A novel green synthesis approach for improved photocatalytic activity and antibacterial properties of zinc sulfide nanoparticles using plant extract of Acalypha indica and Tridax procumbens
In this present work, improved photocatalytic activity and antibacterial properties of zinc sulfide (ZnS) nanoparticles using plant extract of Acalypha indica (A:ZnS) and Tridax procumbens (T:ZnS) via novel green synthesis route had been reported . X-ray diffraction (XRD), transmission electron micr...
Saved in:
Published in | Journal of materials science. Materials in electronics Vol. 31; no. 12; pp. 9846 - 9859 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0957-4522 1573-482X |
DOI | 10.1007/s10854-020-03529-x |
Cover
Loading…
Abstract | In this present work, improved photocatalytic activity and antibacterial properties of zinc sulfide (ZnS) nanoparticles using plant extract of
Acalypha indica
(A:ZnS) and
Tridax procumbens
(T:ZnS) via novel green synthesis route had been reported
.
X-ray diffraction (XRD), transmission electron microscopy (TEM), and Energy dispersive X-ray spectroscopy (EDX) were used to investigate the crystal structure, surface morphology, and elemental composition analysis, respectively. The optical properties and functional group analysis of the samples were done using UV–visible, photoluminescence, and Fourier transform infrared spectroscopy (FTIR). The influence of
Acalypha indica
(A:ZnS) and
Tridax procumbens
(T:ZnS) plant extract concentration on the structural, surface morphology, optical, antibacterial, and photocatalytic activity has been systematically investigated. XRD results are suggested that ZnS hexagonal wurtzite crystal structure formed during biosynthesis process. TEM and SAED images show the hexagonal- and spherical-shaped structure in morphology with average diameter around 5–20 nm which is good agreement with the grain size calculated from XRD. Optical properties were found to have considerable red shift in the absorption edge and decreasing band gap was observed for A:ZnS/T:ZnS (2.96 eV) when compared to pure ZnS (3.36 eV). The antibacterial properties of ZnS/A:ZnS/T:ZnS nanoparticles were investigated using in vitro disk diffusion method against human pathogenic microorganisms. The inhibition zone of biosynthesized ZnS nanoparticles increased by increasing plant extracts concentration. This result conformed that A:ZnS/T:ZnS nanoparticles have more potential as antibiotic when compared with pure ZnS. Besides, Biosynthesized T:ZnS (40 ml) nanoparticles showed high surface area (131.84 m
2
/g) and larger pore size (12.15 nm) than pure ZnS sample; this high surface area may offer more active sites to enhance photocatalytic ability. The dye degradation properties of methylene blue dye (MBD) were investigated using the ZnS/A:ZnS/T:ZnS nanoparticles under visible light irradiation. The results show that T:ZnS (40 ml) has excellent photocatalytic performance towards MBD such as high degradation efficiency (98%) and more cyclic stability than other ZnS samples. The role of plant extract on dye degradation properties was discussed based on the possible inhibition of photogenerated electron–hole pair recombination during dye degradation under visible light irradiation. |
---|---|
AbstractList | In this present work, improved photocatalytic activity and antibacterial properties of zinc sulfide (ZnS) nanoparticles using plant extract of Acalypha indica (A:ZnS) and Tridax procumbens (T:ZnS) via novel green synthesis route had been reported. X-ray diffraction (XRD), transmission electron microscopy (TEM), and Energy dispersive X-ray spectroscopy (EDX) were used to investigate the crystal structure, surface morphology, and elemental composition analysis, respectively. The optical properties and functional group analysis of the samples were done using UV–visible, photoluminescence, and Fourier transform infrared spectroscopy (FTIR). The influence of Acalypha indica (A:ZnS) and Tridax procumbens (T:ZnS) plant extract concentration on the structural, surface morphology, optical, antibacterial, and photocatalytic activity has been systematically investigated. XRD results are suggested that ZnS hexagonal wurtzite crystal structure formed during biosynthesis process. TEM and SAED images show the hexagonal- and spherical-shaped structure in morphology with average diameter around 5–20 nm which is good agreement with the grain size calculated from XRD. Optical properties were found to have considerable red shift in the absorption edge and decreasing band gap was observed for A:ZnS/T:ZnS (2.96 eV) when compared to pure ZnS (3.36 eV). The antibacterial properties of ZnS/A:ZnS/T:ZnS nanoparticles were investigated using in vitro disk diffusion method against human pathogenic microorganisms. The inhibition zone of biosynthesized ZnS nanoparticles increased by increasing plant extracts concentration. This result conformed that A:ZnS/T:ZnS nanoparticles have more potential as antibiotic when compared with pure ZnS. Besides, Biosynthesized T:ZnS (40 ml) nanoparticles showed high surface area (131.84 m2/g) and larger pore size (12.15 nm) than pure ZnS sample; this high surface area may offer more active sites to enhance photocatalytic ability. The dye degradation properties of methylene blue dye (MBD) were investigated using the ZnS/A:ZnS/T:ZnS nanoparticles under visible light irradiation. The results show that T:ZnS (40 ml) has excellent photocatalytic performance towards MBD such as high degradation efficiency (98%) and more cyclic stability than other ZnS samples. The role of plant extract on dye degradation properties was discussed based on the possible inhibition of photogenerated electron–hole pair recombination during dye degradation under visible light irradiation. In this present work, improved photocatalytic activity and antibacterial properties of zinc sulfide (ZnS) nanoparticles using plant extract of Acalypha indica (A:ZnS) and Tridax procumbens (T:ZnS) via novel green synthesis route had been reported . X-ray diffraction (XRD), transmission electron microscopy (TEM), and Energy dispersive X-ray spectroscopy (EDX) were used to investigate the crystal structure, surface morphology, and elemental composition analysis, respectively. The optical properties and functional group analysis of the samples were done using UV–visible, photoluminescence, and Fourier transform infrared spectroscopy (FTIR). The influence of Acalypha indica (A:ZnS) and Tridax procumbens (T:ZnS) plant extract concentration on the structural, surface morphology, optical, antibacterial, and photocatalytic activity has been systematically investigated. XRD results are suggested that ZnS hexagonal wurtzite crystal structure formed during biosynthesis process. TEM and SAED images show the hexagonal- and spherical-shaped structure in morphology with average diameter around 5–20 nm which is good agreement with the grain size calculated from XRD. Optical properties were found to have considerable red shift in the absorption edge and decreasing band gap was observed for A:ZnS/T:ZnS (2.96 eV) when compared to pure ZnS (3.36 eV). The antibacterial properties of ZnS/A:ZnS/T:ZnS nanoparticles were investigated using in vitro disk diffusion method against human pathogenic microorganisms. The inhibition zone of biosynthesized ZnS nanoparticles increased by increasing plant extracts concentration. This result conformed that A:ZnS/T:ZnS nanoparticles have more potential as antibiotic when compared with pure ZnS. Besides, Biosynthesized T:ZnS (40 ml) nanoparticles showed high surface area (131.84 m 2 /g) and larger pore size (12.15 nm) than pure ZnS sample; this high surface area may offer more active sites to enhance photocatalytic ability. The dye degradation properties of methylene blue dye (MBD) were investigated using the ZnS/A:ZnS/T:ZnS nanoparticles under visible light irradiation. The results show that T:ZnS (40 ml) has excellent photocatalytic performance towards MBD such as high degradation efficiency (98%) and more cyclic stability than other ZnS samples. The role of plant extract on dye degradation properties was discussed based on the possible inhibition of photogenerated electron–hole pair recombination during dye degradation under visible light irradiation. |
Author | Subiramaniyam, N. P. Sathishkumar, M. Kannan, S. |
Author_xml | – sequence: 1 givenname: S. orcidid: 0000-0003-3745-3620 surname: Kannan fullname: Kannan, S. email: nasckannan.s@nehrucolleges.com organization: Department of Electronics, Nehru Arts and Science College – sequence: 2 givenname: N. P. surname: Subiramaniyam fullname: Subiramaniyam, N. P. organization: Department of Electronics, Nehru Arts and Science College – sequence: 3 givenname: M. surname: Sathishkumar fullname: Sathishkumar, M. organization: Department of Electronics, Nehru Arts and Science College |
BookMark | eNp9kc1q3DAUhUVJIJM0L5CVoGu3-rFseTmE_kEgmxS6M9fS9YyCR3IleZjpu_XdoskUCl1kIS7Svd854p5rcuGDR0LuOPvIGWs_Jc60qismWMWkEl11eEdWXLWyqrX4eUFWrFNtVSshrsh1Ss-MsaaWekX-rKkPe5zoJiJ6mo4-bzG5RGGeYwCzpWOI1O3KZY-WztuQg4EM0zE7Q8Fkt3f5SMHbcrIbygtGBxMtwIwxO0w0jPS384amZRqdRerBhxlKz0yluyTnN3SeCk7xkGNROBFrUzzmLVDnrTPw6vAUnYXDSdosuwF9ek8uR5gS3v6tN-THl89P99-qh8ev3-_XD5WRqslVq1inawTNrWkMgB1HxTsmBtkYjZ1WrB1qA7rVFnndDkZaOSoxtN0ohRwaeUM-nHWL9a8FU-6fwxJ9sexFzTrOectZmRLnKRNDShHHfo5uB_HYc9afYurPMfUlpv41pv5QIP0fZFyG7IIvq3DT26g8o6n4-A3Gf796g3oBDymwUw |
CitedBy_id | crossref_primary_10_1007_s11581_023_05018_7 crossref_primary_10_1007_s13399_025_06710_6 crossref_primary_10_1016_j_mtadv_2022_100327 crossref_primary_10_2166_wst_2021_638 crossref_primary_10_3389_fchem_2022_917831 crossref_primary_10_1080_15226514_2023_2300406 crossref_primary_10_1016_j_cinorg_2024_100072 crossref_primary_10_1016_j_ceramint_2023_10_246 crossref_primary_10_1016_j_ijbiomac_2024_131155 crossref_primary_10_1155_2023_1399904 crossref_primary_10_1016_j_synthmet_2024_117549 crossref_primary_10_1016_j_heliyon_2024_e36949 crossref_primary_10_1016_j_jics_2024_101311 crossref_primary_10_1016_j_molstruc_2024_139841 crossref_primary_10_1016_j_ijbiomac_2021_11_035 crossref_primary_10_1007_s13204_021_02030_z crossref_primary_10_1016_j_optmat_2024_116529 crossref_primary_10_1016_j_colsurfb_2021_111999 crossref_primary_10_1007_s12210_022_01076_7 crossref_primary_10_1016_j_apt_2024_104654 crossref_primary_10_1016_j_scowo_2025_100048 crossref_primary_10_1016_j_jics_2022_100855 crossref_primary_10_15251_CL_2022_199_637 crossref_primary_10_1021_acsnano_4c01790 crossref_primary_10_3390_nano13050935 crossref_primary_10_1007_s12668_023_01105_1 crossref_primary_10_1016_j_cattod_2024_115089 crossref_primary_10_1038_s41598_023_49912_6 crossref_primary_10_1016_j_ijbiomac_2024_135934 crossref_primary_10_1016_j_inoche_2022_109933 crossref_primary_10_1016_j_molliq_2024_126640 crossref_primary_10_1016_j_molstruc_2024_138494 crossref_primary_10_1021_acsomega_2c01657 crossref_primary_10_1016_j_inoche_2022_109498 crossref_primary_10_1016_j_chemosphere_2023_139208 crossref_primary_10_3390_molecules29020355 crossref_primary_10_1016_j_molstruc_2023_136273 crossref_primary_10_1080_02603594_2021_1895127 crossref_primary_10_1088_2053_1591_ac4409 crossref_primary_10_1007_s13399_023_05215_4 crossref_primary_10_1016_j_jiec_2024_11_045 crossref_primary_10_1007_s10904_023_02696_8 crossref_primary_10_1016_j_mssp_2022_106723 crossref_primary_10_1007_s42250_023_00667_7 crossref_primary_10_1016_j_plaphy_2023_107909 crossref_primary_10_13005_msri_210204 crossref_primary_10_1007_s11696_023_02960_8 crossref_primary_10_1111_aab_12640 crossref_primary_10_1016_j_jphotochem_2022_114066 crossref_primary_10_1016_j_mtsust_2024_101071 crossref_primary_10_1021_acsomega_4c07304 |
Cites_doi | 10.1007/s10895-016-1912-2 10.1007/s13204-012-0138-0 10.1007/s12648-014-0456-z 10.1016/j.ijleo.2018.03.030 10.1093/ajcp/45.4_ts.493 10.1016/j.physe.2015.12.015 10.1016/j.jlumin.2019.02.033 10.1016/j.powtec.2017.05.022 10.13005/ojc/330240 10.1016/j.mssp.2016.07.015 10.1016/j.surfin.2016.11.002 10.1016/j.spmi.2015.04.023 10.1016/j.apcatb.2014.04.026 10.1016/j.jece.2017.12.005 10.1063/1.1321027 10.1016/j.apjtm.2016.06.008 10.1016/j.ijleo.2019.02.014 10.1016/j.arabjc.2011.06.022 10.1007/s11051-009-9844-2 10.1016/j.jlumin.2012.07.039 10.1016/j.msec.2016.05.057 10.1007/s13738-018-1466-0 10.1007/s11051-012-0865-x 10.1016/j.rser.2015.10.120 10.1016/j.matlet.2004.11.044 10.1007/s13738-018-1342-y 10.1088/1674-1056/24/4/046104 10.1016/S1010-6030(97)00038-5 10.1016/j.radphyschem.2012.02.028 10.1016/S2221-1691(12)60149-X |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION 7SP 7SR 8BQ 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU D1I DWQXO F28 FR3 HCIFZ JG9 KB. L7M P5Z P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS S0W |
DOI | 10.1007/s10854-020-03529-x |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database SciTech Premium Collection Materials Research Database Materials Science Database Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection METADEX Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-482X |
EndPage | 9859 |
ExternalDocumentID | 10_1007_s10854_020_03529_x |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P62 P9N PDBOC PKN PT4 PT5 Q2X QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 Z8M Z8N Z8P Z8R Z8T Z8W Z8Z Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SP 7SR 8BQ 8FD ABRTQ DWQXO F28 FR3 JG9 L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c356t-750984ea81dc6caadff51902b36c8e98507b4ca878de147bc3d3f52b79f323b63 |
IEDL.DBID | BENPR |
ISSN | 0957-4522 |
IngestDate | Fri Jul 25 12:17:25 EDT 2025 Tue Jul 01 02:34:46 EDT 2025 Thu Apr 24 23:11:13 EDT 2025 Fri Feb 21 02:39:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-750984ea81dc6caadff51902b36c8e98507b4ca878de147bc3d3f52b79f323b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3745-3620 |
PQID | 2409111710 |
PQPubID | 326250 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2409111710 crossref_primary_10_1007_s10854_020_03529_x crossref_citationtrail_10_1007_s10854_020_03529_x springer_journals_10_1007_s10854_020_03529_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of materials science. Materials in electronics |
PublicationTitleAbbrev | J Mater Sci: Mater Electron |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | LabiadhHLahbibKHidouriSTouilSChaabaneTBAsian Pac. J Trop. Med.201697577621:CAS:528:DC%2BC28XhtFent7bJ10.1016/j.apjtm.2016.06.008 LuCLiuCChenRFangXXuKMengDJ. Mater. Sci: Mater. Electron.201627694769541:CAS:528:DC%2BC28XktlGgt7Y%3D SathishkumarMSarojaMVenkatachalamMOrient. J. Chem.2017339039091:CAS:528:DC%2BC2sXhvFSiurnJ10.13005/ojc/330240 ZhangWZengXLiuHLuJJ. Lumin.20131344985031:CAS:528:DC%2BC38Xht1Omsr%2FK10.1016/j.jlumin.2012.07.039 SubramanianRSubbramaniyanPAmeenJNRajVArab. J. Chem.2011953754010.1016/j.arabjc.2011.06.022 DipakCHKalitaABardaloiSKalitaMPJ. Lumin.201921026927510.1016/j.jlumin.2019.02.033 KumbhojkarNNikeshVVKshirsagarAMahamuniSJ. Appl. Phys.1999886260626510.1063/1.1321027 ManiSKManickamSMuthusamyVThangarajRJ. Nanostruct.201881071181:CAS:528:DC%2BC1MXhvFylsr0%3D BauerAWKirbyWMSherrisJCTurckMAm. J. Clin. Pathol.1966454934961:STN:280:DyaF287htV2isA%3D%3D10.1093/ajcp/45.4_ts.493 BarberioMBaronePOlivaARadiat. Phys. Chem.2012816426461:CAS:528:DC%2BC38XjvVWntbo%3D10.1016/j.radphyschem.2012.02.028 YeZKongLChenFChenZLinYLiuCOptik20181643453541:CAS:528:DC%2BC1cXlvFKju7w%3D10.1016/j.ijleo.2018.03.030 SathishkumarMSarojaMVenkatachalamMOptik20191827747851:CAS:528:DC%2BC1MXivVOnuro%3D10.1016/j.ijleo.2019.02.014 HamSJangDJJ. Environ. Chem. Eng.201862282351:CAS:528:DC%2BC2sXhvFCrt7zF10.1016/j.jece.2017.12.005 LeeGJWuJJRecent development in ZnS photocatalysts from synthesis to photocatalytic applicationsPowder Technol.201731808221:CAS:528:DC%2BC2sXotlWls7o%3D10.1016/j.powtec.2017.05.022 SharmaMKumarSPandeyOPJ. Nanopart. Res.201012265526661:CAS:528:DC%2BC3cXhtVCju7zM10.1007/s11051-009-9844-2 KhiewaPSRadimanaSHuangaNMAhmedSMDNadarajahKMater. Lett.20055998999310.1016/j.matlet.2004.11.044 YeZKongLChenFChenZLinYOptik20181643453541:CAS:528:DC%2BC1cXlvFKju7w%3D10.1016/j.ijleo.2018.03.030 ParthibavarmanMKarthikMSathishumarPPoonguzhaliRJ. Iran. Chem. Soc.201815141914301:CAS:528:DC%2BC1cXms1Cmsbw%3D10.1007/s13738-018-1342-y ParthibavarmanMSathishumarSPrabhakaranSJayashreeMBoopathi RajaRJ. Iran. Chem. Soc.201815278928011:CAS:528:DC%2BC1cXhsFWhu73M10.1007/s13738-018-1466-0 MansurAAMansurHSRamaneryFPOliveiraLCSouzaPPAppl. Catal. B Environ.201415826927910.1016/j.apcatb.2014.04.026 HudlikarMJoglekarSSDhaygudeMKodamKMJ. Nanopart. Res.20121486587110.1007/s11051-012-0865-x YueLQiSWangJCaiJXinBMater. Sci. Semicond. Process.2016561151181:CAS:528:DC%2BC28XhtlyqtLbI10.1016/j.mssp.2016.07.015 ParthibavarmanMSathishumarSPrabhakaranSJ. Mater. Sci: Mater. Electron.201829234123501:CAS:528:DC%2BC2sXhslChtLbI UmmartyotinSInfahsaengYSust. Energy Rev.20165517241:CAS:528:DC%2BC2MXhvVaqsL%2FM10.1016/j.rser.2015.10.120 AyodhyaDVeerabhadramGJ. Fluoresc.201626216521751:CAS:528:DC%2BC28XhsVSls73L10.1007/s10895-016-1912-2 MalarkodiCAnnaduraiGAppl. Nanosci.201333893951:CAS:528:DC%2BC3sXhsVeqtrzF10.1007/s13204-012-0138-0 IranmaneshPSaeedniaSNourzpoorMChin. Phys. B.20152404610410.1088/1674-1056/24/4/046104 LiuDLiXShiZZhuBCheXYangJJ. Mater. Sci: Mater. Electron.20182911605116121:CAS:528:DC%2BC1cXptFCrtL8%3D KikuchiYSunadaKIyodaTHashimotoKFujishimaAJ. Photochem. Photobiol. A: Chem.199710651561:CAS:528:DyaK2sXksFClt7c%3D10.1016/S1010-6030(97)00038-5 JabeenUShahSMKhanSUSurf. Interfaces2017640491:CAS:528:DC%2BC2sXitVaqt7nO10.1016/j.surfin.2016.11.002 K.R. Brain, T.D. Tuner, Bristol: Wright-Scientechnica, 81–88 (1975) ChenJHuBZhiJPhysica E2016791031061:CAS:528:DC%2BC2MXitVyks7%2FO10.1016/j.physe.2015.12.015 ChandrakarRKBaghelRNChandraVKChandraBPSuperlattices Microstruct.2015841321431:CAS:528:DC%2BC2MXotFCrtrY%3D10.1016/j.spmi.2015.04.023 SenapatiUSSarkarDIndian J. Phys.2014885575621:CAS:528:DC%2BC2cXksFynu7Y%3D10.1007/s12648-014-0456-z DingYSunLJiangYLiuSChenMChenMDingYLiuQMater. Sci. Eng. C2016671881941:CAS:528:DC%2BC28Xps1yqs78%3D10.1016/j.msec.2016.05.057 SathishkumarMRajamanickamATSarojaMJ. Mater. Sci: Mater. Electron.20182914200142091:CAS:528:DC%2BC1cXht1SmtbnI S. Christudas, T.M. Kulathivel, P. Agastian, Asian Pac. J. Trop. Biomed., 159–161 (2012) P Iranmanesh (3529_CR28) 2015; 24 Z Ye (3529_CR6) 2018; 164 D Liu (3529_CR31) 2018; 29 M Sathishkumar (3529_CR7) 2019; 182 M Barberio (3529_CR3) 2012; 81 J Chen (3529_CR16) 2016; 79 M Hudlikar (3529_CR26) 2012; 14 M Sathishkumar (3529_CR35) 2018; 29 U Jabeen (3529_CR5) 2017; 6 D Ayodhya (3529_CR24) 2016; 26 CH Dipak (3529_CR23) 2019; 210 C Lu (3529_CR33) 2016; 27 N Kumbhojkar (3529_CR34) 1999; 88 M Parthibavarman (3529_CR10) 2018; 29 L Yue (3529_CR22) 2016; 56 US Senapati (3529_CR21) 2014; 88 S Ummartyotin (3529_CR8) 2016; 55 AA Mansur (3529_CR19) 2014; 158 M Parthibavarman (3529_CR11) 2018; 15 H Labiadh (3529_CR2) 2016; 9 M Sathishkumar (3529_CR13) 2017; 33 AW Bauer (3529_CR18) 1966; 45 C Malarkodi (3529_CR30) 2013; 3 GJ Lee (3529_CR4) 2017; 318 W Zhang (3529_CR25) 2013; 134 M Sharma (3529_CR1) 2010; 12 PS Khiewa (3529_CR27) 2005; 59 S Ham (3529_CR29) 2018; 6 RK Chandrakar (3529_CR37) 2015; 84 Y Kikuchi (3529_CR36) 1997; 106 R Subramanian (3529_CR9) 2011; 9 M Parthibavarman (3529_CR12) 2018; 15 Z Ye (3529_CR20) 2018; 164 Y Ding (3529_CR32) 2016; 67 3529_CR14 SK Mani (3529_CR17) 2018; 8 3529_CR15 |
References_xml | – reference: KhiewaPSRadimanaSHuangaNMAhmedSMDNadarajahKMater. Lett.20055998999310.1016/j.matlet.2004.11.044 – reference: HudlikarMJoglekarSSDhaygudeMKodamKMJ. Nanopart. Res.20121486587110.1007/s11051-012-0865-x – reference: MalarkodiCAnnaduraiGAppl. Nanosci.201333893951:CAS:528:DC%2BC3sXhsVeqtrzF10.1007/s13204-012-0138-0 – reference: LiuDLiXShiZZhuBCheXYangJJ. Mater. Sci: Mater. Electron.20182911605116121:CAS:528:DC%2BC1cXptFCrtL8%3D – reference: MansurAAMansurHSRamaneryFPOliveiraLCSouzaPPAppl. Catal. B Environ.201415826927910.1016/j.apcatb.2014.04.026 – reference: SenapatiUSSarkarDIndian J. Phys.2014885575621:CAS:528:DC%2BC2cXksFynu7Y%3D10.1007/s12648-014-0456-z – reference: UmmartyotinSInfahsaengYSust. Energy Rev.20165517241:CAS:528:DC%2BC2MXhvVaqsL%2FM10.1016/j.rser.2015.10.120 – reference: SathishkumarMRajamanickamATSarojaMJ. Mater. Sci: Mater. Electron.20182914200142091:CAS:528:DC%2BC1cXht1SmtbnI – reference: LabiadhHLahbibKHidouriSTouilSChaabaneTBAsian Pac. J Trop. Med.201697577621:CAS:528:DC%2BC28XhtFent7bJ10.1016/j.apjtm.2016.06.008 – reference: YeZKongLChenFChenZLinYOptik20181643453541:CAS:528:DC%2BC1cXlvFKju7w%3D10.1016/j.ijleo.2018.03.030 – reference: AyodhyaDVeerabhadramGJ. Fluoresc.201626216521751:CAS:528:DC%2BC28XhsVSls73L10.1007/s10895-016-1912-2 – reference: LeeGJWuJJRecent development in ZnS photocatalysts from synthesis to photocatalytic applicationsPowder Technol.201731808221:CAS:528:DC%2BC2sXotlWls7o%3D10.1016/j.powtec.2017.05.022 – reference: ManiSKManickamSMuthusamyVThangarajRJ. Nanostruct.201881071181:CAS:528:DC%2BC1MXhvFylsr0%3D – reference: S. Christudas, T.M. Kulathivel, P. Agastian, Asian Pac. J. Trop. Biomed., 159–161 (2012) – reference: IranmaneshPSaeedniaSNourzpoorMChin. Phys. B.20152404610410.1088/1674-1056/24/4/046104 – reference: KikuchiYSunadaKIyodaTHashimotoKFujishimaAJ. Photochem. Photobiol. A: Chem.199710651561:CAS:528:DyaK2sXksFClt7c%3D10.1016/S1010-6030(97)00038-5 – reference: K.R. Brain, T.D. Tuner, Bristol: Wright-Scientechnica, 81–88 (1975) – reference: ChenJHuBZhiJPhysica E2016791031061:CAS:528:DC%2BC2MXitVyks7%2FO10.1016/j.physe.2015.12.015 – reference: ParthibavarmanMKarthikMSathishumarPPoonguzhaliRJ. Iran. Chem. Soc.201815141914301:CAS:528:DC%2BC1cXms1Cmsbw%3D10.1007/s13738-018-1342-y – reference: ZhangWZengXLiuHLuJJ. Lumin.20131344985031:CAS:528:DC%2BC38Xht1Omsr%2FK10.1016/j.jlumin.2012.07.039 – reference: KumbhojkarNNikeshVVKshirsagarAMahamuniSJ. Appl. Phys.1999886260626510.1063/1.1321027 – reference: YueLQiSWangJCaiJXinBMater. Sci. Semicond. Process.2016561151181:CAS:528:DC%2BC28XhtlyqtLbI10.1016/j.mssp.2016.07.015 – reference: ChandrakarRKBaghelRNChandraVKChandraBPSuperlattices Microstruct.2015841321431:CAS:528:DC%2BC2MXotFCrtrY%3D10.1016/j.spmi.2015.04.023 – reference: DipakCHKalitaABardaloiSKalitaMPJ. Lumin.201921026927510.1016/j.jlumin.2019.02.033 – reference: ParthibavarmanMSathishumarSPrabhakaranSJ. Mater. Sci: Mater. Electron.201829234123501:CAS:528:DC%2BC2sXhslChtLbI – reference: SathishkumarMSarojaMVenkatachalamMOptik20191827747851:CAS:528:DC%2BC1MXivVOnuro%3D10.1016/j.ijleo.2019.02.014 – reference: BauerAWKirbyWMSherrisJCTurckMAm. J. Clin. Pathol.1966454934961:STN:280:DyaF287htV2isA%3D%3D10.1093/ajcp/45.4_ts.493 – reference: LuCLiuCChenRFangXXuKMengDJ. Mater. Sci: Mater. Electron.201627694769541:CAS:528:DC%2BC28XktlGgt7Y%3D – reference: SharmaMKumarSPandeyOPJ. Nanopart. Res.201012265526661:CAS:528:DC%2BC3cXhtVCju7zM10.1007/s11051-009-9844-2 – reference: BarberioMBaronePOlivaARadiat. Phys. Chem.2012816426461:CAS:528:DC%2BC38XjvVWntbo%3D10.1016/j.radphyschem.2012.02.028 – reference: ParthibavarmanMSathishumarSPrabhakaranSJayashreeMBoopathi RajaRJ. Iran. Chem. Soc.201815278928011:CAS:528:DC%2BC1cXhsFWhu73M10.1007/s13738-018-1466-0 – reference: SubramanianRSubbramaniyanPAmeenJNRajVArab. J. Chem.2011953754010.1016/j.arabjc.2011.06.022 – reference: JabeenUShahSMKhanSUSurf. Interfaces2017640491:CAS:528:DC%2BC2sXitVaqt7nO10.1016/j.surfin.2016.11.002 – reference: HamSJangDJJ. Environ. Chem. Eng.201862282351:CAS:528:DC%2BC2sXhvFCrt7zF10.1016/j.jece.2017.12.005 – reference: DingYSunLJiangYLiuSChenMChenMDingYLiuQMater. Sci. Eng. C2016671881941:CAS:528:DC%2BC28Xps1yqs78%3D10.1016/j.msec.2016.05.057 – reference: SathishkumarMSarojaMVenkatachalamMOrient. J. Chem.2017339039091:CAS:528:DC%2BC2sXhvFSiurnJ10.13005/ojc/330240 – reference: YeZKongLChenFChenZLinYLiuCOptik20181643453541:CAS:528:DC%2BC1cXlvFKju7w%3D10.1016/j.ijleo.2018.03.030 – volume: 26 start-page: 2165 year: 2016 ident: 3529_CR24 publication-title: J. Fluoresc. doi: 10.1007/s10895-016-1912-2 – volume: 8 start-page: 107 year: 2018 ident: 3529_CR17 publication-title: J. Nanostruct. – volume: 3 start-page: 389 year: 2013 ident: 3529_CR30 publication-title: Appl. Nanosci. doi: 10.1007/s13204-012-0138-0 – volume: 29 start-page: 11605 year: 2018 ident: 3529_CR31 publication-title: J. Mater. Sci: Mater. Electron. – volume: 88 start-page: 557 year: 2014 ident: 3529_CR21 publication-title: Indian J. Phys. doi: 10.1007/s12648-014-0456-z – volume: 29 start-page: 14200 year: 2018 ident: 3529_CR35 publication-title: J. Mater. Sci: Mater. Electron. – volume: 164 start-page: 345 year: 2018 ident: 3529_CR6 publication-title: Optik doi: 10.1016/j.ijleo.2018.03.030 – volume: 45 start-page: 493 year: 1966 ident: 3529_CR18 publication-title: Am. J. Clin. Pathol. doi: 10.1093/ajcp/45.4_ts.493 – volume: 79 start-page: 103 year: 2016 ident: 3529_CR16 publication-title: Physica E doi: 10.1016/j.physe.2015.12.015 – volume: 210 start-page: 269 year: 2019 ident: 3529_CR23 publication-title: J. Lumin. doi: 10.1016/j.jlumin.2019.02.033 – volume: 318 start-page: 08 year: 2017 ident: 3529_CR4 publication-title: Powder Technol. doi: 10.1016/j.powtec.2017.05.022 – volume: 33 start-page: 903 year: 2017 ident: 3529_CR13 publication-title: Orient. J. Chem. doi: 10.13005/ojc/330240 – volume: 56 start-page: 115 year: 2016 ident: 3529_CR22 publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2016.07.015 – volume: 6 start-page: 40 year: 2017 ident: 3529_CR5 publication-title: Surf. Interfaces doi: 10.1016/j.surfin.2016.11.002 – volume: 84 start-page: 132 year: 2015 ident: 3529_CR37 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2015.04.023 – volume: 29 start-page: 2341 year: 2018 ident: 3529_CR10 publication-title: J. Mater. Sci: Mater. Electron. – volume: 158 start-page: 269 year: 2014 ident: 3529_CR19 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2014.04.026 – volume: 6 start-page: 228 year: 2018 ident: 3529_CR29 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2017.12.005 – volume: 88 start-page: 6260 year: 1999 ident: 3529_CR34 publication-title: J. Appl. Phys. doi: 10.1063/1.1321027 – volume: 9 start-page: 757 year: 2016 ident: 3529_CR2 publication-title: Asian Pac. J Trop. Med. doi: 10.1016/j.apjtm.2016.06.008 – volume: 182 start-page: 774 year: 2019 ident: 3529_CR7 publication-title: Optik doi: 10.1016/j.ijleo.2019.02.014 – volume: 164 start-page: 345 year: 2018 ident: 3529_CR20 publication-title: Optik doi: 10.1016/j.ijleo.2018.03.030 – volume: 9 start-page: 537 year: 2011 ident: 3529_CR9 publication-title: Arab. J. Chem. doi: 10.1016/j.arabjc.2011.06.022 – volume: 12 start-page: 2655 year: 2010 ident: 3529_CR1 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-009-9844-2 – volume: 27 start-page: 6947 year: 2016 ident: 3529_CR33 publication-title: J. Mater. Sci: Mater. Electron. – volume: 134 start-page: 498 year: 2013 ident: 3529_CR25 publication-title: J. Lumin. doi: 10.1016/j.jlumin.2012.07.039 – volume: 67 start-page: 188 year: 2016 ident: 3529_CR32 publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.05.057 – volume: 15 start-page: 2789 year: 2018 ident: 3529_CR12 publication-title: J. Iran. Chem. Soc. doi: 10.1007/s13738-018-1466-0 – volume: 14 start-page: 865 year: 2012 ident: 3529_CR26 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-012-0865-x – ident: 3529_CR14 – volume: 55 start-page: 17 year: 2016 ident: 3529_CR8 publication-title: Sust. Energy Rev. doi: 10.1016/j.rser.2015.10.120 – volume: 59 start-page: 989 year: 2005 ident: 3529_CR27 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2004.11.044 – volume: 15 start-page: 1419 year: 2018 ident: 3529_CR11 publication-title: J. Iran. Chem. Soc. doi: 10.1007/s13738-018-1342-y – volume: 24 start-page: 046104 year: 2015 ident: 3529_CR28 publication-title: Chin. Phys. B. doi: 10.1088/1674-1056/24/4/046104 – volume: 106 start-page: 51 year: 1997 ident: 3529_CR36 publication-title: J. Photochem. Photobiol. A: Chem. doi: 10.1016/S1010-6030(97)00038-5 – volume: 81 start-page: 642 year: 2012 ident: 3529_CR3 publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2012.02.028 – ident: 3529_CR15 doi: 10.1016/S2221-1691(12)60149-X |
SSID | ssj0006438 |
Score | 2.4811056 |
Snippet | In this present work, improved photocatalytic activity and antibacterial properties of zinc sulfide (ZnS) nanoparticles using plant extract of
Acalypha indica... In this present work, improved photocatalytic activity and antibacterial properties of zinc sulfide (ZnS) nanoparticles using plant extract of Acalypha indica... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9846 |
SubjectTerms | Antibiotics Biosynthesis Catalytic activity Characterization and Evaluation of Materials Chemistry and Materials Science Crystal structure Doppler effect Dyes Fourier transforms Functional groups Grain size In vitro methods and tests Light irradiation Materials Science Methylene blue Microorganisms Morphology Nanoparticles Optical and Electronic Materials Optical properties Photocatalysis Photodegradation Photoluminescence Pore size Porosity Red shift Spectrum analysis Surface area Transmission electron microscopy Wurtzite Zinc sulfide |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQucABlZdYWtAcuIGlTew43uMKUVUcOHWl3iI_20grJ9qkVZf_xn9jJo9uQYDEIadkxodxZr6xZ75h7IMK2ooiCC6DL7hUtuTW6owrmS1j6fQyjmyf39T5Rn69LC6nprBurnafryQHT_2g2U0XklO6QxyeK47I8XFBuTvu4k2-vve_GGP1yLBHjN55PrXK_FnHr-HogDF_uxYdos3ZMXs2wURYj3Z9zh6F9II9fUAe-JL9WENqbsMWrqh0Brp9QizX1R3MNOGAeBTq4dAgeGivm74ZDmv2qBOon4HGRoBJHp--tiNtMy7a0vn8johWoYnwvU4OupttrH2AZBIm2VMtHVDN_BW0WxQH9PHUb0USazT7vr02QNfhzgwrXOxqb-5ItaMRJKl7xTZnXy4-n_NpGAN3olA9J2ShZTCIb51yxvgYEfwtcyuU02GlEVda6YwutQ-ZLK0TXsQit-UqilxYJV6zo9Sk8IaB1wYjBAJJm1nMzqNdei9RJiI2yqWKC5bNNqncxFROAzO21YFjmexYoR2rwY7V3YJ9vJdpR56Of359Opu6mv7ZrkJsQ54fIdeCfZrNf3j9d21v_-_zE_YkH3YgHeWcsqN-dxPeIbLp7fthI_8E1mT1HQ priority: 102 providerName: Springer Nature |
Title | A novel green synthesis approach for improved photocatalytic activity and antibacterial properties of zinc sulfide nanoparticles using plant extract of Acalypha indica and Tridax procumbens |
URI | https://link.springer.com/article/10.1007/s10854-020-03529-x https://www.proquest.com/docview/2409111710 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZo9wIHxFNsW1Y-cIOITeIk3lMVYLcVjwpBVyqnyM820soJmxTt8t_4b8wkTheQ6CHKIfH4MPbM5_HMN4S8SA2XcWLigBmdBCyVWSAlD4OUhVObKT61PdvnWXq6ZO8vkgsfcGt8WuVgEztDrSuFMfLX4HlwX4JDPK6_B9g1Cm9XfQuNPTICE8zh8DV6Mz_7_OXGFoO_5T3bHrJ7R5Evm_HFczxhAR6fkBN0Fmz-dk07vPnPFWnneRYPyH0PGWne6_ghuWPcI3LvDyLBx-RXTl31w6zoJabR0GbrANc1ZUMHynAK2JSWXQDBaFpfVW3VBW62IJNibQO2kKDCaXjaUvYUzjBpjbH6NZKu0srSn6VTtLle2VIb6oSDA7fPq6OYP39J6xUMp2DvsfYKR-SwBLb1laB4Na5EN8P5utRig6IVtiNxzROyXMzP354GvjFDoOIkbQNEGZwZAVhXpUoIbS0AwWkk41RxM-OAMSVTgmdcm5BlUsU6tkkks5mNo1im8VOy7ypnnhGquQBvAaBShhJO6lZOtWYwxgJOilhqxyQcdFIoz1qOzTNWxY5vGfVYgB6LTo_FZkxe3oype86OW_8-GlRd-P3bFLvVNiavBvXvPv9f2sHt0g7J3ahbcRjGOSL77fraPAdU08oJ2eOLkwkZ5e8-ffyK75NvH-YTv6Dh6zLKfwPhyP3r |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFPdUsAHOEHEJnYS54DQCli2tPS0lXoLfraRVk7YpGWXH8U_4L8xk0cXkOith5wSTw4z9nyexzeEvEisUCy2LODWxAFPVBooJcIg4eHYpVqMXcf2eZTMjvnnk_hki_wcemGwrHI4E9uD2pQaY-RvwPPgvgSH-K76FuDUKMyuDiM0OrM4sOvvcGWr3-5_AP2-jKLpx_n7WdBPFQg0i5MmQBcpuJUA1HSipTTOAYoZR4olWthMAEBSXEuRCmNDnirNDHNxpNLMsYiphIHcG-QmZyzDHSWmny5PfvDuouP2Qy7xKOqbdPpWPRHzAC9ryECaBau_HeEG3f6TkG393PQeudsDVDrpLOo-2bL-AbnzB23hQ_JrQn15YRf0FIt2aL32gCLroqYDQTkFJEyLNlxhDa3OyqZsw0RrkEmxkwIHVlDpDTxNoTrCaPhphZmBJVK80tLRH4XXtD5fuMJY6qWH631fxUexWv-UVgtYTsG7YKcXrpiAwa2rM0kxEa9l-4f5sjByhaI1Dj_x9SNyfC0Ke0y2fentDqFGSPBNAGFVqHiSOTU2hsMaB6gs4okbkXDQSa57jnQc1bHIN-zOqMcc9Ji3esxXI_Lqck3VMYRc-fXeoOq8Py3qfGPbI_J6UP_m9f-l7V4t7Tm5NZt_OcwP948OnpDbUWt9GEDaI9vN8tw-BTzVqGetEVPy9bp3zW8oNTTN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJwqHiKpQV8gBNY3SSO4z0gtNCuWopWFWql3kL8aiOtnLBJYZefhsR_YyaPLiDRWw85JZ4cvrHnsz3zDSEvhZUqim3EuDUx40IlTCkZMMGDkUu0HLlW7XMmDk75x7P4bIP87GthMK2yXxObhdoUGs_IdyHy4LyEgLjrurSI473pu_Irww5SeNPat9NoXeTIrr7D9q16e7gHWL8Kw-n-yYcD1nUYYDqKRc0wXEpuMyBtWugsM84BoxmFKhJa2rEEsqS4zmQijQ14onRkIheHKhm7KIyUiMDuLbKZwK5oNCCb7_dnx5-v4gDEetkq_aGyeBh2JTtd4Z6MOcOtG-qRjtny77C45rr_XM82UW96j2x1dJVOWv-6Tzasf0Du_iFi-JD8mlBffLNzeo4pPLRaeeCUVV7RXq6cAi-meXN4YQ0tL4q6aA6NVmCTYl0Ftq-gmTfw1Llq5aPhpyXeEyxQ8JUWjv7IvabV5dzlxlKfedjsdzl9FHP3z2k5h-EUAMO6LxwxAfdblRcZxWt5nTV_OFnkJluiaY2tUHz1iJzeCGSPycAX3j4h1MgMIhUQWhUoLsZOjYzhMMYBRwu5cEMS9JikulNMx8Yd83St9Yw4poBj2uCYLofk9dWYstULufbrnR7qtFs7qnTt6UPypod__fr_1p5eb-0FuQ0zJv10ODvaJnfCxvnwNGmHDOrFpX0G5KpWzzsvpuTLTU-c33hIOl8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+green+synthesis+approach+for+improved+photocatalytic+activity+and+antibacterial+properties+of+zinc+sulfide+nanoparticles+using+plant+extract+of+Acalypha+indica+and+Tridax+procumbens&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=Kannan%2C+S&rft.au=Subiramaniyam%2C+N+P&rft.au=Sathishkumar%2C+M&rft.date=2020-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=31&rft.issue=12&rft.spage=9846&rft.epage=9859&rft_id=info:doi/10.1007%2Fs10854-020-03529-x&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon |