Rhodamine B Adsorptive Removal and Photocatalytic Degradation on MIL-53-Fe MOF/Magnetic Magnetite/Biochar Composites
MIL-53-Fe metal–organic framework (MOF) was grown using the terephthalic acid linker and FeCl 3 into an already prepared, high surface area, magnetic, Douglas fir biochar/Fe 3 O 4 (MBC) adsorbent hybrid. This resulting triphase hybrid, multifunctional, magnetically recoverable, sorptive, photocataly...
Saved in:
Published in | Journal of inorganic and organometallic polymers and materials Vol. 30; no. 1; pp. 214 - 229 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | MIL-53-Fe metal–organic framework (MOF) was grown using the terephthalic acid linker and FeCl
3
into an already prepared, high surface area, magnetic, Douglas fir biochar/Fe
3
O
4
(MBC) adsorbent hybrid. This resulting triphase hybrid, multifunctional, magnetically recoverable, sorptive, photocatalytic and degradative, adsorbent (MOF–MBC) was used both to remove and catalyze the photodegradation of Rhodamine B (Rh B) with or without Cr
6+
present. Rh B is a widely used colorant in textile, printing and tanning industries that is also associated with deleterious health effects. Batch aqueous sorption studies were performed at various pHs, Rh B concentrations and temperatures in-order to determine the optimum adsorption pH, kinetics, thermodynamics and sorption capacity. This adsorption followed pseudo-2nd-order kinetics and exhibited a Rh B Langmuir adsorption capacity of ~ 55 mg/g at pH 6, 200 rpm agitation and 25 °C. This MOF–MBC hybrid was characterized by SEM, TEM, EDS, XRD, FT-IR, TGA, BET, Elemental Analysis and XPS. Deethylated and carboxylic compounds were identified as photodegradation intermediates. Electrostatic and π–π stacking interactions are thought to play a significant role in Rh B sorption. Hexavalent chromium (Cr
6+
) and Rh B often co-exist in tannery and printing waste water. Cr
6+
can trigger the photo-degradation of Rh B into CO
2
and H
2
O in the presence of both MIL-53-Fe MOF and MOF–MBC. Hence, adsorbent stripping regeneration can be minimized in real world applications. The biochar phase, aids to disperse the MOF, to minimize particle aggregation, to provide extra stability to the MOF, and serves as secondary adsorption site for heavy metal, oxy anion and organic contaminants. Large biochar particles allow reasonable flow through column beds while supporting other nanophases, which would cause large pressure drops when used alone. |
---|---|
AbstractList | MIL-53-Fe metal–organic framework (MOF) was grown using the terephthalic acid linker and FeCl
3
into an already prepared, high surface area, magnetic, Douglas fir biochar/Fe
3
O
4
(MBC) adsorbent hybrid. This resulting triphase hybrid, multifunctional, magnetically recoverable, sorptive, photocatalytic and degradative, adsorbent (MOF–MBC) was used both to remove and catalyze the photodegradation of Rhodamine B (Rh B) with or without Cr
6+
present. Rh B is a widely used colorant in textile, printing and tanning industries that is also associated with deleterious health effects. Batch aqueous sorption studies were performed at various pHs, Rh B concentrations and temperatures in-order to determine the optimum adsorption pH, kinetics, thermodynamics and sorption capacity. This adsorption followed pseudo-2nd-order kinetics and exhibited a Rh B Langmuir adsorption capacity of ~ 55 mg/g at pH 6, 200 rpm agitation and 25 °C. This MOF–MBC hybrid was characterized by SEM, TEM, EDS, XRD, FT-IR, TGA, BET, Elemental Analysis and XPS. Deethylated and carboxylic compounds were identified as photodegradation intermediates. Electrostatic and π–π stacking interactions are thought to play a significant role in Rh B sorption. Hexavalent chromium (Cr
6+
) and Rh B often co-exist in tannery and printing waste water. Cr
6+
can trigger the photo-degradation of Rh B into CO
2
and H
2
O in the presence of both MIL-53-Fe MOF and MOF–MBC. Hence, adsorbent stripping regeneration can be minimized in real world applications. The biochar phase, aids to disperse the MOF, to minimize particle aggregation, to provide extra stability to the MOF, and serves as secondary adsorption site for heavy metal, oxy anion and organic contaminants. Large biochar particles allow reasonable flow through column beds while supporting other nanophases, which would cause large pressure drops when used alone. MIL-53-Fe metal–organic framework (MOF) was grown using the terephthalic acid linker and FeCl3 into an already prepared, high surface area, magnetic, Douglas fir biochar/Fe3O4 (MBC) adsorbent hybrid. This resulting triphase hybrid, multifunctional, magnetically recoverable, sorptive, photocatalytic and degradative, adsorbent (MOF–MBC) was used both to remove and catalyze the photodegradation of Rhodamine B (Rh B) with or without Cr6+ present. Rh B is a widely used colorant in textile, printing and tanning industries that is also associated with deleterious health effects. Batch aqueous sorption studies were performed at various pHs, Rh B concentrations and temperatures in-order to determine the optimum adsorption pH, kinetics, thermodynamics and sorption capacity. This adsorption followed pseudo-2nd-order kinetics and exhibited a Rh B Langmuir adsorption capacity of ~ 55 mg/g at pH 6, 200 rpm agitation and 25 °C. This MOF–MBC hybrid was characterized by SEM, TEM, EDS, XRD, FT-IR, TGA, BET, Elemental Analysis and XPS. Deethylated and carboxylic compounds were identified as photodegradation intermediates. Electrostatic and π–π stacking interactions are thought to play a significant role in Rh B sorption. Hexavalent chromium (Cr6+) and Rh B often co-exist in tannery and printing waste water. Cr6+ can trigger the photo-degradation of Rh B into CO2 and H2O in the presence of both MIL-53-Fe MOF and MOF–MBC. Hence, adsorbent stripping regeneration can be minimized in real world applications. The biochar phase, aids to disperse the MOF, to minimize particle aggregation, to provide extra stability to the MOF, and serves as secondary adsorption site for heavy metal, oxy anion and organic contaminants. Large biochar particles allow reasonable flow through column beds while supporting other nanophases, which would cause large pressure drops when used alone. |
Author | Navarathna, Chanaka M. Dewage, Narada B. Farmer, Erin L. Perez, Felio Karunanayake, Akila G. Hassan, El Barbary Mlsna, Todd E. Pittman, Charles U. |
Author_xml | – sequence: 1 givenname: Chanaka M. surname: Navarathna fullname: Navarathna, Chanaka M. organization: Department of Chemistry, Mississippi State University – sequence: 2 givenname: Narada B. surname: Dewage fullname: Dewage, Narada B. organization: Department of Chemistry, Mississippi State University – sequence: 3 givenname: Akila G. surname: Karunanayake fullname: Karunanayake, Akila G. organization: Department of Chemistry, Mississippi State University, Biochar Supreme Inc – sequence: 4 givenname: Erin L. surname: Farmer fullname: Farmer, Erin L. organization: Department of Chemistry, Mississippi State University – sequence: 5 givenname: Felio surname: Perez fullname: Perez, Felio organization: Material Science Lab, Integrated Microscopy Center, University of Memphis – sequence: 6 givenname: El Barbary surname: Hassan fullname: Hassan, El Barbary organization: Department of Sustainable Bioproducts, Mississippi State University – sequence: 7 givenname: Todd E. surname: Mlsna fullname: Mlsna, Todd E. email: TMlsna@chemistry.msstate.edu organization: Department of Chemistry, Mississippi State University – sequence: 8 givenname: Charles U. surname: Pittman fullname: Pittman, Charles U. email: cpittman@chemistry.msstate.edu organization: Department of Chemistry, Mississippi State University |
BookMark | eNp9kE9rAjEQxUOxULX9Aj0Fet6abDb756i2toJikfYcstlZXdGNTaLit290pYUehAx5DO83ybwOatW6BoQeKXmmhCQ9S0lGooDQzBcLw-Bwg9qUJ1FAI05bvzpid6hj7YoQlhJO28jNl7qQm6oGPMD9wmqzddUe8Bw2ei_XWNYF_lhqp5V0cn10lcIvsDCykK7SNfZnOp4EnAUjwNPZqDeVixpOrotw0BtUWi2lwUO92WrrO_Ye3ZZybeHhcnfR1-j1c_geTGZv42F_EijGYxdkCpQCSFJVpopllPOQS-IrzbMsT1WUxZSkRR6GisQQF1HB8jJXRaziPAZWsi56auZujf7egXVipXem9k-KkEUsjBPOmHeljUsZba2BUqjKnddzRlZrQYk4ZSyajIXPWJwzFgePhv_Qrak20hyvQ6yBrDfXCzB_v7pC_QATFpI2 |
CitedBy_id | crossref_primary_10_1007_s12221_023_00163_2 crossref_primary_10_1007_s10904_023_02956_7 crossref_primary_10_1007_s10311_021_01207_w crossref_primary_10_1016_j_jece_2022_108194 crossref_primary_10_1016_j_enmm_2022_100669 crossref_primary_10_1007_s13369_024_08728_w crossref_primary_10_1007_s11164_021_04565_w crossref_primary_10_1016_j_cej_2024_158501 crossref_primary_10_3390_ma16145081 crossref_primary_10_1016_j_mtcomm_2020_101780 crossref_primary_10_1002_er_8448 crossref_primary_10_1016_j_biortech_2024_131982 crossref_primary_10_3390_molecules30061230 crossref_primary_10_1016_j_mtchem_2021_100692 crossref_primary_10_1016_j_seppur_2022_121064 crossref_primary_10_1021_acs_iecr_1c00140 crossref_primary_10_1007_s00604_023_05829_5 crossref_primary_10_1016_j_apsusc_2021_149906 crossref_primary_10_1155_2023_9985984 crossref_primary_10_1007_s11356_023_27740_5 crossref_primary_10_1007_s11783_023_1689_x crossref_primary_10_1021_acs_inorgchem_2c01939 crossref_primary_10_1016_j_chemosphere_2021_131171 crossref_primary_10_1016_j_gsd_2024_101314 crossref_primary_10_1007_s10904_022_02523_6 crossref_primary_10_1016_j_chemosphere_2021_130087 crossref_primary_10_1016_j_optmat_2022_112108 crossref_primary_10_1016_j_inoche_2025_114334 crossref_primary_10_3390_polym14122419 crossref_primary_10_1016_j_ces_2024_120073 crossref_primary_10_1021_acsomega_3c04984 crossref_primary_10_1007_s12221_023_00189_6 crossref_primary_10_1016_j_electacta_2022_141363 crossref_primary_10_1021_acsanm_3c00400 crossref_primary_10_1016_j_envres_2020_109817 crossref_primary_10_1016_j_cej_2021_130061 crossref_primary_10_1016_j_flatc_2021_100277 crossref_primary_10_1016_j_arabjc_2023_105303 crossref_primary_10_1007_s43630_023_00383_8 crossref_primary_10_1007_s11356_020_10082_x crossref_primary_10_1080_1536383X_2021_1891047 crossref_primary_10_1016_j_jece_2021_106636 crossref_primary_10_1039_D4RA04365K crossref_primary_10_1016_j_seppur_2022_122850 crossref_primary_10_1007_s13201_023_01880_y crossref_primary_10_3390_pr12071455 crossref_primary_10_1039_D3NJ03470D crossref_primary_10_1038_s41598_023_32097_3 crossref_primary_10_1039_D3EN00332A crossref_primary_10_1007_s42773_022_00173_y crossref_primary_10_1007_s10661_025_13768_2 crossref_primary_10_1016_j_jiec_2023_09_013 crossref_primary_10_3389_fchem_2024_1434454 crossref_primary_10_1007_s10904_020_01704_5 crossref_primary_10_1557_s43578_024_01315_7 crossref_primary_10_1016_j_ijbiomac_2021_04_034 crossref_primary_10_1016_j_jcis_2022_01_067 crossref_primary_10_1016_j_molstruc_2023_136899 crossref_primary_10_1016_j_mtchem_2024_102383 crossref_primary_10_1016_j_psep_2024_09_124 crossref_primary_10_1007_s10562_024_04850_4 crossref_primary_10_1007_s10904_022_02450_6 crossref_primary_10_1002_aoc_7833 crossref_primary_10_1016_j_gce_2023_12_004 crossref_primary_10_1007_s11356_023_31162_8 crossref_primary_10_1016_j_scitotenv_2022_158794 crossref_primary_10_1039_D1VA00019E crossref_primary_10_1007_s11356_023_27234_4 crossref_primary_10_1016_j_susmat_2021_e00378 crossref_primary_10_1016_j_envpol_2020_115583 crossref_primary_10_1016_j_chemosphere_2022_136155 crossref_primary_10_1016_j_molstruc_2022_134127 crossref_primary_10_1016_j_seppur_2025_132288 crossref_primary_10_3390_cryst10030159 crossref_primary_10_1007_s10904_020_01498_6 crossref_primary_10_3390_molecules26216628 crossref_primary_10_1016_j_molstruc_2024_141287 crossref_primary_10_1016_j_ceramint_2024_02_177 crossref_primary_10_1016_j_jiec_2024_03_041 crossref_primary_10_1016_j_envres_2022_112841 crossref_primary_10_1016_j_psep_2024_05_118 crossref_primary_10_1007_s11270_023_06320_w crossref_primary_10_1016_j_ijbiomac_2024_138817 crossref_primary_10_5004_dwt_2022_28563 crossref_primary_10_1016_j_ceramint_2022_12_072 crossref_primary_10_1007_s42860_021_00145_6 crossref_primary_10_3389_fchem_2023_1215619 crossref_primary_10_3390_app12168240 crossref_primary_10_1016_j_colsurfa_2022_128447 crossref_primary_10_1016_j_cej_2023_143946 crossref_primary_10_1016_j_cej_2021_131077 crossref_primary_10_1016_j_ccr_2020_213585 crossref_primary_10_1016_j_ijbiomac_2024_137796 crossref_primary_10_1080_15422119_2020_1839909 crossref_primary_10_1016_j_jece_2023_109469 crossref_primary_10_1007_s42247_024_00937_1 crossref_primary_10_1002_ejic_202000450 crossref_primary_10_1016_j_chemosphere_2024_143936 crossref_primary_10_1016_j_rineng_2024_102296 crossref_primary_10_1016_j_seppur_2021_119062 crossref_primary_10_1038_s41598_022_05134_w crossref_primary_10_1016_j_chemosphere_2021_130273 crossref_primary_10_1016_j_jssc_2021_122210 crossref_primary_10_1016_j_colsurfa_2022_130011 crossref_primary_10_1021_acs_energyfuels_3c00801 crossref_primary_10_1021_acsaenm_3c00472 crossref_primary_10_1039_D4CS00029C crossref_primary_10_1016_j_seppur_2022_121160 crossref_primary_10_1021_acsami_9b20924 crossref_primary_10_1016_j_est_2024_113512 crossref_primary_10_1002_adsu_202100013 crossref_primary_10_1016_j_chemosphere_2023_139713 crossref_primary_10_1016_j_greeac_2023_100081 crossref_primary_10_1016_j_jelechem_2024_118451 |
Cites_doi | 10.1039/C7TA09166D 10.1016/j.desal.2008.03.016 10.1039/C4CC04387A 10.1039/C5DT04392A 10.1021/ja02242a004 10.1016/j.seppur.2017.05.016 10.1039/C9RA02729G 10.1021/jp905173e 10.1039/C4TA04622F 10.1016/j.cej.2017.08.124 10.1039/C9SC01284B 10.1021/ie034218g 10.1016/j.cej.2017.02.116 10.1039/c3nr03153e 10.1016/j.apcatb.2003.11.010 10.1111/php.12596 10.1016/j.micromeso.2016.01.003 10.1016/S0032-9592(98)00112-5 10.1351/pac198557040603 10.1016/j.jenvman.2019.02.097 10.1016/j.jenvman.2019.109429 10.4236/jbnb.2017.81005 10.1016/0961-9534(93)90032-Y 10.1016/j.jenvman.2006.11.002 10.1039/C6RA08896A 10.1021/acs.jchemed.6b00154 10.1039/c3dt51479j 10.1016/j.scitotenv.2018.01.249 10.1039/C4CE01406E 10.4324/9780203762264 10.1038/nature01650 10.1016/j.biortech.2017.07.150 10.1016/j.matlet.2018.11.079 10.1016/j.apcatb.2013.06.003 10.1021/acsanm.9b00430 10.1016/j.scitotenv.2017.06.103 10.1002/sia.1984 10.1016/j.jcis.2011.06.081 10.1002/aoc.4679 10.1016/j.jhazmat.2015.01.048 10.1007/s10904-017-0571-3 10.1016/j.biortech.2016.04.093 10.1016/j.biortech.2014.01.120 10.1016/j.jclepro.2017.11.145 10.1039/c4tc00079j 10.1016/j.chemosphere.2019.03.050 10.1524/zkri.2010.1353 10.1080/15226514.2013.856842 10.1080/02772248.2013.840369 10.1016/j.apcatb.2014.06.049 10.1016/j.jiec.2015.11.020 10.1007/s10904-015-0267-5 10.2166/wst.1991.0015 10.1002/anie.201606656 10.1016/j.jhazmat.2010.11.104 10.1039/b924937k 10.1039/C7RA10353K 10.1016/j.biortech.2018.05.001 10.1080/10643389.2011.574115 10.1021/acsami.5b00682 10.1039/C8RA04600J |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 2019© Springer Science+Business Media, LLC, part of Springer Nature 2019 |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: 2019© Springer Science+Business Media, LLC, part of Springer Nature 2019 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10904-019-01322-w |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1574-1451 |
EndPage | 229 |
ExternalDocumentID | 10_1007_s10904_019_01322_w |
GrantInformation_xml | – fundername: National Science Foundation (US) grantid: 1659830 |
GroupedDBID | -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 2.D 203 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I09 IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM P9N PF0 PT4 PT5 QOR QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WK8 YLTOR Z45 Z7V Z7X Z7Y Z86 Z8P Z8S ZE2 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c356t-9ceccee78cf8c3915525a025a8b99b8c496108db22c06e6d4d3bfbcd6c6b6e3f3 |
IEDL.DBID | U2A |
ISSN | 1574-1443 |
IngestDate | Fri Jul 25 10:52:40 EDT 2025 Thu Apr 24 23:12:07 EDT 2025 Tue Jul 01 01:45:30 EDT 2025 Fri Feb 21 02:25:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Photodegradation Magnetite nanoparticles Adsorption Chromium(VI) Rhodamine B MIL-53-Fe MOF/Fe O biochar adsorbents |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-9ceccee78cf8c3915525a025a8b99b8c496108db22c06e6d4d3bfbcd6c6b6e3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2343267533 |
PQPubID | 2044289 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2343267533 crossref_citationtrail_10_1007_s10904_019_01322_w crossref_primary_10_1007_s10904_019_01322_w springer_journals_10_1007_s10904_019_01322_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200100 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 1 year: 2020 text: 20200100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of inorganic and organometallic polymers and materials |
PublicationTitleAbbrev | J Inorg Organomet Polym |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | PeirisCGunatilakeSRMlsnaTEMohanDVithanageMBiochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: a critical reviewBiores. Technol.20172461501591:CAS:528:DC%2BC2sXht1KqsLzK DiaoZ-HLiuJ-JHuY-XKongL-JJiangDXuX-RComparative study of Rhodamine B degradation by the systems pyrite/H2O2 and pyrite/persulfate: reactivity, stability, products and mechanismSep. Purif. Technol.20171843743831:CAS:528:DC%2BC2sXnsl2lsLc%3D KonstantinouIKAlbanisTATiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a reviewAppl. Catal. B.2004491141:CAS:528:DC%2BD2cXisl2ksL4%3D KarunanayakeAGNavarathnaCGunatilakeSCrowleyMAndersonRMohanDPerezFPittmanCUJrMlsnaTEFe3O4 nanoparticles dispersed on Douglas fir biochar for phosphate sorptionACS Appl. Nano Mater.20192346734791:CAS:528:DC%2BC1MXptlKqurk%3D QiQChiWLiYQiaoQChenJMiaoLZhangYLiJJiWXuTA H-bond strategy to develop acid-resistant photoswitchable rhodamine spirolactams for super-resolution single-molecule localization microscopyChem. Sci.201910491449221:CAS:528:DC%2BC1MXms1Gqtrk%3D311609626510312 MohanDAbhishekKSarswatAPatelMSinghPPittmanCUJrBiochar production and applications in soil fertility and carbon sequestration—a sustainable solution to crop-residue burning in IndiaRSC Adv.201885085201:CAS:528:DC%2BC1cXitlOmtQ%3D%3D ShenLWuWLiangRLinRWuLHighly dispersed palladium nanoparticles anchored on UiO-66 (NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalystNanoscale20135937493821:CAS:528:DC%2BC3sXhsVers7%2FI23959004 DewageNBLiyanageASPittmanCUJrMohanDMlsnaTFast nitrate and fluoride adsorption and magnetic separation from water on α-Fe2O3 and Fe3O4 dispersed on Douglas fir biocharBioresour. Technol.2018263258265 ShenLLiangSWuWLiangRWuLMultifunctional NH 2-mediated zirconium metal–organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(VI)Dalton Trans.20134213649136571:CAS:528:DC%2BC3sXhtlGmsbvP23903996 LiangRShenLJingFQinNWuLPreparation of MIL-53 (Fe)-reduced graphene oxide nanocomposites by a simple self-assembly strategy for increasing interfacial contact: efficient visible-light photocatalystsACS Appl. Mater. Interfaces.20157950795151:CAS:528:DC%2BC2MXmvVygtLk%3D25894300 NovotnyVWater quality: Prevention, Identification and Management of Diffuse Pollution1994New YorkVan Nostrand-Reinhold Publishers RenGWangXHuangPZhongBZhangZYangLYangXChromium (VI) adsorption from wastewater using porous magnetite nanoparticles prepared from titanium residue by a novel solid-phase reduction methodSci. Total Environ.201760790091028724223 KarunanayakeAGToddOACrowleyMLRicchettiLBPittmanCUJrAndersonRMlsnaTERapid removal of salicylic acid, 4-nitroaniline, benzoic acid and phthalic acid from wastewater using magnetized fast pyrolysis biochar from waste Douglas firChem. Eng. J.201731975881:CAS:528:DC%2BC2sXksV2gtLY%3D SalehTAGuptaVKFunctionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine BJ. Colloid Interface Sci.20113623373441:CAS:528:DC%2BC3MXhtVSqu7fI21788030 LiuHRenXChenLSynthesis and characterization of magnetic metal–organic framework for the adsorptive removal of Rhodamine B from aqueous solutionJ. Ind. Eng. Chem.2016342782851:CAS:528:DC%2BC2MXhvFKkurjM ZhangJYanHChenYChenRHeYLiuWEfficient degradation of aqueous Rhodamine B irradiation under indoor light using a SiO2–Hypocrellin B complexPhotochem. Photobiol.2016926446481:CAS:528:DC%2BC28XptFWnsrw%3D27135189 DownieACroskyAMunroePPhysical properties of biochar. Biochar for environmental managementSci. Technol.20091332 GrauPTextile industry wastewaters treatmentWater Sci. Technol.199124971031:CAS:528:DyaK3MXktFCltrY%3D SchothAKeithADLandfesterKMuñoz-EspíRSilanization as a versatile functionalization method for the synthesis of polymer/magnetite hybrid nanoparticles with controlled structureRSC Adv.2016653903539111:CAS:528:DC%2BC28Xoslajs70%3D AlHamediFHRaufMAshrafSSDegradation studies of Rhodamine B in the presence of UV/H2O2Desalination20092391591661:CAS:528:DC%2BD1MXhvFantbk%3D TanKNijemNGaoYZuluagaSLiJThonhauserTChabalYJWater interactions in metal organic frameworksCrystEngComm2015172472601:CAS:528:DC%2BC2cXhslagsLvJ GrosvenorAKobeBBiesingerMMcIntyreNInvestigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compoundsSurf. Interface Anal.200436156415741:CAS:528:DC%2BD2MXjtVWgtQ%3D%3D ZhaoJLeeDTYagaRWHallMGBartonHFWoodwardIROldhamCJWallsHJPetersonGWParsonsGNUltra-fast degradation of chemical warfare agents using MOF–nanofiber kebabsAngew. Chem. Int. Ed.20165513224132281:CAS:528:DC%2BC28XhsFGhtbrE EnnisCJEvansAGIslamMRalebitso-SeniorTKSeniorEBiochar: carbon sequestration, land remediation, and impacts on soil microbiologyCrit. Rev. Environ. Sci. Technol.201242231123641:CAS:528:DC%2BC38XhsFKls7zL LehmannJJosephSBiochar for Environmental Management: Science, Technology and Implementation2015LondonRoutledge MohanDSarswatAOkYSPittmanCUJrOrganic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical reviewBioresour. Technol.20141601912021:CAS:528:DC%2BC2cXksF2hsL8%3D24636918 MisraMKRaglandKWBakerAJWood ash composition as a function of furnace temperatureBiomass Bioenerg.199341031161:CAS:528:DyaK3sXlsVartrg%3D JainRMathurMSikarwarSMittalARemoval of the hazardous dye rhodamine B through photocatalytic and adsorption treatmentsJ. Environ. Manage.2007859569641:CAS:528:DC%2BD2sXhsVCntrzO17239520 RamezanalizadehHManteghiFSynthesis of a novel MOF/CuWO4 heterostructure for efficient photocatalytic degradation and removal of water pollutantsJ. Cleaner Prod.2018172265526661:CAS:528:DC%2BC2sXhvFSrsr%2FP KarunanayakeAGToddOACrowleyMRicchettiLPittmanCUJrAndersonRMohanDMlsnaTLead and cadmium remediation using magnetized and nonmagnetized biochar from Douglas firChem. Eng. J.20183314804911:CAS:528:DC%2BC2sXhsVyitLzK LinXZhangFPanSYuHZhangFDongXHanSDongLBaiCWangZBa4(BO3)3(SiO4)·Ba3X (X = Cl, Br): new salt-inclusion borosilicate halides as potential deep UV nonlinear optical materialsJ. Mater. Chem. C20142425742641:CAS:528:DC%2BC2cXnvFektL4%3D LiuNJingCLiZHuangWGaoBYouFZhangXEffect of synthesis conditions on the photocatalytic degradation of Rhodamine B of MIL-53 (Fe)Mater. Lett.201923792951:CAS:528:DC%2BC1cXit1Crs7zF GuillouNWaltonRIMillangeFMIL-53 (Fe): a good example to illustrate the power of powder diffraction in the field of MOFsZeitschrift für Kristallographie Crystall. Mater.20102255525561:CAS:528:DC%2BC3MXit1OjtLs%3D LiangRJingFShenLQinNWuLMIL-53 (Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyesJ. Hazard. Mater.20152873643721:CAS:528:DC%2BC2MXhsVegs74%3D25677473 PeirisCNayanatharaONavarathnaCMJayawardhanaYNawalageSBurkGKarunanayakeAGMadduriSBVithanageMKaumalMThe influence of three acid modifications on the physicochemical characteristics of tea-waste biochar pyrolyzed at different temperatures: a comparative studyRSC Adv.201991761217622 TanX-FLiuY-GGuY-LXuYZengG-MHuX-JLiuS-BWangXLiuS-MLiJBiochar-based nano-composites for the decontamination of wastewater: a reviewBioresour. Technol.20162123183331:CAS:528:DC%2BC28XmvVCns7g%3D27131871 XiongWZengGYangZZhouYZhangCChengMLiuYHuLWanJZhouCAdsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53 (Fe) as new adsorbentSci. Total Environ.20186272352441:CAS:528:DC%2BC1cXitFynsrY%3D29426146 DewageNBFowlerREPittmanCUJrMohanDMlsnaTLead (Pb2+) sorptive removal using chitosan-modified biochar: batch and fixed-bed studiesRSC Adv.201882536825377 Velo-GalaILópez-PeñalverJSánchez-PoloMRivera-UtrillaJActivated carbon as photocatalyst of reactions in aqueous phaseAppl. Catal. B.2013142694704 KhanTANazirMKhanEAAdsorptive removal of rhodamine B from textile wastewater using water chestnut (Trapa natans L.) peel: adsorption dynamics and kinetic studiesToxicol. Environ. Chem.2013959199311:CAS:528:DC%2BC3sXhsVWisLnF YaghiOMO’keeffeMOckwigNWChaeHKEddaoudiMKimJReticular synthesis and the design of new materialsNature20034237051:CAS:528:DC%2BD3sXksV2itro%3D DewageNBLiyanageASSmithQPittmanCUJrPerezFMohanDMlsnaTFast aniline and nitrobenzene remediation from water on magnetized and nonmagnetized Douglas fir biocharChemosphere2019225943953 WuYFengJXieBZouLLiYLiZAn extremely stable 2D Zinc(II) coordination polymer exhibiting high sensing ability and photocatalytic degradation activities of dyesJ. Inorg. Organomet. Polym Mater.201727124312511:CAS:528:DC%2BC2sXns1Grt7Y%3D CheethamAKBennettTDCoudertF-XGoodwinALDefects and disorder in metal organic frameworksDalton Trans.201645411341261:CAS:528:DC%2BC2MXitVGgt73J26836459 KarunanayakeAGBombuwala DewageNToddOAEssandohMAndersonRMlsnaTMlsnaDSalicylic acid and 4-nitroaniline removal from water using magnetic biochar: an environmental and analytical experiment for the undergraduate laboratoryJ. Chem. Educ.201693193519381:CAS:528:DC%2BC28XhslSmtLnK SilvaCGCormaAGarcíaHMetal–organic frameworks as semiconductorsJ. Mater. Chem.201020314131561:CAS:528:DC%2BC3cXkt1Kkurc%3D HoY-SMcKayGPseudo-second order model for sorption processesProcess Biochem.1999344514651:CAS:528:DyaK1MXlt1Omtbk%3D AngınDŞensözSEffect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus L.)Int. J. Phytorem.201416684693 ZhangCAiLJiangJSolvothermal synthesis of MIL–53 (Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible lightJ. Mater. Chem. A20153307430811:CAS:528:DC%2BC2cXitV2mt7nK LiangRShenLJingFWuWQinNLinRWuLNH2-mediated indium metal–organic framework as a novel visible-light-driven photocatalyst for reduction of the aqueous Cr(VI)Appl. Catal. B20151622452511:CAS:528:DC%2BC2cXht1KitrjF LangmuirIThe adsorption of gases on plane surfaces of glass, mica and platinumJ. Am. Chem. Soc.191840136114031: J Zhang (1322_CR56) 2016; 92 IK Konstantinou (1322_CR14) 2004; 49 NB Dewage (1322_CR25) 2019; 225 KS Sing (1322_CR49) 1985; 57 A Dhakshinamoorthy (1322_CR9) 2014; 50 L Shen (1322_CR8) 2013; 5 J Zhao (1322_CR12) 2016; 55 N Guillou (1322_CR33) 2010; 225 OM Yaghi (1322_CR3) 2003; 423 C Peiris (1322_CR19) 2017; 246 H Liu (1322_CR60) 2016; 34 C Zhang (1322_CR62) 2015; 3 Y Wu (1322_CR7) 2017; 27 K Tan (1322_CR10) 2015; 17 W Xiong (1322_CR35) 2018; 627 Y-S Ho (1322_CR47) 1999; 34 CG Silva (1322_CR5) 2010; 20 I Langmuir (1322_CR48) 1918; 40 C Peiris (1322_CR16) 2019; 9 CM Navarathna (1322_CR64) 2007; 250 AK Cheetham (1322_CR34) 2016; 45 N Liu (1322_CR37) 2019; 237 TA Khan (1322_CR30) 2013; 95 KC Kim (1322_CR40) 2016; 224 V Novotny (1322_CR1) 1994 D Angın (1322_CR38) 2014; 16 L Shen (1322_CR54) 2013; 42 H Ramezanalizadeh (1322_CR11) 2018; 172 I Velo-Gala (1322_CR53) 2013; 142 R Liang (1322_CR55) 2015; 162 NB Dewage (1322_CR27) 2018; 8 V Gupta (1322_CR31) 2004; 43 FH AlHamedi (1322_CR63) 2009; 239 TA Saleh (1322_CR44) 2011; 362 Y Jayawardhana (1322_CR18) 2019; 238 X-F Tan (1322_CR28) 2016; 212 H-C Zhou (1322_CR4) 2012 D Mohan (1322_CR20) 2018; 8 J Anandkumar (1322_CR51) 2011; 186 R Liang (1322_CR45) 2015; 7 CJ Ennis (1322_CR15) 2012; 42 AA Al-Kahtani (1322_CR58) 2017; 8 AG Karunanayake (1322_CR22) 2018; 331 P Grau (1322_CR2) 1991; 24 X Lin (1322_CR52) 2014; 2 A Downie (1322_CR36) 2009; 13 Q Qi (1322_CR46) 2019; 10 R Jain (1322_CR61) 2007; 85 AG Karunanayake (1322_CR23) 2017; 319 Z-H Diao (1322_CR57) 2017; 184 J Lehmann (1322_CR21) 2015 F Wang (1322_CR13) 2018; 6 G Ren (1322_CR50) 2017; 607 AG Karunanayake (1322_CR29) 2019; 2 A Grosvenor (1322_CR43) 2004; 36 K Yu (1322_CR59) 2009; 113 D Mohan (1322_CR17) 2014; 160 AG Karunanayake (1322_CR24) 2016; 93 R Liang (1322_CR32) 2015; 287 MA Ghasemzadeh (1322_CR42) 2019; 33 A Schoth (1322_CR41) 2016; 6 MK Misra (1322_CR39) 1993; 4 L Cui (1322_CR6) 2015; 25 NB Dewage (1322_CR26) 2018; 263 |
References_xml | – reference: DewageNBLiyanageASSmithQPittmanCUJrPerezFMohanDMlsnaTFast aniline and nitrobenzene remediation from water on magnetized and nonmagnetized Douglas fir biocharChemosphere2019225943953 – reference: KarunanayakeAGToddOACrowleyMRicchettiLPittmanCUJrAndersonRMohanDMlsnaTLead and cadmium remediation using magnetized and nonmagnetized biochar from Douglas firChem. Eng. J.20183314804911:CAS:528:DC%2BC2sXhsVyitLzK – reference: SilvaCGCormaAGarcíaHMetal–organic frameworks as semiconductorsJ. Mater. Chem.201020314131561:CAS:528:DC%2BC3cXkt1Kkurc%3D – reference: GhasemzadehMAMirhosseini-EshkevariBAbdollahi-BasirMHMIL-53 (Fe) metal–organic frameworks (MOFs) as an efficient and reusable catalyst for the one-pot four-component synthesis of pyrano [2, 3-c]-pyrazolesAppl. Organomet. Chem.201933e4679 – reference: KhanTANazirMKhanEAAdsorptive removal of rhodamine B from textile wastewater using water chestnut (Trapa natans L.) peel: adsorption dynamics and kinetic studiesToxicol. Environ. Chem.2013959199311:CAS:528:DC%2BC3sXhsVWisLnF – reference: ZhangCAiLJiangJSolvothermal synthesis of MIL–53 (Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible lightJ. Mater. Chem. A20153307430811:CAS:528:DC%2BC2cXitV2mt7nK – reference: DewageNBLiyanageASPittmanCUJrMohanDMlsnaTFast nitrate and fluoride adsorption and magnetic separation from water on α-Fe2O3 and Fe3O4 dispersed on Douglas fir biocharBioresour. Technol.2018263258265 – reference: LiangRShenLJingFWuWQinNLinRWuLNH2-mediated indium metal–organic framework as a novel visible-light-driven photocatalyst for reduction of the aqueous Cr(VI)Appl. Catal. B20151622452511:CAS:528:DC%2BC2cXht1KitrjF – reference: AngınDŞensözSEffect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus L.)Int. J. Phytorem.201416684693 – reference: KimKCYoonT-UBaeY-SApplicability of using CO2 adsorption isotherms to determine BET surface areas of microporous materialsMicroporous Mesoporous Mater.20162242943011:CAS:528:DC%2BC28XhtFOhurk%3D – reference: AlHamediFHRaufMAshrafSSDegradation studies of Rhodamine B in the presence of UV/H2O2Desalination20092391591661:CAS:528:DC%2BD1MXhvFantbk%3D – reference: TanX-FLiuY-GGuY-LXuYZengG-MHuX-JLiuS-BWangXLiuS-MLiJBiochar-based nano-composites for the decontamination of wastewater: a reviewBioresour. Technol.20162123183331:CAS:528:DC%2BC28XmvVCns7g%3D27131871 – reference: HoY-SMcKayGPseudo-second order model for sorption processesProcess Biochem.1999344514651:CAS:528:DyaK1MXlt1Omtbk%3D – reference: NavarathnaCMKarunanayakeAGGunatilakeSRPittmanCUJr.FerezFMohanDMlsnaTRemoval of Arsenic(III) from water using magnetite precipitated onto Douglas fir biocharJ. Environ. Manage.2007250109429 – reference: DiaoZ-HLiuJ-JHuY-XKongL-JJiangDXuX-RComparative study of Rhodamine B degradation by the systems pyrite/H2O2 and pyrite/persulfate: reactivity, stability, products and mechanismSep. Purif. Technol.20171843743831:CAS:528:DC%2BC2sXnsl2lsLc%3D – reference: KarunanayakeAGToddOACrowleyMLRicchettiLBPittmanCUJrAndersonRMlsnaTERapid removal of salicylic acid, 4-nitroaniline, benzoic acid and phthalic acid from wastewater using magnetized fast pyrolysis biochar from waste Douglas firChem. Eng. J.201731975881:CAS:528:DC%2BC2sXksV2gtLY%3D – reference: GuillouNWaltonRIMillangeFMIL-53 (Fe): a good example to illustrate the power of powder diffraction in the field of MOFsZeitschrift für Kristallographie Crystall. Mater.20102255525561:CAS:528:DC%2BC3MXit1OjtLs%3D – reference: RenGWangXHuangPZhongBZhangZYangLYangXChromium (VI) adsorption from wastewater using porous magnetite nanoparticles prepared from titanium residue by a novel solid-phase reduction methodSci. Total Environ.201760790091028724223 – reference: Velo-GalaILópez-PeñalverJSánchez-PoloMRivera-UtrillaJActivated carbon as photocatalyst of reactions in aqueous phaseAppl. Catal. B.2013142694704 – reference: ZhangJYanHChenYChenRHeYLiuWEfficient degradation of aqueous Rhodamine B irradiation under indoor light using a SiO2–Hypocrellin B complexPhotochem. Photobiol.2016926446481:CAS:528:DC%2BC28XptFWnsrw%3D27135189 – reference: CheethamAKBennettTDCoudertF-XGoodwinALDefects and disorder in metal organic frameworksDalton Trans.201645411341261:CAS:528:DC%2BC2MXitVGgt73J26836459 – reference: XiongWZengGYangZZhouYZhangCChengMLiuYHuLWanJZhouCAdsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53 (Fe) as new adsorbentSci. Total Environ.20186272352441:CAS:528:DC%2BC1cXitFynsrY%3D29426146 – reference: SalehTAGuptaVKFunctionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine BJ. Colloid Interface Sci.20113623373441:CAS:528:DC%2BC3MXhtVSqu7fI21788030 – reference: LiangRShenLJingFQinNWuLPreparation of MIL-53 (Fe)-reduced graphene oxide nanocomposites by a simple self-assembly strategy for increasing interfacial contact: efficient visible-light photocatalystsACS Appl. Mater. Interfaces.20157950795151:CAS:528:DC%2BC2MXmvVygtLk%3D25894300 – reference: JainRMathurMSikarwarSMittalARemoval of the hazardous dye rhodamine B through photocatalytic and adsorption treatmentsJ. Environ. Manage.2007859569641:CAS:528:DC%2BD2sXhsVCntrzO17239520 – reference: MohanDAbhishekKSarswatAPatelMSinghPPittmanCUJrBiochar production and applications in soil fertility and carbon sequestration—a sustainable solution to crop-residue burning in IndiaRSC Adv.201885085201:CAS:528:DC%2BC1cXitlOmtQ%3D%3D – reference: LiangRJingFShenLQinNWuLMIL-53 (Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyesJ. Hazard. Mater.20152873643721:CAS:528:DC%2BC2MXhsVegs74%3D25677473 – reference: ZhaoJLeeDTYagaRWHallMGBartonHFWoodwardIROldhamCJWallsHJPetersonGWParsonsGNUltra-fast degradation of chemical warfare agents using MOF–nanofiber kebabsAngew. Chem. Int. Ed.20165513224132281:CAS:528:DC%2BC28XhsFGhtbrE – reference: WangFHeXSunLChenJWangXXuJHanXEngineering an N-doped TiO2@ N-doped C butterfly-like nanostructure with long-lived photo-generated carriers for efficient photocatalytic selective amine oxidationJ. Mater. Chem. A20186209120991:CAS:528:DC%2BC2sXitVeks7zO – reference: ShenLWuWLiangRLinRWuLHighly dispersed palladium nanoparticles anchored on UiO-66 (NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalystNanoscale20135937493821:CAS:528:DC%2BC3sXhsVers7%2FI23959004 – reference: SingKSReporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)Pure Appl. Chem.1985576036191:CAS:528:DyaL2MXhvFWrtb4%3D – reference: SchothAKeithADLandfesterKMuñoz-EspíRSilanization as a versatile functionalization method for the synthesis of polymer/magnetite hybrid nanoparticles with controlled structureRSC Adv.2016653903539111:CAS:528:DC%2BC28Xoslajs70%3D – reference: YuKYangSHeHSunCGuCJuYVisible light-driven photocatalytic degradation of rhodamine B over NaBiO3: pathways and mechanismJ. Phys. Chem. A200911310024100321:CAS:528:DC%2BD1MXhtVelurrO19705819 – reference: KarunanayakeAGNavarathnaCGunatilakeSCrowleyMAndersonRMohanDPerezFPittmanCUJrMlsnaTEFe3O4 nanoparticles dispersed on Douglas fir biochar for phosphate sorptionACS Appl. Nano Mater.20192346734791:CAS:528:DC%2BC1MXptlKqurk%3D – reference: MohanDSarswatAOkYSPittmanCUJrOrganic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical reviewBioresour. Technol.20141601912021:CAS:528:DC%2BC2cXksF2hsL8%3D24636918 – reference: DewageNBFowlerREPittmanCUJrMohanDMlsnaTLead (Pb2+) sorptive removal using chitosan-modified biochar: batch and fixed-bed studiesRSC Adv.201882536825377 – reference: LiuNJingCLiZHuangWGaoBYouFZhangXEffect of synthesis conditions on the photocatalytic degradation of Rhodamine B of MIL-53 (Fe)Mater. Lett.201923792951:CAS:528:DC%2BC1cXit1Crs7zF – reference: LangmuirIThe adsorption of gases on plane surfaces of glass, mica and platinumJ. Am. Chem. Soc.191840136114031:CAS:528:DyaC1cXht1KgsA%3D%3D – reference: LehmannJJosephSBiochar for Environmental Management: Science, Technology and Implementation2015LondonRoutledge – reference: ZhouH-CLongJRYaghiOMIntroduction to Metal–Organic Frameworks2012WashingtonACS Publications – reference: RamezanalizadehHManteghiFSynthesis of a novel MOF/CuWO4 heterostructure for efficient photocatalytic degradation and removal of water pollutantsJ. Cleaner Prod.2018172265526661:CAS:528:DC%2BC2sXhvFSrsr%2FP – reference: DhakshinamoorthyAAsiriAMGarciaHCatalysis by metal–organic frameworks in waterChem. Commun.2014501280012814 – reference: QiQChiWLiYQiaoQChenJMiaoLZhangYLiJJiWXuTA H-bond strategy to develop acid-resistant photoswitchable rhodamine spirolactams for super-resolution single-molecule localization microscopyChem. Sci.201910491449221:CAS:528:DC%2BC1MXms1Gqtrk%3D311609626510312 – reference: WuYFengJXieBZouLLiYLiZAn extremely stable 2D Zinc(II) coordination polymer exhibiting high sensing ability and photocatalytic degradation activities of dyesJ. Inorg. Organomet. Polym Mater.201727124312511:CAS:528:DC%2BC2sXns1Grt7Y%3D – reference: YaghiOMO’keeffeMOckwigNWChaeHKEddaoudiMKimJReticular synthesis and the design of new materialsNature20034237051:CAS:528:DC%2BD3sXksV2itro%3D – reference: DownieACroskyAMunroePPhysical properties of biochar. Biochar for environmental managementSci. Technol.20091332 – reference: LinXZhangFPanSYuHZhangFDongXHanSDongLBaiCWangZBa4(BO3)3(SiO4)·Ba3X (X = Cl, Br): new salt-inclusion borosilicate halides as potential deep UV nonlinear optical materialsJ. Mater. Chem. C20142425742641:CAS:528:DC%2BC2cXnvFektL4%3D – reference: EnnisCJEvansAGIslamMRalebitso-SeniorTKSeniorEBiochar: carbon sequestration, land remediation, and impacts on soil microbiologyCrit. Rev. Environ. Sci. Technol.201242231123641:CAS:528:DC%2BC38XhsFKls7zL – reference: LiuHRenXChenLSynthesis and characterization of magnetic metal–organic framework for the adsorptive removal of Rhodamine B from aqueous solutionJ. Ind. Eng. Chem.2016342782851:CAS:528:DC%2BC2MXhvFKkurjM – reference: NovotnyVWater quality: Prevention, Identification and Management of Diffuse Pollution1994New YorkVan Nostrand-Reinhold Publishers – reference: PeirisCNayanatharaONavarathnaCMJayawardhanaYNawalageSBurkGKarunanayakeAGMadduriSBVithanageMKaumalMThe influence of three acid modifications on the physicochemical characteristics of tea-waste biochar pyrolyzed at different temperatures: a comparative studyRSC Adv.201991761217622 – reference: CuiLMengXFanYLiXBiCSynthesis, crystal structures, photocatalysis for rhodamine B degradation of a organobismuth(V) dithiocarbamate polymer [PhBiS2CN(C2H5)2Cl] nJ. Inorg. Organomet. Polym Mater.201525149014941:CAS:528:DC%2BC2MXhtleltL%2FE – reference: PeirisCGunatilakeSRMlsnaTEMohanDVithanageMBiochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: a critical reviewBiores. Technol.20172461501591:CAS:528:DC%2BC2sXht1KqsLzK – reference: ShenLLiangSWuWLiangRWuLMultifunctional NH 2-mediated zirconium metal–organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(VI)Dalton Trans.20134213649136571:CAS:528:DC%2BC3sXhtlGmsbvP23903996 – reference: AnandkumarJMandalBAdsorption of chromium(VI) and Rhodamine B by surface modified tannery waste: Kinetic, mechanistic and thermodynamic studiesJ. Hazard. Mater.2011186108810961:CAS:528:DC%2BC3MXhvVajtrs%3D21168268 – reference: KarunanayakeAGBombuwala DewageNToddOAEssandohMAndersonRMlsnaTMlsnaDSalicylic acid and 4-nitroaniline removal from water using magnetic biochar: an environmental and analytical experiment for the undergraduate laboratoryJ. Chem. Educ.201693193519381:CAS:528:DC%2BC28XhslSmtLnK – reference: TanKNijemNGaoYZuluagaSLiJThonhauserTChabalYJWater interactions in metal organic frameworksCrystEngComm2015172472601:CAS:528:DC%2BC2cXhslagsLvJ – reference: KonstantinouIKAlbanisTATiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a reviewAppl. Catal. B.2004491141:CAS:528:DC%2BD2cXisl2ksL4%3D – reference: Al-KahtaniAAPhotocatalytic degradation of rhodamine B dye in wastewater using gelatin/cus/PVA nanocomposites under solar light irradiationJ. Biomater. Nanobiotechnol.2017866821:CAS:528:DC%2BC1cXhtlSisLnL – reference: JayawardhanaYGunatilakeSRMahatantilaKGinigeMPVithanageMSorptive removal of toluene and m-xylene by municipal solid waste biochar: Simultaneous municipal solid waste management and remediation of volatile organic compoundsJ. Environ. Manage.20192383233301:CAS:528:DC%2BC1MXkslaru7w%3D30870672 – reference: GrosvenorAKobeBBiesingerMMcIntyreNInvestigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compoundsSurf. Interface Anal.200436156415741:CAS:528:DC%2BD2MXjtVWgtQ%3D%3D – reference: GrauPTextile industry wastewaters treatmentWater Sci. Technol.199124971031:CAS:528:DyaK3MXktFCltrY%3D – reference: GuptaVSuhasAliISainiVRemoval of rhodamine B, fast green, and methylene blue from wastewater using red mud, an aluminum industry wasteInd. Eng. Chem. Res.200443174017471:CAS:528:DC%2BD2cXhs1yiuro%3D – reference: MisraMKRaglandKWBakerAJWood ash composition as a function of furnace temperatureBiomass Bioenerg.199341031161:CAS:528:DyaK3sXlsVartrg%3D – volume: 6 start-page: 2091 year: 2018 ident: 1322_CR13 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA09166D – volume-title: Introduction to Metal–Organic Frameworks year: 2012 ident: 1322_CR4 – volume: 239 start-page: 159 year: 2009 ident: 1322_CR63 publication-title: Desalination doi: 10.1016/j.desal.2008.03.016 – volume-title: Water quality: Prevention, Identification and Management of Diffuse Pollution year: 1994 ident: 1322_CR1 – volume: 50 start-page: 12800 year: 2014 ident: 1322_CR9 publication-title: Chem. Commun. doi: 10.1039/C4CC04387A – volume: 45 start-page: 4113 year: 2016 ident: 1322_CR34 publication-title: Dalton Trans. doi: 10.1039/C5DT04392A – volume: 40 start-page: 1361 year: 1918 ident: 1322_CR48 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja02242a004 – volume: 184 start-page: 374 year: 2017 ident: 1322_CR57 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.05.016 – volume: 9 start-page: 17612 year: 2019 ident: 1322_CR16 publication-title: RSC Adv. doi: 10.1039/C9RA02729G – volume: 113 start-page: 10024 year: 2009 ident: 1322_CR59 publication-title: J. Phys. Chem. A doi: 10.1021/jp905173e – volume: 3 start-page: 3074 year: 2015 ident: 1322_CR62 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04622F – volume: 331 start-page: 480 year: 2018 ident: 1322_CR22 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.08.124 – volume: 10 start-page: 4914 year: 2019 ident: 1322_CR46 publication-title: Chem. Sci. doi: 10.1039/C9SC01284B – volume: 43 start-page: 1740 year: 2004 ident: 1322_CR31 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie034218g – volume: 319 start-page: 75 year: 2017 ident: 1322_CR23 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.02.116 – volume: 5 start-page: 9374 year: 2013 ident: 1322_CR8 publication-title: Nanoscale doi: 10.1039/c3nr03153e – volume: 49 start-page: 1 year: 2004 ident: 1322_CR14 publication-title: Appl. Catal. B. doi: 10.1016/j.apcatb.2003.11.010 – volume: 92 start-page: 644 year: 2016 ident: 1322_CR56 publication-title: Photochem. Photobiol. doi: 10.1111/php.12596 – volume: 224 start-page: 294 year: 2016 ident: 1322_CR40 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2016.01.003 – volume: 34 start-page: 451 year: 1999 ident: 1322_CR47 publication-title: Process Biochem. doi: 10.1016/S0032-9592(98)00112-5 – volume: 57 start-page: 603 year: 1985 ident: 1322_CR49 publication-title: Pure Appl. Chem. doi: 10.1351/pac198557040603 – volume: 238 start-page: 323 year: 2019 ident: 1322_CR18 publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2019.02.097 – volume: 250 start-page: 109429 year: 2007 ident: 1322_CR64 publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2019.109429 – volume: 13 start-page: 32 year: 2009 ident: 1322_CR36 publication-title: Sci. Technol. – volume: 8 start-page: 66 year: 2017 ident: 1322_CR58 publication-title: J. Biomater. Nanobiotechnol. doi: 10.4236/jbnb.2017.81005 – volume: 4 start-page: 103 year: 1993 ident: 1322_CR39 publication-title: Biomass Bioenerg. doi: 10.1016/0961-9534(93)90032-Y – volume: 85 start-page: 956 year: 2007 ident: 1322_CR61 publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2006.11.002 – volume: 6 start-page: 53903 year: 2016 ident: 1322_CR41 publication-title: RSC Adv. doi: 10.1039/C6RA08896A – volume: 93 start-page: 1935 year: 2016 ident: 1322_CR24 publication-title: J. Chem. Educ. doi: 10.1021/acs.jchemed.6b00154 – volume: 42 start-page: 13649 year: 2013 ident: 1322_CR54 publication-title: Dalton Trans. doi: 10.1039/c3dt51479j – volume: 627 start-page: 235 year: 2018 ident: 1322_CR35 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.01.249 – volume: 17 start-page: 247 year: 2015 ident: 1322_CR10 publication-title: CrystEngComm doi: 10.1039/C4CE01406E – volume-title: Biochar for Environmental Management: Science, Technology and Implementation year: 2015 ident: 1322_CR21 doi: 10.4324/9780203762264 – volume: 423 start-page: 705 year: 2003 ident: 1322_CR3 publication-title: Nature doi: 10.1038/nature01650 – volume: 246 start-page: 150 year: 2017 ident: 1322_CR19 publication-title: Biores. Technol. doi: 10.1016/j.biortech.2017.07.150 – volume: 237 start-page: 92 year: 2019 ident: 1322_CR37 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.11.079 – volume: 142 start-page: 694 year: 2013 ident: 1322_CR53 publication-title: Appl. Catal. B. doi: 10.1016/j.apcatb.2013.06.003 – volume: 2 start-page: 3467 year: 2019 ident: 1322_CR29 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b00430 – volume: 607 start-page: 900 year: 2017 ident: 1322_CR50 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.06.103 – volume: 36 start-page: 1564 year: 2004 ident: 1322_CR43 publication-title: Surf. Interface Anal. doi: 10.1002/sia.1984 – volume: 362 start-page: 337 year: 2011 ident: 1322_CR44 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2011.06.081 – volume: 33 start-page: e4679 year: 2019 ident: 1322_CR42 publication-title: Appl. Organomet. Chem. doi: 10.1002/aoc.4679 – volume: 287 start-page: 364 year: 2015 ident: 1322_CR32 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.01.048 – volume: 27 start-page: 1243 year: 2017 ident: 1322_CR7 publication-title: J. Inorg. Organomet. Polym Mater. doi: 10.1007/s10904-017-0571-3 – volume: 212 start-page: 318 year: 2016 ident: 1322_CR28 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.04.093 – volume: 160 start-page: 191 year: 2014 ident: 1322_CR17 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.01.120 – volume: 172 start-page: 2655 year: 2018 ident: 1322_CR11 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2017.11.145 – volume: 2 start-page: 4257 year: 2014 ident: 1322_CR52 publication-title: J. Mater. Chem. C doi: 10.1039/c4tc00079j – volume: 225 start-page: 943 year: 2019 ident: 1322_CR25 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.03.050 – volume: 225 start-page: 552 year: 2010 ident: 1322_CR33 publication-title: Zeitschrift für Kristallographie Crystall. Mater. doi: 10.1524/zkri.2010.1353 – volume: 16 start-page: 684 year: 2014 ident: 1322_CR38 publication-title: Int. J. Phytorem. doi: 10.1080/15226514.2013.856842 – volume: 95 start-page: 919 year: 2013 ident: 1322_CR30 publication-title: Toxicol. Environ. Chem. doi: 10.1080/02772248.2013.840369 – volume: 162 start-page: 245 year: 2015 ident: 1322_CR55 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2014.06.049 – volume: 34 start-page: 278 year: 2016 ident: 1322_CR60 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2015.11.020 – volume: 25 start-page: 1490 year: 2015 ident: 1322_CR6 publication-title: J. Inorg. Organomet. Polym Mater. doi: 10.1007/s10904-015-0267-5 – volume: 24 start-page: 97 year: 1991 ident: 1322_CR2 publication-title: Water Sci. Technol. doi: 10.2166/wst.1991.0015 – volume: 55 start-page: 13224 year: 2016 ident: 1322_CR12 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201606656 – volume: 186 start-page: 1088 year: 2011 ident: 1322_CR51 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.11.104 – volume: 20 start-page: 3141 year: 2010 ident: 1322_CR5 publication-title: J. Mater. Chem. doi: 10.1039/b924937k – volume: 8 start-page: 508 year: 2018 ident: 1322_CR20 publication-title: RSC Adv. doi: 10.1039/C7RA10353K – volume: 263 start-page: 258 year: 2018 ident: 1322_CR26 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.05.001 – volume: 42 start-page: 2311 year: 2012 ident: 1322_CR15 publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2011.574115 – volume: 7 start-page: 9507 year: 2015 ident: 1322_CR45 publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.5b00682 – volume: 8 start-page: 25368 year: 2018 ident: 1322_CR27 publication-title: RSC Adv. doi: 10.1039/C8RA04600J |
SSID | ssj0038051 |
Score | 2.5258904 |
Snippet | MIL-53-Fe metal–organic framework (MOF) was grown using the terephthalic acid linker and FeCl
3
into an already prepared, high surface area, magnetic, Douglas... MIL-53-Fe metal–organic framework (MOF) was grown using the terephthalic acid linker and FeCl3 into an already prepared, high surface area, magnetic, Douglas... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 214 |
SubjectTerms | Adsorbents Adsorption Adsorptivity Chemical analysis Chemistry Chemistry and Materials Science Contaminants Ferric chloride Heavy metals Hexavalent chromium Infrared analysis Inorganic Chemistry Iron chlorides Iron oxides Metal-organic frameworks Organic Chemistry Photocatalysis Photodegradation Polymer Sciences Reaction kinetics Regeneration Rhodamine Sorption Tanning Terephthalic acid Wastewater X ray photoelectron spectroscopy |
Title | Rhodamine B Adsorptive Removal and Photocatalytic Degradation on MIL-53-Fe MOF/Magnetic Magnetite/Biochar Composites |
URI | https://link.springer.com/article/10.1007/s10904-019-01322-w https://www.proquest.com/docview/2343267533 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEG8UHvTF-BlRJH3wTRtYu27dIyATP0BDJMGnZf2YmMhGYIb439uOTdSoicmSLVnXh7vb9Xft_e4AOJUKNzjmEaLKUsiWlKEQey6yOBVMeY3QpYY73Os73aF9PaKjnBQ2L7LdiyPJzFN_Irt5WcaEye8xIdRiHZSpid21FQ9xs_C_hDXoskqqayMdLpCcKvPzHF-XoxXG_HYsmq02_jbYymEibC71ugPWVLwLNtpFd7Y9kA7GiQwnGiPCFmzKeTKbGscFB2qSaOOBYSzh_ThJk2x_5k1PAy9MXYhlCyWor97VLaIE-Qr27vx6L3yKDZ8R5g-pqreeE8PJgsZlmNQuNd8HQ7_z0O6ivIMCEoQ6KfKE1pBSLhMRE1kpeExDjXJCxj2PM2F7Gj0xyTEWDUc50paER1xIRzjcUSQiB6AUJ7E6BFBGno7kCGaW7dpasYxElsSScg0xo4hYFWAVggxEXl7cdLl4CVaFkY3wAy38IBN-sKiAs49vpsviGn-Orhb6CfIfbR5gQ4zVQQ8hFXBe6Gz1-vfZjv43_BhsYhNpZ5svVVBKZ6_qRMORlNdAuem3Wn1zv3y86dQya3wHkyXZbQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UD3gxfkYUtQdv2sDadeuOgBJQhoZAwm1ZPyYmshGYIf73tmMTNWpissOSde_wXvv6e-37vQfApVS4zjGPEFWWQrakDIXYc5HFqWDKq4cuNdxhv-90RvbdmI5zUtiiyHYvriQzT_2J7OZlGRMmv8eEUMtNsKXBADOJXCPcKPwvYXW6qpLq2kiHCySnyvws4-t2tMaY365Fs92mvQt2cpgIGyu77oENFe-DcqvoznYA0sEkkeFUY0TYhA25SOYz47jgQE0TPXlgGEv4OEnSJDufedNi4I2pC7FqoQT143d7iBLUVtB_aNf88Ck2fEaYv6Sq1nxODCcLGpdhUrvU4hCM2rfDVgflHRSQINRJkSe0hZRymYiYyErBYxpqlBMy7nmcCdvT6IlJjrGoO8qRtiQ84kI6wuGOIhE5AqU4idUxgDLydCRHMLNs19aGZSSyJJaUa4gZRcSqAKtQZCDy8uKmy8VLsC6MbJQfaOUHmfKDZQVcffwzWxXX-HN0tbBPkC-0RYANMVYHPYRUwHVhs_Xn36Wd_G_4BSh3hn4v6HX796dgG5uoOzuIqYJSOn9VZxqapPw8m4nvWNfZUA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5eQH0RrzivefBNw9akadPHuVmmbirDgW-luTnBtWOriP_epBc3RQWhD4WmeTgnPflOc77vAHAqFW5wzDWiylHIlZShGAc-cjgVTAWN2KeWO9y79ToD9_qRPs6x-PNq9-pIsuA0WJWmJKuPpa7PEd-CvHrC1vrYdOptESybcOzYdT3AzSoWE9aghWKq7yKTOpCSNvPzHF-3phne_HZEmu884QZYLyEjbBY-3gQLKtkCq62qU9s2yPrDVMYjgxfhBWzKaToZ2yAG-2qUmoUE40TC-2Gapfm_mnczDWxbjYiinRI0V--qiyhBoYK9u7Dei58Sy22E5U2m6hfPqeVnQRs-bJmXmu6AQXj50OqgspsCEoR6GQqE8ZZSPhOaiVwWHtPYIJ6Y8SDgTLiBQVJMcoxFw1OedCXhmgvpCY97imiyC5aSNFF7AEodmKyOYOa4vmuczIh2JJaUG7ipNXFqwKkMGYlSatx2vHiJZiLJ1viRMX6UGz96q4Gzz3fGhdDGn6MPK_9E5Uc3jbAlyZoEiJAaOK98Nnv8-2z7_xt-Albu22HUvbq9OQBr2Cbg-T-ZQ7CUTV7VkUEpGT_OF-IHCn_djA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rhodamine+B+Adsorptive+Removal+and+Photocatalytic+Degradation+on+MIL-53-Fe+MOF%2FMagnetic+Magnetite%2FBiochar+Composites&rft.jtitle=Journal+of+inorganic+and+organometallic+polymers+and+materials&rft.au=Navarathna%2C+Chanaka+M&rft.au=Dewage%2C+Narada+B&rft.au=Karunanayake%2C+Akila+G&rft.au=Farmer%2C+Erin+L&rft.date=2020-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1574-1443&rft.eissn=1574-1451&rft.volume=30&rft.issue=1&rft.spage=214&rft.epage=229&rft_id=info:doi/10.1007%2Fs10904-019-01322-w&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-1443&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-1443&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-1443&client=summon |