A novel green synthesis approach for improved photocatalytic activity and antibacterial properties of zinc sulfide nanoparticles using plant extract of Acalypha indica and Tridax procumbens

In this present work, improved photocatalytic activity and antibacterial properties of zinc sulfide (ZnS) nanoparticles using plant extract of Acalypha indica (A:ZnS) and Tridax procumbens (T:ZnS) via novel green synthesis route had been reported . X-ray diffraction (XRD), transmission electron micr...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science. Materials in electronics Vol. 31; no. 12; pp. 9846 - 9859
Main Authors Kannan, S., Subiramaniyam, N. P., Sathishkumar, M.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0957-4522
1573-482X
DOI10.1007/s10854-020-03529-x

Cover

Loading…
Abstract In this present work, improved photocatalytic activity and antibacterial properties of zinc sulfide (ZnS) nanoparticles using plant extract of Acalypha indica (A:ZnS) and Tridax procumbens (T:ZnS) via novel green synthesis route had been reported . X-ray diffraction (XRD), transmission electron microscopy (TEM), and Energy dispersive X-ray spectroscopy (EDX) were used to investigate the crystal structure, surface morphology, and elemental composition analysis, respectively. The optical properties and functional group analysis of the samples were done using UV–visible, photoluminescence, and Fourier transform infrared spectroscopy (FTIR). The influence of Acalypha indica (A:ZnS) and Tridax procumbens (T:ZnS) plant extract concentration on the structural, surface morphology, optical, antibacterial, and photocatalytic activity has been systematically investigated. XRD results are suggested that ZnS hexagonal wurtzite crystal structure formed during biosynthesis process. TEM and SAED images show the hexagonal- and spherical-shaped structure in morphology with average diameter around 5–20 nm which is good agreement with the grain size calculated from XRD. Optical properties were found to have considerable red shift in the absorption edge and decreasing band gap was observed for A:ZnS/T:ZnS (2.96 eV) when compared to pure ZnS (3.36 eV). The antibacterial properties of ZnS/A:ZnS/T:ZnS nanoparticles were investigated using in vitro disk diffusion method against human pathogenic microorganisms. The inhibition zone of biosynthesized ZnS nanoparticles increased by increasing plant extracts concentration. This result conformed that A:ZnS/T:ZnS nanoparticles have more potential as antibiotic when compared with pure ZnS. Besides, Biosynthesized T:ZnS (40 ml) nanoparticles showed high surface area (131.84 m 2 /g) and larger pore size (12.15 nm) than pure ZnS sample; this high surface area may offer more active sites to enhance photocatalytic ability. The dye degradation properties of methylene blue dye (MBD) were investigated using the ZnS/A:ZnS/T:ZnS nanoparticles under visible light irradiation. The results show that T:ZnS (40 ml) has excellent photocatalytic performance towards MBD such as high degradation efficiency (98%) and more cyclic stability than other ZnS samples. The role of plant extract on dye degradation properties was discussed based on the possible inhibition of photogenerated electron–hole pair recombination during dye degradation under visible light irradiation.
AbstractList In this present work, improved photocatalytic activity and antibacterial properties of zinc sulfide (ZnS) nanoparticles using plant extract of Acalypha indica (A:ZnS) and Tridax procumbens (T:ZnS) via novel green synthesis route had been reported. X-ray diffraction (XRD), transmission electron microscopy (TEM), and Energy dispersive X-ray spectroscopy (EDX) were used to investigate the crystal structure, surface morphology, and elemental composition analysis, respectively. The optical properties and functional group analysis of the samples were done using UV–visible, photoluminescence, and Fourier transform infrared spectroscopy (FTIR). The influence of Acalypha indica (A:ZnS) and Tridax procumbens (T:ZnS) plant extract concentration on the structural, surface morphology, optical, antibacterial, and photocatalytic activity has been systematically investigated. XRD results are suggested that ZnS hexagonal wurtzite crystal structure formed during biosynthesis process. TEM and SAED images show the hexagonal- and spherical-shaped structure in morphology with average diameter around 5–20 nm which is good agreement with the grain size calculated from XRD. Optical properties were found to have considerable red shift in the absorption edge and decreasing band gap was observed for A:ZnS/T:ZnS (2.96 eV) when compared to pure ZnS (3.36 eV). The antibacterial properties of ZnS/A:ZnS/T:ZnS nanoparticles were investigated using in vitro disk diffusion method against human pathogenic microorganisms. The inhibition zone of biosynthesized ZnS nanoparticles increased by increasing plant extracts concentration. This result conformed that A:ZnS/T:ZnS nanoparticles have more potential as antibiotic when compared with pure ZnS. Besides, Biosynthesized T:ZnS (40 ml) nanoparticles showed high surface area (131.84 m2/g) and larger pore size (12.15 nm) than pure ZnS sample; this high surface area may offer more active sites to enhance photocatalytic ability. The dye degradation properties of methylene blue dye (MBD) were investigated using the ZnS/A:ZnS/T:ZnS nanoparticles under visible light irradiation. The results show that T:ZnS (40 ml) has excellent photocatalytic performance towards MBD such as high degradation efficiency (98%) and more cyclic stability than other ZnS samples. The role of plant extract on dye degradation properties was discussed based on the possible inhibition of photogenerated electron–hole pair recombination during dye degradation under visible light irradiation.
In this present work, improved photocatalytic activity and antibacterial properties of zinc sulfide (ZnS) nanoparticles using plant extract of Acalypha indica (A:ZnS) and Tridax procumbens (T:ZnS) via novel green synthesis route had been reported . X-ray diffraction (XRD), transmission electron microscopy (TEM), and Energy dispersive X-ray spectroscopy (EDX) were used to investigate the crystal structure, surface morphology, and elemental composition analysis, respectively. The optical properties and functional group analysis of the samples were done using UV–visible, photoluminescence, and Fourier transform infrared spectroscopy (FTIR). The influence of Acalypha indica (A:ZnS) and Tridax procumbens (T:ZnS) plant extract concentration on the structural, surface morphology, optical, antibacterial, and photocatalytic activity has been systematically investigated. XRD results are suggested that ZnS hexagonal wurtzite crystal structure formed during biosynthesis process. TEM and SAED images show the hexagonal- and spherical-shaped structure in morphology with average diameter around 5–20 nm which is good agreement with the grain size calculated from XRD. Optical properties were found to have considerable red shift in the absorption edge and decreasing band gap was observed for A:ZnS/T:ZnS (2.96 eV) when compared to pure ZnS (3.36 eV). The antibacterial properties of ZnS/A:ZnS/T:ZnS nanoparticles were investigated using in vitro disk diffusion method against human pathogenic microorganisms. The inhibition zone of biosynthesized ZnS nanoparticles increased by increasing plant extracts concentration. This result conformed that A:ZnS/T:ZnS nanoparticles have more potential as antibiotic when compared with pure ZnS. Besides, Biosynthesized T:ZnS (40 ml) nanoparticles showed high surface area (131.84 m 2 /g) and larger pore size (12.15 nm) than pure ZnS sample; this high surface area may offer more active sites to enhance photocatalytic ability. The dye degradation properties of methylene blue dye (MBD) were investigated using the ZnS/A:ZnS/T:ZnS nanoparticles under visible light irradiation. The results show that T:ZnS (40 ml) has excellent photocatalytic performance towards MBD such as high degradation efficiency (98%) and more cyclic stability than other ZnS samples. The role of plant extract on dye degradation properties was discussed based on the possible inhibition of photogenerated electron–hole pair recombination during dye degradation under visible light irradiation.
Author Subiramaniyam, N. P.
Sathishkumar, M.
Kannan, S.
Author_xml – sequence: 1
  givenname: S.
  orcidid: 0000-0003-3745-3620
  surname: Kannan
  fullname: Kannan, S.
  email: nasckannan.s@nehrucolleges.com
  organization: Department of Electronics, Nehru Arts and Science College
– sequence: 2
  givenname: N. P.
  surname: Subiramaniyam
  fullname: Subiramaniyam, N. P.
  organization: Department of Electronics, Nehru Arts and Science College
– sequence: 3
  givenname: M.
  surname: Sathishkumar
  fullname: Sathishkumar, M.
  organization: Department of Electronics, Nehru Arts and Science College
BookMark eNp9kc1q3DAUhUVJIJM0L5CVoGu3-rFseTmE_kEgmxS6M9fS9YyCR3IleZjpu_XdoskUCl1kIS7Svd854p5rcuGDR0LuOPvIGWs_Jc60qismWMWkEl11eEdWXLWyqrX4eUFWrFNtVSshrsh1Ss-MsaaWekX-rKkPe5zoJiJ6mo4-bzG5RGGeYwCzpWOI1O3KZY-WztuQg4EM0zE7Q8Fkt3f5SMHbcrIbygtGBxMtwIwxO0w0jPS384amZRqdRerBhxlKz0yluyTnN3SeCk7xkGNROBFrUzzmLVDnrTPw6vAUnYXDSdosuwF9ek8uR5gS3v6tN-THl89P99-qh8ev3-_XD5WRqslVq1inawTNrWkMgB1HxTsmBtkYjZ1WrB1qA7rVFnndDkZaOSoxtN0ohRwaeUM-nHWL9a8FU-6fwxJ9sexFzTrOectZmRLnKRNDShHHfo5uB_HYc9afYurPMfUlpv41pv5QIP0fZFyG7IIvq3DT26g8o6n4-A3Gf796g3oBDymwUw
CitedBy_id crossref_primary_10_1007_s11581_023_05018_7
crossref_primary_10_1007_s13399_025_06710_6
crossref_primary_10_1016_j_mtadv_2022_100327
crossref_primary_10_2166_wst_2021_638
crossref_primary_10_3389_fchem_2022_917831
crossref_primary_10_1080_15226514_2023_2300406
crossref_primary_10_1016_j_cinorg_2024_100072
crossref_primary_10_1016_j_ceramint_2023_10_246
crossref_primary_10_1016_j_ijbiomac_2024_131155
crossref_primary_10_1155_2023_1399904
crossref_primary_10_1016_j_synthmet_2024_117549
crossref_primary_10_1016_j_heliyon_2024_e36949
crossref_primary_10_1016_j_jics_2024_101311
crossref_primary_10_1016_j_molstruc_2024_139841
crossref_primary_10_1016_j_ijbiomac_2021_11_035
crossref_primary_10_1007_s13204_021_02030_z
crossref_primary_10_1016_j_optmat_2024_116529
crossref_primary_10_1016_j_colsurfb_2021_111999
crossref_primary_10_1007_s12210_022_01076_7
crossref_primary_10_1016_j_apt_2024_104654
crossref_primary_10_1016_j_scowo_2025_100048
crossref_primary_10_1016_j_jics_2022_100855
crossref_primary_10_15251_CL_2022_199_637
crossref_primary_10_1021_acsnano_4c01790
crossref_primary_10_3390_nano13050935
crossref_primary_10_1007_s12668_023_01105_1
crossref_primary_10_1016_j_cattod_2024_115089
crossref_primary_10_1038_s41598_023_49912_6
crossref_primary_10_1016_j_ijbiomac_2024_135934
crossref_primary_10_1016_j_inoche_2022_109933
crossref_primary_10_1016_j_molliq_2024_126640
crossref_primary_10_1016_j_molstruc_2024_138494
crossref_primary_10_1021_acsomega_2c01657
crossref_primary_10_1016_j_inoche_2022_109498
crossref_primary_10_1016_j_chemosphere_2023_139208
crossref_primary_10_3390_molecules29020355
crossref_primary_10_1016_j_molstruc_2023_136273
crossref_primary_10_1080_02603594_2021_1895127
crossref_primary_10_1088_2053_1591_ac4409
crossref_primary_10_1007_s13399_023_05215_4
crossref_primary_10_1016_j_jiec_2024_11_045
crossref_primary_10_1007_s10904_023_02696_8
crossref_primary_10_1016_j_mssp_2022_106723
crossref_primary_10_1007_s42250_023_00667_7
crossref_primary_10_1016_j_plaphy_2023_107909
crossref_primary_10_13005_msri_210204
crossref_primary_10_1007_s11696_023_02960_8
crossref_primary_10_1111_aab_12640
crossref_primary_10_1016_j_jphotochem_2022_114066
crossref_primary_10_1016_j_mtsust_2024_101071
crossref_primary_10_1021_acsomega_4c07304
Cites_doi 10.1007/s10895-016-1912-2
10.1007/s13204-012-0138-0
10.1007/s12648-014-0456-z
10.1016/j.ijleo.2018.03.030
10.1093/ajcp/45.4_ts.493
10.1016/j.physe.2015.12.015
10.1016/j.jlumin.2019.02.033
10.1016/j.powtec.2017.05.022
10.13005/ojc/330240
10.1016/j.mssp.2016.07.015
10.1016/j.surfin.2016.11.002
10.1016/j.spmi.2015.04.023
10.1016/j.apcatb.2014.04.026
10.1016/j.jece.2017.12.005
10.1063/1.1321027
10.1016/j.apjtm.2016.06.008
10.1016/j.ijleo.2019.02.014
10.1016/j.arabjc.2011.06.022
10.1007/s11051-009-9844-2
10.1016/j.jlumin.2012.07.039
10.1016/j.msec.2016.05.057
10.1007/s13738-018-1466-0
10.1007/s11051-012-0865-x
10.1016/j.rser.2015.10.120
10.1016/j.matlet.2004.11.044
10.1007/s13738-018-1342-y
10.1088/1674-1056/24/4/046104
10.1016/S1010-6030(97)00038-5
10.1016/j.radphyschem.2012.02.028
10.1016/S2221-1691(12)60149-X
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
7SP
7SR
8BQ
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
F28
FR3
HCIFZ
JG9
KB.
L7M
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
S0W
DOI 10.1007/s10854-020-03529-x
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection
Materials Research Database
Materials Science Database
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-482X
EndPage 9859
ExternalDocumentID 10_1007_s10854_020_03529_x
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P62
P9N
PDBOC
PKN
PT4
PT5
Q2X
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8W
Z8Z
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SP
7SR
8BQ
8FD
ABRTQ
DWQXO
F28
FR3
JG9
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c356t-750984ea81dc6caadff51902b36c8e98507b4ca878de147bc3d3f52b79f323b63
IEDL.DBID BENPR
ISSN 0957-4522
IngestDate Fri Jul 25 12:17:25 EDT 2025
Tue Jul 01 02:34:46 EDT 2025
Thu Apr 24 23:11:13 EDT 2025
Fri Feb 21 02:39:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-750984ea81dc6caadff51902b36c8e98507b4ca878de147bc3d3f52b79f323b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3745-3620
PQID 2409111710
PQPubID 326250
PageCount 14
ParticipantIDs proquest_journals_2409111710
crossref_primary_10_1007_s10854_020_03529_x
crossref_citationtrail_10_1007_s10854_020_03529_x
springer_journals_10_1007_s10854_020_03529_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of materials science. Materials in electronics
PublicationTitleAbbrev J Mater Sci: Mater Electron
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References LabiadhHLahbibKHidouriSTouilSChaabaneTBAsian Pac. J Trop. Med.201697577621:CAS:528:DC%2BC28XhtFent7bJ10.1016/j.apjtm.2016.06.008
LuCLiuCChenRFangXXuKMengDJ. Mater. Sci: Mater. Electron.201627694769541:CAS:528:DC%2BC28XktlGgt7Y%3D
SathishkumarMSarojaMVenkatachalamMOrient. J. Chem.2017339039091:CAS:528:DC%2BC2sXhvFSiurnJ10.13005/ojc/330240
ZhangWZengXLiuHLuJJ. Lumin.20131344985031:CAS:528:DC%2BC38Xht1Omsr%2FK10.1016/j.jlumin.2012.07.039
SubramanianRSubbramaniyanPAmeenJNRajVArab. J. Chem.2011953754010.1016/j.arabjc.2011.06.022
DipakCHKalitaABardaloiSKalitaMPJ. Lumin.201921026927510.1016/j.jlumin.2019.02.033
KumbhojkarNNikeshVVKshirsagarAMahamuniSJ. Appl. Phys.1999886260626510.1063/1.1321027
ManiSKManickamSMuthusamyVThangarajRJ. Nanostruct.201881071181:CAS:528:DC%2BC1MXhvFylsr0%3D
BauerAWKirbyWMSherrisJCTurckMAm. J. Clin. Pathol.1966454934961:STN:280:DyaF287htV2isA%3D%3D10.1093/ajcp/45.4_ts.493
BarberioMBaronePOlivaARadiat. Phys. Chem.2012816426461:CAS:528:DC%2BC38XjvVWntbo%3D10.1016/j.radphyschem.2012.02.028
YeZKongLChenFChenZLinYLiuCOptik20181643453541:CAS:528:DC%2BC1cXlvFKju7w%3D10.1016/j.ijleo.2018.03.030
SathishkumarMSarojaMVenkatachalamMOptik20191827747851:CAS:528:DC%2BC1MXivVOnuro%3D10.1016/j.ijleo.2019.02.014
HamSJangDJJ. Environ. Chem. Eng.201862282351:CAS:528:DC%2BC2sXhvFCrt7zF10.1016/j.jece.2017.12.005
LeeGJWuJJRecent development in ZnS photocatalysts from synthesis to photocatalytic applicationsPowder Technol.201731808221:CAS:528:DC%2BC2sXotlWls7o%3D10.1016/j.powtec.2017.05.022
SharmaMKumarSPandeyOPJ. Nanopart. Res.201012265526661:CAS:528:DC%2BC3cXhtVCju7zM10.1007/s11051-009-9844-2
KhiewaPSRadimanaSHuangaNMAhmedSMDNadarajahKMater. Lett.20055998999310.1016/j.matlet.2004.11.044
YeZKongLChenFChenZLinYOptik20181643453541:CAS:528:DC%2BC1cXlvFKju7w%3D10.1016/j.ijleo.2018.03.030
ParthibavarmanMKarthikMSathishumarPPoonguzhaliRJ. Iran. Chem. Soc.201815141914301:CAS:528:DC%2BC1cXms1Cmsbw%3D10.1007/s13738-018-1342-y
ParthibavarmanMSathishumarSPrabhakaranSJayashreeMBoopathi RajaRJ. Iran. Chem. Soc.201815278928011:CAS:528:DC%2BC1cXhsFWhu73M10.1007/s13738-018-1466-0
MansurAAMansurHSRamaneryFPOliveiraLCSouzaPPAppl. Catal. B Environ.201415826927910.1016/j.apcatb.2014.04.026
HudlikarMJoglekarSSDhaygudeMKodamKMJ. Nanopart. Res.20121486587110.1007/s11051-012-0865-x
YueLQiSWangJCaiJXinBMater. Sci. Semicond. Process.2016561151181:CAS:528:DC%2BC28XhtlyqtLbI10.1016/j.mssp.2016.07.015
ParthibavarmanMSathishumarSPrabhakaranSJ. Mater. Sci: Mater. Electron.201829234123501:CAS:528:DC%2BC2sXhslChtLbI
UmmartyotinSInfahsaengYSust. Energy Rev.20165517241:CAS:528:DC%2BC2MXhvVaqsL%2FM10.1016/j.rser.2015.10.120
AyodhyaDVeerabhadramGJ. Fluoresc.201626216521751:CAS:528:DC%2BC28XhsVSls73L10.1007/s10895-016-1912-2
MalarkodiCAnnaduraiGAppl. Nanosci.201333893951:CAS:528:DC%2BC3sXhsVeqtrzF10.1007/s13204-012-0138-0
IranmaneshPSaeedniaSNourzpoorMChin. Phys. B.20152404610410.1088/1674-1056/24/4/046104
LiuDLiXShiZZhuBCheXYangJJ. Mater. Sci: Mater. Electron.20182911605116121:CAS:528:DC%2BC1cXptFCrtL8%3D
KikuchiYSunadaKIyodaTHashimotoKFujishimaAJ. Photochem. Photobiol. A: Chem.199710651561:CAS:528:DyaK2sXksFClt7c%3D10.1016/S1010-6030(97)00038-5
JabeenUShahSMKhanSUSurf. Interfaces2017640491:CAS:528:DC%2BC2sXitVaqt7nO10.1016/j.surfin.2016.11.002
K.R. Brain, T.D. Tuner, Bristol: Wright-Scientechnica, 81–88 (1975)
ChenJHuBZhiJPhysica E2016791031061:CAS:528:DC%2BC2MXitVyks7%2FO10.1016/j.physe.2015.12.015
ChandrakarRKBaghelRNChandraVKChandraBPSuperlattices Microstruct.2015841321431:CAS:528:DC%2BC2MXotFCrtrY%3D10.1016/j.spmi.2015.04.023
SenapatiUSSarkarDIndian J. Phys.2014885575621:CAS:528:DC%2BC2cXksFynu7Y%3D10.1007/s12648-014-0456-z
DingYSunLJiangYLiuSChenMChenMDingYLiuQMater. Sci. Eng. C2016671881941:CAS:528:DC%2BC28Xps1yqs78%3D10.1016/j.msec.2016.05.057
SathishkumarMRajamanickamATSarojaMJ. Mater. Sci: Mater. Electron.20182914200142091:CAS:528:DC%2BC1cXht1SmtbnI
S. Christudas, T.M. Kulathivel, P. Agastian, Asian Pac. J. Trop. Biomed., 159–161 (2012)
P Iranmanesh (3529_CR28) 2015; 24
Z Ye (3529_CR6) 2018; 164
D Liu (3529_CR31) 2018; 29
M Sathishkumar (3529_CR7) 2019; 182
M Barberio (3529_CR3) 2012; 81
J Chen (3529_CR16) 2016; 79
M Hudlikar (3529_CR26) 2012; 14
M Sathishkumar (3529_CR35) 2018; 29
U Jabeen (3529_CR5) 2017; 6
D Ayodhya (3529_CR24) 2016; 26
CH Dipak (3529_CR23) 2019; 210
C Lu (3529_CR33) 2016; 27
N Kumbhojkar (3529_CR34) 1999; 88
M Parthibavarman (3529_CR10) 2018; 29
L Yue (3529_CR22) 2016; 56
US Senapati (3529_CR21) 2014; 88
S Ummartyotin (3529_CR8) 2016; 55
AA Mansur (3529_CR19) 2014; 158
M Parthibavarman (3529_CR11) 2018; 15
H Labiadh (3529_CR2) 2016; 9
M Sathishkumar (3529_CR13) 2017; 33
AW Bauer (3529_CR18) 1966; 45
C Malarkodi (3529_CR30) 2013; 3
GJ Lee (3529_CR4) 2017; 318
W Zhang (3529_CR25) 2013; 134
M Sharma (3529_CR1) 2010; 12
PS Khiewa (3529_CR27) 2005; 59
S Ham (3529_CR29) 2018; 6
RK Chandrakar (3529_CR37) 2015; 84
Y Kikuchi (3529_CR36) 1997; 106
R Subramanian (3529_CR9) 2011; 9
M Parthibavarman (3529_CR12) 2018; 15
Z Ye (3529_CR20) 2018; 164
Y Ding (3529_CR32) 2016; 67
3529_CR14
SK Mani (3529_CR17) 2018; 8
3529_CR15
References_xml – reference: KhiewaPSRadimanaSHuangaNMAhmedSMDNadarajahKMater. Lett.20055998999310.1016/j.matlet.2004.11.044
– reference: HudlikarMJoglekarSSDhaygudeMKodamKMJ. Nanopart. Res.20121486587110.1007/s11051-012-0865-x
– reference: MalarkodiCAnnaduraiGAppl. Nanosci.201333893951:CAS:528:DC%2BC3sXhsVeqtrzF10.1007/s13204-012-0138-0
– reference: LiuDLiXShiZZhuBCheXYangJJ. Mater. Sci: Mater. Electron.20182911605116121:CAS:528:DC%2BC1cXptFCrtL8%3D
– reference: MansurAAMansurHSRamaneryFPOliveiraLCSouzaPPAppl. Catal. B Environ.201415826927910.1016/j.apcatb.2014.04.026
– reference: SenapatiUSSarkarDIndian J. Phys.2014885575621:CAS:528:DC%2BC2cXksFynu7Y%3D10.1007/s12648-014-0456-z
– reference: UmmartyotinSInfahsaengYSust. Energy Rev.20165517241:CAS:528:DC%2BC2MXhvVaqsL%2FM10.1016/j.rser.2015.10.120
– reference: SathishkumarMRajamanickamATSarojaMJ. Mater. Sci: Mater. Electron.20182914200142091:CAS:528:DC%2BC1cXht1SmtbnI
– reference: LabiadhHLahbibKHidouriSTouilSChaabaneTBAsian Pac. J Trop. Med.201697577621:CAS:528:DC%2BC28XhtFent7bJ10.1016/j.apjtm.2016.06.008
– reference: YeZKongLChenFChenZLinYOptik20181643453541:CAS:528:DC%2BC1cXlvFKju7w%3D10.1016/j.ijleo.2018.03.030
– reference: AyodhyaDVeerabhadramGJ. Fluoresc.201626216521751:CAS:528:DC%2BC28XhsVSls73L10.1007/s10895-016-1912-2
– reference: LeeGJWuJJRecent development in ZnS photocatalysts from synthesis to photocatalytic applicationsPowder Technol.201731808221:CAS:528:DC%2BC2sXotlWls7o%3D10.1016/j.powtec.2017.05.022
– reference: ManiSKManickamSMuthusamyVThangarajRJ. Nanostruct.201881071181:CAS:528:DC%2BC1MXhvFylsr0%3D
– reference: S. Christudas, T.M. Kulathivel, P. Agastian, Asian Pac. J. Trop. Biomed., 159–161 (2012)
– reference: IranmaneshPSaeedniaSNourzpoorMChin. Phys. B.20152404610410.1088/1674-1056/24/4/046104
– reference: KikuchiYSunadaKIyodaTHashimotoKFujishimaAJ. Photochem. Photobiol. A: Chem.199710651561:CAS:528:DyaK2sXksFClt7c%3D10.1016/S1010-6030(97)00038-5
– reference: K.R. Brain, T.D. Tuner, Bristol: Wright-Scientechnica, 81–88 (1975)
– reference: ChenJHuBZhiJPhysica E2016791031061:CAS:528:DC%2BC2MXitVyks7%2FO10.1016/j.physe.2015.12.015
– reference: ParthibavarmanMKarthikMSathishumarPPoonguzhaliRJ. Iran. Chem. Soc.201815141914301:CAS:528:DC%2BC1cXms1Cmsbw%3D10.1007/s13738-018-1342-y
– reference: ZhangWZengXLiuHLuJJ. Lumin.20131344985031:CAS:528:DC%2BC38Xht1Omsr%2FK10.1016/j.jlumin.2012.07.039
– reference: KumbhojkarNNikeshVVKshirsagarAMahamuniSJ. Appl. Phys.1999886260626510.1063/1.1321027
– reference: YueLQiSWangJCaiJXinBMater. Sci. Semicond. Process.2016561151181:CAS:528:DC%2BC28XhtlyqtLbI10.1016/j.mssp.2016.07.015
– reference: ChandrakarRKBaghelRNChandraVKChandraBPSuperlattices Microstruct.2015841321431:CAS:528:DC%2BC2MXotFCrtrY%3D10.1016/j.spmi.2015.04.023
– reference: DipakCHKalitaABardaloiSKalitaMPJ. Lumin.201921026927510.1016/j.jlumin.2019.02.033
– reference: ParthibavarmanMSathishumarSPrabhakaranSJ. Mater. Sci: Mater. Electron.201829234123501:CAS:528:DC%2BC2sXhslChtLbI
– reference: SathishkumarMSarojaMVenkatachalamMOptik20191827747851:CAS:528:DC%2BC1MXivVOnuro%3D10.1016/j.ijleo.2019.02.014
– reference: BauerAWKirbyWMSherrisJCTurckMAm. J. Clin. Pathol.1966454934961:STN:280:DyaF287htV2isA%3D%3D10.1093/ajcp/45.4_ts.493
– reference: LuCLiuCChenRFangXXuKMengDJ. Mater. Sci: Mater. Electron.201627694769541:CAS:528:DC%2BC28XktlGgt7Y%3D
– reference: SharmaMKumarSPandeyOPJ. Nanopart. Res.201012265526661:CAS:528:DC%2BC3cXhtVCju7zM10.1007/s11051-009-9844-2
– reference: BarberioMBaronePOlivaARadiat. Phys. Chem.2012816426461:CAS:528:DC%2BC38XjvVWntbo%3D10.1016/j.radphyschem.2012.02.028
– reference: ParthibavarmanMSathishumarSPrabhakaranSJayashreeMBoopathi RajaRJ. Iran. Chem. Soc.201815278928011:CAS:528:DC%2BC1cXhsFWhu73M10.1007/s13738-018-1466-0
– reference: SubramanianRSubbramaniyanPAmeenJNRajVArab. J. Chem.2011953754010.1016/j.arabjc.2011.06.022
– reference: JabeenUShahSMKhanSUSurf. Interfaces2017640491:CAS:528:DC%2BC2sXitVaqt7nO10.1016/j.surfin.2016.11.002
– reference: HamSJangDJJ. Environ. Chem. Eng.201862282351:CAS:528:DC%2BC2sXhvFCrt7zF10.1016/j.jece.2017.12.005
– reference: DingYSunLJiangYLiuSChenMChenMDingYLiuQMater. Sci. Eng. C2016671881941:CAS:528:DC%2BC28Xps1yqs78%3D10.1016/j.msec.2016.05.057
– reference: SathishkumarMSarojaMVenkatachalamMOrient. J. Chem.2017339039091:CAS:528:DC%2BC2sXhvFSiurnJ10.13005/ojc/330240
– reference: YeZKongLChenFChenZLinYLiuCOptik20181643453541:CAS:528:DC%2BC1cXlvFKju7w%3D10.1016/j.ijleo.2018.03.030
– volume: 26
  start-page: 2165
  year: 2016
  ident: 3529_CR24
  publication-title: J. Fluoresc.
  doi: 10.1007/s10895-016-1912-2
– volume: 8
  start-page: 107
  year: 2018
  ident: 3529_CR17
  publication-title: J. Nanostruct.
– volume: 3
  start-page: 389
  year: 2013
  ident: 3529_CR30
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-012-0138-0
– volume: 29
  start-page: 11605
  year: 2018
  ident: 3529_CR31
  publication-title: J. Mater. Sci: Mater. Electron.
– volume: 88
  start-page: 557
  year: 2014
  ident: 3529_CR21
  publication-title: Indian J. Phys.
  doi: 10.1007/s12648-014-0456-z
– volume: 29
  start-page: 14200
  year: 2018
  ident: 3529_CR35
  publication-title: J. Mater. Sci: Mater. Electron.
– volume: 164
  start-page: 345
  year: 2018
  ident: 3529_CR6
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.03.030
– volume: 45
  start-page: 493
  year: 1966
  ident: 3529_CR18
  publication-title: Am. J. Clin. Pathol.
  doi: 10.1093/ajcp/45.4_ts.493
– volume: 79
  start-page: 103
  year: 2016
  ident: 3529_CR16
  publication-title: Physica E
  doi: 10.1016/j.physe.2015.12.015
– volume: 210
  start-page: 269
  year: 2019
  ident: 3529_CR23
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2019.02.033
– volume: 318
  start-page: 08
  year: 2017
  ident: 3529_CR4
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2017.05.022
– volume: 33
  start-page: 903
  year: 2017
  ident: 3529_CR13
  publication-title: Orient. J. Chem.
  doi: 10.13005/ojc/330240
– volume: 56
  start-page: 115
  year: 2016
  ident: 3529_CR22
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2016.07.015
– volume: 6
  start-page: 40
  year: 2017
  ident: 3529_CR5
  publication-title: Surf. Interfaces
  doi: 10.1016/j.surfin.2016.11.002
– volume: 84
  start-page: 132
  year: 2015
  ident: 3529_CR37
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2015.04.023
– volume: 29
  start-page: 2341
  year: 2018
  ident: 3529_CR10
  publication-title: J. Mater. Sci: Mater. Electron.
– volume: 158
  start-page: 269
  year: 2014
  ident: 3529_CR19
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2014.04.026
– volume: 6
  start-page: 228
  year: 2018
  ident: 3529_CR29
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2017.12.005
– volume: 88
  start-page: 6260
  year: 1999
  ident: 3529_CR34
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1321027
– volume: 9
  start-page: 757
  year: 2016
  ident: 3529_CR2
  publication-title: Asian Pac. J Trop. Med.
  doi: 10.1016/j.apjtm.2016.06.008
– volume: 182
  start-page: 774
  year: 2019
  ident: 3529_CR7
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.02.014
– volume: 164
  start-page: 345
  year: 2018
  ident: 3529_CR20
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.03.030
– volume: 9
  start-page: 537
  year: 2011
  ident: 3529_CR9
  publication-title: Arab. J. Chem.
  doi: 10.1016/j.arabjc.2011.06.022
– volume: 12
  start-page: 2655
  year: 2010
  ident: 3529_CR1
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-009-9844-2
– volume: 27
  start-page: 6947
  year: 2016
  ident: 3529_CR33
  publication-title: J. Mater. Sci: Mater. Electron.
– volume: 134
  start-page: 498
  year: 2013
  ident: 3529_CR25
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2012.07.039
– volume: 67
  start-page: 188
  year: 2016
  ident: 3529_CR32
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2016.05.057
– volume: 15
  start-page: 2789
  year: 2018
  ident: 3529_CR12
  publication-title: J. Iran. Chem. Soc.
  doi: 10.1007/s13738-018-1466-0
– volume: 14
  start-page: 865
  year: 2012
  ident: 3529_CR26
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-012-0865-x
– ident: 3529_CR14
– volume: 55
  start-page: 17
  year: 2016
  ident: 3529_CR8
  publication-title: Sust. Energy Rev.
  doi: 10.1016/j.rser.2015.10.120
– volume: 59
  start-page: 989
  year: 2005
  ident: 3529_CR27
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2004.11.044
– volume: 15
  start-page: 1419
  year: 2018
  ident: 3529_CR11
  publication-title: J. Iran. Chem. Soc.
  doi: 10.1007/s13738-018-1342-y
– volume: 24
  start-page: 046104
  year: 2015
  ident: 3529_CR28
  publication-title: Chin. Phys. B.
  doi: 10.1088/1674-1056/24/4/046104
– volume: 106
  start-page: 51
  year: 1997
  ident: 3529_CR36
  publication-title: J. Photochem. Photobiol. A: Chem.
  doi: 10.1016/S1010-6030(97)00038-5
– volume: 81
  start-page: 642
  year: 2012
  ident: 3529_CR3
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2012.02.028
– ident: 3529_CR15
  doi: 10.1016/S2221-1691(12)60149-X
SSID ssj0006438
Score 2.4811056
Snippet In this present work, improved photocatalytic activity and antibacterial properties of zinc sulfide (ZnS) nanoparticles using plant extract of Acalypha indica...
In this present work, improved photocatalytic activity and antibacterial properties of zinc sulfide (ZnS) nanoparticles using plant extract of Acalypha indica...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9846
SubjectTerms Antibiotics
Biosynthesis
Catalytic activity
Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystal structure
Doppler effect
Dyes
Fourier transforms
Functional groups
Grain size
In vitro methods and tests
Light irradiation
Materials Science
Methylene blue
Microorganisms
Morphology
Nanoparticles
Optical and Electronic Materials
Optical properties
Photocatalysis
Photodegradation
Photoluminescence
Pore size
Porosity
Red shift
Spectrum analysis
Surface area
Transmission electron microscopy
Wurtzite
Zinc sulfide
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQucABlZdYWtAcuIGlTew43uMKUVUcOHWl3iI_20grJ9qkVZf_xn9jJo9uQYDEIadkxodxZr6xZ75h7IMK2ooiCC6DL7hUtuTW6owrmS1j6fQyjmyf39T5Rn69LC6nprBurnafryQHT_2g2U0XklO6QxyeK47I8XFBuTvu4k2-vve_GGP1yLBHjN55PrXK_FnHr-HogDF_uxYdos3ZMXs2wURYj3Z9zh6F9II9fUAe-JL9WENqbsMWrqh0Brp9QizX1R3MNOGAeBTq4dAgeGivm74ZDmv2qBOon4HGRoBJHp--tiNtMy7a0vn8johWoYnwvU4OupttrH2AZBIm2VMtHVDN_BW0WxQH9PHUb0USazT7vr02QNfhzgwrXOxqb-5ItaMRJKl7xTZnXy4-n_NpGAN3olA9J2ShZTCIb51yxvgYEfwtcyuU02GlEVda6YwutQ-ZLK0TXsQit-UqilxYJV6zo9Sk8IaB1wYjBAJJm1nMzqNdei9RJiI2yqWKC5bNNqncxFROAzO21YFjmexYoR2rwY7V3YJ9vJdpR56Of359Opu6mv7ZrkJsQ54fIdeCfZrNf3j9d21v_-_zE_YkH3YgHeWcsqN-dxPeIbLp7fthI_8E1mT1HQ
  priority: 102
  providerName: Springer Nature
Title A novel green synthesis approach for improved photocatalytic activity and antibacterial properties of zinc sulfide nanoparticles using plant extract of Acalypha indica and Tridax procumbens
URI https://link.springer.com/article/10.1007/s10854-020-03529-x
https://www.proquest.com/docview/2409111710
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZo9wIHxFNsW1Y-cIOITeIk3lMVYLcVjwpBVyqnyM820soJmxTt8t_4b8wkTheQ6CHKIfH4MPbM5_HMN4S8SA2XcWLigBmdBCyVWSAlD4OUhVObKT61PdvnWXq6ZO8vkgsfcGt8WuVgEztDrSuFMfLX4HlwX4JDPK6_B9g1Cm9XfQuNPTICE8zh8DV6Mz_7_OXGFoO_5T3bHrJ7R5Evm_HFczxhAR6fkBN0Fmz-dk07vPnPFWnneRYPyH0PGWne6_ghuWPcI3LvDyLBx-RXTl31w6zoJabR0GbrANc1ZUMHynAK2JSWXQDBaFpfVW3VBW62IJNibQO2kKDCaXjaUvYUzjBpjbH6NZKu0srSn6VTtLle2VIb6oSDA7fPq6OYP39J6xUMp2DvsfYKR-SwBLb1laB4Na5EN8P5utRig6IVtiNxzROyXMzP354GvjFDoOIkbQNEGZwZAVhXpUoIbS0AwWkk41RxM-OAMSVTgmdcm5BlUsU6tkkks5mNo1im8VOy7ypnnhGquQBvAaBShhJO6lZOtWYwxgJOilhqxyQcdFIoz1qOzTNWxY5vGfVYgB6LTo_FZkxe3oype86OW_8-GlRd-P3bFLvVNiavBvXvPv9f2sHt0g7J3ahbcRjGOSL77fraPAdU08oJ2eOLkwkZ5e8-ffyK75NvH-YTv6Dh6zLKfwPhyP3r
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFPdUsAHOEHEJnYS54DQCli2tPS0lXoLfraRVk7YpGWXH8U_4L8xk0cXkOith5wSTw4z9nyexzeEvEisUCy2LODWxAFPVBooJcIg4eHYpVqMXcf2eZTMjvnnk_hki_wcemGwrHI4E9uD2pQaY-RvwPPgvgSH-K76FuDUKMyuDiM0OrM4sOvvcGWr3-5_AP2-jKLpx_n7WdBPFQg0i5MmQBcpuJUA1HSipTTOAYoZR4olWthMAEBSXEuRCmNDnirNDHNxpNLMsYiphIHcG-QmZyzDHSWmny5PfvDuouP2Qy7xKOqbdPpWPRHzAC9ryECaBau_HeEG3f6TkG393PQeudsDVDrpLOo-2bL-AbnzB23hQ_JrQn15YRf0FIt2aL32gCLroqYDQTkFJEyLNlxhDa3OyqZsw0RrkEmxkwIHVlDpDTxNoTrCaPhphZmBJVK80tLRH4XXtD5fuMJY6qWH631fxUexWv-UVgtYTsG7YKcXrpiAwa2rM0kxEa9l-4f5sjByhaI1Dj_x9SNyfC0Ke0y2fentDqFGSPBNAGFVqHiSOTU2hsMaB6gs4okbkXDQSa57jnQc1bHIN-zOqMcc9Ji3esxXI_Lqck3VMYRc-fXeoOq8Py3qfGPbI_J6UP_m9f-l7V4t7Tm5NZt_OcwP948OnpDbUWt9GEDaI9vN8tw-BTzVqGetEVPy9bp3zW8oNTTN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJwqHiKpQV8gBNY3SSO4z0gtNCuWopWFWql3kL8aiOtnLBJYZefhsR_YyaPLiDRWw85JZ4cvrHnsz3zDSEvhZUqim3EuDUx40IlTCkZMMGDkUu0HLlW7XMmDk75x7P4bIP87GthMK2yXxObhdoUGs_IdyHy4LyEgLjrurSI473pu_Irww5SeNPat9NoXeTIrr7D9q16e7gHWL8Kw-n-yYcD1nUYYDqKRc0wXEpuMyBtWugsM84BoxmFKhJa2rEEsqS4zmQijQ14onRkIheHKhm7KIyUiMDuLbKZwK5oNCCb7_dnx5-v4gDEetkq_aGyeBh2JTtd4Z6MOcOtG-qRjtny77C45rr_XM82UW96j2x1dJVOWv-6Tzasf0Du_iFi-JD8mlBffLNzeo4pPLRaeeCUVV7RXq6cAi-meXN4YQ0tL4q6aA6NVmCTYl0Ftq-gmTfw1Llq5aPhpyXeEyxQ8JUWjv7IvabV5dzlxlKfedjsdzl9FHP3z2k5h-EUAMO6LxwxAfdblRcZxWt5nTV_OFnkJluiaY2tUHz1iJzeCGSPycAX3j4h1MgMIhUQWhUoLsZOjYzhMMYBRwu5cEMS9JikulNMx8Yd83St9Yw4poBj2uCYLofk9dWYstULufbrnR7qtFs7qnTt6UPypod__fr_1p5eb-0FuQ0zJv10ODvaJnfCxvnwNGmHDOrFpX0G5KpWzzsvpuTLTU-c33hIOl8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+green+synthesis+approach+for+improved+photocatalytic+activity+and+antibacterial+properties+of+zinc+sulfide+nanoparticles+using+plant+extract+of+Acalypha+indica+and+Tridax+procumbens&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=Kannan%2C+S&rft.au=Subiramaniyam%2C+N+P&rft.au=Sathishkumar%2C+M&rft.date=2020-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=31&rft.issue=12&rft.spage=9846&rft.epage=9859&rft_id=info:doi/10.1007%2Fs10854-020-03529-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon