Why Fractional Derivatives with Nonsingular Kernels Should Not Be Used

In recent years, many papers discuss the theory and applications of new fractional-order derivatives that are constructed by replacing the singular kernel of the Caputo or Riemann-Liouville derivative by a non-singular (i.e., bounded) kernel. It will be shown here, through rigorous mathematical reas...

Full description

Saved in:
Bibliographic Details
Published inFractional calculus & applied analysis Vol. 23; no. 3; pp. 610 - 634
Main Authors Diethelm, Kai, Garrappa, Roberto, Giusti, Andrea, Stynes, Martin
Format Journal Article
LanguageEnglish
Published Warsaw Versita 01.06.2020
De Gruyter
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, many papers discuss the theory and applications of new fractional-order derivatives that are constructed by replacing the singular kernel of the Caputo or Riemann-Liouville derivative by a non-singular (i.e., bounded) kernel. It will be shown here, through rigorous mathematical reasoning, that these non-singular kernel derivatives suffer from several drawbacks which should forbid their use. They fail to satisfy the fundamental theorem of fractional calculus since they do not admit the existence of a corresponding convolution integral of which the derivative is the left-inverse; and the value of the derivative at the initial time t = 0 is always zero, which imposes an unnatural restriction on the differential equations and models where these derivatives can be used. For the particular cases of the so-called Caputo-Fabrizio and Atangana-Baleanu derivatives, it is shown that when this restriction holds the derivative can be simply expressed in terms of integer derivatives and standard Caputo fractional derivatives, thus demonstrating that these derivatives contain nothing new.
AbstractList In recent years, many papers discuss the theory and applications of new fractional-order derivatives that are constructed by replacing the singular kernel of the Caputo or Riemann-Liouville derivative by a non-singular (i.e., bounded) kernel. It will be shown here, through rigorous mathematical reasoning, that these non-singular kernel derivatives suffer from several drawbacks which should forbid their use. They fail to satisfy the fundamental theorem of fractional calculus since they do not admit the existence of a corresponding convolution integral of which the derivative is the left-inverse; and the value of the derivative at the initial time t = 0 is always zero, which imposes an unnatural restriction on the differential equations and models where these derivatives can be used. For the particular cases of the so-called Caputo-Fabrizio and Atangana-Baleanu derivatives, it is shown that when this restriction holds the derivative can be simply expressed in terms of integer derivatives and standard Caputo fractional derivatives, thus demonstrating that these derivatives contain nothing new.
In recent years, many papers discuss the theory and applications of new fractional-order derivatives that are constructed by replacing the singular kernel of the Caputo or Riemann-Liouville derivative by a non-singular (i.e., bounded) kernel. It will be shown here, through rigorous mathematical reasoning, that these non-singular kernel derivatives suffer from several drawbacks which should forbid their use. They fail to satisfy the fundamental theorem of fractional calculus since they do not admit the existence of a corresponding convolution integral of which the derivative is the left-inverse; and the value of the derivative at the initial time t = 0 is always zero, which imposes an unnatural restriction on the differential equations and models where these derivatives can be used. For the particular cases of the so-called Caputo-Fabrizio and Atangana-Baleanu derivatives, it is shown that when this restriction holds the derivative can be simply expressed in terms of integer derivatives and standard Caputo fractional derivatives, thus demonstrating that these derivatives contain nothing new.
In recent years, many papers discuss the theory and applications of new fractional-order derivatives that are constructed by replacing the singular kernel of the Caputo or Riemann-Liouville derivative by a non-singular (i.e., bounded) kernel. It will be shown here, through rigorous mathematical reasoning, that these non-singular kernel derivatives suffer from several drawbacks which should forbid their use. They fail to satisfy the fundamental theorem of fractional calculus since they do not admit the existence of a corresponding convolution integral of which the derivative is the left-inverse; and the value of the derivative at the initial time = 0 is always zero, which imposes an unnatural restriction on the differential equations and models where these derivatives can be used. For the particular cases of the so-called Caputo-Fabrizio and Atangana-Baleanu derivatives, it is shown that when this restriction holds the derivative can be simply expressed in terms of integer derivatives and standard Caputo fractional derivatives, thus demonstrating that these derivatives contain nothing new.
Author Diethelm, Kai
Giusti, Andrea
Stynes, Martin
Garrappa, Roberto
Author_xml – sequence: 1
  givenname: Kai
  surname: Diethelm
  fullname: Diethelm, Kai
  email: kai.diethelm@fhws.de
  organization: Fakultät Angewandte Natur- und Geisteswissenschaften, University of Applied Sciences Würzburg-Schweinfurt, GNS mbH Gesellschaft für numerische
– sequence: 2
  givenname: Roberto
  surname: Garrappa
  fullname: Garrappa, Roberto
  organization: Department of Mathematics, University of Bari, The INdAM Research group GNCS
– sequence: 3
  givenname: Andrea
  surname: Giusti
  fullname: Giusti, Andrea
  organization: Department of Physics & Astronomy Bishop’s, University
– sequence: 4
  givenname: Martin
  surname: Stynes
  fullname: Stynes, Martin
  organization: Applied and Computational Mathematics Division Beijing Computational Science Research Center
BookMark eNqFkM9LwzAYhoNMcM4dvRc8d-Z3WzzpdCqKHnR4DFmSbpHaziTd2H9vagVBFE_fB9_7fLw8h2BQN7UB4BjBCWKInZZKphhimEJI8B4YIoJoijGmg88dpZAyegDG3tsFZJRCVrBsCGYvq10yc1IF29SySi6NsxsZ7Mb4ZGvDKnloam_rZVtJl9wZV5vKJ0-rpq10PIXkwiRzb_QR2C9l5c34a47AfHb1PL1J7x-vb6fn96kijIc0JxyWBc81xYwvCFWMkgIrzDHNCqRNliFmciNRlsEFVEXJmUYF1TLXsKRckhE46f-uXfPeGh_Ea9O6WNwLTDFlGSWsiKm0TynXeO9MKdbOvkm3EwiKzpaItkRnS3S2Yp78yCsbZGckOGmrP6mzntrKKhinzdK1u7h8V_qVw4RwBCM96Wkfu9XLfzHyAcmekAA
CitedBy_id crossref_primary_10_1016_j_fraope_2023_100043
crossref_primary_10_3934_math_20221000
crossref_primary_10_1007_s11538_023_01139_2
crossref_primary_10_1007_s11071_021_07158_9
crossref_primary_10_1007_s13540_023_00186_9
crossref_primary_10_1016_j_cam_2024_116262
crossref_primary_10_1515_fca_2020_0049
crossref_primary_10_1371_journal_pcbi_1009396
crossref_primary_10_3390_math11071651
crossref_primary_10_1088_1402_4896_ad0c12
crossref_primary_10_1142_S0219530523500100
crossref_primary_10_1080_07362994_2021_2021091
crossref_primary_10_3233_JIFS_201428
crossref_primary_10_3390_fractalfract8110665
crossref_primary_10_3390_fractalfract4030040
crossref_primary_10_3390_fractalfract7110799
crossref_primary_10_3390_math12070932
crossref_primary_10_3390_math10060849
crossref_primary_10_3390_fractalfract7030213
crossref_primary_10_3934_math_2023685
crossref_primary_10_1002_mma_7037
crossref_primary_10_3390_math8122115
crossref_primary_10_3390_fractalfract5010005
crossref_primary_10_1140_epjp_s13360_022_02951_w
crossref_primary_10_1515_forum_2023_0445
crossref_primary_10_1016_j_apm_2024_05_003
crossref_primary_10_1016_j_cnsns_2021_106121
crossref_primary_10_29328_journal_ijpra_1001065
crossref_primary_10_1142_S0218348X23401564
crossref_primary_10_3390_fractalfract8090535
crossref_primary_10_3390_math11041031
crossref_primary_10_1016_j_padiff_2025_101093
crossref_primary_10_3390_math12152411
crossref_primary_10_1007_s11075_024_02006_4
crossref_primary_10_1016_j_apnum_2021_01_013
crossref_primary_10_1088_1751_8121_ace6e2
crossref_primary_10_1103_PhysRevE_108_024125
crossref_primary_10_3390_math10203848
crossref_primary_10_23939_mmc2021_01_106
crossref_primary_10_1007_s13540_021_00003_1
crossref_primary_10_1016_j_chaos_2022_111960
crossref_primary_10_3389_fcteg_2021_716110
crossref_primary_10_1007_s10827_023_00862_y
crossref_primary_10_3390_math9212816
crossref_primary_10_1088_1402_4896_ad0fd0
crossref_primary_10_1134_S0965542522040066
crossref_primary_10_3934_dcds_2024177
crossref_primary_10_1007_s40435_023_01291_6
crossref_primary_10_3934_math_2024354
crossref_primary_10_1007_s00707_023_03506_5
crossref_primary_10_3390_math9060594
crossref_primary_10_3103_S0025654422010022
crossref_primary_10_1007_s13540_024_00288_y
crossref_primary_10_1007_s00419_024_02676_5
crossref_primary_10_1515_fca_2021_0016
crossref_primary_10_3390_math8091561
crossref_primary_10_1007_s13540_021_00012_0
crossref_primary_10_1002_zamm_202100533
crossref_primary_10_1007_s13540_024_00323_y
crossref_primary_10_3390_sym13050755
crossref_primary_10_1007_s11071_024_10379_3
crossref_primary_10_1007_s10915_023_02283_6
crossref_primary_10_1080_10236198_2021_1935909
crossref_primary_10_1016_j_chaos_2022_112848
crossref_primary_10_3390_en13215768
crossref_primary_10_3390_fractalfract9020079
crossref_primary_10_1016_j_cam_2024_116339
crossref_primary_10_1016_j_matcom_2024_01_006
crossref_primary_10_1016_j_aml_2020_106804
crossref_primary_10_1080_10255842_2023_2298717
crossref_primary_10_1115_1_4063554
crossref_primary_10_1007_s00707_022_03317_0
crossref_primary_10_1016_j_chaos_2024_115263
crossref_primary_10_1515_jaa_2021_2076
crossref_primary_10_1002_mma_10748
crossref_primary_10_1038_s41598_024_57011_3
crossref_primary_10_1155_2021_5557068
crossref_primary_10_1088_1402_4896_ad7d51
crossref_primary_10_1145_3680280
crossref_primary_10_1016_j_physa_2022_128366
crossref_primary_10_3390_math12101593
crossref_primary_10_1016_j_matcom_2022_05_030
crossref_primary_10_1007_s11071_024_10455_8
crossref_primary_10_3390_fractalfract8070411
crossref_primary_10_1515_fca_2021_0072
crossref_primary_10_1007_s40314_022_01977_1
crossref_primary_10_1007_s44198_024_00170_8
crossref_primary_10_1140_epjp_s13360_022_03512_x
crossref_primary_10_1016_j_chaos_2022_112901
crossref_primary_10_1016_j_cnsns_2022_106979
crossref_primary_10_3390_app13053065
crossref_primary_10_1016_j_cnsns_2021_105904
crossref_primary_10_1515_fca_2021_0068
crossref_primary_10_1007_s11538_023_01151_6
crossref_primary_10_1080_00207721_2022_2063965
crossref_primary_10_1016_j_cnsns_2024_108316
crossref_primary_10_3390_fractalfract9020058
crossref_primary_10_3390_mca26040073
crossref_primary_10_1016_j_aej_2022_01_055
crossref_primary_10_1002_mma_9875
crossref_primary_10_3390_math10091540
crossref_primary_10_1007_s00419_023_02383_7
crossref_primary_10_1007_s13540_023_00190_z
crossref_primary_10_3390_math10193540
Cites_doi 10.1007/s11071-018-4289-8
10.3390/math7050407
10.1016/j.cnsns.2019.105022
10.1016/j.cnsns.2013.04.001
10.1016/j.aml.2018.05.013
10.1515/fca-2020-0008
10.3390/math7020149
10.1007/s00020-011-1918-8
10.1007/978-3-642-65690-3
10.1016/j.cnsns.2018.02.019
10.1137/S0040585X97T988812
10.3390/math7020150
10.1016/j.cnsns.2017.12.001
10.1016/j.jcp.2014.07.019
10.1142/p614
10.1016/j.cnsns.2019.105114
10.1007/978-3-662-43930-2
10.1080/10652460310001600717
10.1515/fca-2020-0002
ContentType Journal Article
Copyright Diogenes Co., Sofia 2020
2020 Diogenes Co., Sofia
Copyright_xml – notice: Diogenes Co., Sofia 2020
– notice: 2020 Diogenes Co., Sofia
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1515/fca-2020-0032
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Engineering Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1314-2224
EndPage 634
ExternalDocumentID 10_1515_fca_2020_0032
10_1515_fca_2020_0032233610
GroupedDBID 06D
0VY
2LR
2WC
30V
3V.
4.4
406
408
8FE
8FG
9-A
AACDK
AAFPC
AAGVJ
AAIAL
AAJBT
AAONY
AAPJK
AAQCX
AARHV
AASML
AASQH
AATNV
AAXCG
AAYZH
ABAKF
ABAQN
ABFKT
ABJCF
ABJNI
ABRQL
ABSOE
ABTKH
ABUWG
ABYKJ
ACAOD
ACBXY
ACDTI
ACEFL
ACGFS
ACIPV
ACIWK
ACMKP
ACPIV
ACXLN
ACZBO
ACZOJ
ADGQD
ADGYE
ADINQ
ADJVZ
ADOZN
AEFQL
AEKEB
AEMSY
AENEX
AEQDQ
AERZL
AESKC
AFBAA
AFBBN
AFCXV
AFGNR
AFKRA
AFLOW
AFWTZ
AGJBK
AGMZJ
AGQEE
AHBYD
AHSBF
AIAKS
AIGIU
AIKXB
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALUKF
AMAVY
AMKLP
AMXSW
AMYLF
ARAPS
ASPBG
AVWKF
AZFZN
AZMOX
AZQEC
BAKPI
BAPOH
BBCWN
BCIFA
BENPR
BGLVJ
BGNMA
BLHJL
BPHCQ
CCPQU
CFGNV
DPUIP
DWQXO
EBLON
EBS
EJD
FEDTE
FIGPU
GNUQQ
GQ7
H13
HCIFZ
HF~
HMJXF
HVGLF
HZ~
IAO
IWAJR
IY9
J9A
JZLTJ
K6V
K7-
KOV
L6V
LLZTM
LO0
M0N
M4Y
M7S
NPVJJ
NQJWS
NU0
OK1
P9R
PQQKQ
PROAC
PTHSS
QD8
R9I
ROL
RSV
S1Z
S27
S3B
SHX
SJN
SJYHP
SMT
SOJ
T13
TR2
U2A
VC2
WK8
WTRAM
~A9
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
PHGZM
PHGZT
PQGLB
AAYXX
AFOHR
CITATION
7SC
7TB
7XB
8AL
8FD
8FK
ABRTQ
FR3
JQ2
KR7
L7M
L~C
L~D
P62
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c356t-8360f968d4256b34c54392c2624791de7715e8ea1770b0c9f65d194da8d0f46a3
IEDL.DBID BENPR
ISSN 1311-0454
IngestDate Wed Aug 27 14:43:59 EDT 2025
Thu Apr 24 22:53:42 EDT 2025
Tue Jul 01 00:57:08 EDT 2025
Thu Jul 10 10:36:42 EDT 2025
Fri Feb 21 02:47:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords non-singular kernel
fundamental theorem of calculus
Primary: 26A33
fractional integral
Secondary: 35R11
34A08
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-8360f968d4256b34c54392c2624791de7715e8ea1770b0c9f65d194da8d0f46a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2424574359
PQPubID 2039846
PageCount 25
ParticipantIDs proquest_journals_2424574359
crossref_primary_10_1515_fca_2020_0032
crossref_citationtrail_10_1515_fca_2020_0032
walterdegruyter_journals_10_1515_fca_2020_0032233610
springer_journals_10_1515_fca_2020_0032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Warsaw
PublicationPlace_xml – name: Warsaw
– name: Heidelberg
PublicationSubtitle An International Journal for Theory and Applications
PublicationTitle Fractional calculus & applied analysis
PublicationTitleAbbrev Fract Calc Appl Anal
PublicationYear 2020
Publisher Versita
De Gruyter
Nature Publishing Group
Publisher_xml – name: Versita
– name: De Gruyter
– name: Nature Publishing Group
References Hanyga (CR12) 2020; 23
Diethelm (CR1) 2010
Doetsch (CR2) 1974
Kolmogorov, Fomīn (CR17) 1975
CR15
Mainardi (CR19) 2010
CR11
Gorenflo, Kilbas, Mainardi, Rogosin (CR8) 2014
Letnikov (CR18) 1868; 3
Samko, Kilbas, Marichev (CR26) 1993
(CR31) 2019; 38
Kilbas, Saigo, Saxena (CR14) 2004; 15
Garrappa, Kaslik, Popolizio (CR4) 2019; 7
Giusti (CR5) 2018; 93
Gorenflo, Mainardi (CR9) 1997; 378
Tarasov (CR29) 2013; 18
Stynes (CR27) 2018; 85
Tarasov (CR30) 2018; 62
Prabhakar (CR25) 1971; 19
Ortigueira, Tenreiro (CR22) 2019; 7
Stynes (CR28) 2019; 3
Ortigueira, Machado (CR23) 2020; 82
Ortigueira, Tenreiro (CR20) 2015; 293
Kochubei (CR16) 2011; 71
CR24
Ortigueira, Tenreiro (CR21) 2018; 59
Giusti (CR6) 2020; 83
Grünwald (CR10) 1867; 12
D’Ovidio, Polito (CR3) 2018; 62
Hilfer, Luchko (CR13) 2019; 7
Giusti, Colombaro, Garra, Garrappa, Polito, Popolizio, Mainardi (CR7) 2020; 23
M D’Ovidio (230302_CR3) 2018; 62
M Stynes (230302_CR28) 2019; 3
R Gorenflo (230302_CR8) 2014
MD Ortigueira (230302_CR21) 2018; 59
R Gorenflo (230302_CR9) 1997; 378
F Mainardi (230302_CR19) 2010
TR Prabhakar (230302_CR25) 1971; 19
MD Ortigueira (230302_CR20) 2015; 293
R Hilfer (230302_CR13) 2019; 7
SG Samko (230302_CR26) 1993
230302_CR24
MD Ortigueira (230302_CR22) 2019; 7
K Diethelm (230302_CR1) 2010
A Letnikov (230302_CR18) 1868; 3
A Giusti (230302_CR5) 2018; 93
M Stynes (230302_CR27) 2018; 85
AN Kochubei (230302_CR16) 2011; 71
MD Ortigueira (230302_CR23) 2020; 82
A Giusti (230302_CR6) 2020; 83
A Grünwald (230302_CR10) 1867; 12
AN Kolmogorov (230302_CR17) 1975
VE Tarasov (230302_CR30) 2018; 62
(230302_CR31) 2019; 38
VE Tarasov (230302_CR29) 2013; 18
R Garrappa (230302_CR4) 2019; 7
A Hanyga (230302_CR12) 2020; 23
230302_CR15
AA Kilbas (230302_CR14) 2004; 15
230302_CR11
G Doetsch (230302_CR2) 1974
A Giusti (230302_CR7) 2020; 23
References_xml – volume: 93
  start-page: 1757
  year: 2018
  end-page: 1763
  ident: CR5
  article-title: A comment on some new definitions of fractional derivative
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-018-4289-8
– volume: 7
  start-page: 407
  issue: 5
  year: 2019
  ident: CR4
  article-title: Evaluation of fractional integrals and derivatives of elementary functions: Overview and tutorial
  publication-title: Mathematics
  doi: 10.3390/math7050407
– volume: 82
  start-page: 8
  year: 2020
  ident: CR23
  article-title: On the properties of some operators under the perspective of fractional system theory
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2019.105022
– volume: 12
  start-page: 441
  year: 1867
  end-page: 480
  ident: CR10
  article-title: über “begrenzte” Derivationen und deren Anwendung
  publication-title: Z. Angew. Math. Phys.
– volume: 18
  start-page: 2945
  issue: 11
  year: 2013
  end-page: 2948
  ident: CR29
  article-title: No violation of the Leibniz rule. No fractional derivative
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2013.04.001
– year: 1993
  ident: CR26
  publication-title: Fractional Integrals and Derivatives
– volume: 85
  start-page: 22
  year: 2018
  end-page: 26
  ident: CR27
  article-title: Fractional-order derivatives defined by continuous kernels are too restrictive
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2018.05.013
– volume: 19
  start-page: 7
  issue: 1
  year: 1971
  end-page: 15
  ident: CR25
  article-title: A singular integral equation with a generalized Mittag–Leffler function in the kernel
  publication-title: Yokohama Math. J.
– volume: 23
  start-page: 211
  issue: 1
  year: 2020
  end-page: 223
  ident: CR12
  article-title: A comment on a controversial issue: A generalized fractional derivative cannot have a regular kernel
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2020-0008
– volume: 7
  start-page: 149
  issue: 2
  year: 2019
  ident: CR13
  article-title: Desiderata for fractional derivatives and integrals
  publication-title: Mathematics
  doi: 10.3390/math7020149
– year: 1975
  ident: CR17
  publication-title: Introductory Real Analysis
– volume: 71
  start-page: 583
  issue: 4
  year: 2011
  end-page: 600
  ident: CR16
  article-title: General fractional calculus, evolution equations, and renewal processes
  publication-title: Integral Equations Operator Theory
  doi: 10.1007/s00020-011-1918-8
– year: 1974
  ident: CR2
  publication-title: Introduction to the Theory and Application of the Laplace Transformation
  doi: 10.1007/978-3-642-65690-3
– volume: 62
  start-page: 157
  year: 2018
  end-page: 163
  ident: CR30
  article-title: No nonlocality. No fractional derivative
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2018.02.019
– volume: 378
  start-page: 223
  year: 1997
  end-page: 276
  ident: CR9
  publication-title: Fractional calculus: integral and differential equations of fractional order, Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996)
– year: 2010
  ident: CR1
  article-title: The Analysis of Fractional Differential Equations
  publication-title: Lecture Notes in Mathematics
– volume: 62
  start-page: 552
  issue: 4
  year: 2018
  end-page: 574
  ident: CR3
  article-title: Fractional diffusion–telegraph equations and their associated stochastic solutions
  publication-title: Theory Probab. Appl.
  doi: 10.1137/S0040585X97T988812
– volume: 7
  start-page: 150
  issue: 2
  year: 2019
  ident: CR22
  article-title: Fractional derivatives: The perspective of system theory
  publication-title: Mathematics
  doi: 10.3390/math7020150
– volume: 59
  start-page: 608
  year: 2018
  end-page: 611
  ident: CR21
  article-title: A critical analysis of the Caputo-Fabrizio operator
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2017.12.001
– ident: CR15
– volume: 38
  issue: 3
  year: 2019
  ident: CR31
  publication-title: Comput. Appl. Math.
– volume: 3
  start-page: 287
  year: 2019
  end-page: 305
  ident: CR28
  publication-title: Singularities, Handbook of Fractional Calculus with Applications
– ident: CR11
– volume: 293
  start-page: 4
  year: 2015
  end-page: 13
  ident: CR20
  article-title: Machado, What is a fractional derivative?
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.07.019
– year: 2010
  ident: CR19
  publication-title: Fractional Calculus and Waves in Linear Viscoelasticity
  doi: 10.1142/p614
– volume: 83
  start-page: 7
  year: 2020
  ident: CR6
  article-title: General fractional calculus and Prabhakar’s theory
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2019.105114
– year: 2014
  ident: CR8
  publication-title: Mittag-Leffler Functions, Related Topics and Applications
  doi: 10.1007/978-3-662-43930-2
– volume: 15
  start-page: 31
  issue: 1
  year: 2004
  end-page: 49
  ident: CR14
  article-title: Generalized Mittag-Leffler function and generalized fractional calculus operators
  publication-title: Integr. Transf. Spec. Funct.
  doi: 10.1080/10652460310001600717
– volume: 23
  start-page: 9
  issue: 1
  year: 2020
  end-page: 54
  ident: CR7
  article-title: A practical guide to Prabhakar fractional calculus
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2020-0002
– volume: 3
  start-page: 1
  issue: 1
  year: 1868
  end-page: 68
  ident: CR18
  article-title: Theory of differentiation with an arbitrary index (in Russian)
  publication-title: Mat. Sbornik
– ident: CR24
– volume: 15
  start-page: 31
  issue: 1
  year: 2004
  ident: 230302_CR14
  publication-title: Integr. Transf. Spec. Funct.
  doi: 10.1080/10652460310001600717
– ident: 230302_CR11
– volume: 7
  start-page: 407
  issue: 5
  year: 2019
  ident: 230302_CR4
  publication-title: Mathematics
  doi: 10.3390/math7050407
– volume: 18
  start-page: 2945
  issue: 11
  year: 2013
  ident: 230302_CR29
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2013.04.001
– volume-title: Introduction to the Theory and Application of the Laplace Transformation
  year: 1974
  ident: 230302_CR2
  doi: 10.1007/978-3-642-65690-3
– volume: 83
  start-page: 7
  year: 2020
  ident: 230302_CR6
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2019.105114
– volume: 23
  start-page: 9
  issue: 1
  year: 2020
  ident: 230302_CR7
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2020-0002
– volume: 3
  start-page: 287
  year: 2019
  ident: 230302_CR28
  publication-title: Singularities, Handbook of Fractional Calculus with Applications
– volume: 3
  start-page: 1
  issue: 1
  year: 1868
  ident: 230302_CR18
  publication-title: Mat. Sbornik
– volume-title: Mittag-Leffler Functions, Related Topics and Applications
  year: 2014
  ident: 230302_CR8
  doi: 10.1007/978-3-662-43930-2
– volume: 23
  start-page: 211
  issue: 1
  year: 2020
  ident: 230302_CR12
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2020-0008
– volume-title: Fractional Integrals and Derivatives
  year: 1993
  ident: 230302_CR26
– volume: 12
  start-page: 441
  year: 1867
  ident: 230302_CR10
  publication-title: Z. Angew. Math. Phys.
– ident: 230302_CR15
– volume-title: Introductory Real Analysis
  year: 1975
  ident: 230302_CR17
– volume: 38
  issue: 3
  year: 2019
  ident: 230302_CR31
  publication-title: Comput. Appl. Math.
– volume: 59
  start-page: 608
  year: 2018
  ident: 230302_CR21
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2017.12.001
– volume: 62
  start-page: 157
  year: 2018
  ident: 230302_CR30
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2018.02.019
– volume: 93
  start-page: 1757
  year: 2018
  ident: 230302_CR5
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-018-4289-8
– volume: 62
  start-page: 552
  issue: 4
  year: 2018
  ident: 230302_CR3
  publication-title: Theory Probab. Appl.
  doi: 10.1137/S0040585X97T988812
– volume: 378
  start-page: 223
  year: 1997
  ident: 230302_CR9
  publication-title: Fractional calculus: integral and differential equations of fractional order, Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996)
– volume: 71
  start-page: 583
  issue: 4
  year: 2011
  ident: 230302_CR16
  publication-title: Integral Equations Operator Theory
  doi: 10.1007/s00020-011-1918-8
– volume: 85
  start-page: 22
  year: 2018
  ident: 230302_CR27
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2018.05.013
– volume-title: Fractional Calculus and Waves in Linear Viscoelasticity
  year: 2010
  ident: 230302_CR19
  doi: 10.1142/p614
– volume: 82
  start-page: 8
  year: 2020
  ident: 230302_CR23
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2019.105022
– volume: 7
  start-page: 149
  issue: 2
  year: 2019
  ident: 230302_CR13
  publication-title: Mathematics
  doi: 10.3390/math7020149
– volume: 7
  start-page: 150
  issue: 2
  year: 2019
  ident: 230302_CR22
  publication-title: Mathematics
  doi: 10.3390/math7020150
– ident: 230302_CR24
– volume-title: Lecture Notes in Mathematics
  year: 2010
  ident: 230302_CR1
– volume: 293
  start-page: 4
  year: 2015
  ident: 230302_CR20
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.07.019
– volume: 19
  start-page: 7
  issue: 1
  year: 1971
  ident: 230302_CR25
  publication-title: Yokohama Math. J.
SSID ssib054405957
ssj0000826098
Score 2.5160444
Snippet In recent years, many papers discuss the theory and applications of new fractional-order derivatives that are constructed by replacing the singular kernel of...
SourceID proquest
crossref
walterdegruyter
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 610
SubjectTerms 34A08
Abstract Harmonic Analysis
Analysis
Approximation
Calculus
Convolution
Convolution integrals
Derivatives
Differential equations
Editorial Survey
Existence theorems
Fractional calculus
fractional derivative
fractional integral
Functional Analysis
fundamental theorem of calculus
Integral Transforms
Integrals
Kernels
Mathematical analysis
Mathematics
non-singular kernel
Numerical analysis
Operational Calculus
Primary: 26A33
Secondary: 35R11
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqstCh4ikKBXlAsBA1cew8xvKoKlC7QEW3KLEdOqCAkhTUf8-dm7QCVMFsx5HuLr4vPt_3EXKe2tyX0o2thDvM4rHmVpjgMZzyMX2EihsxmNHYG074_VRMG6RX98KY2-51SdLs1EajxxG9VMbgUoZ90C7suVsCf9shgCesXweQ4AA_wqqMZ7ZiAM-20cNFVhkL6eYqns1fK37PS2uwuaqPtkj701SwlX7J54uyrpiaRDTYIe0KQdL-0uW7pKGzPdIarehXi30yeJ4t6CBf9izA3FsIsw_D8F1QPHilY7wWm6EKfU4fdJ5BgqSPM1S7hqGSXms6KbQ6IJPB3dPN0KoEEyzpCq-0sCEjDb0ADCy8xOVSANxgknmM-6GjtO87Qgc6dnzfTmwZpp5QTshVHCg75V7sHpJm9pbpI0IT5vI49ZkOEhhxZGCnLEW4qKQATKA75Ko2VyQrNnEUtXiN8K8CrBuBdSO0LrKPsg65WE1_X9JobJrYrW0fVV9TEWELiwCoI8IOuaz9sR7esBD_4a4_HmCuC1Dy-N8vOCHby-DBE5kuaZb5XJ8CQCmTMxOUX50q2qk
  priority: 102
  providerName: Springer Nature
Title Why Fractional Derivatives with Nonsingular Kernels Should Not Be Used
URI https://link.springer.com/article/10.1515/fca-2020-0032
https://www.degruyter.com/doi/10.1515/fca-2020-0032
https://www.proquest.com/docview/2424574359
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF60XvQgior1UfYgejGYbHbzOEmVVhEUEYu9hWQfCkqsSar03zuTbloUqscwmwezk5lvZ3bnI-TIuDyU0k-djHvM4anmTpxhGk6FGD5ixWsymNu74HrAb4ZiaBNupd1W2fjE2lGrd4k58jM8xiAg3In4fPThIGsUVlcthcYyWQEXHMHia-Wid3f_0FiU4IBHYlvXq30zoGm3JsjFNjMO9p-zjTchrp8ZmYLVMDxq7bOfgWqOPmcF0zWy_lWXtJV-LsaTqimh1pGpv0HWLaSk3akNbJIlnW-R_tPLhJpiemwBpAos7bNu8l1SzL3SHHfG5khEX9BXXeQQI2n5goTXIKpopum41GqbDPq9x8trx3ImONIXQeXgmQwTBxHoWASZz6UAxMEkCxgPY0_pMPSEjnTqhaGbuTI2gVBezFUaKdfwIPV3SAs-QO8SmjGfpyZkOspA4snINcwgYlRSACzQbXLaKCiRtqE48lq8JbiwAH0moM8E9YkNSFmbHM-Gj6adNBYNPGi0ndgfqkzm098mJ80MzMULHsR_TdA_NzDfBzS59_f798nq1EYwE3NAWlUx1ocATKqsQ5aj_lXH2iBcDVj3GwLv3xM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQcUBFULNDiA49LIxI_8jhUVQUsy_MEKrc08QMk0AJJFrR_qr-xM3mwAoly4jyOY40_ez57PDMA686XkdYi83IZcE9mVnpJTtdwJiLzkRhZF4M5OQ0H5_LwQl1Mwd8uFoaeVXZ7Yr1Rm1tNd-TbFMag0Nyp5OfdvUdVo8i72pXQaGBxZMePeGQrfxzs4vxucN7fO9sZeG1VAU8LFVYeRS24JIxxFCrMhdQKbTLXPOQySgJjoyhQNrZZEEV-7uvEhcrgSd9ksfGdDDOB_X6AGSlEQisq7u93-FUS2U_SehFrS4Dc3a_L8VJSG4-y3bVpPpFFbDudIUY5BXYL_twsTrjuk3t2FuYeawe6sZfFaFx1DtvaDvY_w1xLYNmvBnHzMGWHC9D_fTVmrmiCJFBqENcPdUrxktFNLxvSO9whlb0v2LUthmiRWXlF5bVRVLHcslFpzSKcv4suv8A0DsAuAcu5kJmLuI1zlAQ69h13xE-NVkhCbA--dwpKdZu-nKpo3KR0jEF9pqjPlPRJ6U55Dzafmt81eTtea7jaaTttl2-ZTsDWg61uBibiVzqSLybojQ-4EMhdl____zX4ODg7OU6PD06PVuBTgxe6A1qF6aoY2a9Iiar8W41DBn_eG_j_ADDlFuc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS-RAEC5EQdYH8VhxPPthcV8MJp3uHPjkFTzWYWEd9C0kfTgPEiWTUebfW5VjxBXR5-50oKrS9aWr6_sAfllXhEr5mZMLjzsiM8KJczqG0yGlj1iLWgzmuh-cD8TlnbybgcOuF6a-7d6VJJueBmJpKqqDJ20bvR5PHliVoXs59UT7uP_O4U7sUUgP-FEXTFIgFInbkl69LSOQdmttXGKYcYh6ruXc_LDi-xz1BjyntdIFWHypq9na3JfjSdVVT-uklCzBYosm2VHj_mWYMcUKLFxPqVhHq5DcDicsKZv-BZx7iiH3XLN9jxgdwrI-XZEtSJG-ZFemLDBZsn9DUr7GoYodGzYYGf0TBsnZzcm504onOMqXQeVQc4aNgwiNLYPcF0oi9OCKB1yEsadNGHrSRCbzwtDNXRXbQGovFjqLtGtFkPlrMFs8FmYdWM59kdmQmyjHEU9FruWWoKNWEvGB6cF-Z65UtcziJHDxkNIfBlo3ReumZF1iIuU92JtOf2ooNT6buNXZPm2_rFFK7SwSYY-Me_C788fb8CcLif_c9cUD3PcRVm58-wW7MP_3NEn_XPSvNuFHE0d0ULMFs1U5NtuIW6p8p47PVw3X4dg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Why+fractional+derivatives+with+nonsingular+kernels+should+not+be+used&rft.jtitle=Fractional+calculus+%26+applied+analysis&rft.au=Diethelm%2C+Kai&rft.au=Garrappa%2C+Roberto&rft.au=Giusti%2C+Andrea&rft.au=Stynes%2C+Martin&rft.date=2020-06-01&rft.pub=Nature+Publishing+Group&rft.issn=1311-0454&rft.eissn=1314-2224&rft.volume=23&rft.issue=3&rft.spage=610&rft.epage=634&rft_id=info:doi/10.1515%2Ffca-2020-0032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1311-0454&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1311-0454&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1311-0454&client=summon