) 1999 L Galeone (180309_CR13) 2006; 3 C Lubich (180309_CR18) 1986; 17 R Abu-Saris (180309_CR2) 2013; 16 TM Apostol (180309_CR4) 1974 S Elaydi (180309_CR10) 2005 JAD Appleby (180309_CR3) 2006; 12 T Abdeljawad (180309_CR1) 2011; 62 |
References_xml | – volume: 16 start-page: 613 issue: 3 year: 2013 end-page: 629 ident: CR2 article-title: On the asymptotic stability of linear system of fractional-order difference equations publication-title: Fract. Calc. Appl. Anal. doi: 10.2478/s13540-013-0039-2 – volume: 12 start-page: 269 issue: 3 year: 2009 end-page: 298 ident: CR21 article-title: Stability of fractional-order systems with rational orders: a survey publication-title: Fract. Calc. Appl. Anal. – volume: 2 start-page: 963 year: 1996 end-page: 968 ident: CR20 article-title: Stability results for fractional differential equations with applications to control processing publication-title: Computational Engineering in Systems and Application Multiconference – volume: 62 start-page: 1602 issue: 3 year: 2011 end-page: 1611 ident: CR1 article-title: On Riemann and Caputo fractional differences publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.03.036 – year: 1974 ident: CR4 publication-title: Mathematical Analysis – volume: 41 start-page: 353 issue: 2 year: 2011 end-page: 370 ident: CR6 article-title: Linear systems of fractional nabla difference equations publication-title: Rocky Mt. J. Math. doi: 10.1216/RMJ-2011-41-2-353 – volume: 2011 issue: 39 year: 2011 ident: CR7 publication-title: El. J. Qualit. Theory Differ. Equ. – volume: 219 start-page: 7012 issue: 12 year: 2013 end-page: 7022 ident: CR8 article-title: Stability regions for linear fractional differential systems and their discretizations publication-title: Appl. Math. Comput. – ident: CR15 – year: 2014 ident: CR24 publication-title: Basic Theory of Fractional Differential Equations doi: 10.1142/9069 – volume: 228 start-page: 548 issue: 2 year: 2009 end-page: 560 ident: CR14 article-title: Explicit methods for fractional differential equations and their stability properties publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2008.03.025 – volume: 71 start-page: 621 issue: 4 year: 2013 end-page: 633 ident: CR16 article-title: Fractional dynamical system and its linearization theorem publication-title: Nonlinear Dyn. doi: 10.1007/s11071-012-0601-1 – year: 1999 ident: CR23 publication-title: Fractional Differential Equations – volume: 12 start-page: 1257 issue: 12 year: 2006 end-page: 1275 ident: CR3 article-title: On exact convergence rates for solutions of linear systems of Volterra difference equations publication-title: J. Differ. Equ. Appl. doi: 10.1080/10236190600986594 – volume: 2 start-page: 165 issue: 2 year: 2007 end-page: 176 ident: CR5 article-title: A transform method in discrete fractional calculus publication-title: Int. J. Differ. Equ. – year: 2011 ident: CR22 publication-title: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation doi: 10.1007/978-3-642-18101-6 – volume: 17 start-page: 51 issue: 1 year: 2010 end-page: 68 ident: CR9 article-title: On (q, h)-analogue of fractional calculus publication-title: J. Nonlinear Math. Phys. doi: 10.1142/S1402925110000593 – volume: 5 start-page: 110 issue: 1 year: 2011 end-page: 121 ident: CR12 article-title: Fractional h-difference equations arising from the calculus of variations publication-title: Appl. Anal. Discrete Math. doi: 10.2298/AADM110131002F – volume: 2 start-page: 401 issue: 4 year: 1996 end-page: 410 ident: CR11 article-title: Asymptotic stability versus exponential stability in linear Volterra difference equations of convolution type publication-title: J. Differ. Equ. Appl. doi: 10.1080/10236199608808074 – volume: 193 start-page: 27 issue: 1 year: 2011 end-page: 47 ident: CR17 article-title: A survey on the stability of fractional differential equations publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjst/e2011-01379-1 – volume: 17 start-page: 704 issue: 3 year: 1986 end-page: 719 ident: CR18 article-title: Discretized fractional calculus publication-title: SIAM J. Math. Anal. doi: 10.1137/0517050 – volume: 6 start-page: 87 issue: 1 year: 1986 end-page: 101 ident: CR19 article-title: A stability analysis of convolution quadratures for Abel- Volterra integral equations publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/6.1.87 – year: 2005 ident: CR10 publication-title: An Introduction to Difference Equations – volume: 3 start-page: 565 issue: 3 year: 2006 end-page: 580 ident: CR13 article-title: On multistep methods for differential equations of fractional order publication-title: Mediterr. J. Math. doi: 10.1007/s00009-006-0097-3 – volume: 62 start-page: 1602 issue: 3 year: 2011 ident: 180309_CR1 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.03.036 – volume: 16 start-page: 613 issue: 3 year: 2013 ident: 180309_CR2 publication-title: Fract. Calc. Appl. Anal. doi: 10.2478/s13540-013-0039-2 – volume: 2011 issue: 39 year: 2011 ident: 180309_CR7 publication-title: El. J. Qualit. Theory Differ. Equ. – volume: 228 start-page: 548 issue: 2 year: 2009 ident: 180309_CR14 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2008.03.025 – volume: 17 start-page: 704 issue: 3 year: 1986 ident: 180309_CR18 publication-title: SIAM J. Math. Anal. doi: 10.1137/0517050 – volume-title: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation year: 2011 ident: 180309_CR22 doi: 10.1007/978-3-642-18101-6 – volume: 41 start-page: 353 issue: 2 year: 2011 ident: 180309_CR6 publication-title: Rocky Mt. J. Math. doi: 10.1216/RMJ-2011-41-2-353 – volume: 12 start-page: 269 issue: 3 year: 2009 ident: 180309_CR21 publication-title: Fract. Calc. Appl. Anal. – volume-title: Fractional Differential Equations year: 1999 ident: 180309_CR23 – volume: 193 start-page: 27 issue: 1 year: 2011 ident: 180309_CR17 publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjst/e2011-01379-1 – volume: 6 start-page: 87 issue: 1 year: 1986 ident: 180309_CR19 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/6.1.87 – volume: 2 start-page: 165 issue: 2 year: 2007 ident: 180309_CR5 publication-title: Int. J. Differ. Equ. – volume-title: Basic Theory of Fractional Differential Equations year: 2014 ident: 180309_CR24 doi: 10.1142/9069 – volume: 12 start-page: 1257 issue: 12 year: 2006 ident: 180309_CR3 publication-title: J. Differ. Equ. Appl. doi: 10.1080/10236190600986594 – ident: 180309_CR15 – volume: 2 start-page: 963 year: 1996 ident: 180309_CR20 publication-title: Computational Engineering in Systems and Application Multiconference – volume-title: Mathematical Analysis year: 1974 ident: 180309_CR4 – volume-title: An Introduction to Difference Equations year: 2005 ident: 180309_CR10 – volume: 71 start-page: 621 issue: 4 year: 2013 ident: 180309_CR16 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-012-0601-1 – volume: 17 start-page: 51 issue: 1 year: 2010 ident: 180309_CR9 publication-title: J. Nonlinear Math. Phys. doi: 10.1142/S1402925110000593 – volume: 2 start-page: 401 issue: 4 year: 1996 ident: 180309_CR11 publication-title: J. Differ. Equ. Appl. doi: 10.1080/10236199608808074 – volume: 5 start-page: 110 issue: 1 year: 2011 ident: 180309_CR12 publication-title: Appl. Anal. Discrete Math. doi: 10.2298/AADM110131002F – volume: 219 start-page: 7012 issue: 12 year: 2013 ident: 180309_CR8 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2012.12.019 – volume: 3 start-page: 565 issue: 3 year: 2006 ident: 180309_CR13 publication-title: Mediterr. J. Math. doi: 10.1007/s00009-006-0097-3 |
SSID | ssib054405957 ssj0000826098 |
Score | 2.462704 |
Snippet | The paper describes the stability area for the difference system (Δαy)(n + 1 − α) = Ay(n), n= 0, 1,..., with the Caputo forward difference operator Δα of a... The paper describes the stability area for the difference system (Δ y)(n + 1 − α) = Ay(n), n= 0, 1, . . . , with the Caputo forward difference operator Δ of a... The paper describes the stability area for the difference system (Δ[α]y)(n + 1 - α) = Ay(n), n= 0, 1, . . . , with the Caputo forward difference operator Δ[α]... |
SourceID | proquest crossref walterdegruyter springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 651 |
SubjectTerms | Abstract Harmonic Analysis Analysis asymptotic stability Caputo difference operator fractional-order difference system Functional Analysis Integral Transforms Mathematics Operational Calculus Research Paper Riemann-Liouville difference operator |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwEA66vejDUFScTsmD6IthS5s07ZOobAzBKeJgbyVNUhGkm1uH7r_30qabij-em6Zw_Xr3Xe76HUInWvgKAmlIEqk9wlQQkSRSlFBqrPo5NaqYQ3Y7CPpDdjPiI3fgNnNtlZVPLBy1Hit7Rt6moQCmDj6XX0xeiZ0aZaurboTGOqqDCw4h-apfdQf3DxWiOAM-Erm6XuGbgU13igG5VmaGWP05J7wJcb2dKgmooZxYaH8NVCv2uSyYbqLGW1HS1uZpOl_kVQm1iEy9LdRwlBJflhjYRmsm20E3dxk277Y4_ZxjYIBFD-wCQ_aryyYtDGwVS2xZppzidFr-4AD7VCNTlMGlzPMuGva6j9d94uYmEOXzICdSeiZgkVDMQMJhm164SKnmmlGWcu4pFnZSLbgnE4_7WkbKhJCVcW20koYLfw_VsnFm9hGOmFIqSjSXXsT8JExEYoRPZUgDCYkLb6LzykixcqLidrbFS2yTC7BpDDaNrU1ja9MmOl0un5RqGr8tbFUWj91HNYtXEGiis-otfLr880bs20v65wZwcQGnB38__xBtlDixpzEtVMunc3ME5CRPjh0CPwBaOt_j priority: 102 providerName: ProQuest |
Title | On explicit stability conditions for a linear fractional difference system |
URI | https://link.springer.com/article/10.1515/fca-2015-0040 https://www.degruyter.com/doi/10.1515/fca-2015-0040 https://www.proquest.com/docview/1872593415 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7UvehBfOL6WHIQvRg0baaPo4qrCK4iLngraZKKIKvsdlH_vZO0Xd_ouekEZqaZbzqTbwC2TRxqCqQJz5UJuNRRyvNUCy6Edeznwmo_h-yiF5315fkt3k7BfnMXxne7NyVJf1L7GT0C9wutyKQCufO7aWihS9vJgfvBYeNAKAl-pHUZzx_FBJ4P_DxcxyrDHd1czbP5TeLnuPQONif10TmYf_YVbGPvhuPXsqmY-kDUXYD5GkGyw8rkizBlB0swdzGhXx0tw_nlgNkXV5m-LxnBP98A-8oo9TVVhxYjqMoUcxBTDVkxrG43kNRmXoq2rOJ4XoF-9-Tm-IzXQxO4DjEquVKBjWQaa2kp23AdLxgXwqCRQhaIgZbJQWFiDFQeYGhUqm1CKRkaa7SyGIerMDN4HNg1YKnUWqe5QRWkMsyTPM5tHAqViEhR1oJt2GtUlumaUdwNtnjIXGZBGs5Iw5nTcOY03IadyfKnikrjt4Wbjf6z-osaZSKJKVOjmEvb7jY2-fD4Z0Hyi8n-eIHOtwjF-r832IDZyoHcX5lNmCmHY7tFIKXMOzCddE870Do66V1dd7ybvgFkd-DO |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOCNRWLK_60NILFjixk_iAEGq7LO8LSNyCYzsICS2wBMH-KX4jM0kMBUE5cY5jS-PPM994xjMAP1waWzSkGS-Mi7i0ieaFtoIL4an6ufC27kO2t5_0juT2sToegfvwFobSKoNOrBW1u7B0R74ishSZOupctX55xalrFEVXQwuNBhY7fniLLtv12tYf3N-fUdT9e_i7x9uuAtzGKqm4MZFPpE6t9EjHKSVEpaVwykkhS6UiK7PV0qUqMkWkYme09Rn6LMp5Z41XaYzzfoIxGceaTlTW3Qz4VRLZj26jiLUlQO6-WrfjpaI2nKrdtWU-kUWslNYgRoXidJCem8UnrvsYnp2Ayds6gO786eBmWIWAbW0Hu1Mw2RJYttEgbhpGfP8LbB_0mb-jUPhZxZBv1hm3Q4a-tmtSwhhyY2YYcVozYOWgeU6B84QGLdazpqj0Vzj6EHl-g9H-Rd_PANPSWqsLp0ykZVxkRVr4NBYmE4lBN0l1YDkIKbdtCXPqpHGekyuDMs1RpjnJNCeZdmDpcfhlU7vjrYHzQeJ5e4Sv8yfAdeBX2IV_Pr8-kXyxSe_8gAo1UWL2_-t_h_He4d5uvru1vzMHnxvM0D3QPIxWgxu_gLSoKhZrLDI4-WjwPwBivxsy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGSAgOE08xnjkguBBtaZM-xAkBEwwGHJi0W5UmKUJCBXVFsH-P08d4C85NE9V24s-18xlgV_uuQkca0Fhqh3LlhTQOFaOMGct-zowq-pD1r7yzAe8NxbABh_VdmKLavU5JlncaLEtTmrefdFL262GinSiJ6mWCWhucghk8iZk16YFzVBuT4AhFwiqlVxzLCKQ7RW9cyzBDLfVcxbn5bcbPPuodeE5ypfPQfCmy2drcZc_jvM6eFk6puwDNCk2So1L9i9Aw6RLM9ydUrKNl6F2nxLzaLPV9ThAKFsWwY4Lfq8tqLYKwlUhi4abMSJKVNx1w1rp3ijKk5HtegUH39Pb4jFYNFKhyhZdTKR3j8dBX3GDkYatfhJ8wLTRnPBHCUTzoJNoXjowd4WoZKhNgeCa00Uoa4burMJ0-pmYNSMiVUmGshXRC7sZB7MfGd5kMmCcxghEtOKhFFqmKXdw2uXiIbJSBEo5QwpGVcGQl3IK9yfCnklbjt4GbtfyjaneNIhb4GLWh_8Vl92udfHj880T8i8r-eAHPOk-w9X8vsAOzNyfd6PL86mID5kpbsj9rNmE6z57NFmKXPN4ubPQN2BPlfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+explicit+stability+conditions+for+a+linear+fractional+difference+system&rft.jtitle=Fractional+calculus+%26+applied+analysis&rft.au=%C4%8Cerm%C3%A1k%2C+Jan&rft.au=Gy%C5%91ri%2C+Istv%C3%A1n&rft.au=Nechv%C3%A1tal%2C+Lud%C4%95k&rft.date=2015-06-01&rft.pub=De+Gruyter+Open&rft.issn=1311-0454&rft.eissn=1314-2224&rft.volume=18&rft.issue=3&rft.spage=651&rft.epage=672&rft_id=info:doi/10.1515%2Ffca-2015-0040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_fca_2015_0040183651 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1311-0454&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1311-0454&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1311-0454&client=summon |