Why Fractional Derivatives with Nonsingular Kernels Should Not Be Used
In recent years, many papers discuss the theory and applications of new fractional-order derivatives that are constructed by replacing the singular kernel of the Caputo or Riemann-Liouville derivative by a non-singular (i.e., bounded) kernel. It will be shown here, through rigorous mathematical reas...
Saved in:
Published in | Fractional calculus & applied analysis Vol. 23; no. 3; pp. 610 - 634 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Warsaw
Versita
01.06.2020
De Gruyter Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, many papers discuss the theory and applications of new fractional-order derivatives that are constructed by replacing the singular kernel of the Caputo or Riemann-Liouville derivative by a non-singular (i.e., bounded) kernel. It will be shown here, through rigorous mathematical reasoning, that these non-singular kernel derivatives suffer from several drawbacks which should forbid their use. They fail to satisfy the fundamental theorem of fractional calculus since they do not admit the existence of a corresponding convolution integral of which the derivative is the left-inverse; and the value of the derivative at the initial time
t
= 0 is always zero, which imposes an unnatural restriction on the differential equations and models where these derivatives can be used. For the particular cases of the so-called Caputo-Fabrizio and Atangana-Baleanu derivatives, it is shown that when this restriction holds the derivative can be simply expressed in terms of integer derivatives and standard Caputo fractional derivatives, thus demonstrating that these derivatives contain nothing new. |
---|---|
AbstractList | In recent years, many papers discuss the theory and applications of new fractional-order derivatives that are constructed by replacing the singular kernel of the Caputo or Riemann-Liouville derivative by a non-singular (i.e., bounded) kernel. It will be shown here, through rigorous mathematical reasoning, that these non-singular kernel derivatives suffer from several drawbacks which should forbid their use. They fail to satisfy the fundamental theorem of fractional calculus since they do not admit the existence of a corresponding convolution integral of which the derivative is the left-inverse; and the value of the derivative at the initial time t = 0 is always zero, which imposes an unnatural restriction on the differential equations and models where these derivatives can be used. For the particular cases of the so-called Caputo-Fabrizio and Atangana-Baleanu derivatives, it is shown that when this restriction holds the derivative can be simply expressed in terms of integer derivatives and standard Caputo fractional derivatives, thus demonstrating that these derivatives contain nothing new. In recent years, many papers discuss the theory and applications of new fractional-order derivatives that are constructed by replacing the singular kernel of the Caputo or Riemann-Liouville derivative by a non-singular (i.e., bounded) kernel. It will be shown here, through rigorous mathematical reasoning, that these non-singular kernel derivatives suffer from several drawbacks which should forbid their use. They fail to satisfy the fundamental theorem of fractional calculus since they do not admit the existence of a corresponding convolution integral of which the derivative is the left-inverse; and the value of the derivative at the initial time t = 0 is always zero, which imposes an unnatural restriction on the differential equations and models where these derivatives can be used. For the particular cases of the so-called Caputo-Fabrizio and Atangana-Baleanu derivatives, it is shown that when this restriction holds the derivative can be simply expressed in terms of integer derivatives and standard Caputo fractional derivatives, thus demonstrating that these derivatives contain nothing new. In recent years, many papers discuss the theory and applications of new fractional-order derivatives that are constructed by replacing the singular kernel of the Caputo or Riemann-Liouville derivative by a non-singular (i.e., bounded) kernel. It will be shown here, through rigorous mathematical reasoning, that these non-singular kernel derivatives suffer from several drawbacks which should forbid their use. They fail to satisfy the fundamental theorem of fractional calculus since they do not admit the existence of a corresponding convolution integral of which the derivative is the left-inverse; and the value of the derivative at the initial time = 0 is always zero, which imposes an unnatural restriction on the differential equations and models where these derivatives can be used. For the particular cases of the so-called Caputo-Fabrizio and Atangana-Baleanu derivatives, it is shown that when this restriction holds the derivative can be simply expressed in terms of integer derivatives and standard Caputo fractional derivatives, thus demonstrating that these derivatives contain nothing new. |
Author | Diethelm, Kai Giusti, Andrea Stynes, Martin Garrappa, Roberto |
Author_xml | – sequence: 1 givenname: Kai surname: Diethelm fullname: Diethelm, Kai email: kai.diethelm@fhws.de organization: Fakultät Angewandte Natur- und Geisteswissenschaften, University of Applied Sciences Würzburg-Schweinfurt, GNS mbH Gesellschaft für numerische – sequence: 2 givenname: Roberto surname: Garrappa fullname: Garrappa, Roberto organization: Department of Mathematics, University of Bari, The INdAM Research group GNCS – sequence: 3 givenname: Andrea surname: Giusti fullname: Giusti, Andrea organization: Department of Physics & Astronomy Bishop’s, University – sequence: 4 givenname: Martin surname: Stynes fullname: Stynes, Martin organization: Applied and Computational Mathematics Division Beijing Computational Science Research Center |
BookMark | eNqFkM9LwzAYhoNMcM4dvRc8d-Z3WzzpdCqKHnR4DFmSbpHaziTd2H9vagVBFE_fB9_7fLw8h2BQN7UB4BjBCWKInZZKphhimEJI8B4YIoJoijGmg88dpZAyegDG3tsFZJRCVrBsCGYvq10yc1IF29SySi6NsxsZ7Mb4ZGvDKnloam_rZVtJl9wZV5vKJ0-rpq10PIXkwiRzb_QR2C9l5c34a47AfHb1PL1J7x-vb6fn96kijIc0JxyWBc81xYwvCFWMkgIrzDHNCqRNliFmciNRlsEFVEXJmUYF1TLXsKRckhE46f-uXfPeGh_Ea9O6WNwLTDFlGSWsiKm0TynXeO9MKdbOvkm3EwiKzpaItkRnS3S2Yp78yCsbZGckOGmrP6mzntrKKhinzdK1u7h8V_qVw4RwBCM96Wkfu9XLfzHyAcmekAA |
CitedBy_id | crossref_primary_10_1016_j_fraope_2023_100043 crossref_primary_10_3934_math_20221000 crossref_primary_10_1007_s11538_023_01139_2 crossref_primary_10_1007_s11071_021_07158_9 crossref_primary_10_1007_s13540_023_00186_9 crossref_primary_10_1016_j_cam_2024_116262 crossref_primary_10_1515_fca_2020_0049 crossref_primary_10_1371_journal_pcbi_1009396 crossref_primary_10_3390_math11071651 crossref_primary_10_1088_1402_4896_ad0c12 crossref_primary_10_1142_S0219530523500100 crossref_primary_10_1080_07362994_2021_2021091 crossref_primary_10_3233_JIFS_201428 crossref_primary_10_3390_fractalfract8110665 crossref_primary_10_3390_fractalfract4030040 crossref_primary_10_3390_fractalfract7110799 crossref_primary_10_3390_math12070932 crossref_primary_10_3390_math10060849 crossref_primary_10_3390_fractalfract7030213 crossref_primary_10_3934_math_2023685 crossref_primary_10_1002_mma_7037 crossref_primary_10_3390_math8122115 crossref_primary_10_3390_fractalfract5010005 crossref_primary_10_1140_epjp_s13360_022_02951_w crossref_primary_10_1515_forum_2023_0445 crossref_primary_10_1016_j_apm_2024_05_003 crossref_primary_10_1016_j_cnsns_2021_106121 crossref_primary_10_29328_journal_ijpra_1001065 crossref_primary_10_1142_S0218348X23401564 crossref_primary_10_3390_fractalfract8090535 crossref_primary_10_3390_math11041031 crossref_primary_10_1016_j_padiff_2025_101093 crossref_primary_10_3390_math12152411 crossref_primary_10_1007_s11075_024_02006_4 crossref_primary_10_1016_j_apnum_2021_01_013 crossref_primary_10_1088_1751_8121_ace6e2 crossref_primary_10_1103_PhysRevE_108_024125 crossref_primary_10_3390_math10203848 crossref_primary_10_23939_mmc2021_01_106 crossref_primary_10_1007_s13540_021_00003_1 crossref_primary_10_1016_j_chaos_2022_111960 crossref_primary_10_3389_fcteg_2021_716110 crossref_primary_10_1007_s10827_023_00862_y crossref_primary_10_3390_math9212816 crossref_primary_10_1088_1402_4896_ad0fd0 crossref_primary_10_1134_S0965542522040066 crossref_primary_10_3934_dcds_2024177 crossref_primary_10_1007_s40435_023_01291_6 crossref_primary_10_3934_math_2024354 crossref_primary_10_1007_s00707_023_03506_5 crossref_primary_10_3390_math9060594 crossref_primary_10_3103_S0025654422010022 crossref_primary_10_1007_s13540_024_00288_y crossref_primary_10_1007_s00419_024_02676_5 crossref_primary_10_1515_fca_2021_0016 crossref_primary_10_3390_math8091561 crossref_primary_10_1007_s13540_021_00012_0 crossref_primary_10_1002_zamm_202100533 crossref_primary_10_1007_s13540_024_00323_y crossref_primary_10_3390_sym13050755 crossref_primary_10_1007_s11071_024_10379_3 crossref_primary_10_1007_s10915_023_02283_6 crossref_primary_10_1080_10236198_2021_1935909 crossref_primary_10_1016_j_chaos_2022_112848 crossref_primary_10_3390_en13215768 crossref_primary_10_3390_fractalfract9020079 crossref_primary_10_1016_j_cam_2024_116339 crossref_primary_10_1016_j_matcom_2024_01_006 crossref_primary_10_1016_j_aml_2020_106804 crossref_primary_10_1080_10255842_2023_2298717 crossref_primary_10_1115_1_4063554 crossref_primary_10_1007_s00707_022_03317_0 crossref_primary_10_1016_j_chaos_2024_115263 crossref_primary_10_1515_jaa_2021_2076 crossref_primary_10_1002_mma_10748 crossref_primary_10_1038_s41598_024_57011_3 crossref_primary_10_1155_2021_5557068 crossref_primary_10_1088_1402_4896_ad7d51 crossref_primary_10_1145_3680280 crossref_primary_10_1016_j_physa_2022_128366 crossref_primary_10_3390_math12101593 crossref_primary_10_1016_j_matcom_2022_05_030 crossref_primary_10_1007_s11071_024_10455_8 crossref_primary_10_3390_fractalfract8070411 crossref_primary_10_1515_fca_2021_0072 crossref_primary_10_1007_s40314_022_01977_1 crossref_primary_10_1007_s44198_024_00170_8 crossref_primary_10_1140_epjp_s13360_022_03512_x crossref_primary_10_1016_j_chaos_2022_112901 crossref_primary_10_1016_j_cnsns_2022_106979 crossref_primary_10_3390_app13053065 crossref_primary_10_1016_j_cnsns_2021_105904 crossref_primary_10_1515_fca_2021_0068 crossref_primary_10_1007_s11538_023_01151_6 crossref_primary_10_1080_00207721_2022_2063965 crossref_primary_10_1016_j_cnsns_2024_108316 crossref_primary_10_3390_fractalfract9020058 crossref_primary_10_3390_mca26040073 crossref_primary_10_1016_j_aej_2022_01_055 crossref_primary_10_1002_mma_9875 crossref_primary_10_3390_math10091540 crossref_primary_10_1007_s00419_023_02383_7 crossref_primary_10_1007_s13540_023_00190_z crossref_primary_10_3390_math10193540 |
Cites_doi | 10.1007/s11071-018-4289-8 10.3390/math7050407 10.1016/j.cnsns.2019.105022 10.1016/j.cnsns.2013.04.001 10.1016/j.aml.2018.05.013 10.1515/fca-2020-0008 10.3390/math7020149 10.1007/s00020-011-1918-8 10.1007/978-3-642-65690-3 10.1016/j.cnsns.2018.02.019 10.1137/S0040585X97T988812 10.3390/math7020150 10.1016/j.cnsns.2017.12.001 10.1016/j.jcp.2014.07.019 10.1142/p614 10.1016/j.cnsns.2019.105114 10.1007/978-3-662-43930-2 10.1080/10652460310001600717 10.1515/fca-2020-0002 |
ContentType | Journal Article |
Copyright | Diogenes Co., Sofia 2020 2020 Diogenes Co., Sofia |
Copyright_xml | – notice: Diogenes Co., Sofia 2020 – notice: 2020 Diogenes Co., Sofia |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1515/fca-2020-0032 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Engineering Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1314-2224 |
EndPage | 634 |
ExternalDocumentID | 10_1515_fca_2020_0032 10_1515_fca_2020_0032233610 |
GroupedDBID | 06D 0VY 2LR 2WC 30V 3V. 4.4 406 408 8FE 8FG 9-A AACDK AAFPC AAGVJ AAIAL AAJBT AAONY AAPJK AAQCX AARHV AASML AASQH AATNV AAXCG AAYZH ABAKF ABAQN ABFKT ABJCF ABJNI ABRQL ABSOE ABTKH ABUWG ABYKJ ACAOD ACBXY ACDTI ACEFL ACGFS ACIPV ACIWK ACMKP ACPIV ACXLN ACZBO ACZOJ ADGQD ADGYE ADINQ ADJVZ ADOZN AEFQL AEKEB AEMSY AENEX AEQDQ AERZL AESKC AFBAA AFBBN AFCXV AFGNR AFKRA AFLOW AFWTZ AGJBK AGMZJ AGQEE AHBYD AHSBF AIAKS AIGIU AIKXB AKXKS ALMA_UNASSIGNED_HOLDINGS ALUKF AMAVY AMKLP AMXSW AMYLF ARAPS ASPBG AVWKF AZFZN AZMOX AZQEC BAKPI BAPOH BBCWN BCIFA BENPR BGLVJ BGNMA BLHJL BPHCQ CCPQU CFGNV DPUIP DWQXO EBLON EBS EJD FEDTE FIGPU GNUQQ GQ7 H13 HCIFZ HF~ HMJXF HVGLF HZ~ IAO IWAJR IY9 J9A JZLTJ K6V K7- KOV L6V LLZTM LO0 M0N M4Y M7S NPVJJ NQJWS NU0 OK1 P9R PQQKQ PROAC PTHSS QD8 R9I ROL RSV S1Z S27 S3B SHX SJN SJYHP SMT SOJ T13 TR2 U2A VC2 WK8 WTRAM ~A9 ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA PHGZM PHGZT PQGLB AAYXX AFOHR CITATION 7SC 7TB 7XB 8AL 8FD 8FK ABRTQ FR3 JQ2 KR7 L7M L~C L~D P62 PKEHL PQEST PQUKI PRINS PUEGO Q9U |
ID | FETCH-LOGICAL-c356t-8360f968d4256b34c54392c2624791de7715e8ea1770b0c9f65d194da8d0f46a3 |
IEDL.DBID | BENPR |
ISSN | 1311-0454 |
IngestDate | Wed Aug 27 14:43:59 EDT 2025 Thu Apr 24 22:53:42 EDT 2025 Tue Jul 01 00:57:08 EDT 2025 Thu Jul 10 10:36:42 EDT 2025 Fri Feb 21 02:47:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | non-singular kernel fundamental theorem of calculus Primary: 26A33 fractional integral Secondary: 35R11 34A08 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-8360f968d4256b34c54392c2624791de7715e8ea1770b0c9f65d194da8d0f46a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2424574359 |
PQPubID | 2039846 |
PageCount | 25 |
ParticipantIDs | proquest_journals_2424574359 crossref_primary_10_1515_fca_2020_0032 crossref_citationtrail_10_1515_fca_2020_0032 walterdegruyter_journals_10_1515_fca_2020_0032233610 springer_journals_10_1515_fca_2020_0032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Warsaw |
PublicationPlace_xml | – name: Warsaw – name: Heidelberg |
PublicationSubtitle | An International Journal for Theory and Applications |
PublicationTitle | Fractional calculus & applied analysis |
PublicationTitleAbbrev | Fract Calc Appl Anal |
PublicationYear | 2020 |
Publisher | Versita De Gruyter Nature Publishing Group |
Publisher_xml | – name: Versita – name: De Gruyter – name: Nature Publishing Group |
References | Hanyga (CR12) 2020; 23 Diethelm (CR1) 2010 Doetsch (CR2) 1974 Kolmogorov, Fomīn (CR17) 1975 CR15 Mainardi (CR19) 2010 CR11 Gorenflo, Kilbas, Mainardi, Rogosin (CR8) 2014 Letnikov (CR18) 1868; 3 Samko, Kilbas, Marichev (CR26) 1993 (CR31) 2019; 38 Kilbas, Saigo, Saxena (CR14) 2004; 15 Garrappa, Kaslik, Popolizio (CR4) 2019; 7 Giusti (CR5) 2018; 93 Gorenflo, Mainardi (CR9) 1997; 378 Tarasov (CR29) 2013; 18 Stynes (CR27) 2018; 85 Tarasov (CR30) 2018; 62 Prabhakar (CR25) 1971; 19 Ortigueira, Tenreiro (CR22) 2019; 7 Stynes (CR28) 2019; 3 Ortigueira, Machado (CR23) 2020; 82 Ortigueira, Tenreiro (CR20) 2015; 293 Kochubei (CR16) 2011; 71 CR24 Ortigueira, Tenreiro (CR21) 2018; 59 Giusti (CR6) 2020; 83 Grünwald (CR10) 1867; 12 D’Ovidio, Polito (CR3) 2018; 62 Hilfer, Luchko (CR13) 2019; 7 Giusti, Colombaro, Garra, Garrappa, Polito, Popolizio, Mainardi (CR7) 2020; 23 M D’Ovidio (230302_CR3) 2018; 62 M Stynes (230302_CR28) 2019; 3 R Gorenflo (230302_CR8) 2014 MD Ortigueira (230302_CR21) 2018; 59 R Gorenflo (230302_CR9) 1997; 378 F Mainardi (230302_CR19) 2010 TR Prabhakar (230302_CR25) 1971; 19 MD Ortigueira (230302_CR20) 2015; 293 R Hilfer (230302_CR13) 2019; 7 SG Samko (230302_CR26) 1993 230302_CR24 MD Ortigueira (230302_CR22) 2019; 7 K Diethelm (230302_CR1) 2010 A Letnikov (230302_CR18) 1868; 3 A Giusti (230302_CR5) 2018; 93 M Stynes (230302_CR27) 2018; 85 AN Kochubei (230302_CR16) 2011; 71 MD Ortigueira (230302_CR23) 2020; 82 A Giusti (230302_CR6) 2020; 83 A Grünwald (230302_CR10) 1867; 12 AN Kolmogorov (230302_CR17) 1975 VE Tarasov (230302_CR30) 2018; 62 (230302_CR31) 2019; 38 VE Tarasov (230302_CR29) 2013; 18 R Garrappa (230302_CR4) 2019; 7 A Hanyga (230302_CR12) 2020; 23 230302_CR15 AA Kilbas (230302_CR14) 2004; 15 230302_CR11 G Doetsch (230302_CR2) 1974 A Giusti (230302_CR7) 2020; 23 |
References_xml | – volume: 93 start-page: 1757 year: 2018 end-page: 1763 ident: CR5 article-title: A comment on some new definitions of fractional derivative publication-title: Nonlinear Dyn doi: 10.1007/s11071-018-4289-8 – volume: 7 start-page: 407 issue: 5 year: 2019 ident: CR4 article-title: Evaluation of fractional integrals and derivatives of elementary functions: Overview and tutorial publication-title: Mathematics doi: 10.3390/math7050407 – volume: 82 start-page: 8 year: 2020 ident: CR23 article-title: On the properties of some operators under the perspective of fractional system theory publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2019.105022 – volume: 12 start-page: 441 year: 1867 end-page: 480 ident: CR10 article-title: über “begrenzte” Derivationen und deren Anwendung publication-title: Z. Angew. Math. Phys. – volume: 18 start-page: 2945 issue: 11 year: 2013 end-page: 2948 ident: CR29 article-title: No violation of the Leibniz rule. No fractional derivative publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2013.04.001 – year: 1993 ident: CR26 publication-title: Fractional Integrals and Derivatives – volume: 85 start-page: 22 year: 2018 end-page: 26 ident: CR27 article-title: Fractional-order derivatives defined by continuous kernels are too restrictive publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2018.05.013 – volume: 19 start-page: 7 issue: 1 year: 1971 end-page: 15 ident: CR25 article-title: A singular integral equation with a generalized Mittag–Leffler function in the kernel publication-title: Yokohama Math. J. – volume: 23 start-page: 211 issue: 1 year: 2020 end-page: 223 ident: CR12 article-title: A comment on a controversial issue: A generalized fractional derivative cannot have a regular kernel publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2020-0008 – volume: 7 start-page: 149 issue: 2 year: 2019 ident: CR13 article-title: Desiderata for fractional derivatives and integrals publication-title: Mathematics doi: 10.3390/math7020149 – year: 1975 ident: CR17 publication-title: Introductory Real Analysis – volume: 71 start-page: 583 issue: 4 year: 2011 end-page: 600 ident: CR16 article-title: General fractional calculus, evolution equations, and renewal processes publication-title: Integral Equations Operator Theory doi: 10.1007/s00020-011-1918-8 – year: 1974 ident: CR2 publication-title: Introduction to the Theory and Application of the Laplace Transformation doi: 10.1007/978-3-642-65690-3 – volume: 62 start-page: 157 year: 2018 end-page: 163 ident: CR30 article-title: No nonlocality. No fractional derivative publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2018.02.019 – volume: 378 start-page: 223 year: 1997 end-page: 276 ident: CR9 publication-title: Fractional calculus: integral and differential equations of fractional order, Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996) – year: 2010 ident: CR1 article-title: The Analysis of Fractional Differential Equations publication-title: Lecture Notes in Mathematics – volume: 62 start-page: 552 issue: 4 year: 2018 end-page: 574 ident: CR3 article-title: Fractional diffusion–telegraph equations and their associated stochastic solutions publication-title: Theory Probab. Appl. doi: 10.1137/S0040585X97T988812 – volume: 7 start-page: 150 issue: 2 year: 2019 ident: CR22 article-title: Fractional derivatives: The perspective of system theory publication-title: Mathematics doi: 10.3390/math7020150 – volume: 59 start-page: 608 year: 2018 end-page: 611 ident: CR21 article-title: A critical analysis of the Caputo-Fabrizio operator publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2017.12.001 – ident: CR15 – volume: 38 issue: 3 year: 2019 ident: CR31 publication-title: Comput. Appl. Math. – volume: 3 start-page: 287 year: 2019 end-page: 305 ident: CR28 publication-title: Singularities, Handbook of Fractional Calculus with Applications – ident: CR11 – volume: 293 start-page: 4 year: 2015 end-page: 13 ident: CR20 article-title: Machado, What is a fractional derivative? publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.07.019 – year: 2010 ident: CR19 publication-title: Fractional Calculus and Waves in Linear Viscoelasticity doi: 10.1142/p614 – volume: 83 start-page: 7 year: 2020 ident: CR6 article-title: General fractional calculus and Prabhakar’s theory publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2019.105114 – year: 2014 ident: CR8 publication-title: Mittag-Leffler Functions, Related Topics and Applications doi: 10.1007/978-3-662-43930-2 – volume: 15 start-page: 31 issue: 1 year: 2004 end-page: 49 ident: CR14 article-title: Generalized Mittag-Leffler function and generalized fractional calculus operators publication-title: Integr. Transf. Spec. Funct. doi: 10.1080/10652460310001600717 – volume: 23 start-page: 9 issue: 1 year: 2020 end-page: 54 ident: CR7 article-title: A practical guide to Prabhakar fractional calculus publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2020-0002 – volume: 3 start-page: 1 issue: 1 year: 1868 end-page: 68 ident: CR18 article-title: Theory of differentiation with an arbitrary index (in Russian) publication-title: Mat. Sbornik – ident: CR24 – volume: 15 start-page: 31 issue: 1 year: 2004 ident: 230302_CR14 publication-title: Integr. Transf. Spec. Funct. doi: 10.1080/10652460310001600717 – ident: 230302_CR11 – volume: 7 start-page: 407 issue: 5 year: 2019 ident: 230302_CR4 publication-title: Mathematics doi: 10.3390/math7050407 – volume: 18 start-page: 2945 issue: 11 year: 2013 ident: 230302_CR29 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2013.04.001 – volume-title: Introduction to the Theory and Application of the Laplace Transformation year: 1974 ident: 230302_CR2 doi: 10.1007/978-3-642-65690-3 – volume: 83 start-page: 7 year: 2020 ident: 230302_CR6 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2019.105114 – volume: 23 start-page: 9 issue: 1 year: 2020 ident: 230302_CR7 publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2020-0002 – volume: 3 start-page: 287 year: 2019 ident: 230302_CR28 publication-title: Singularities, Handbook of Fractional Calculus with Applications – volume: 3 start-page: 1 issue: 1 year: 1868 ident: 230302_CR18 publication-title: Mat. Sbornik – volume-title: Mittag-Leffler Functions, Related Topics and Applications year: 2014 ident: 230302_CR8 doi: 10.1007/978-3-662-43930-2 – volume: 23 start-page: 211 issue: 1 year: 2020 ident: 230302_CR12 publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2020-0008 – volume-title: Fractional Integrals and Derivatives year: 1993 ident: 230302_CR26 – volume: 12 start-page: 441 year: 1867 ident: 230302_CR10 publication-title: Z. Angew. Math. Phys. – ident: 230302_CR15 – volume-title: Introductory Real Analysis year: 1975 ident: 230302_CR17 – volume: 38 issue: 3 year: 2019 ident: 230302_CR31 publication-title: Comput. Appl. Math. – volume: 59 start-page: 608 year: 2018 ident: 230302_CR21 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2017.12.001 – volume: 62 start-page: 157 year: 2018 ident: 230302_CR30 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2018.02.019 – volume: 93 start-page: 1757 year: 2018 ident: 230302_CR5 publication-title: Nonlinear Dyn doi: 10.1007/s11071-018-4289-8 – volume: 62 start-page: 552 issue: 4 year: 2018 ident: 230302_CR3 publication-title: Theory Probab. Appl. doi: 10.1137/S0040585X97T988812 – volume: 378 start-page: 223 year: 1997 ident: 230302_CR9 publication-title: Fractional calculus: integral and differential equations of fractional order, Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996) – volume: 71 start-page: 583 issue: 4 year: 2011 ident: 230302_CR16 publication-title: Integral Equations Operator Theory doi: 10.1007/s00020-011-1918-8 – volume: 85 start-page: 22 year: 2018 ident: 230302_CR27 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2018.05.013 – volume-title: Fractional Calculus and Waves in Linear Viscoelasticity year: 2010 ident: 230302_CR19 doi: 10.1142/p614 – volume: 82 start-page: 8 year: 2020 ident: 230302_CR23 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2019.105022 – volume: 7 start-page: 149 issue: 2 year: 2019 ident: 230302_CR13 publication-title: Mathematics doi: 10.3390/math7020149 – volume: 7 start-page: 150 issue: 2 year: 2019 ident: 230302_CR22 publication-title: Mathematics doi: 10.3390/math7020150 – ident: 230302_CR24 – volume-title: Lecture Notes in Mathematics year: 2010 ident: 230302_CR1 – volume: 293 start-page: 4 year: 2015 ident: 230302_CR20 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.07.019 – volume: 19 start-page: 7 issue: 1 year: 1971 ident: 230302_CR25 publication-title: Yokohama Math. J. |
SSID | ssib054405957 ssj0000826098 |
Score | 2.5160444 |
Snippet | In recent years, many papers discuss the theory and applications of new fractional-order derivatives that are constructed by replacing the singular kernel of... |
SourceID | proquest crossref walterdegruyter springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 610 |
SubjectTerms | 34A08 Abstract Harmonic Analysis Analysis Approximation Calculus Convolution Convolution integrals Derivatives Differential equations Editorial Survey Existence theorems Fractional calculus fractional derivative fractional integral Functional Analysis fundamental theorem of calculus Integral Transforms Integrals Kernels Mathematical analysis Mathematics non-singular kernel Numerical analysis Operational Calculus Primary: 26A33 Secondary: 35R11 |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqstCh4ikKBXlAsBA1cew8xvKoKlC7QEW3KLEdOqCAkhTUf8-dm7QCVMFsx5HuLr4vPt_3EXKe2tyX0o2thDvM4rHmVpjgMZzyMX2EihsxmNHYG074_VRMG6RX98KY2-51SdLs1EajxxG9VMbgUoZ90C7suVsCf9shgCesXweQ4AA_wqqMZ7ZiAM-20cNFVhkL6eYqns1fK37PS2uwuaqPtkj701SwlX7J54uyrpiaRDTYIe0KQdL-0uW7pKGzPdIarehXi30yeJ4t6CBf9izA3FsIsw_D8F1QPHilY7wWm6EKfU4fdJ5BgqSPM1S7hqGSXms6KbQ6IJPB3dPN0KoEEyzpCq-0sCEjDb0ADCy8xOVSANxgknmM-6GjtO87Qgc6dnzfTmwZpp5QTshVHCg75V7sHpJm9pbpI0IT5vI49ZkOEhhxZGCnLEW4qKQATKA75Ko2VyQrNnEUtXiN8K8CrBuBdSO0LrKPsg65WE1_X9JobJrYrW0fVV9TEWELiwCoI8IOuaz9sR7esBD_4a4_HmCuC1Dy-N8vOCHby-DBE5kuaZb5XJ8CQCmTMxOUX50q2qk priority: 102 providerName: Springer Nature |
Title | Why Fractional Derivatives with Nonsingular Kernels Should Not Be Used |
URI | https://link.springer.com/article/10.1515/fca-2020-0032 https://www.degruyter.com/doi/10.1515/fca-2020-0032 https://www.proquest.com/docview/2424574359 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF60XvQgior1UfYgejGYbHbzOEmVVhEUEYu9hWQfCkqsSar03zuTbloUqscwmwezk5lvZ3bnI-TIuDyU0k-djHvM4anmTpxhGk6FGD5ixWsymNu74HrAb4ZiaBNupd1W2fjE2lGrd4k58jM8xiAg3In4fPThIGsUVlcthcYyWQEXHMHia-Wid3f_0FiU4IBHYlvXq30zoGm3JsjFNjMO9p-zjTchrp8ZmYLVMDxq7bOfgWqOPmcF0zWy_lWXtJV-LsaTqimh1pGpv0HWLaSk3akNbJIlnW-R_tPLhJpiemwBpAos7bNu8l1SzL3SHHfG5khEX9BXXeQQI2n5goTXIKpopum41GqbDPq9x8trx3ImONIXQeXgmQwTBxHoWASZz6UAxMEkCxgPY0_pMPSEjnTqhaGbuTI2gVBezFUaKdfwIPV3SAs-QO8SmjGfpyZkOspA4snINcwgYlRSACzQbXLaKCiRtqE48lq8JbiwAH0moM8E9YkNSFmbHM-Gj6adNBYNPGi0ndgfqkzm098mJ80MzMULHsR_TdA_NzDfBzS59_f798nq1EYwE3NAWlUx1ocATKqsQ5aj_lXH2iBcDVj3GwLv3xM |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQcUBFULNDiA49LIxI_8jhUVQUsy_MEKrc08QMk0AJJFrR_qr-xM3mwAoly4jyOY40_ez57PDMA686XkdYi83IZcE9mVnpJTtdwJiLzkRhZF4M5OQ0H5_LwQl1Mwd8uFoaeVXZ7Yr1Rm1tNd-TbFMag0Nyp5OfdvUdVo8i72pXQaGBxZMePeGQrfxzs4vxucN7fO9sZeG1VAU8LFVYeRS24JIxxFCrMhdQKbTLXPOQySgJjoyhQNrZZEEV-7uvEhcrgSd9ksfGdDDOB_X6AGSlEQisq7u93-FUS2U_SehFrS4Dc3a_L8VJSG4-y3bVpPpFFbDudIUY5BXYL_twsTrjuk3t2FuYeawe6sZfFaFx1DtvaDvY_w1xLYNmvBnHzMGWHC9D_fTVmrmiCJFBqENcPdUrxktFNLxvSO9whlb0v2LUthmiRWXlF5bVRVLHcslFpzSKcv4suv8A0DsAuAcu5kJmLuI1zlAQ69h13xE-NVkhCbA--dwpKdZu-nKpo3KR0jEF9pqjPlPRJ6U55Dzafmt81eTtea7jaaTttl2-ZTsDWg61uBibiVzqSLybojQ-4EMhdl____zX4ODg7OU6PD06PVuBTgxe6A1qF6aoY2a9Iiar8W41DBn_eG_j_ADDlFuc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS-RAEC5EQdYH8VhxPPthcV8MJp3uHPjkFTzWYWEd9C0kfTgPEiWTUebfW5VjxBXR5-50oKrS9aWr6_sAfllXhEr5mZMLjzsiM8KJczqG0yGlj1iLWgzmuh-cD8TlnbybgcOuF6a-7d6VJJueBmJpKqqDJ20bvR5PHliVoXs59UT7uP_O4U7sUUgP-FEXTFIgFInbkl69LSOQdmttXGKYcYh6ruXc_LDi-xz1BjyntdIFWHypq9na3JfjSdVVT-uklCzBYosm2VHj_mWYMcUKLFxPqVhHq5DcDicsKZv-BZx7iiH3XLN9jxgdwrI-XZEtSJG-ZFemLDBZsn9DUr7GoYodGzYYGf0TBsnZzcm504onOMqXQeVQc4aNgwiNLYPcF0oi9OCKB1yEsadNGHrSRCbzwtDNXRXbQGovFjqLtGtFkPlrMFs8FmYdWM59kdmQmyjHEU9FruWWoKNWEvGB6cF-Z65UtcziJHDxkNIfBlo3ReumZF1iIuU92JtOf2ooNT6buNXZPm2_rFFK7SwSYY-Me_C788fb8CcLif_c9cUD3PcRVm58-wW7MP_3NEn_XPSvNuFHE0d0ULMFs1U5NtuIW6p8p47PVw3X4dg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Why+fractional+derivatives+with+nonsingular+kernels+should+not+be+used&rft.jtitle=Fractional+calculus+%26+applied+analysis&rft.au=Diethelm%2C+Kai&rft.au=Garrappa%2C+Roberto&rft.au=Giusti%2C+Andrea&rft.au=Stynes%2C+Martin&rft.date=2020-06-01&rft.pub=Nature+Publishing+Group&rft.issn=1311-0454&rft.eissn=1314-2224&rft.volume=23&rft.issue=3&rft.spage=610&rft.epage=634&rft_id=info:doi/10.1515%2Ffca-2020-0032 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1311-0454&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1311-0454&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1311-0454&client=summon |