Rhodamine B Adsorptive Removal and Photocatalytic Degradation on MIL-53-Fe MOF/Magnetic Magnetite/Biochar Composites

MIL-53-Fe metal–organic framework (MOF) was grown using the terephthalic acid linker and FeCl 3 into an already prepared, high surface area, magnetic, Douglas fir biochar/Fe 3 O 4 (MBC) adsorbent hybrid. This resulting triphase hybrid, multifunctional, magnetically recoverable, sorptive, photocataly...

Full description

Saved in:
Bibliographic Details
Published inJournal of inorganic and organometallic polymers and materials Vol. 30; no. 1; pp. 214 - 229
Main Authors Navarathna, Chanaka M., Dewage, Narada B., Karunanayake, Akila G., Farmer, Erin L., Perez, Felio, Hassan, El Barbary, Mlsna, Todd E., Pittman, Charles U.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract MIL-53-Fe metal–organic framework (MOF) was grown using the terephthalic acid linker and FeCl 3 into an already prepared, high surface area, magnetic, Douglas fir biochar/Fe 3 O 4 (MBC) adsorbent hybrid. This resulting triphase hybrid, multifunctional, magnetically recoverable, sorptive, photocatalytic and degradative, adsorbent (MOF–MBC) was used both to remove and catalyze the photodegradation of Rhodamine B (Rh B) with or without Cr 6+ present. Rh B is a widely used colorant in textile, printing and tanning industries that is also associated with deleterious health effects. Batch aqueous sorption studies were performed at various pHs, Rh B concentrations and temperatures in-order to determine the optimum adsorption pH, kinetics, thermodynamics and sorption capacity. This adsorption followed pseudo-2nd-order kinetics and exhibited a Rh B Langmuir adsorption capacity of ~ 55 mg/g at pH 6, 200 rpm agitation and 25 °C. This MOF–MBC hybrid was characterized by SEM, TEM, EDS, XRD, FT-IR, TGA, BET, Elemental Analysis and XPS. Deethylated and carboxylic compounds were identified as photodegradation intermediates. Electrostatic and π–π stacking interactions are thought to play a significant role in Rh B sorption. Hexavalent chromium (Cr 6+ ) and Rh B often co-exist in tannery and printing waste water. Cr 6+ can trigger the photo-degradation of Rh B into CO 2 and H 2 O in the presence of both MIL-53-Fe MOF and MOF–MBC. Hence, adsorbent stripping regeneration can be minimized in real world applications. The biochar phase, aids to disperse the MOF, to minimize particle aggregation, to provide extra stability to the MOF, and serves as secondary adsorption site for heavy metal, oxy anion and organic contaminants. Large biochar particles allow reasonable flow through column beds while supporting other nanophases, which would cause large pressure drops when used alone.
AbstractList MIL-53-Fe metal–organic framework (MOF) was grown using the terephthalic acid linker and FeCl 3 into an already prepared, high surface area, magnetic, Douglas fir biochar/Fe 3 O 4 (MBC) adsorbent hybrid. This resulting triphase hybrid, multifunctional, magnetically recoverable, sorptive, photocatalytic and degradative, adsorbent (MOF–MBC) was used both to remove and catalyze the photodegradation of Rhodamine B (Rh B) with or without Cr 6+ present. Rh B is a widely used colorant in textile, printing and tanning industries that is also associated with deleterious health effects. Batch aqueous sorption studies were performed at various pHs, Rh B concentrations and temperatures in-order to determine the optimum adsorption pH, kinetics, thermodynamics and sorption capacity. This adsorption followed pseudo-2nd-order kinetics and exhibited a Rh B Langmuir adsorption capacity of ~ 55 mg/g at pH 6, 200 rpm agitation and 25 °C. This MOF–MBC hybrid was characterized by SEM, TEM, EDS, XRD, FT-IR, TGA, BET, Elemental Analysis and XPS. Deethylated and carboxylic compounds were identified as photodegradation intermediates. Electrostatic and π–π stacking interactions are thought to play a significant role in Rh B sorption. Hexavalent chromium (Cr 6+ ) and Rh B often co-exist in tannery and printing waste water. Cr 6+ can trigger the photo-degradation of Rh B into CO 2 and H 2 O in the presence of both MIL-53-Fe MOF and MOF–MBC. Hence, adsorbent stripping regeneration can be minimized in real world applications. The biochar phase, aids to disperse the MOF, to minimize particle aggregation, to provide extra stability to the MOF, and serves as secondary adsorption site for heavy metal, oxy anion and organic contaminants. Large biochar particles allow reasonable flow through column beds while supporting other nanophases, which would cause large pressure drops when used alone.
MIL-53-Fe metal–organic framework (MOF) was grown using the terephthalic acid linker and FeCl3 into an already prepared, high surface area, magnetic, Douglas fir biochar/Fe3O4 (MBC) adsorbent hybrid. This resulting triphase hybrid, multifunctional, magnetically recoverable, sorptive, photocatalytic and degradative, adsorbent (MOF–MBC) was used both to remove and catalyze the photodegradation of Rhodamine B (Rh B) with or without Cr6+ present. Rh B is a widely used colorant in textile, printing and tanning industries that is also associated with deleterious health effects. Batch aqueous sorption studies were performed at various pHs, Rh B concentrations and temperatures in-order to determine the optimum adsorption pH, kinetics, thermodynamics and sorption capacity. This adsorption followed pseudo-2nd-order kinetics and exhibited a Rh B Langmuir adsorption capacity of ~ 55 mg/g at pH 6, 200 rpm agitation and 25 °C. This MOF–MBC hybrid was characterized by SEM, TEM, EDS, XRD, FT-IR, TGA, BET, Elemental Analysis and XPS. Deethylated and carboxylic compounds were identified as photodegradation intermediates. Electrostatic and π–π stacking interactions are thought to play a significant role in Rh B sorption. Hexavalent chromium (Cr6+) and Rh B often co-exist in tannery and printing waste water. Cr6+ can trigger the photo-degradation of Rh B into CO2 and H2O in the presence of both MIL-53-Fe MOF and MOF–MBC. Hence, adsorbent stripping regeneration can be minimized in real world applications. The biochar phase, aids to disperse the MOF, to minimize particle aggregation, to provide extra stability to the MOF, and serves as secondary adsorption site for heavy metal, oxy anion and organic contaminants. Large biochar particles allow reasonable flow through column beds while supporting other nanophases, which would cause large pressure drops when used alone.
Author Navarathna, Chanaka M.
Dewage, Narada B.
Farmer, Erin L.
Perez, Felio
Karunanayake, Akila G.
Hassan, El Barbary
Mlsna, Todd E.
Pittman, Charles U.
Author_xml – sequence: 1
  givenname: Chanaka M.
  surname: Navarathna
  fullname: Navarathna, Chanaka M.
  organization: Department of Chemistry, Mississippi State University
– sequence: 2
  givenname: Narada B.
  surname: Dewage
  fullname: Dewage, Narada B.
  organization: Department of Chemistry, Mississippi State University
– sequence: 3
  givenname: Akila G.
  surname: Karunanayake
  fullname: Karunanayake, Akila G.
  organization: Department of Chemistry, Mississippi State University, Biochar Supreme Inc
– sequence: 4
  givenname: Erin L.
  surname: Farmer
  fullname: Farmer, Erin L.
  organization: Department of Chemistry, Mississippi State University
– sequence: 5
  givenname: Felio
  surname: Perez
  fullname: Perez, Felio
  organization: Material Science Lab, Integrated Microscopy Center, University of Memphis
– sequence: 6
  givenname: El Barbary
  surname: Hassan
  fullname: Hassan, El Barbary
  organization: Department of Sustainable Bioproducts, Mississippi State University
– sequence: 7
  givenname: Todd E.
  surname: Mlsna
  fullname: Mlsna, Todd E.
  email: TMlsna@chemistry.msstate.edu
  organization: Department of Chemistry, Mississippi State University
– sequence: 8
  givenname: Charles U.
  surname: Pittman
  fullname: Pittman, Charles U.
  email: cpittman@chemistry.msstate.edu
  organization: Department of Chemistry, Mississippi State University
BookMark eNp9kE9rAjEQxUOxULX9Aj0Fet6abDb756i2toJikfYcstlZXdGNTaLit290pYUehAx5DO83ybwOatW6BoQeKXmmhCQ9S0lGooDQzBcLw-Bwg9qUJ1FAI05bvzpid6hj7YoQlhJO28jNl7qQm6oGPMD9wmqzddUe8Bw2ei_XWNYF_lhqp5V0cn10lcIvsDCykK7SNfZnOp4EnAUjwNPZqDeVixpOrotw0BtUWi2lwUO92WrrO_Ye3ZZybeHhcnfR1-j1c_geTGZv42F_EijGYxdkCpQCSFJVpopllPOQS-IrzbMsT1WUxZSkRR6GisQQF1HB8jJXRaziPAZWsi56auZujf7egXVipXem9k-KkEUsjBPOmHeljUsZba2BUqjKnddzRlZrQYk4ZSyajIXPWJwzFgePhv_Qrak20hyvQ6yBrDfXCzB_v7pC_QATFpI2
CitedBy_id crossref_primary_10_1007_s12221_023_00163_2
crossref_primary_10_1007_s10904_023_02956_7
crossref_primary_10_1007_s10311_021_01207_w
crossref_primary_10_1016_j_jece_2022_108194
crossref_primary_10_1016_j_enmm_2022_100669
crossref_primary_10_1007_s13369_024_08728_w
crossref_primary_10_1007_s11164_021_04565_w
crossref_primary_10_1016_j_cej_2024_158501
crossref_primary_10_3390_ma16145081
crossref_primary_10_1016_j_mtcomm_2020_101780
crossref_primary_10_1002_er_8448
crossref_primary_10_1016_j_biortech_2024_131982
crossref_primary_10_3390_molecules30061230
crossref_primary_10_1016_j_mtchem_2021_100692
crossref_primary_10_1016_j_seppur_2022_121064
crossref_primary_10_1021_acs_iecr_1c00140
crossref_primary_10_1007_s00604_023_05829_5
crossref_primary_10_1016_j_apsusc_2021_149906
crossref_primary_10_1155_2023_9985984
crossref_primary_10_1007_s11356_023_27740_5
crossref_primary_10_1007_s11783_023_1689_x
crossref_primary_10_1021_acs_inorgchem_2c01939
crossref_primary_10_1016_j_chemosphere_2021_131171
crossref_primary_10_1016_j_gsd_2024_101314
crossref_primary_10_1007_s10904_022_02523_6
crossref_primary_10_1016_j_chemosphere_2021_130087
crossref_primary_10_1016_j_optmat_2022_112108
crossref_primary_10_1016_j_inoche_2025_114334
crossref_primary_10_3390_polym14122419
crossref_primary_10_1016_j_ces_2024_120073
crossref_primary_10_1021_acsomega_3c04984
crossref_primary_10_1007_s12221_023_00189_6
crossref_primary_10_1016_j_electacta_2022_141363
crossref_primary_10_1021_acsanm_3c00400
crossref_primary_10_1016_j_envres_2020_109817
crossref_primary_10_1016_j_cej_2021_130061
crossref_primary_10_1016_j_flatc_2021_100277
crossref_primary_10_1016_j_arabjc_2023_105303
crossref_primary_10_1007_s43630_023_00383_8
crossref_primary_10_1007_s11356_020_10082_x
crossref_primary_10_1080_1536383X_2021_1891047
crossref_primary_10_1016_j_jece_2021_106636
crossref_primary_10_1039_D4RA04365K
crossref_primary_10_1016_j_seppur_2022_122850
crossref_primary_10_1007_s13201_023_01880_y
crossref_primary_10_3390_pr12071455
crossref_primary_10_1039_D3NJ03470D
crossref_primary_10_1038_s41598_023_32097_3
crossref_primary_10_1039_D3EN00332A
crossref_primary_10_1007_s42773_022_00173_y
crossref_primary_10_1007_s10661_025_13768_2
crossref_primary_10_1016_j_jiec_2023_09_013
crossref_primary_10_3389_fchem_2024_1434454
crossref_primary_10_1007_s10904_020_01704_5
crossref_primary_10_1557_s43578_024_01315_7
crossref_primary_10_1016_j_ijbiomac_2021_04_034
crossref_primary_10_1016_j_jcis_2022_01_067
crossref_primary_10_1016_j_molstruc_2023_136899
crossref_primary_10_1016_j_mtchem_2024_102383
crossref_primary_10_1016_j_psep_2024_09_124
crossref_primary_10_1007_s10562_024_04850_4
crossref_primary_10_1007_s10904_022_02450_6
crossref_primary_10_1002_aoc_7833
crossref_primary_10_1016_j_gce_2023_12_004
crossref_primary_10_1007_s11356_023_31162_8
crossref_primary_10_1016_j_scitotenv_2022_158794
crossref_primary_10_1039_D1VA00019E
crossref_primary_10_1007_s11356_023_27234_4
crossref_primary_10_1016_j_susmat_2021_e00378
crossref_primary_10_1016_j_envpol_2020_115583
crossref_primary_10_1016_j_chemosphere_2022_136155
crossref_primary_10_1016_j_molstruc_2022_134127
crossref_primary_10_1016_j_seppur_2025_132288
crossref_primary_10_3390_cryst10030159
crossref_primary_10_1007_s10904_020_01498_6
crossref_primary_10_3390_molecules26216628
crossref_primary_10_1016_j_molstruc_2024_141287
crossref_primary_10_1016_j_ceramint_2024_02_177
crossref_primary_10_1016_j_jiec_2024_03_041
crossref_primary_10_1016_j_envres_2022_112841
crossref_primary_10_1016_j_psep_2024_05_118
crossref_primary_10_1007_s11270_023_06320_w
crossref_primary_10_1016_j_ijbiomac_2024_138817
crossref_primary_10_5004_dwt_2022_28563
crossref_primary_10_1016_j_ceramint_2022_12_072
crossref_primary_10_1007_s42860_021_00145_6
crossref_primary_10_3389_fchem_2023_1215619
crossref_primary_10_3390_app12168240
crossref_primary_10_1016_j_colsurfa_2022_128447
crossref_primary_10_1016_j_cej_2023_143946
crossref_primary_10_1016_j_cej_2021_131077
crossref_primary_10_1016_j_ccr_2020_213585
crossref_primary_10_1016_j_ijbiomac_2024_137796
crossref_primary_10_1080_15422119_2020_1839909
crossref_primary_10_1016_j_jece_2023_109469
crossref_primary_10_1007_s42247_024_00937_1
crossref_primary_10_1002_ejic_202000450
crossref_primary_10_1016_j_chemosphere_2024_143936
crossref_primary_10_1016_j_rineng_2024_102296
crossref_primary_10_1016_j_seppur_2021_119062
crossref_primary_10_1038_s41598_022_05134_w
crossref_primary_10_1016_j_chemosphere_2021_130273
crossref_primary_10_1016_j_jssc_2021_122210
crossref_primary_10_1016_j_colsurfa_2022_130011
crossref_primary_10_1021_acs_energyfuels_3c00801
crossref_primary_10_1021_acsaenm_3c00472
crossref_primary_10_1039_D4CS00029C
crossref_primary_10_1016_j_seppur_2022_121160
crossref_primary_10_1021_acsami_9b20924
crossref_primary_10_1016_j_est_2024_113512
crossref_primary_10_1002_adsu_202100013
crossref_primary_10_1016_j_chemosphere_2023_139713
crossref_primary_10_1016_j_greeac_2023_100081
crossref_primary_10_1016_j_jelechem_2024_118451
Cites_doi 10.1039/C7TA09166D
10.1016/j.desal.2008.03.016
10.1039/C4CC04387A
10.1039/C5DT04392A
10.1021/ja02242a004
10.1016/j.seppur.2017.05.016
10.1039/C9RA02729G
10.1021/jp905173e
10.1039/C4TA04622F
10.1016/j.cej.2017.08.124
10.1039/C9SC01284B
10.1021/ie034218g
10.1016/j.cej.2017.02.116
10.1039/c3nr03153e
10.1016/j.apcatb.2003.11.010
10.1111/php.12596
10.1016/j.micromeso.2016.01.003
10.1016/S0032-9592(98)00112-5
10.1351/pac198557040603
10.1016/j.jenvman.2019.02.097
10.1016/j.jenvman.2019.109429
10.4236/jbnb.2017.81005
10.1016/0961-9534(93)90032-Y
10.1016/j.jenvman.2006.11.002
10.1039/C6RA08896A
10.1021/acs.jchemed.6b00154
10.1039/c3dt51479j
10.1016/j.scitotenv.2018.01.249
10.1039/C4CE01406E
10.4324/9780203762264
10.1038/nature01650
10.1016/j.biortech.2017.07.150
10.1016/j.matlet.2018.11.079
10.1016/j.apcatb.2013.06.003
10.1021/acsanm.9b00430
10.1016/j.scitotenv.2017.06.103
10.1002/sia.1984
10.1016/j.jcis.2011.06.081
10.1002/aoc.4679
10.1016/j.jhazmat.2015.01.048
10.1007/s10904-017-0571-3
10.1016/j.biortech.2016.04.093
10.1016/j.biortech.2014.01.120
10.1016/j.jclepro.2017.11.145
10.1039/c4tc00079j
10.1016/j.chemosphere.2019.03.050
10.1524/zkri.2010.1353
10.1080/15226514.2013.856842
10.1080/02772248.2013.840369
10.1016/j.apcatb.2014.06.049
10.1016/j.jiec.2015.11.020
10.1007/s10904-015-0267-5
10.2166/wst.1991.0015
10.1002/anie.201606656
10.1016/j.jhazmat.2010.11.104
10.1039/b924937k
10.1039/C7RA10353K
10.1016/j.biortech.2018.05.001
10.1080/10643389.2011.574115
10.1021/acsami.5b00682
10.1039/C8RA04600J
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
2019© Springer Science+Business Media, LLC, part of Springer Nature 2019
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: 2019© Springer Science+Business Media, LLC, part of Springer Nature 2019
DBID AAYXX
CITATION
DOI 10.1007/s10904-019-01322-w
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1574-1451
EndPage 229
ExternalDocumentID 10_1007_s10904_019_01322_w
GrantInformation_xml – fundername: National Science Foundation (US)
  grantid: 1659830
GroupedDBID -58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
2.D
203
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
P9N
PF0
PT4
PT5
QOR
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WK8
YLTOR
Z45
Z7V
Z7X
Z7Y
Z86
Z8P
Z8S
ZE2
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c356t-9ceccee78cf8c3915525a025a8b99b8c496108db22c06e6d4d3bfbcd6c6b6e3f3
IEDL.DBID U2A
ISSN 1574-1443
IngestDate Fri Jul 25 10:52:40 EDT 2025
Thu Apr 24 23:12:07 EDT 2025
Tue Jul 01 01:45:30 EDT 2025
Fri Feb 21 02:25:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Photodegradation
Magnetite nanoparticles
Adsorption
Chromium(VI)
Rhodamine B
MIL-53-Fe MOF/Fe
O
biochar adsorbents
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-9ceccee78cf8c3915525a025a8b99b8c496108db22c06e6d4d3bfbcd6c6b6e3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2343267533
PQPubID 2044289
PageCount 16
ParticipantIDs proquest_journals_2343267533
crossref_citationtrail_10_1007_s10904_019_01322_w
crossref_primary_10_1007_s10904_019_01322_w
springer_journals_10_1007_s10904_019_01322_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200100
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 1
  year: 2020
  text: 20200100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of inorganic and organometallic polymers and materials
PublicationTitleAbbrev J Inorg Organomet Polym
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References PeirisCGunatilakeSRMlsnaTEMohanDVithanageMBiochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: a critical reviewBiores. Technol.20172461501591:CAS:528:DC%2BC2sXht1KqsLzK
DiaoZ-HLiuJ-JHuY-XKongL-JJiangDXuX-RComparative study of Rhodamine B degradation by the systems pyrite/H2O2 and pyrite/persulfate: reactivity, stability, products and mechanismSep. Purif. Technol.20171843743831:CAS:528:DC%2BC2sXnsl2lsLc%3D
KonstantinouIKAlbanisTATiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a reviewAppl. Catal. B.2004491141:CAS:528:DC%2BD2cXisl2ksL4%3D
KarunanayakeAGNavarathnaCGunatilakeSCrowleyMAndersonRMohanDPerezFPittmanCUJrMlsnaTEFe3O4 nanoparticles dispersed on Douglas fir biochar for phosphate sorptionACS Appl. Nano Mater.20192346734791:CAS:528:DC%2BC1MXptlKqurk%3D
QiQChiWLiYQiaoQChenJMiaoLZhangYLiJJiWXuTA H-bond strategy to develop acid-resistant photoswitchable rhodamine spirolactams for super-resolution single-molecule localization microscopyChem. Sci.201910491449221:CAS:528:DC%2BC1MXms1Gqtrk%3D311609626510312
MohanDAbhishekKSarswatAPatelMSinghPPittmanCUJrBiochar production and applications in soil fertility and carbon sequestration—a sustainable solution to crop-residue burning in IndiaRSC Adv.201885085201:CAS:528:DC%2BC1cXitlOmtQ%3D%3D
ShenLWuWLiangRLinRWuLHighly dispersed palladium nanoparticles anchored on UiO-66 (NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalystNanoscale20135937493821:CAS:528:DC%2BC3sXhsVers7%2FI23959004
DewageNBLiyanageASPittmanCUJrMohanDMlsnaTFast nitrate and fluoride adsorption and magnetic separation from water on α-Fe2O3 and Fe3O4 dispersed on Douglas fir biocharBioresour. Technol.2018263258265
ShenLLiangSWuWLiangRWuLMultifunctional NH 2-mediated zirconium metal–organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(VI)Dalton Trans.20134213649136571:CAS:528:DC%2BC3sXhtlGmsbvP23903996
LiangRShenLJingFQinNWuLPreparation of MIL-53 (Fe)-reduced graphene oxide nanocomposites by a simple self-assembly strategy for increasing interfacial contact: efficient visible-light photocatalystsACS Appl. Mater. Interfaces.20157950795151:CAS:528:DC%2BC2MXmvVygtLk%3D25894300
NovotnyVWater quality: Prevention, Identification and Management of Diffuse Pollution1994New YorkVan Nostrand-Reinhold Publishers
RenGWangXHuangPZhongBZhangZYangLYangXChromium (VI) adsorption from wastewater using porous magnetite nanoparticles prepared from titanium residue by a novel solid-phase reduction methodSci. Total Environ.201760790091028724223
KarunanayakeAGToddOACrowleyMLRicchettiLBPittmanCUJrAndersonRMlsnaTERapid removal of salicylic acid, 4-nitroaniline, benzoic acid and phthalic acid from wastewater using magnetized fast pyrolysis biochar from waste Douglas firChem. Eng. J.201731975881:CAS:528:DC%2BC2sXksV2gtLY%3D
SalehTAGuptaVKFunctionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine BJ. Colloid Interface Sci.20113623373441:CAS:528:DC%2BC3MXhtVSqu7fI21788030
LiuHRenXChenLSynthesis and characterization of magnetic metal–organic framework for the adsorptive removal of Rhodamine B from aqueous solutionJ. Ind. Eng. Chem.2016342782851:CAS:528:DC%2BC2MXhvFKkurjM
ZhangJYanHChenYChenRHeYLiuWEfficient degradation of aqueous Rhodamine B irradiation under indoor light using a SiO2–Hypocrellin B complexPhotochem. Photobiol.2016926446481:CAS:528:DC%2BC28XptFWnsrw%3D27135189
DownieACroskyAMunroePPhysical properties of biochar. Biochar for environmental managementSci. Technol.20091332
GrauPTextile industry wastewaters treatmentWater Sci. Technol.199124971031:CAS:528:DyaK3MXktFCltrY%3D
SchothAKeithADLandfesterKMuñoz-EspíRSilanization as a versatile functionalization method for the synthesis of polymer/magnetite hybrid nanoparticles with controlled structureRSC Adv.2016653903539111:CAS:528:DC%2BC28Xoslajs70%3D
AlHamediFHRaufMAshrafSSDegradation studies of Rhodamine B in the presence of UV/H2O2Desalination20092391591661:CAS:528:DC%2BD1MXhvFantbk%3D
TanKNijemNGaoYZuluagaSLiJThonhauserTChabalYJWater interactions in metal organic frameworksCrystEngComm2015172472601:CAS:528:DC%2BC2cXhslagsLvJ
GrosvenorAKobeBBiesingerMMcIntyreNInvestigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compoundsSurf. Interface Anal.200436156415741:CAS:528:DC%2BD2MXjtVWgtQ%3D%3D
ZhaoJLeeDTYagaRWHallMGBartonHFWoodwardIROldhamCJWallsHJPetersonGWParsonsGNUltra-fast degradation of chemical warfare agents using MOF–nanofiber kebabsAngew. Chem. Int. Ed.20165513224132281:CAS:528:DC%2BC28XhsFGhtbrE
EnnisCJEvansAGIslamMRalebitso-SeniorTKSeniorEBiochar: carbon sequestration, land remediation, and impacts on soil microbiologyCrit. Rev. Environ. Sci. Technol.201242231123641:CAS:528:DC%2BC38XhsFKls7zL
LehmannJJosephSBiochar for Environmental Management: Science, Technology and Implementation2015LondonRoutledge
MohanDSarswatAOkYSPittmanCUJrOrganic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical reviewBioresour. Technol.20141601912021:CAS:528:DC%2BC2cXksF2hsL8%3D24636918
MisraMKRaglandKWBakerAJWood ash composition as a function of furnace temperatureBiomass Bioenerg.199341031161:CAS:528:DyaK3sXlsVartrg%3D
JainRMathurMSikarwarSMittalARemoval of the hazardous dye rhodamine B through photocatalytic and adsorption treatmentsJ. Environ. Manage.2007859569641:CAS:528:DC%2BD2sXhsVCntrzO17239520
RamezanalizadehHManteghiFSynthesis of a novel MOF/CuWO4 heterostructure for efficient photocatalytic degradation and removal of water pollutantsJ. Cleaner Prod.2018172265526661:CAS:528:DC%2BC2sXhvFSrsr%2FP
KarunanayakeAGToddOACrowleyMRicchettiLPittmanCUJrAndersonRMohanDMlsnaTLead and cadmium remediation using magnetized and nonmagnetized biochar from Douglas firChem. Eng. J.20183314804911:CAS:528:DC%2BC2sXhsVyitLzK
LinXZhangFPanSYuHZhangFDongXHanSDongLBaiCWangZBa4(BO3)3(SiO4)·Ba3X (X = Cl, Br): new salt-inclusion borosilicate halides as potential deep UV nonlinear optical materialsJ. Mater. Chem. C20142425742641:CAS:528:DC%2BC2cXnvFektL4%3D
LiuNJingCLiZHuangWGaoBYouFZhangXEffect of synthesis conditions on the photocatalytic degradation of Rhodamine B of MIL-53 (Fe)Mater. Lett.201923792951:CAS:528:DC%2BC1cXit1Crs7zF
GuillouNWaltonRIMillangeFMIL-53 (Fe): a good example to illustrate the power of powder diffraction in the field of MOFsZeitschrift für Kristallographie Crystall. Mater.20102255525561:CAS:528:DC%2BC3MXit1OjtLs%3D
LiangRJingFShenLQinNWuLMIL-53 (Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyesJ. Hazard. Mater.20152873643721:CAS:528:DC%2BC2MXhsVegs74%3D25677473
PeirisCNayanatharaONavarathnaCMJayawardhanaYNawalageSBurkGKarunanayakeAGMadduriSBVithanageMKaumalMThe influence of three acid modifications on the physicochemical characteristics of tea-waste biochar pyrolyzed at different temperatures: a comparative studyRSC Adv.201991761217622
TanX-FLiuY-GGuY-LXuYZengG-MHuX-JLiuS-BWangXLiuS-MLiJBiochar-based nano-composites for the decontamination of wastewater: a reviewBioresour. Technol.20162123183331:CAS:528:DC%2BC28XmvVCns7g%3D27131871
XiongWZengGYangZZhouYZhangCChengMLiuYHuLWanJZhouCAdsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53 (Fe) as new adsorbentSci. Total Environ.20186272352441:CAS:528:DC%2BC1cXitFynsrY%3D29426146
DewageNBFowlerREPittmanCUJrMohanDMlsnaTLead (Pb2+) sorptive removal using chitosan-modified biochar: batch and fixed-bed studiesRSC Adv.201882536825377
Velo-GalaILópez-PeñalverJSánchez-PoloMRivera-UtrillaJActivated carbon as photocatalyst of reactions in aqueous phaseAppl. Catal. B.2013142694704
KhanTANazirMKhanEAAdsorptive removal of rhodamine B from textile wastewater using water chestnut (Trapa natans L.) peel: adsorption dynamics and kinetic studiesToxicol. Environ. Chem.2013959199311:CAS:528:DC%2BC3sXhsVWisLnF
YaghiOMO’keeffeMOckwigNWChaeHKEddaoudiMKimJReticular synthesis and the design of new materialsNature20034237051:CAS:528:DC%2BD3sXksV2itro%3D
DewageNBLiyanageASSmithQPittmanCUJrPerezFMohanDMlsnaTFast aniline and nitrobenzene remediation from water on magnetized and nonmagnetized Douglas fir biocharChemosphere2019225943953
WuYFengJXieBZouLLiYLiZAn extremely stable 2D Zinc(II) coordination polymer exhibiting high sensing ability and photocatalytic degradation activities of dyesJ. Inorg. Organomet. Polym Mater.201727124312511:CAS:528:DC%2BC2sXns1Grt7Y%3D
CheethamAKBennettTDCoudertF-XGoodwinALDefects and disorder in metal organic frameworksDalton Trans.201645411341261:CAS:528:DC%2BC2MXitVGgt73J26836459
KarunanayakeAGBombuwala DewageNToddOAEssandohMAndersonRMlsnaTMlsnaDSalicylic acid and 4-nitroaniline removal from water using magnetic biochar: an environmental and analytical experiment for the undergraduate laboratoryJ. Chem. Educ.201693193519381:CAS:528:DC%2BC28XhslSmtLnK
SilvaCGCormaAGarcíaHMetal–organic frameworks as semiconductorsJ. Mater. Chem.201020314131561:CAS:528:DC%2BC3cXkt1Kkurc%3D
HoY-SMcKayGPseudo-second order model for sorption processesProcess Biochem.1999344514651:CAS:528:DyaK1MXlt1Omtbk%3D
AngınDŞensözSEffect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus L.)Int. J. Phytorem.201416684693
ZhangCAiLJiangJSolvothermal synthesis of MIL–53 (Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible lightJ. Mater. Chem. A20153307430811:CAS:528:DC%2BC2cXitV2mt7nK
LiangRShenLJingFWuWQinNLinRWuLNH2-mediated indium metal–organic framework as a novel visible-light-driven photocatalyst for reduction of the aqueous Cr(VI)Appl. Catal. B20151622452511:CAS:528:DC%2BC2cXht1KitrjF
LangmuirIThe adsorption of gases on plane surfaces of glass, mica and platinumJ. Am. Chem. Soc.191840136114031:
J Zhang (1322_CR56) 2016; 92
IK Konstantinou (1322_CR14) 2004; 49
NB Dewage (1322_CR25) 2019; 225
KS Sing (1322_CR49) 1985; 57
A Dhakshinamoorthy (1322_CR9) 2014; 50
L Shen (1322_CR8) 2013; 5
J Zhao (1322_CR12) 2016; 55
N Guillou (1322_CR33) 2010; 225
OM Yaghi (1322_CR3) 2003; 423
C Peiris (1322_CR19) 2017; 246
H Liu (1322_CR60) 2016; 34
C Zhang (1322_CR62) 2015; 3
Y Wu (1322_CR7) 2017; 27
K Tan (1322_CR10) 2015; 17
W Xiong (1322_CR35) 2018; 627
Y-S Ho (1322_CR47) 1999; 34
CG Silva (1322_CR5) 2010; 20
I Langmuir (1322_CR48) 1918; 40
C Peiris (1322_CR16) 2019; 9
CM Navarathna (1322_CR64) 2007; 250
AK Cheetham (1322_CR34) 2016; 45
N Liu (1322_CR37) 2019; 237
TA Khan (1322_CR30) 2013; 95
KC Kim (1322_CR40) 2016; 224
V Novotny (1322_CR1) 1994
D Angın (1322_CR38) 2014; 16
L Shen (1322_CR54) 2013; 42
H Ramezanalizadeh (1322_CR11) 2018; 172
I Velo-Gala (1322_CR53) 2013; 142
R Liang (1322_CR55) 2015; 162
NB Dewage (1322_CR27) 2018; 8
V Gupta (1322_CR31) 2004; 43
FH AlHamedi (1322_CR63) 2009; 239
TA Saleh (1322_CR44) 2011; 362
Y Jayawardhana (1322_CR18) 2019; 238
X-F Tan (1322_CR28) 2016; 212
H-C Zhou (1322_CR4) 2012
D Mohan (1322_CR20) 2018; 8
J Anandkumar (1322_CR51) 2011; 186
R Liang (1322_CR45) 2015; 7
CJ Ennis (1322_CR15) 2012; 42
AA Al-Kahtani (1322_CR58) 2017; 8
AG Karunanayake (1322_CR22) 2018; 331
P Grau (1322_CR2) 1991; 24
X Lin (1322_CR52) 2014; 2
A Downie (1322_CR36) 2009; 13
Q Qi (1322_CR46) 2019; 10
R Jain (1322_CR61) 2007; 85
AG Karunanayake (1322_CR23) 2017; 319
Z-H Diao (1322_CR57) 2017; 184
J Lehmann (1322_CR21) 2015
F Wang (1322_CR13) 2018; 6
G Ren (1322_CR50) 2017; 607
AG Karunanayake (1322_CR29) 2019; 2
A Grosvenor (1322_CR43) 2004; 36
K Yu (1322_CR59) 2009; 113
D Mohan (1322_CR17) 2014; 160
AG Karunanayake (1322_CR24) 2016; 93
R Liang (1322_CR32) 2015; 287
MA Ghasemzadeh (1322_CR42) 2019; 33
A Schoth (1322_CR41) 2016; 6
MK Misra (1322_CR39) 1993; 4
L Cui (1322_CR6) 2015; 25
NB Dewage (1322_CR26) 2018; 263
References_xml – reference: DewageNBLiyanageASSmithQPittmanCUJrPerezFMohanDMlsnaTFast aniline and nitrobenzene remediation from water on magnetized and nonmagnetized Douglas fir biocharChemosphere2019225943953
– reference: KarunanayakeAGToddOACrowleyMRicchettiLPittmanCUJrAndersonRMohanDMlsnaTLead and cadmium remediation using magnetized and nonmagnetized biochar from Douglas firChem. Eng. J.20183314804911:CAS:528:DC%2BC2sXhsVyitLzK
– reference: SilvaCGCormaAGarcíaHMetal–organic frameworks as semiconductorsJ. Mater. Chem.201020314131561:CAS:528:DC%2BC3cXkt1Kkurc%3D
– reference: GhasemzadehMAMirhosseini-EshkevariBAbdollahi-BasirMHMIL-53 (Fe) metal–organic frameworks (MOFs) as an efficient and reusable catalyst for the one-pot four-component synthesis of pyrano [2, 3-c]-pyrazolesAppl. Organomet. Chem.201933e4679
– reference: KhanTANazirMKhanEAAdsorptive removal of rhodamine B from textile wastewater using water chestnut (Trapa natans L.) peel: adsorption dynamics and kinetic studiesToxicol. Environ. Chem.2013959199311:CAS:528:DC%2BC3sXhsVWisLnF
– reference: ZhangCAiLJiangJSolvothermal synthesis of MIL–53 (Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible lightJ. Mater. Chem. A20153307430811:CAS:528:DC%2BC2cXitV2mt7nK
– reference: DewageNBLiyanageASPittmanCUJrMohanDMlsnaTFast nitrate and fluoride adsorption and magnetic separation from water on α-Fe2O3 and Fe3O4 dispersed on Douglas fir biocharBioresour. Technol.2018263258265
– reference: LiangRShenLJingFWuWQinNLinRWuLNH2-mediated indium metal–organic framework as a novel visible-light-driven photocatalyst for reduction of the aqueous Cr(VI)Appl. Catal. B20151622452511:CAS:528:DC%2BC2cXht1KitrjF
– reference: AngınDŞensözSEffect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus L.)Int. J. Phytorem.201416684693
– reference: KimKCYoonT-UBaeY-SApplicability of using CO2 adsorption isotherms to determine BET surface areas of microporous materialsMicroporous Mesoporous Mater.20162242943011:CAS:528:DC%2BC28XhtFOhurk%3D
– reference: AlHamediFHRaufMAshrafSSDegradation studies of Rhodamine B in the presence of UV/H2O2Desalination20092391591661:CAS:528:DC%2BD1MXhvFantbk%3D
– reference: TanX-FLiuY-GGuY-LXuYZengG-MHuX-JLiuS-BWangXLiuS-MLiJBiochar-based nano-composites for the decontamination of wastewater: a reviewBioresour. Technol.20162123183331:CAS:528:DC%2BC28XmvVCns7g%3D27131871
– reference: HoY-SMcKayGPseudo-second order model for sorption processesProcess Biochem.1999344514651:CAS:528:DyaK1MXlt1Omtbk%3D
– reference: NavarathnaCMKarunanayakeAGGunatilakeSRPittmanCUJr.FerezFMohanDMlsnaTRemoval of Arsenic(III) from water using magnetite precipitated onto Douglas fir biocharJ. Environ. Manage.2007250109429
– reference: DiaoZ-HLiuJ-JHuY-XKongL-JJiangDXuX-RComparative study of Rhodamine B degradation by the systems pyrite/H2O2 and pyrite/persulfate: reactivity, stability, products and mechanismSep. Purif. Technol.20171843743831:CAS:528:DC%2BC2sXnsl2lsLc%3D
– reference: KarunanayakeAGToddOACrowleyMLRicchettiLBPittmanCUJrAndersonRMlsnaTERapid removal of salicylic acid, 4-nitroaniline, benzoic acid and phthalic acid from wastewater using magnetized fast pyrolysis biochar from waste Douglas firChem. Eng. J.201731975881:CAS:528:DC%2BC2sXksV2gtLY%3D
– reference: GuillouNWaltonRIMillangeFMIL-53 (Fe): a good example to illustrate the power of powder diffraction in the field of MOFsZeitschrift für Kristallographie Crystall. Mater.20102255525561:CAS:528:DC%2BC3MXit1OjtLs%3D
– reference: RenGWangXHuangPZhongBZhangZYangLYangXChromium (VI) adsorption from wastewater using porous magnetite nanoparticles prepared from titanium residue by a novel solid-phase reduction methodSci. Total Environ.201760790091028724223
– reference: Velo-GalaILópez-PeñalverJSánchez-PoloMRivera-UtrillaJActivated carbon as photocatalyst of reactions in aqueous phaseAppl. Catal. B.2013142694704
– reference: ZhangJYanHChenYChenRHeYLiuWEfficient degradation of aqueous Rhodamine B irradiation under indoor light using a SiO2–Hypocrellin B complexPhotochem. Photobiol.2016926446481:CAS:528:DC%2BC28XptFWnsrw%3D27135189
– reference: CheethamAKBennettTDCoudertF-XGoodwinALDefects and disorder in metal organic frameworksDalton Trans.201645411341261:CAS:528:DC%2BC2MXitVGgt73J26836459
– reference: XiongWZengGYangZZhouYZhangCChengMLiuYHuLWanJZhouCAdsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53 (Fe) as new adsorbentSci. Total Environ.20186272352441:CAS:528:DC%2BC1cXitFynsrY%3D29426146
– reference: SalehTAGuptaVKFunctionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine BJ. Colloid Interface Sci.20113623373441:CAS:528:DC%2BC3MXhtVSqu7fI21788030
– reference: LiangRShenLJingFQinNWuLPreparation of MIL-53 (Fe)-reduced graphene oxide nanocomposites by a simple self-assembly strategy for increasing interfacial contact: efficient visible-light photocatalystsACS Appl. Mater. Interfaces.20157950795151:CAS:528:DC%2BC2MXmvVygtLk%3D25894300
– reference: JainRMathurMSikarwarSMittalARemoval of the hazardous dye rhodamine B through photocatalytic and adsorption treatmentsJ. Environ. Manage.2007859569641:CAS:528:DC%2BD2sXhsVCntrzO17239520
– reference: MohanDAbhishekKSarswatAPatelMSinghPPittmanCUJrBiochar production and applications in soil fertility and carbon sequestration—a sustainable solution to crop-residue burning in IndiaRSC Adv.201885085201:CAS:528:DC%2BC1cXitlOmtQ%3D%3D
– reference: LiangRJingFShenLQinNWuLMIL-53 (Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyesJ. Hazard. Mater.20152873643721:CAS:528:DC%2BC2MXhsVegs74%3D25677473
– reference: ZhaoJLeeDTYagaRWHallMGBartonHFWoodwardIROldhamCJWallsHJPetersonGWParsonsGNUltra-fast degradation of chemical warfare agents using MOF–nanofiber kebabsAngew. Chem. Int. Ed.20165513224132281:CAS:528:DC%2BC28XhsFGhtbrE
– reference: WangFHeXSunLChenJWangXXuJHanXEngineering an N-doped TiO2@ N-doped C butterfly-like nanostructure with long-lived photo-generated carriers for efficient photocatalytic selective amine oxidationJ. Mater. Chem. A20186209120991:CAS:528:DC%2BC2sXitVeks7zO
– reference: ShenLWuWLiangRLinRWuLHighly dispersed palladium nanoparticles anchored on UiO-66 (NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalystNanoscale20135937493821:CAS:528:DC%2BC3sXhsVers7%2FI23959004
– reference: SingKSReporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)Pure Appl. Chem.1985576036191:CAS:528:DyaL2MXhvFWrtb4%3D
– reference: SchothAKeithADLandfesterKMuñoz-EspíRSilanization as a versatile functionalization method for the synthesis of polymer/magnetite hybrid nanoparticles with controlled structureRSC Adv.2016653903539111:CAS:528:DC%2BC28Xoslajs70%3D
– reference: YuKYangSHeHSunCGuCJuYVisible light-driven photocatalytic degradation of rhodamine B over NaBiO3: pathways and mechanismJ. Phys. Chem. A200911310024100321:CAS:528:DC%2BD1MXhtVelurrO19705819
– reference: KarunanayakeAGNavarathnaCGunatilakeSCrowleyMAndersonRMohanDPerezFPittmanCUJrMlsnaTEFe3O4 nanoparticles dispersed on Douglas fir biochar for phosphate sorptionACS Appl. Nano Mater.20192346734791:CAS:528:DC%2BC1MXptlKqurk%3D
– reference: MohanDSarswatAOkYSPittmanCUJrOrganic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical reviewBioresour. Technol.20141601912021:CAS:528:DC%2BC2cXksF2hsL8%3D24636918
– reference: DewageNBFowlerREPittmanCUJrMohanDMlsnaTLead (Pb2+) sorptive removal using chitosan-modified biochar: batch and fixed-bed studiesRSC Adv.201882536825377
– reference: LiuNJingCLiZHuangWGaoBYouFZhangXEffect of synthesis conditions on the photocatalytic degradation of Rhodamine B of MIL-53 (Fe)Mater. Lett.201923792951:CAS:528:DC%2BC1cXit1Crs7zF
– reference: LangmuirIThe adsorption of gases on plane surfaces of glass, mica and platinumJ. Am. Chem. Soc.191840136114031:CAS:528:DyaC1cXht1KgsA%3D%3D
– reference: LehmannJJosephSBiochar for Environmental Management: Science, Technology and Implementation2015LondonRoutledge
– reference: ZhouH-CLongJRYaghiOMIntroduction to Metal–Organic Frameworks2012WashingtonACS Publications
– reference: RamezanalizadehHManteghiFSynthesis of a novel MOF/CuWO4 heterostructure for efficient photocatalytic degradation and removal of water pollutantsJ. Cleaner Prod.2018172265526661:CAS:528:DC%2BC2sXhvFSrsr%2FP
– reference: DhakshinamoorthyAAsiriAMGarciaHCatalysis by metal–organic frameworks in waterChem. Commun.2014501280012814
– reference: QiQChiWLiYQiaoQChenJMiaoLZhangYLiJJiWXuTA H-bond strategy to develop acid-resistant photoswitchable rhodamine spirolactams for super-resolution single-molecule localization microscopyChem. Sci.201910491449221:CAS:528:DC%2BC1MXms1Gqtrk%3D311609626510312
– reference: WuYFengJXieBZouLLiYLiZAn extremely stable 2D Zinc(II) coordination polymer exhibiting high sensing ability and photocatalytic degradation activities of dyesJ. Inorg. Organomet. Polym Mater.201727124312511:CAS:528:DC%2BC2sXns1Grt7Y%3D
– reference: YaghiOMO’keeffeMOckwigNWChaeHKEddaoudiMKimJReticular synthesis and the design of new materialsNature20034237051:CAS:528:DC%2BD3sXksV2itro%3D
– reference: DownieACroskyAMunroePPhysical properties of biochar. Biochar for environmental managementSci. Technol.20091332
– reference: LinXZhangFPanSYuHZhangFDongXHanSDongLBaiCWangZBa4(BO3)3(SiO4)·Ba3X (X = Cl, Br): new salt-inclusion borosilicate halides as potential deep UV nonlinear optical materialsJ. Mater. Chem. C20142425742641:CAS:528:DC%2BC2cXnvFektL4%3D
– reference: EnnisCJEvansAGIslamMRalebitso-SeniorTKSeniorEBiochar: carbon sequestration, land remediation, and impacts on soil microbiologyCrit. Rev. Environ. Sci. Technol.201242231123641:CAS:528:DC%2BC38XhsFKls7zL
– reference: LiuHRenXChenLSynthesis and characterization of magnetic metal–organic framework for the adsorptive removal of Rhodamine B from aqueous solutionJ. Ind. Eng. Chem.2016342782851:CAS:528:DC%2BC2MXhvFKkurjM
– reference: NovotnyVWater quality: Prevention, Identification and Management of Diffuse Pollution1994New YorkVan Nostrand-Reinhold Publishers
– reference: PeirisCNayanatharaONavarathnaCMJayawardhanaYNawalageSBurkGKarunanayakeAGMadduriSBVithanageMKaumalMThe influence of three acid modifications on the physicochemical characteristics of tea-waste biochar pyrolyzed at different temperatures: a comparative studyRSC Adv.201991761217622
– reference: CuiLMengXFanYLiXBiCSynthesis, crystal structures, photocatalysis for rhodamine B degradation of a organobismuth(V) dithiocarbamate polymer [PhBiS2CN(C2H5)2Cl] nJ. Inorg. Organomet. Polym Mater.201525149014941:CAS:528:DC%2BC2MXhtleltL%2FE
– reference: PeirisCGunatilakeSRMlsnaTEMohanDVithanageMBiochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: a critical reviewBiores. Technol.20172461501591:CAS:528:DC%2BC2sXht1KqsLzK
– reference: ShenLLiangSWuWLiangRWuLMultifunctional NH 2-mediated zirconium metal–organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(VI)Dalton Trans.20134213649136571:CAS:528:DC%2BC3sXhtlGmsbvP23903996
– reference: AnandkumarJMandalBAdsorption of chromium(VI) and Rhodamine B by surface modified tannery waste: Kinetic, mechanistic and thermodynamic studiesJ. Hazard. Mater.2011186108810961:CAS:528:DC%2BC3MXhvVajtrs%3D21168268
– reference: KarunanayakeAGBombuwala DewageNToddOAEssandohMAndersonRMlsnaTMlsnaDSalicylic acid and 4-nitroaniline removal from water using magnetic biochar: an environmental and analytical experiment for the undergraduate laboratoryJ. Chem. Educ.201693193519381:CAS:528:DC%2BC28XhslSmtLnK
– reference: TanKNijemNGaoYZuluagaSLiJThonhauserTChabalYJWater interactions in metal organic frameworksCrystEngComm2015172472601:CAS:528:DC%2BC2cXhslagsLvJ
– reference: KonstantinouIKAlbanisTATiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a reviewAppl. Catal. B.2004491141:CAS:528:DC%2BD2cXisl2ksL4%3D
– reference: Al-KahtaniAAPhotocatalytic degradation of rhodamine B dye in wastewater using gelatin/cus/PVA nanocomposites under solar light irradiationJ. Biomater. Nanobiotechnol.2017866821:CAS:528:DC%2BC1cXhtlSisLnL
– reference: JayawardhanaYGunatilakeSRMahatantilaKGinigeMPVithanageMSorptive removal of toluene and m-xylene by municipal solid waste biochar: Simultaneous municipal solid waste management and remediation of volatile organic compoundsJ. Environ. Manage.20192383233301:CAS:528:DC%2BC1MXkslaru7w%3D30870672
– reference: GrosvenorAKobeBBiesingerMMcIntyreNInvestigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compoundsSurf. Interface Anal.200436156415741:CAS:528:DC%2BD2MXjtVWgtQ%3D%3D
– reference: GrauPTextile industry wastewaters treatmentWater Sci. Technol.199124971031:CAS:528:DyaK3MXktFCltrY%3D
– reference: GuptaVSuhasAliISainiVRemoval of rhodamine B, fast green, and methylene blue from wastewater using red mud, an aluminum industry wasteInd. Eng. Chem. Res.200443174017471:CAS:528:DC%2BD2cXhs1yiuro%3D
– reference: MisraMKRaglandKWBakerAJWood ash composition as a function of furnace temperatureBiomass Bioenerg.199341031161:CAS:528:DyaK3sXlsVartrg%3D
– volume: 6
  start-page: 2091
  year: 2018
  ident: 1322_CR13
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA09166D
– volume-title: Introduction to Metal–Organic Frameworks
  year: 2012
  ident: 1322_CR4
– volume: 239
  start-page: 159
  year: 2009
  ident: 1322_CR63
  publication-title: Desalination
  doi: 10.1016/j.desal.2008.03.016
– volume-title: Water quality: Prevention, Identification and Management of Diffuse Pollution
  year: 1994
  ident: 1322_CR1
– volume: 50
  start-page: 12800
  year: 2014
  ident: 1322_CR9
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC04387A
– volume: 45
  start-page: 4113
  year: 2016
  ident: 1322_CR34
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT04392A
– volume: 40
  start-page: 1361
  year: 1918
  ident: 1322_CR48
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja02242a004
– volume: 184
  start-page: 374
  year: 2017
  ident: 1322_CR57
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.05.016
– volume: 9
  start-page: 17612
  year: 2019
  ident: 1322_CR16
  publication-title: RSC Adv.
  doi: 10.1039/C9RA02729G
– volume: 113
  start-page: 10024
  year: 2009
  ident: 1322_CR59
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp905173e
– volume: 3
  start-page: 3074
  year: 2015
  ident: 1322_CR62
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04622F
– volume: 331
  start-page: 480
  year: 2018
  ident: 1322_CR22
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.08.124
– volume: 10
  start-page: 4914
  year: 2019
  ident: 1322_CR46
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC01284B
– volume: 43
  start-page: 1740
  year: 2004
  ident: 1322_CR31
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie034218g
– volume: 319
  start-page: 75
  year: 2017
  ident: 1322_CR23
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.02.116
– volume: 5
  start-page: 9374
  year: 2013
  ident: 1322_CR8
  publication-title: Nanoscale
  doi: 10.1039/c3nr03153e
– volume: 49
  start-page: 1
  year: 2004
  ident: 1322_CR14
  publication-title: Appl. Catal. B.
  doi: 10.1016/j.apcatb.2003.11.010
– volume: 92
  start-page: 644
  year: 2016
  ident: 1322_CR56
  publication-title: Photochem. Photobiol.
  doi: 10.1111/php.12596
– volume: 224
  start-page: 294
  year: 2016
  ident: 1322_CR40
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2016.01.003
– volume: 34
  start-page: 451
  year: 1999
  ident: 1322_CR47
  publication-title: Process Biochem.
  doi: 10.1016/S0032-9592(98)00112-5
– volume: 57
  start-page: 603
  year: 1985
  ident: 1322_CR49
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac198557040603
– volume: 238
  start-page: 323
  year: 2019
  ident: 1322_CR18
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2019.02.097
– volume: 250
  start-page: 109429
  year: 2007
  ident: 1322_CR64
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2019.109429
– volume: 13
  start-page: 32
  year: 2009
  ident: 1322_CR36
  publication-title: Sci. Technol.
– volume: 8
  start-page: 66
  year: 2017
  ident: 1322_CR58
  publication-title: J. Biomater. Nanobiotechnol.
  doi: 10.4236/jbnb.2017.81005
– volume: 4
  start-page: 103
  year: 1993
  ident: 1322_CR39
  publication-title: Biomass Bioenerg.
  doi: 10.1016/0961-9534(93)90032-Y
– volume: 85
  start-page: 956
  year: 2007
  ident: 1322_CR61
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2006.11.002
– volume: 6
  start-page: 53903
  year: 2016
  ident: 1322_CR41
  publication-title: RSC Adv.
  doi: 10.1039/C6RA08896A
– volume: 93
  start-page: 1935
  year: 2016
  ident: 1322_CR24
  publication-title: J. Chem. Educ.
  doi: 10.1021/acs.jchemed.6b00154
– volume: 42
  start-page: 13649
  year: 2013
  ident: 1322_CR54
  publication-title: Dalton Trans.
  doi: 10.1039/c3dt51479j
– volume: 627
  start-page: 235
  year: 2018
  ident: 1322_CR35
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.01.249
– volume: 17
  start-page: 247
  year: 2015
  ident: 1322_CR10
  publication-title: CrystEngComm
  doi: 10.1039/C4CE01406E
– volume-title: Biochar for Environmental Management: Science, Technology and Implementation
  year: 2015
  ident: 1322_CR21
  doi: 10.4324/9780203762264
– volume: 423
  start-page: 705
  year: 2003
  ident: 1322_CR3
  publication-title: Nature
  doi: 10.1038/nature01650
– volume: 246
  start-page: 150
  year: 2017
  ident: 1322_CR19
  publication-title: Biores. Technol.
  doi: 10.1016/j.biortech.2017.07.150
– volume: 237
  start-page: 92
  year: 2019
  ident: 1322_CR37
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.11.079
– volume: 142
  start-page: 694
  year: 2013
  ident: 1322_CR53
  publication-title: Appl. Catal. B.
  doi: 10.1016/j.apcatb.2013.06.003
– volume: 2
  start-page: 3467
  year: 2019
  ident: 1322_CR29
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b00430
– volume: 607
  start-page: 900
  year: 2017
  ident: 1322_CR50
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.06.103
– volume: 36
  start-page: 1564
  year: 2004
  ident: 1322_CR43
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.1984
– volume: 362
  start-page: 337
  year: 2011
  ident: 1322_CR44
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2011.06.081
– volume: 33
  start-page: e4679
  year: 2019
  ident: 1322_CR42
  publication-title: Appl. Organomet. Chem.
  doi: 10.1002/aoc.4679
– volume: 287
  start-page: 364
  year: 2015
  ident: 1322_CR32
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.01.048
– volume: 27
  start-page: 1243
  year: 2017
  ident: 1322_CR7
  publication-title: J. Inorg. Organomet. Polym Mater.
  doi: 10.1007/s10904-017-0571-3
– volume: 212
  start-page: 318
  year: 2016
  ident: 1322_CR28
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.04.093
– volume: 160
  start-page: 191
  year: 2014
  ident: 1322_CR17
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.01.120
– volume: 172
  start-page: 2655
  year: 2018
  ident: 1322_CR11
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2017.11.145
– volume: 2
  start-page: 4257
  year: 2014
  ident: 1322_CR52
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c4tc00079j
– volume: 225
  start-page: 943
  year: 2019
  ident: 1322_CR25
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.03.050
– volume: 225
  start-page: 552
  year: 2010
  ident: 1322_CR33
  publication-title: Zeitschrift für Kristallographie Crystall. Mater.
  doi: 10.1524/zkri.2010.1353
– volume: 16
  start-page: 684
  year: 2014
  ident: 1322_CR38
  publication-title: Int. J. Phytorem.
  doi: 10.1080/15226514.2013.856842
– volume: 95
  start-page: 919
  year: 2013
  ident: 1322_CR30
  publication-title: Toxicol. Environ. Chem.
  doi: 10.1080/02772248.2013.840369
– volume: 162
  start-page: 245
  year: 2015
  ident: 1322_CR55
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2014.06.049
– volume: 34
  start-page: 278
  year: 2016
  ident: 1322_CR60
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2015.11.020
– volume: 25
  start-page: 1490
  year: 2015
  ident: 1322_CR6
  publication-title: J. Inorg. Organomet. Polym Mater.
  doi: 10.1007/s10904-015-0267-5
– volume: 24
  start-page: 97
  year: 1991
  ident: 1322_CR2
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.1991.0015
– volume: 55
  start-page: 13224
  year: 2016
  ident: 1322_CR12
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201606656
– volume: 186
  start-page: 1088
  year: 2011
  ident: 1322_CR51
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.11.104
– volume: 20
  start-page: 3141
  year: 2010
  ident: 1322_CR5
  publication-title: J. Mater. Chem.
  doi: 10.1039/b924937k
– volume: 8
  start-page: 508
  year: 2018
  ident: 1322_CR20
  publication-title: RSC Adv.
  doi: 10.1039/C7RA10353K
– volume: 263
  start-page: 258
  year: 2018
  ident: 1322_CR26
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.05.001
– volume: 42
  start-page: 2311
  year: 2012
  ident: 1322_CR15
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2011.574115
– volume: 7
  start-page: 9507
  year: 2015
  ident: 1322_CR45
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.5b00682
– volume: 8
  start-page: 25368
  year: 2018
  ident: 1322_CR27
  publication-title: RSC Adv.
  doi: 10.1039/C8RA04600J
SSID ssj0038051
Score 2.5258904
Snippet MIL-53-Fe metal–organic framework (MOF) was grown using the terephthalic acid linker and FeCl 3 into an already prepared, high surface area, magnetic, Douglas...
MIL-53-Fe metal–organic framework (MOF) was grown using the terephthalic acid linker and FeCl3 into an already prepared, high surface area, magnetic, Douglas...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 214
SubjectTerms Adsorbents
Adsorption
Adsorptivity
Chemical analysis
Chemistry
Chemistry and Materials Science
Contaminants
Ferric chloride
Heavy metals
Hexavalent chromium
Infrared analysis
Inorganic Chemistry
Iron chlorides
Iron oxides
Metal-organic frameworks
Organic Chemistry
Photocatalysis
Photodegradation
Polymer Sciences
Reaction kinetics
Regeneration
Rhodamine
Sorption
Tanning
Terephthalic acid
Wastewater
X ray photoelectron spectroscopy
Title Rhodamine B Adsorptive Removal and Photocatalytic Degradation on MIL-53-Fe MOF/Magnetic Magnetite/Biochar Composites
URI https://link.springer.com/article/10.1007/s10904-019-01322-w
https://www.proquest.com/docview/2343267533
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEG8UHvTF-BlRJH3wTRtYu27dIyATP0BDJMGnZf2YmMhGYIb439uOTdSoicmSLVnXh7vb9Xft_e4AOJUKNzjmEaLKUsiWlKEQey6yOBVMeY3QpYY73Os73aF9PaKjnBQ2L7LdiyPJzFN_Irt5WcaEye8xIdRiHZSpid21FQ9xs_C_hDXoskqqayMdLpCcKvPzHF-XoxXG_HYsmq02_jbYymEibC71ugPWVLwLNtpFd7Y9kA7GiQwnGiPCFmzKeTKbGscFB2qSaOOBYSzh_ThJk2x_5k1PAy9MXYhlCyWor97VLaIE-Qr27vx6L3yKDZ8R5g-pqreeE8PJgsZlmNQuNd8HQ7_z0O6ivIMCEoQ6KfKE1pBSLhMRE1kpeExDjXJCxj2PM2F7Gj0xyTEWDUc50paER1xIRzjcUSQiB6AUJ7E6BFBGno7kCGaW7dpasYxElsSScg0xo4hYFWAVggxEXl7cdLl4CVaFkY3wAy38IBN-sKiAs49vpsviGn-Orhb6CfIfbR5gQ4zVQQ8hFXBe6Gz1-vfZjv43_BhsYhNpZ5svVVBKZ6_qRMORlNdAuem3Wn1zv3y86dQya3wHkyXZbQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UD3gxfkYUtQdv2sDadeuOgBJQhoZAwm1ZPyYmshGYIf73tmMTNWpissOSde_wXvv6e-37vQfApVS4zjGPEFWWQrakDIXYc5HFqWDKq4cuNdxhv-90RvbdmI5zUtiiyHYvriQzT_2J7OZlGRMmv8eEUMtNsKXBADOJXCPcKPwvYXW6qpLq2kiHCySnyvws4-t2tMaY365Fs92mvQt2cpgIGyu77oENFe-DcqvoznYA0sEkkeFUY0TYhA25SOYz47jgQE0TPXlgGEv4OEnSJDufedNi4I2pC7FqoQT143d7iBLUVtB_aNf88Ck2fEaYv6Sq1nxODCcLGpdhUrvU4hCM2rfDVgflHRSQINRJkSe0hZRymYiYyErBYxpqlBMy7nmcCdvT6IlJjrGoO8qRtiQ84kI6wuGOIhE5AqU4idUxgDLydCRHMLNs19aGZSSyJJaUa4gZRcSqAKtQZCDy8uKmy8VLsC6MbJQfaOUHmfKDZQVcffwzWxXX-HN0tbBPkC-0RYANMVYHPYRUwHVhs_Xn36Wd_G_4BSh3hn4v6HX796dgG5uoOzuIqYJSOn9VZxqapPw8m4nvWNfZUA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5eQH0RrzivefBNw9akadPHuVmmbirDgW-luTnBtWOriP_epBc3RQWhD4WmeTgnPflOc77vAHAqFW5wzDWiylHIlZShGAc-cjgVTAWN2KeWO9y79ToD9_qRPs6x-PNq9-pIsuA0WJWmJKuPpa7PEd-CvHrC1vrYdOptESybcOzYdT3AzSoWE9aghWKq7yKTOpCSNvPzHF-3phne_HZEmu884QZYLyEjbBY-3gQLKtkCq62qU9s2yPrDVMYjgxfhBWzKaToZ2yAG-2qUmoUE40TC-2Gapfm_mnczDWxbjYiinRI0V--qiyhBoYK9u7Dei58Sy22E5U2m6hfPqeVnQRs-bJmXmu6AQXj50OqgspsCEoR6GQqE8ZZSPhOaiVwWHtPYIJ6Y8SDgTLiBQVJMcoxFw1OedCXhmgvpCY97imiyC5aSNFF7AEodmKyOYOa4vmuczIh2JJaUG7ipNXFqwKkMGYlSatx2vHiJZiLJ1viRMX6UGz96q4Gzz3fGhdDGn6MPK_9E5Uc3jbAlyZoEiJAaOK98Nnv8-2z7_xt-Albu22HUvbq9OQBr2Cbg-T-ZQ7CUTV7VkUEpGT_OF-IHCn_djA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rhodamine+B+Adsorptive+Removal+and+Photocatalytic+Degradation+on+MIL-53-Fe+MOF%2FMagnetic+Magnetite%2FBiochar+Composites&rft.jtitle=Journal+of+inorganic+and+organometallic+polymers+and+materials&rft.au=Navarathna%2C+Chanaka+M&rft.au=Dewage%2C+Narada+B&rft.au=Karunanayake%2C+Akila+G&rft.au=Farmer%2C+Erin+L&rft.date=2020-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1574-1443&rft.eissn=1574-1451&rft.volume=30&rft.issue=1&rft.spage=214&rft.epage=229&rft_id=info:doi/10.1007%2Fs10904-019-01322-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-1443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-1443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-1443&client=summon