On explicit stability conditions for a linear fractional difference system

The paper describes the stability area for the difference system (Δαy)(n + 1 − α) = Ay(n), n= 0, 1,..., with the Caputo forward difference operator Δα of a real order α ∈ (0, 1) and a real constant matrix A. Contrary to the existing result on this topic, our stability conditions are fully explicit a...

Full description

Saved in:
Bibliographic Details
Published inFractional calculus & applied analysis Vol. 18; no. 3; pp. 651 - 672
Main Authors Čermák, Jan, Győri, István, Nechvátal, Ludĕk
Format Journal Article
LanguageEnglish
Published Warsaw Versita 01.06.2015
De Gruyter Open
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The paper describes the stability area for the difference system (Δαy)(n + 1 − α) = Ay(n), n= 0, 1,..., with the Caputo forward difference operator Δα of a real order α ∈ (0, 1) and a real constant matrix A. Contrary to the existing result on this topic, our stability conditions are fully explicit and involve the decay rate of the solutions. Some comparisons with a difference system of the Riemann- Liouville type are discussed as well, including related consequences and illustrating examples.
AbstractList The paper describes the stability area for the difference system (Δ[α]y)(n + 1 - α) = Ay(n), n= 0, 1, . . . , with the Caputo forward difference operator Δ[α] of a real order α ∈ (0, 1) and a real constant matrix A. Contrary to the existing result on this topic, our stability conditions are fully explicit and involve the decay rate of the solutions. Some comparisons with a difference system of the Riemann- Liouville type are discussed as well, including related consequences and illustrating examples.
The paper describes the stability area for the difference system (Δ y)(n + 1 − α) = Ay(n), n= 0, 1, . . . , with the Caputo forward difference operator Δ of a real order α ∈ (0, 1) and a real constant matrix A. Contrary to the existing result on this topic, our stability conditions are fully explicit and involve the decay rate of the solutions. Some comparisons with a difference system of the Riemann- Liouville type are discussed as well, including related consequences and illustrating examples.
The paper describes the stability area for the difference system (Δαy)(n + 1 − α) = Ay(n), n= 0, 1,..., with the Caputo forward difference operator Δα of a real order α ∈ (0, 1) and a real constant matrix A. Contrary to the existing result on this topic, our stability conditions are fully explicit and involve the decay rate of the solutions. Some comparisons with a difference system of the Riemann- Liouville type are discussed as well, including related consequences and illustrating examples.
Author Győri, István
Nechvátal, Ludĕk
Čermák, Jan
Author_xml – sequence: 1
  givenname: Jan
  surname: Čermák
  fullname: Čermák, Jan
  email: cermak.j@fme.vutbr.cz
  organization: Institute of Mathematics, Brno University of Technology
– sequence: 2
  givenname: István
  surname: Győri
  fullname: Győri, István
  organization: Department of Mathematics, University of Pannonia Pf 158
– sequence: 3
  givenname: Ludĕk
  surname: Nechvátal
  fullname: Nechvátal, Ludĕk
  organization: Institute of Mathematics, Brno University of Technology Technická 2
BookMark eNqFkM9LwzAYhoNMcM4dvQc8dyZpvrbDkwx_MthFzyVLvoxI184kQ_ffm1oPIoqnfIT3SZ7vPSWjtmuRkHPOZhw4XFqtMsE4ZIxJdkTGPOcyE0LI0efMMyZBnpBpCG7NQEoGcyjH5HHVUnzfNU67SENUa9e4eKC6a42LrmsDtZ2nijauReWp9Ur316qhxlmLHluNNBxCxO0ZObaqCTj9Oifk-fbmaXGfLVd3D4vrZaZzKGKmlMBCzkstUfCyLJJzabkBI7m0AELLillTglBrAblRc40VT_IGjVYIZT4hF8O7O9-97jHE-qXb-6QUal6VAua55JBS-ZDSvgvBo63Thqp3j165puas7nurU29131vd95ao7Ae1826r_OHP_NWQf1NNRG9w4_eHNHxT-o3jVV4AT_RsoEP6pd38i-Uf9uOTXQ
CitedBy_id crossref_primary_10_1109_ACCESS_2020_3015773
crossref_primary_10_1155_2022_2881207
crossref_primary_10_1016_j_cnsns_2022_106587
crossref_primary_10_3390_e22121344
crossref_primary_10_1155_2020_2935192
crossref_primary_10_1515_ijnsns_2019_0004
crossref_primary_10_3934_math_2023035
crossref_primary_10_1186_s13662_018_1764_y
crossref_primary_10_3934_math_20231571
crossref_primary_10_3390_fractalfract7020120
crossref_primary_10_1007_s40435_016_0239_9
crossref_primary_10_1016_j_cam_2017_10_021
crossref_primary_10_1063_5_0005059
crossref_primary_10_1155_2018_2950357
crossref_primary_10_1186_s13662_020_03086_x
crossref_primary_10_1016_j_aej_2023_05_078
crossref_primary_10_1063_5_0218662
crossref_primary_10_1515_ijnsns_2020_0180
crossref_primary_10_3390_electronics9122179
crossref_primary_10_53391_mmnsa_1484994
crossref_primary_10_3390_math11030727
crossref_primary_10_1002_mma_4287
crossref_primary_10_1063_5_0004884
crossref_primary_10_1155_2020_2924169
crossref_primary_10_1186_s13662_019_2064_x
crossref_primary_10_1016_j_amc_2020_125118
crossref_primary_10_3390_math11194166
crossref_primary_10_1007_s11071_023_08359_0
crossref_primary_10_1016_j_ijleo_2019_163698
crossref_primary_10_1140_epjp_s13360_022_02472_6
crossref_primary_10_1186_s13662_023_03786_0
crossref_primary_10_3390_math11204332
crossref_primary_10_1515_fca_2018_0037
crossref_primary_10_3390_math8101754
crossref_primary_10_1016_j_amc_2020_125759
crossref_primary_10_3390_e20100720
crossref_primary_10_3390_e20090710
crossref_primary_10_1016_j_chaos_2019_04_002
crossref_primary_10_1142_S021812742050217X
crossref_primary_10_1063_5_0098375
crossref_primary_10_3934_dcdsb_2017164
crossref_primary_10_1515_phys_2019_0099
crossref_primary_10_1140_epjst_e2020_900193_4
crossref_primary_10_1515_fca_2019_0084
crossref_primary_10_1016_j_cnsns_2022_106760
crossref_primary_10_1142_S0218348X21020035
crossref_primary_10_1109_TCSII_2023_3322741
crossref_primary_10_1080_10236198_2023_2211168
crossref_primary_10_1088_1402_4896_ad6c8f
crossref_primary_10_1038_s41598_024_60268_3
crossref_primary_10_1002_mma_6337
crossref_primary_10_1038_s41598_023_48873_0
crossref_primary_10_1109_TSIPN_2024_3402354
crossref_primary_10_1016_j_neunet_2023_08_041
crossref_primary_10_3390_math9182204
crossref_primary_10_1016_j_physa_2021_126100
crossref_primary_10_1016_j_amc_2018_12_039
crossref_primary_10_1088_1402_4896_aca531
crossref_primary_10_1142_S0218348X21400375
crossref_primary_10_3390_math8050843
crossref_primary_10_1007_s10255_021_1029_5
crossref_primary_10_1093_imamci_dnad021
crossref_primary_10_1016_j_chaos_2023_113401
crossref_primary_10_1515_fca_2018_0021
crossref_primary_10_1155_2022_8249215
crossref_primary_10_1063_5_0196723
crossref_primary_10_3390_app8122640
crossref_primary_10_1016_j_cnsns_2017_01_002
crossref_primary_10_1080_25765299_2024_2386735
crossref_primary_10_1515_fca_2019_0069
crossref_primary_10_1016_j_ifacol_2024_08_179
crossref_primary_10_3390_fractalfract8010069
crossref_primary_10_1088_1674_1056_ab820d
crossref_primary_10_1051_m2an_2019055
crossref_primary_10_1109_TCSI_2023_3281639
crossref_primary_10_1016_j_amc_2022_127053
crossref_primary_10_1142_S0218348X2140034X
crossref_primary_10_1007_s11071_023_08972_z
crossref_primary_10_1515_fca_2021_0013
crossref_primary_10_51537_chaos_1300754
crossref_primary_10_1007_s12043_018_1712_0
crossref_primary_10_1007_s00009_018_1258_x
crossref_primary_10_1016_j_cnsns_2019_104901
crossref_primary_10_1140_epjs_s11734_023_00917_2
crossref_primary_10_1016_j_cnsns_2021_105697
crossref_primary_10_2478_ama_2023_0021
crossref_primary_10_1016_j_rineng_2025_104450
crossref_primary_10_1080_10236198_2023_2198043
crossref_primary_10_1016_j_cam_2019_03_031
crossref_primary_10_1016_j_amc_2020_125423
crossref_primary_10_1016_j_neucom_2023_126961
crossref_primary_10_1080_10236198_2023_2172334
crossref_primary_10_1007_s40435_018_0426_y
crossref_primary_10_1016_j_chaos_2023_113816
crossref_primary_10_1142_S0218348X21400351
crossref_primary_10_3390_e24030320
crossref_primary_10_3390_fractalfract7100728
crossref_primary_10_1016_j_isatra_2024_04_032
crossref_primary_10_1016_j_rinp_2023_107030
crossref_primary_10_1038_s41598_023_45227_8
crossref_primary_10_1088_1402_4896_acf969
crossref_primary_10_1515_fca_2017_0013
crossref_primary_10_1016_j_chaos_2023_114113
crossref_primary_10_3934_dcdsb_2020302
crossref_primary_10_1007_s11071_022_07766_z
crossref_primary_10_1016_j_heliyon_2024_e40659
crossref_primary_10_1088_1402_4896_ad8703
crossref_primary_10_3390_fractalfract7090655
crossref_primary_10_3390_math10132224
crossref_primary_10_3390_fractalfract7010068
crossref_primary_10_1016_j_aej_2021_06_073
crossref_primary_10_1109_TCSI_2021_3053701
crossref_primary_10_1016_j_physa_2016_05_045
crossref_primary_10_1088_1402_4896_ac518f
crossref_primary_10_1016_j_cnsns_2025_108747
crossref_primary_10_1186_s13662_019_2343_6
crossref_primary_10_1007_s11071_023_08311_2
crossref_primary_10_1016_j_rinp_2022_105797
crossref_primary_10_1515_phys_2024_0066
crossref_primary_10_1016_j_rinp_2023_106467
crossref_primary_10_1016_j_rinp_2023_107023
crossref_primary_10_11948_2018_1707
crossref_primary_10_1063_5_0139967
crossref_primary_10_1016_j_padiff_2023_100604
crossref_primary_10_1007_s40096_021_00442_0
crossref_primary_10_1142_S0218348X21400338
crossref_primary_10_3390_electronics9050748
crossref_primary_10_3390_sym17030455
crossref_primary_10_1016_j_amc_2024_129176
crossref_primary_10_1142_S0218348X2240134X
crossref_primary_10_1186_s40064_016_2820_2
crossref_primary_10_1515_fca_2019_0044
crossref_primary_10_1216_rmj_2024_54_895
crossref_primary_10_1016_j_cnsns_2017_09_001
crossref_primary_10_1007_s13540_023_00189_6
crossref_primary_10_1515_fca_2020_0028
crossref_primary_10_1007_s40435_024_01509_1
crossref_primary_10_1016_j_aml_2020_106296
crossref_primary_10_1142_S021812742550049X
crossref_primary_10_1016_j_amc_2023_128111
crossref_primary_10_1080_03081079_2023_2223755
crossref_primary_10_1142_S0218348X21400326
crossref_primary_10_1088_1674_1056_ad5d96
crossref_primary_10_1007_s10958_024_06973_w
crossref_primary_10_1007_s11075_022_01379_8
crossref_primary_10_1016_j_chaos_2022_112451
crossref_primary_10_1109_TCSII_2023_3271712
crossref_primary_10_3390_fractalfract7010049
crossref_primary_10_1007_s00034_016_0291_x
crossref_primary_10_1016_j_chaos_2018_12_019
crossref_primary_10_1016_j_cam_2019_112633
crossref_primary_10_1016_j_cjph_2024_07_043
crossref_primary_10_1142_S0218127419500780
crossref_primary_10_3390_math10020213
crossref_primary_10_3390_sym12060879
crossref_primary_10_1016_j_physa_2020_124993
crossref_primary_10_3390_sym17030352
crossref_primary_10_1007_s11071_022_08086_y
crossref_primary_10_1142_S0218348X22501456
Cites_doi 10.2478/s13540-013-0039-2
10.1016/j.camwa.2011.03.036
10.1216/RMJ-2011-41-2-353
10.1142/9069
10.1016/j.cam.2008.03.025
10.1007/s11071-012-0601-1
10.1080/10236190600986594
10.1007/978-3-642-18101-6
10.1142/S1402925110000593
10.2298/AADM110131002F
10.1080/10236199608808074
10.1140/epjst/e2011-01379-1
10.1137/0517050
10.1093/imanum/6.1.87
10.1007/s00009-006-0097-3
10.1016/j.amc.2012.12.019
ContentType Journal Article
Copyright Diogenes Co., Sofia 2015
Copyright Walter de Gruyter GmbH 2015
Copyright_xml – notice: Diogenes Co., Sofia 2015
– notice: Copyright Walter de Gruyter GmbH 2015
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1515/fca-2015-0040
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1314-2224
EndPage 672
ExternalDocumentID 4317543521
10_1515_fca_2015_0040
10_1515_fca_2015_0040183651
GroupedDBID 06D
0VY
2LR
2WC
30V
3V.
4.4
406
408
8FE
8FG
9-A
AACDK
AAFPC
AAGVJ
AAIAL
AAJBT
AAONY
AAPJK
AAQCX
AARHV
AASML
AASQH
AATNV
AAXCG
AAYZH
ABAKF
ABAQN
ABFKT
ABJCF
ABJNI
ABRQL
ABSOE
ABTKH
ABUWG
ABYKJ
ACAOD
ACBXY
ACDTI
ACEFL
ACGFS
ACIPV
ACIWK
ACMKP
ACPIV
ACXLN
ACZBO
ACZOJ
ADGQD
ADGYE
ADINQ
ADJVZ
ADOZN
AEFQL
AEKEB
AEMSY
AENEX
AEQDQ
AERZL
AESKC
AFBAA
AFBBN
AFCXV
AFGNR
AFKRA
AFLOW
AFWTZ
AGJBK
AGMZJ
AGQEE
AHBYD
AHSBF
AIAKS
AIGIU
AIKXB
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALUKF
AMAVY
AMKLP
AMXSW
AMYLF
ARAPS
ASPBG
AVWKF
AZFZN
AZMOX
AZQEC
BAKPI
BAPOH
BBCWN
BCIFA
BENPR
BGLVJ
BGNMA
BLHJL
BPHCQ
CCPQU
CFGNV
DPUIP
DWQXO
EBLON
EBS
EJD
FEDTE
FIGPU
GNUQQ
GQ7
H13
HCIFZ
HF~
HMJXF
HVGLF
HZ~
IAO
IWAJR
IY9
J9A
JZLTJ
K6V
K7-
KOV
L6V
LLZTM
LO0
M0N
M4Y
M7S
NPVJJ
NQJWS
NU0
OK1
P9R
PQQKQ
PROAC
PTHSS
QD8
R9I
ROL
RSV
S1Z
S27
S3B
SHX
SJN
SJYHP
SMT
SOJ
T13
TR2
U2A
VC2
WK8
WTRAM
~A9
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
PHGZM
PHGZT
PQGLB
AAYXX
AFOHR
CITATION
7SC
7TB
7XB
8AL
8FD
8FK
ABRTQ
FR3
JQ2
KR7
L7M
L~C
L~D
P62
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c356t-aa2e6497c4e217760157f1d5d414f552c480fd752ab253da9ce81045dedcae573
IEDL.DBID U2A
ISSN 1311-0454
IngestDate Wed Aug 27 14:44:46 EDT 2025
Tue Jul 01 00:57:06 EDT 2025
Thu Apr 24 23:04:37 EDT 2025
Thu Jul 10 10:39:03 EDT 2025
Fri Feb 21 02:47:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Caputo difference operator
Riemann-Liouville difference operator
Primary 26A33
Secondary 34A08, 39A12, 39A30
asymptotic stability
fractional-order difference system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-aa2e6497c4e217760157f1d5d414f552c480fd752ab253da9ce81045dedcae573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1872593415
PQPubID 2039846
PageCount 22
ParticipantIDs proquest_journals_1872593415
crossref_citationtrail_10_1515_fca_2015_0040
crossref_primary_10_1515_fca_2015_0040
walterdegruyter_journals_10_1515_fca_2015_0040183651
springer_journals_10_1515_fca_2015_0040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Warsaw
PublicationPlace_xml – name: Warsaw
– name: Heidelberg
PublicationSubtitle An International Journal for Theory and Applications
PublicationTitle Fractional calculus & applied analysis
PublicationTitleAbbrev FCAA
PublicationYear 2015
Publisher Versita
De Gruyter Open
Nature Publishing Group
Publisher_xml – name: Versita
– name: De Gruyter Open
– name: Nature Publishing Group
References Apostol (CR4) 1974
Lubich (CR18) 1986; 17
Petráš (CR21) 2009; 12
Petráš (CR22) 2011
Elaydi, Murakami (CR11) 1996; 2
Li, Ma (CR16) 2013; 71
Lubich (CR19) 1986; 6
Abu-Saris, Al-Mdallal (CR2) 2013; 16
(CR7) 2011; 2011
Atici, Eloe (CR5) 2007; 2
CR15
Čermák, Kisela, Nechvátal (CR8) 2013; 219
Podlubný (CR23) 1999
Matignon (CR20) 1996; 2
Elaydi (CR10) 2005
Li, Zhang (CR17) 2011; 193
Galeone, Garrappa (CR14) 2009; 228
Abdeljawad (CR1) 2011; 62
Ferreira, Torres (CR12) 2011; 5
Zhou (CR24) 2014
Atici, Eloe (CR6) 2011; 41
Galeone, Garrappa (CR13) 2006; 3
Appleby, Gyori, Reynolds (CR3) 2006; 12
Čermák, Nechvátal (CR9) 2010; 17
Y Zhou (180309_CR24) 2014
CP Li (180309_CR16) 2013; 71
I Petráš (180309_CR22) 2011
C Lubich (180309_CR19) 1986; 6
S Elaydi (180309_CR11) 1996; 2
I Petráš (180309_CR21) 2009; 12
CP Li (180309_CR17) 2011; 193
FM Atici (180309_CR5) 2007; 2
RAC Ferreira (180309_CR12) 2011; 5
J Čermák (180309_CR8) 2013; 219
180309_CR15
FM Atici (180309_CR6) 2011; 41
D Matignon (180309_CR20) 1996; 2
J Čermák (180309_CR9) 2010; 17
(180309_CR7) 2011; 2011
L Galeone (180309_CR14) 2009; 228
I Podlubný (180309_CR23) 1999
L Galeone (180309_CR13) 2006; 3
C Lubich (180309_CR18) 1986; 17
R Abu-Saris (180309_CR2) 2013; 16
TM Apostol (180309_CR4) 1974
S Elaydi (180309_CR10) 2005
JAD Appleby (180309_CR3) 2006; 12
T Abdeljawad (180309_CR1) 2011; 62
References_xml – volume: 16
  start-page: 613
  issue: 3
  year: 2013
  end-page: 629
  ident: CR2
  article-title: On the asymptotic stability of linear system of fractional-order difference equations
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.2478/s13540-013-0039-2
– volume: 12
  start-page: 269
  issue: 3
  year: 2009
  end-page: 298
  ident: CR21
  article-title: Stability of fractional-order systems with rational orders: a survey
  publication-title: Fract. Calc. Appl. Anal.
– volume: 2
  start-page: 963
  year: 1996
  end-page: 968
  ident: CR20
  article-title: Stability results for fractional differential equations with applications to control processing
  publication-title: Computational Engineering in Systems and Application Multiconference
– volume: 62
  start-page: 1602
  issue: 3
  year: 2011
  end-page: 1611
  ident: CR1
  article-title: On Riemann and Caputo fractional differences
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.03.036
– year: 1974
  ident: CR4
  publication-title: Mathematical Analysis
– volume: 41
  start-page: 353
  issue: 2
  year: 2011
  end-page: 370
  ident: CR6
  article-title: Linear systems of fractional nabla difference equations
  publication-title: Rocky Mt. J. Math.
  doi: 10.1216/RMJ-2011-41-2-353
– volume: 2011
  issue: 39
  year: 2011
  ident: CR7
  publication-title: El. J. Qualit. Theory Differ. Equ.
– volume: 219
  start-page: 7012
  issue: 12
  year: 2013
  end-page: 7022
  ident: CR8
  article-title: Stability regions for linear fractional differential systems and their discretizations
  publication-title: Appl. Math. Comput.
– ident: CR15
– year: 2014
  ident: CR24
  publication-title: Basic Theory of Fractional Differential Equations
  doi: 10.1142/9069
– volume: 228
  start-page: 548
  issue: 2
  year: 2009
  end-page: 560
  ident: CR14
  article-title: Explicit methods for fractional differential equations and their stability properties
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2008.03.025
– volume: 71
  start-page: 621
  issue: 4
  year: 2013
  end-page: 633
  ident: CR16
  article-title: Fractional dynamical system and its linearization theorem
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-012-0601-1
– year: 1999
  ident: CR23
  publication-title: Fractional Differential Equations
– volume: 12
  start-page: 1257
  issue: 12
  year: 2006
  end-page: 1275
  ident: CR3
  article-title: On exact convergence rates for solutions of linear systems of Volterra difference equations
  publication-title: J. Differ. Equ. Appl.
  doi: 10.1080/10236190600986594
– volume: 2
  start-page: 165
  issue: 2
  year: 2007
  end-page: 176
  ident: CR5
  article-title: A transform method in discrete fractional calculus
  publication-title: Int. J. Differ. Equ.
– year: 2011
  ident: CR22
  publication-title: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation
  doi: 10.1007/978-3-642-18101-6
– volume: 17
  start-page: 51
  issue: 1
  year: 2010
  end-page: 68
  ident: CR9
  article-title: On (q, h)-analogue of fractional calculus
  publication-title: J. Nonlinear Math. Phys.
  doi: 10.1142/S1402925110000593
– volume: 5
  start-page: 110
  issue: 1
  year: 2011
  end-page: 121
  ident: CR12
  article-title: Fractional h-difference equations arising from the calculus of variations
  publication-title: Appl. Anal. Discrete Math.
  doi: 10.2298/AADM110131002F
– volume: 2
  start-page: 401
  issue: 4
  year: 1996
  end-page: 410
  ident: CR11
  article-title: Asymptotic stability versus exponential stability in linear Volterra difference equations of convolution type
  publication-title: J. Differ. Equ. Appl.
  doi: 10.1080/10236199608808074
– volume: 193
  start-page: 27
  issue: 1
  year: 2011
  end-page: 47
  ident: CR17
  article-title: A survey on the stability of fractional differential equations
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjst/e2011-01379-1
– volume: 17
  start-page: 704
  issue: 3
  year: 1986
  end-page: 719
  ident: CR18
  article-title: Discretized fractional calculus
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0517050
– volume: 6
  start-page: 87
  issue: 1
  year: 1986
  end-page: 101
  ident: CR19
  article-title: A stability analysis of convolution quadratures for Abel- Volterra integral equations
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/6.1.87
– year: 2005
  ident: CR10
  publication-title: An Introduction to Difference Equations
– volume: 3
  start-page: 565
  issue: 3
  year: 2006
  end-page: 580
  ident: CR13
  article-title: On multistep methods for differential equations of fractional order
  publication-title: Mediterr. J. Math.
  doi: 10.1007/s00009-006-0097-3
– volume: 62
  start-page: 1602
  issue: 3
  year: 2011
  ident: 180309_CR1
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.03.036
– volume: 16
  start-page: 613
  issue: 3
  year: 2013
  ident: 180309_CR2
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.2478/s13540-013-0039-2
– volume: 2011
  issue: 39
  year: 2011
  ident: 180309_CR7
  publication-title: El. J. Qualit. Theory Differ. Equ.
– volume: 228
  start-page: 548
  issue: 2
  year: 2009
  ident: 180309_CR14
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2008.03.025
– volume: 17
  start-page: 704
  issue: 3
  year: 1986
  ident: 180309_CR18
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0517050
– volume-title: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation
  year: 2011
  ident: 180309_CR22
  doi: 10.1007/978-3-642-18101-6
– volume: 41
  start-page: 353
  issue: 2
  year: 2011
  ident: 180309_CR6
  publication-title: Rocky Mt. J. Math.
  doi: 10.1216/RMJ-2011-41-2-353
– volume: 12
  start-page: 269
  issue: 3
  year: 2009
  ident: 180309_CR21
  publication-title: Fract. Calc. Appl. Anal.
– volume-title: Fractional Differential Equations
  year: 1999
  ident: 180309_CR23
– volume: 193
  start-page: 27
  issue: 1
  year: 2011
  ident: 180309_CR17
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjst/e2011-01379-1
– volume: 6
  start-page: 87
  issue: 1
  year: 1986
  ident: 180309_CR19
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/6.1.87
– volume: 2
  start-page: 165
  issue: 2
  year: 2007
  ident: 180309_CR5
  publication-title: Int. J. Differ. Equ.
– volume-title: Basic Theory of Fractional Differential Equations
  year: 2014
  ident: 180309_CR24
  doi: 10.1142/9069
– volume: 12
  start-page: 1257
  issue: 12
  year: 2006
  ident: 180309_CR3
  publication-title: J. Differ. Equ. Appl.
  doi: 10.1080/10236190600986594
– ident: 180309_CR15
– volume: 2
  start-page: 963
  year: 1996
  ident: 180309_CR20
  publication-title: Computational Engineering in Systems and Application Multiconference
– volume-title: Mathematical Analysis
  year: 1974
  ident: 180309_CR4
– volume-title: An Introduction to Difference Equations
  year: 2005
  ident: 180309_CR10
– volume: 71
  start-page: 621
  issue: 4
  year: 2013
  ident: 180309_CR16
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-012-0601-1
– volume: 17
  start-page: 51
  issue: 1
  year: 2010
  ident: 180309_CR9
  publication-title: J. Nonlinear Math. Phys.
  doi: 10.1142/S1402925110000593
– volume: 2
  start-page: 401
  issue: 4
  year: 1996
  ident: 180309_CR11
  publication-title: J. Differ. Equ. Appl.
  doi: 10.1080/10236199608808074
– volume: 5
  start-page: 110
  issue: 1
  year: 2011
  ident: 180309_CR12
  publication-title: Appl. Anal. Discrete Math.
  doi: 10.2298/AADM110131002F
– volume: 219
  start-page: 7012
  issue: 12
  year: 2013
  ident: 180309_CR8
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2012.12.019
– volume: 3
  start-page: 565
  issue: 3
  year: 2006
  ident: 180309_CR13
  publication-title: Mediterr. J. Math.
  doi: 10.1007/s00009-006-0097-3
SSID ssib054405957
ssj0000826098
Score 2.462704
Snippet The paper describes the stability area for the difference system (Δαy)(n + 1 − α) = Ay(n), n= 0, 1,..., with the Caputo forward difference operator Δα of a...
The paper describes the stability area for the difference system (Δ y)(n + 1 − α) = Ay(n), n= 0, 1, . . . , with the Caputo forward difference operator Δ of a...
The paper describes the stability area for the difference system (Δ[α]y)(n + 1 - α) = Ay(n), n= 0, 1, . . . , with the Caputo forward difference operator Δ[α]...
SourceID proquest
crossref
walterdegruyter
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 651
SubjectTerms Abstract Harmonic Analysis
Analysis
asymptotic stability
Caputo difference operator
fractional-order difference system
Functional Analysis
Integral Transforms
Mathematics
Operational Calculus
Research Paper
Riemann-Liouville difference operator
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwEA66vejDUFScTsmD6IthS5s07ZOobAzBKeJgbyVNUhGkm1uH7r_30qabij-em6Zw_Xr3Xe76HUInWvgKAmlIEqk9wlQQkSRSlFBqrPo5NaqYQ3Y7CPpDdjPiI3fgNnNtlZVPLBy1Hit7Rt6moQCmDj6XX0xeiZ0aZaurboTGOqqDCw4h-apfdQf3DxWiOAM-Erm6XuGbgU13igG5VmaGWP05J7wJcb2dKgmooZxYaH8NVCv2uSyYbqLGW1HS1uZpOl_kVQm1iEy9LdRwlBJflhjYRmsm20E3dxk277Y4_ZxjYIBFD-wCQ_aryyYtDGwVS2xZppzidFr-4AD7VCNTlMGlzPMuGva6j9d94uYmEOXzICdSeiZgkVDMQMJhm164SKnmmlGWcu4pFnZSLbgnE4_7WkbKhJCVcW20koYLfw_VsnFm9hGOmFIqSjSXXsT8JExEYoRPZUgDCYkLb6LzykixcqLidrbFS2yTC7BpDDaNrU1ja9MmOl0un5RqGr8tbFUWj91HNYtXEGiis-otfLr880bs20v65wZwcQGnB38__xBtlDixpzEtVMunc3ME5CRPjh0CPwBaOt_j
  priority: 102
  providerName: ProQuest
Title On explicit stability conditions for a linear fractional difference system
URI https://link.springer.com/article/10.1515/fca-2015-0040
https://www.degruyter.com/doi/10.1515/fca-2015-0040
https://www.proquest.com/docview/1872593415
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7UvehBfOL6WHIQvRg0baaPo4qrCK4iLngraZKKIKvsdlH_vZO0Xd_ouekEZqaZbzqTbwC2TRxqCqQJz5UJuNRRyvNUCy6Edeznwmo_h-yiF5315fkt3k7BfnMXxne7NyVJf1L7GT0C9wutyKQCufO7aWihS9vJgfvBYeNAKAl-pHUZzx_FBJ4P_DxcxyrDHd1czbP5TeLnuPQONif10TmYf_YVbGPvhuPXsqmY-kDUXYD5GkGyw8rkizBlB0swdzGhXx0tw_nlgNkXV5m-LxnBP98A-8oo9TVVhxYjqMoUcxBTDVkxrG43kNRmXoq2rOJ4XoF-9-Tm-IzXQxO4DjEquVKBjWQaa2kp23AdLxgXwqCRQhaIgZbJQWFiDFQeYGhUqm1CKRkaa7SyGIerMDN4HNg1YKnUWqe5QRWkMsyTPM5tHAqViEhR1oJt2GtUlumaUdwNtnjIXGZBGs5Iw5nTcOY03IadyfKnikrjt4Wbjf6z-osaZSKJKVOjmEvb7jY2-fD4Z0Hyi8n-eIHOtwjF-r832IDZyoHcX5lNmCmHY7tFIKXMOzCddE870Do66V1dd7ybvgFkd-DO
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOCNRWLK_60NILFjixk_iAEGq7LO8LSNyCYzsICS2wBMH-KX4jM0kMBUE5cY5jS-PPM994xjMAP1waWzSkGS-Mi7i0ieaFtoIL4an6ufC27kO2t5_0juT2sToegfvwFobSKoNOrBW1u7B0R74ishSZOupctX55xalrFEVXQwuNBhY7fniLLtv12tYf3N-fUdT9e_i7x9uuAtzGKqm4MZFPpE6t9EjHKSVEpaVwykkhS6UiK7PV0qUqMkWkYme09Rn6LMp5Z41XaYzzfoIxGceaTlTW3Qz4VRLZj26jiLUlQO6-WrfjpaI2nKrdtWU-kUWslNYgRoXidJCem8UnrvsYnp2Ayds6gO786eBmWIWAbW0Hu1Mw2RJYttEgbhpGfP8LbB_0mb-jUPhZxZBv1hm3Q4a-tmtSwhhyY2YYcVozYOWgeU6B84QGLdazpqj0Vzj6EHl-g9H-Rd_PANPSWqsLp0ykZVxkRVr4NBYmE4lBN0l1YDkIKbdtCXPqpHGekyuDMs1RpjnJNCeZdmDpcfhlU7vjrYHzQeJ5e4Sv8yfAdeBX2IV_Pr8-kXyxSe_8gAo1UWL2_-t_h_He4d5uvru1vzMHnxvM0D3QPIxWgxu_gLSoKhZrLDI4-WjwPwBivxsy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGSAgOE08xnjkguBBtaZM-xAkBEwwGHJi0W5UmKUJCBXVFsH-P08d4C85NE9V24s-18xlgV_uuQkca0Fhqh3LlhTQOFaOMGct-zowq-pD1r7yzAe8NxbABh_VdmKLavU5JlncaLEtTmrefdFL262GinSiJ6mWCWhucghk8iZk16YFzVBuT4AhFwiqlVxzLCKQ7RW9cyzBDLfVcxbn5bcbPPuodeE5ypfPQfCmy2drcZc_jvM6eFk6puwDNCk2So1L9i9Aw6RLM9ydUrKNl6F2nxLzaLPV9ThAKFsWwY4Lfq8tqLYKwlUhi4abMSJKVNx1w1rp3ijKk5HtegUH39Pb4jFYNFKhyhZdTKR3j8dBX3GDkYatfhJ8wLTRnPBHCUTzoJNoXjowd4WoZKhNgeCa00Uoa4burMJ0-pmYNSMiVUmGshXRC7sZB7MfGd5kMmCcxghEtOKhFFqmKXdw2uXiIbJSBEo5QwpGVcGQl3IK9yfCnklbjt4GbtfyjaneNIhb4GLWh_8Vl92udfHj880T8i8r-eAHPOk-w9X8vsAOzNyfd6PL86mID5kpbsj9rNmE6z57NFmKXPN4ubPQN2BPlfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+explicit+stability+conditions+for+a+linear+fractional+difference+system&rft.jtitle=Fractional+calculus+%26+applied+analysis&rft.au=%C4%8Cerm%C3%A1k%2C+Jan&rft.au=Gy%C5%91ri%2C+Istv%C3%A1n&rft.au=Nechv%C3%A1tal%2C+Lud%C4%95k&rft.date=2015-06-01&rft.pub=De+Gruyter+Open&rft.issn=1311-0454&rft.eissn=1314-2224&rft.volume=18&rft.issue=3&rft.spage=651&rft.epage=672&rft_id=info:doi/10.1515%2Ffca-2015-0040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_fca_2015_0040183651
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1311-0454&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1311-0454&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1311-0454&client=summon