Effect of Cu content on intergranular corrosion and exfoliation corrosion susceptibility of Al−Zn−Mg−(Cu) alloys
The effect of Cu content on intergranular corrosion (IGC) and exfoliation corrosion (EXCO) susceptibility of Al−Zn−Mg−(Cu) alloys was investigated by electrochemical test, immersion test, electron backscattered diffraction, optical microscope, scanning electron microscope, scanning transmission elec...
Saved in:
Published in | Transactions of Nonferrous Metals Society of China Vol. 33; no. 7; pp. 1963 - 1976 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The effect of Cu content on intergranular corrosion (IGC) and exfoliation corrosion (EXCO) susceptibility of Al−Zn−Mg−(Cu) alloys was investigated by electrochemical test, immersion test, electron backscattered diffraction, optical microscope, scanning electron microscope, scanning transmission electron microscope and scanning Kelvin probe force microscope. As Cu content increases from 0 to 2.6 wt.%, IGC susceptibility increases, while EXCO susceptibility first increases and then decreases, reaching the maximum at Cu content of 1 wt.%. With the increase of Cu content, the area fraction of recrystallized grains increases, and the aspect ratio of recrystallized grains first decreases and then increases; moreover, the Volta potential difference between grain boundary precipitates (GBPs) and the matrix increases, making GBPs more susceptible to corrosion. The initiation and propagation of IGC and EXCO are discussed mainly based on the features of GBPs, grain structure, and the Volta potential difference between GBPs and the matrix. |
---|---|
AbstractList | The effect of Cu content on intergranular corrosion (IGC) and exfoliation corrosion (EXCO) susceptibility of Al−Zn−Mg−(Cu) alloys was investigated by electrochemical test, immersion test, electron backscattered diffraction, optical microscope, scanning electron microscope, scanning transmission electron microscope and scanning Kelvin probe force microscope. As Cu content increases from 0 to 2.6 wt.%, IGC susceptibility increases, while EXCO susceptibility first increases and then decreases, reaching the maximum at Cu content of 1 wt.%. With the increase of Cu content, the area fraction of recrystallized grains increases, and the aspect ratio of recrystallized grains first decreases and then increases; moreover, the Volta potential difference between grain boundary precipitates (GBPs) and the matrix increases, making GBPs more susceptible to corrosion. The initiation and propagation of IGC and EXCO are discussed mainly based on the features of GBPs, grain structure, and the Volta potential difference between GBPs and the matrix. |
Author | LIU, Sheng-dan ZHANG, Meng-han JIANG, Jing-yu WEI, Wei-chang |
Author_xml | – sequence: 1 givenname: Meng-han surname: ZHANG fullname: ZHANG, Meng-han organization: School of Materials Science and Engineering, Central South University, Changsha 410083, China – sequence: 2 givenname: Sheng-dan surname: LIU fullname: LIU, Sheng-dan email: lsd_csu@csu.edu.cn organization: School of Materials Science and Engineering, Central South University, Changsha 410083, China – sequence: 3 givenname: Jing-yu surname: JIANG fullname: JIANG, Jing-yu organization: School of Metallurgy and Environment, Central South University, Changsha 410083, China – sequence: 4 givenname: Wei-chang surname: WEI fullname: WEI, Wei-chang organization: School of Materials Science and Engineering, Central South University, Changsha 410083, China |
BookMark | eNqFkMtKAzEUhrOoYFt9BGGW7WI0l5m04kJKqRdQXKgbNyGTOSmRmClJptg3cO0j-iRmWlFwUwLnyv9z8g1QzzUOEDoh-JRgws8eCcYs54zyEWVjzinjOeuh_u_4EA1CeMW4KDgnfbReaA0qZo3O5m2mGhfBpc5lJlV-6aVrrfRp4X0TTJpLV2fwrhtrZOz6v01og4JVNJWxJm46x5n9-vh8cSncL1MYzdtxJq1tNuEIHWhpAxz_5CF6vlo8zW_yu4fr2_nsLles5DGfYE41yJoWEoqKUo5LxiUjkyo9AueTCk8rWgKbFkVZ4pIXhEmla6pUSTBINkQXO1-VjgwetFAmbg-PXhorCBYdNrHFJjo-gqbcYRMsqct_6pU3b9Jv9uoudzpIX1sb8CIoA05BbXyCLerG7HH4BjqfjYg |
CitedBy_id | crossref_primary_10_1016_j_corsci_2023_111461 crossref_primary_10_1016_j_matchar_2024_114681 crossref_primary_10_1016_j_porgcoat_2024_109023 crossref_primary_10_1016_j_mtcomm_2024_110465 crossref_primary_10_3390_met14070776 crossref_primary_10_1016_j_jtice_2024_105596 crossref_primary_10_1016_j_jmrt_2024_07_027 crossref_primary_10_1016_j_jmst_2024_10_031 crossref_primary_10_3390_cryst15020107 crossref_primary_10_1002_adem_202301157 crossref_primary_10_1016_j_jallcom_2024_176895 crossref_primary_10_1016_j_jallcom_2024_176875 crossref_primary_10_1016_j_jallcom_2024_177524 crossref_primary_10_1016_j_matdes_2023_112295 crossref_primary_10_1016_j_jmrt_2025_02_249 crossref_primary_10_1016_S1003_6326_24_66675_6 crossref_primary_10_1016_j_jallcom_2024_174045 crossref_primary_10_1016_j_matdes_2025_113772 |
Cites_doi | 10.5006/1.3287699 10.1016/j.actamat.2009.09.003 10.1007/s12540-016-5504-0 10.1179/026708399101506832 10.1016/j.corsci.2018.08.033 10.1016/j.matdes.2018.107558 10.1016/S1003-6326(11)61138-2 10.1016/j.corsci.2021.109429 10.1016/S1003-6326(14)63342-2 10.1016/j.jallcom.2014.03.010 10.1016/S1003-6326(14)63306-9 10.1007/s11661-998-0240-9 10.1016/j.jallcom.2017.05.047 10.1007/s11661-017-3967-3 10.1016/j.jallcom.2014.10.044 10.1016/j.corsci.2014.11.024 10.1016/S1003-6326(21)65734-5 10.1016/j.matchar.2017.11.029 10.1016/j.corsci.2006.06.033 10.1016/j.corsci.2006.05.037 10.1016/0142-1123(95)93050-C 10.1007/s11771-021-4800-0 10.1016/j.jallcom.2019.02.228 10.1007/BF02643806 10.1016/j.msea.2014.05.021 10.1016/j.corsci.2010.08.024 10.1016/j.corsci.2011.05.057 10.1016/j.mseb.2012.04.008 10.1016/j.scriptamat.2020.04.018 10.1016/j.corsci.2013.10.010 10.1016/0376-0421(95)00004-6 10.1016/j.jallcom.2018.12.151 10.1016/S0010-938X(03)00050-7 10.1149/1.1695385 10.1149/1.1386626 10.1016/j.corsci.2006.12.002 10.1016/j.jmrt.2021.11.115 10.1016/j.jallcom.2019.05.189 10.1016/j.matchar.2019.109837 10.1016/j.apsusc.2020.146081 10.1016/j.engfracmech.2008.11.005 10.1016/0010-938X(82)90013-0 10.1016/j.corsci.2021.109743 10.1016/j.matchar.2020.110533 10.1016/j.matdes.2010.11.036 10.1149/2.0301504jes 10.1016/j.corsci.2015.05.016 10.1149/1.1869984 10.1016/j.msea.2016.12.009 10.1016/j.jallcom.2015.10.122 |
ContentType | Journal Article |
Copyright | 2023 The Nonferrous Metals Society of China |
Copyright_xml | – notice: 2023 The Nonferrous Metals Society of China |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/S1003-6326(23)66236-3 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 1976 |
ExternalDocumentID | 10_1016_S1003_6326_23_66236_3 S1003632623662363 |
GroupedDBID | --K --M -02 -0B -SB -S~ .~1 0R~ 123 188 1B1 1~. 1~5 2B. 2C0 4.4 457 4G. 5VR 5VS 5XA 5XC 6I. 7-5 71M 8P~ 8RM 92H 92I 92M 92R 93N 9D9 9DB AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAXDM AAXKI AAXUO ABFNM ABMAC ABXDB ABXRA ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADVLN AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFUIB AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CAJEB CCEZO CDRFL CHBEP CS3 CW9 DU5 EBS EFJIC EJD EO9 EP2 EP3 FA0 FDB FIRID FNPLU FYGXN GBLVA HZ~ J1W JUIAU KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q-- Q38 R-B ROL RT2 S.. SDC SDF SDG SES SPC SSM SSZ T5K T8R TCJ TGT U1F U1G U5B U5L UGNYK UZ4 ~02 ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c356t-7062fead24ae4b2260536a317b7b71e97b08b25e384455056413acfd2cc510ea3 |
IEDL.DBID | .~1 |
ISSN | 1003-6326 |
IngestDate | Thu Apr 24 23:01:16 EDT 2025 Tue Jul 01 00:58:15 EDT 2025 Tue Dec 03 03:45:21 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | scanning Kelvin probe force microscope Al−Zn−Mg−Cu alloy copper intergranular corrosion exfoliation corrosion |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-7062fead24ae4b2260536a317b7b71e97b08b25e384455056413acfd2cc510ea3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1003632623662363 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1016_S1003_6326_23_66236_3 crossref_primary_10_1016_S1003_6326_23_66236_3 elsevier_sciencedirect_doi_10_1016_S1003_6326_23_66236_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationTitle | Transactions of Nonferrous Metals Society of China |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | WLOKA, HACK, VIRTANEN (bib52) 2007; 49 LIU, YAO, ZHAO, SHI, LI, LI, XI, YANG (bib30) 2016; 657 KNIGHT, BIRBILIS, MUDDEL, TUREMAN, LYNCH (bib23) 2010; 52 LIU, CHEN, LI, DAI, DENG, ZHANG (bib13) 2015; 91 MCNAUGHTAN, WORSFOLD, ROBINSON (bib50) 2003; 45 WANG, HUANG, YANG, JIANG, Chen, DAI, SEIDMAN, FRANKEL, ZHEN (bib36) 2015; 162 BIRBILIS, BUCHHEIT (bib8) 2005; 152 FANG, CHAO, CHEN (bib54) 2015; 622 MENG, FRANKEL (bib17) 2004; 151 LU, HAN, DU, WANG, LU, LEI, ZHOU (bib45) 2018; 135 CHEN, XU, HE, LIU, ZHANG (bib14) 2021; 191 MA, LIU, LIU, ZHANG, DENG (bib53) 2021; 15 VARGEL (bib18) 2019 LI, YIN, LEI, LIU, DENG, ZHANG (bib48) 2016; 22 ROMETSCH, ZHANG, KNIGHT (bib2) 2014; 24 MARLAUD, MALKI, HENON, DESCHAMPS, BAROUX (bib12) 2011; 53 ZUO, HOU, SHI, CUI, ZHUANG, ZHANG (bib43) 2017; 716 SONG, ZHANG, LIU, TAN, LI (bib19) 2014; 78 ZHAO, FRANKEL (bib51) 2007; 49 CHUBB, MORAD, HOCKENHULL, BRISTOW (bib9) 1995; 17 MARLAUD, DESCHAMPS, BLEY, LEFEBVRE, BAROUX (bib34) 2010; 58 KAIRY, TURK, BIRBILIS, SHEKHTER (bib6) 2018; 143 FANG, LUO, CHEN (bib11) 2017; 684 ROBINSON (bib49) 1982; 22 DONG, CHEN, CHEN (bib26) 2019; 788 RAMGOPAL, SCHMUTZ, FRANKEL (bib41) 2001; 148 GB/T 22639—2008. Test method of exfoliation corrosion for wrought aluminium and aluminium alloys [S]. (in Chinese) MA, LIU, YANG, LIU, ZHANG (bib44) 2020; 168 SINGH, SCHWARTZSTEIN, WILLIAMS, XIAO, CARLO, CHAWLA (bib38) 2014; 602 LI, ZHENG, LI, CHEN, REN, ZHAO (bib7) 2007; 49 KIM, BURNS, GANGLOFF (bib10) 2009; 76 NIVERTY, KALE, SOLANKI, CHAWLA (bib40) 2021; 185 LI, CHEN, HUANG, XU, CHEN (bib24) 2014; 19 GAO, FENG, WEI (bib37) 1998; 29 HE, LI, CAO, HU, ZHANG, QIAO, PAN, SHAO (bib35) 2020; 185 SONG, ZHANG, LIU, TAN, LI (bib33) 2014; 24 SARKAR, MAREK, STARKE (bib21) 1981; 12 TANG, JIANG, LONG, JIANG, LIU, TONG (bib46) 2020; 514 CHEN, CHEN, PENG, LIANG, CHEN (bib5) 2012; 22 XIAO, PAN, LI, LIU, HE (bib15) 2011; 32 HE, LI, LIU, ZHANG, ZHOU (bib4) 2021; 28 RAMGOPAL, GOUMA, FRANKEL (bib20) 2002; 58 KNIGHT, POHL, HOLROYD, BIRBILIS, ROMETSCH, MUDDEL, GOSWAMI, LYNCH (bib22) 2015; 98 FANG, CHAO, CHEN (bib55) 2014; 610 LIU, JIA, JIANG, ZHANG, LI, SHAO, ZHEN (bib27) 2019; 799 UMPHREYS, HATHERLY (bib32) 2004 STARKE, STALEYT (bib1) 1996; 32 YUAN, CHEN, CHEN, ZHOU, CHANG, HUANG, YI (bib25) 2019; 164 ADAM, LONG, FIELD (bib31) 2017; 48 SUN, PAN, SUN, WANG, HUANG, WANG, HU (bib39) 2019; 783 MA, ZHANG, LIU, DENG, ZHANG (bib3) 2021; 31 GB/T 7998—2005. Test method for intergranular corrosion of aluminium alloy [S]. (in Chinese) DESCHAMPS, BRÉCHET, LIVET (bib16) 1999; 15 LIU, WANG, YANG, CHAI, CHEN, YE, TANG (bib42) 2019; 156 HUANG, CHEN, LI (bib47) 2012; 177 GAO (10.1016/S1003-6326(23)66236-3_bib37) 1998; 29 10.1016/S1003-6326(23)66236-3_bib29 10.1016/S1003-6326(23)66236-3_bib28 HE (10.1016/S1003-6326(23)66236-3_bib35) 2020; 185 ROBINSON (10.1016/S1003-6326(23)66236-3_bib49) 1982; 22 MA (10.1016/S1003-6326(23)66236-3_bib53) 2021; 15 CHEN (10.1016/S1003-6326(23)66236-3_bib5) 2012; 22 ZHAO (10.1016/S1003-6326(23)66236-3_bib51) 2007; 49 HUANG (10.1016/S1003-6326(23)66236-3_bib47) 2012; 177 CHUBB (10.1016/S1003-6326(23)66236-3_bib9) 1995; 17 STARKE (10.1016/S1003-6326(23)66236-3_bib1) 1996; 32 KAIRY (10.1016/S1003-6326(23)66236-3_bib6) 2018; 143 MA (10.1016/S1003-6326(23)66236-3_bib44) 2020; 168 LIU (10.1016/S1003-6326(23)66236-3_bib30) 2016; 657 RAMGOPAL (10.1016/S1003-6326(23)66236-3_bib41) 2001; 148 LI (10.1016/S1003-6326(23)66236-3_bib24) 2014; 19 HE (10.1016/S1003-6326(23)66236-3_bib4) 2021; 28 SINGH (10.1016/S1003-6326(23)66236-3_bib38) 2014; 602 DONG (10.1016/S1003-6326(23)66236-3_bib26) 2019; 788 LIU (10.1016/S1003-6326(23)66236-3_bib13) 2015; 91 MENG (10.1016/S1003-6326(23)66236-3_bib17) 2004; 151 FANG (10.1016/S1003-6326(23)66236-3_bib55) 2014; 610 FANG (10.1016/S1003-6326(23)66236-3_bib54) 2015; 622 VARGEL (10.1016/S1003-6326(23)66236-3_bib18) 2019 WANG (10.1016/S1003-6326(23)66236-3_bib36) 2015; 162 MCNAUGHTAN (10.1016/S1003-6326(23)66236-3_bib50) 2003; 45 MARLAUD (10.1016/S1003-6326(23)66236-3_bib12) 2011; 53 UMPHREYS (10.1016/S1003-6326(23)66236-3_bib32) 2004 LIU (10.1016/S1003-6326(23)66236-3_bib42) 2019; 156 ROMETSCH (10.1016/S1003-6326(23)66236-3_bib2) 2014; 24 CHEN (10.1016/S1003-6326(23)66236-3_bib14) 2021; 191 NIVERTY (10.1016/S1003-6326(23)66236-3_bib40) 2021; 185 KNIGHT (10.1016/S1003-6326(23)66236-3_bib22) 2015; 98 SUN (10.1016/S1003-6326(23)66236-3_bib39) 2019; 783 FANG (10.1016/S1003-6326(23)66236-3_bib11) 2017; 684 ADAM (10.1016/S1003-6326(23)66236-3_bib31) 2017; 48 YUAN (10.1016/S1003-6326(23)66236-3_bib25) 2019; 164 LI (10.1016/S1003-6326(23)66236-3_bib48) 2016; 22 WLOKA (10.1016/S1003-6326(23)66236-3_bib52) 2007; 49 KNIGHT (10.1016/S1003-6326(23)66236-3_bib23) 2010; 52 XIAO (10.1016/S1003-6326(23)66236-3_bib15) 2011; 32 RAMGOPAL (10.1016/S1003-6326(23)66236-3_bib20) 2002; 58 LU (10.1016/S1003-6326(23)66236-3_bib45) 2018; 135 LI (10.1016/S1003-6326(23)66236-3_bib7) 2007; 49 MARLAUD (10.1016/S1003-6326(23)66236-3_bib34) 2010; 58 SONG (10.1016/S1003-6326(23)66236-3_bib19) 2014; 78 KIM (10.1016/S1003-6326(23)66236-3_bib10) 2009; 76 BIRBILIS (10.1016/S1003-6326(23)66236-3_bib8) 2005; 152 TANG (10.1016/S1003-6326(23)66236-3_bib46) 2020; 514 SARKAR (10.1016/S1003-6326(23)66236-3_bib21) 1981; 12 MA (10.1016/S1003-6326(23)66236-3_bib3) 2021; 31 ZUO (10.1016/S1003-6326(23)66236-3_bib43) 2017; 716 LIU (10.1016/S1003-6326(23)66236-3_bib27) 2019; 799 DESCHAMPS (10.1016/S1003-6326(23)66236-3_bib16) 1999; 15 SONG (10.1016/S1003-6326(23)66236-3_bib33) 2014; 24 |
References_xml | – volume: 788 start-page: 329 year: 2019 end-page: 337 ident: bib26 article-title: Effects of Cu content on microstructure and properties of super-high-strength Al–9.3Zn–2.4Mg– publication-title: Journal of Alloys and Compounds – reference: GB/T 7998—2005. Test method for intergranular corrosion of aluminium alloy [S]. (in Chinese) – volume: 185 start-page: 134 year: 2020 end-page: 139 ident: bib35 article-title: In situ atomic-scale engineering of the chemistry and structure of the grain boundaries region of Li publication-title: Scripta Materialia – reference: GB/T 22639—2008. Test method of exfoliation corrosion for wrought aluminium and aluminium alloys [S]. (in Chinese) – volume: 151 start-page: B271 year: 2004 end-page: B283 ident: bib17 article-title: Effect of Cu content on corrosion behavior of 7xxx series aluminum alloys [J] publication-title: Journal of the Electrochemical Society – volume: 32 start-page: 2149 year: 2011 end-page: 2156 ident: bib15 article-title: Influence of retrogression and re-aging treatment on corrosion behaviour of an Al–Zn–Mg–Cu alloy [J] publication-title: Materials & Design – volume: 622 start-page: 166 year: 2015 end-page: 173 ident: bib54 article-title: Effect of recrystallization on intergranular fracture and corrosion of Al–Zn–Mg–Cu–Zr alloy [J] publication-title: Journal of Alloys and Compounds – volume: 152 start-page: B140 year: 2005 end-page: B151 ident: bib8 article-title: Electrochemical characteristics of intermetallic phases in aluminum alloys [J] publication-title: Journal of the Electrochemical Society – volume: 48 start-page: 2062 year: 2017 end-page: 2076 ident: bib31 article-title: Analysis of particle- stimulated nucleation (PSN)-dominated recrystallization for hot-rolled 7050 aluminum alloy [J] publication-title: Metallurgical and Materials Transactions A – volume: 156 year: 2019 ident: bib42 article-title: Effect of minor Ge addition on microstructure and localized corrosion behavior of Al–Zn–Mg alloy sheet [J] publication-title: Materials Characterization – volume: 24 start-page: 2258 year: 2014 end-page: 2265 ident: bib33 article-title: Exfoliation corrosion behavior of 7050-T6 aluminum alloy treated with various quench transfer time [J] publication-title: Transactions of Nonferrous Metals Society of China – volume: 135 start-page: 167 year: 2018 end-page: 174 ident: bib45 article-title: Effect of microstructure on exfoliation corrosion resistance in an Al–Zn–Mg alloy [J] publication-title: Materials Characterization – volume: 164 year: 2019 ident: bib25 article-title: Enhancing stress corrosion cracking resistance of low Cu-containing Al–Zn–Mg–Cu alloys by slow quench rate [J] publication-title: Materials & Design – volume: 49 start-page: 920 year: 2007 end-page: 938 ident: bib51 article-title: Quantitative study of exfoliation corrosion: Exfoliation of slices in humidity technique [J] publication-title: Corrosion Science – volume: 22 start-page: 47 year: 2012 end-page: 52 ident: bib5 article-title: Effect of quenching rate on microstructure and stress corrosion cracking of 7085 aluminum alloy [J] publication-title: Transactions of Nonferrous Metals Society of China – volume: 716 start-page: 220 year: 2017 end-page: 230 ident: bib43 article-title: Enhanced plasticity and corrosion resistance of high strength Al–Zn–Mg–Cu alloy processed by an improved thermomechanical processing [J] publication-title: Journal of Alloys and Compounds – volume: 168 year: 2020 ident: bib44 article-title: Effect of cooling rate and grain structure on the exfoliation corrosion susceptibility of AA 7136 alloy [J] publication-title: Materials Characterization – volume: 12 start-page: 1939 year: 1981 end-page: 1943 ident: bib21 article-title: The effect of copper content and heat treatment on the stress corrosion characteristics of Al–6Zn–2Mg–XCu alloys [J] publication-title: Metallurgical Transactions A – year: 2019 ident: bib18 article-title: Corrosion of aluminium [M] – volume: 610 start-page: 10 year: 2014 end-page: 16 ident: bib55 article-title: Effect of Zr, Er and Cr additions on microstructures and properties of Al–Zn– Mg–Cu alloys [J] publication-title: Materials Science and Engineering A – volume: 514 year: 2020 ident: bib46 article-title: Effect of annealing temperature on microstructure, mechanical properties and corrosion behavior of Al–Mg–Mn–Sc–Zr alloy [J] publication-title: Applied Surface Science – volume: 53 start-page: 3139 year: 2011 end-page: 3149 ident: bib12 article-title: Relationship between alloy composition, microstructure and exfoliation corrosion in Al–Zn–Mg–Cu alloys [J] publication-title: Corrosion Science – volume: 783 start-page: 329 year: 2019 end-page: 340 ident: bib39 article-title: Localized corrosion behavior associated with Al publication-title: Journal of Alloys and Compounds – volume: 602 start-page: 163 year: 2014 end-page: 174 ident: bib38 article-title: 3D microstructural characterization and mechanical properties of constituent particles in Al 7075 alloys using X-ray synchrotron tomography and nanoindentation [J] publication-title: Journal of Alloys and Compounds – volume: 22 start-page: 775 year: 1982 end-page: 790 ident: bib49 article-title: Mathematical modelling of exfoliation corrosion in high strength aluminium alloys [J] publication-title: Corrosion Science – volume: 19 start-page: 727 year: 2014 end-page: 735 ident: bib24 article-title: Effect of copper content on microstructure and properties of super-high strength Al–Zn–Mg–Cu–Zr–Cr–Yb alloy [J] publication-title: Materials Science and Engineering of Powder Metallurgy – volume: 177 start-page: 862 year: 2012 end-page: 868 ident: bib47 article-title: Influence of grain-boundary pre-precipitation and corrosion characteristics of inter-granular phases on corrosion behaviors of an Al–Zn–Mg–Cu alloy [J] publication-title: Materials Science and Engineering B – volume: 49 start-page: 2436 year: 2007 end-page: 2449 ident: bib7 article-title: Simulation study on function mechanism of some precipitates in localized corrosion of Al alloys [J] publication-title: Corrosion Science – volume: 148 start-page: B348 year: 2001 end-page: B356 ident: bib41 article-title: Electrochemical behavior of thin film analogs of Mg (Zn, Cu, Al) publication-title: Journal of the Electrochemical Society – volume: 15 start-page: 993 year: 1999 end-page: 1000 ident: bib16 article-title: Influence of copper addition on precipitation kinetics and hardening in Al–Zn–Mg alloy [J] publication-title: Materials Science and Technology – volume: 98 start-page: 50 year: 2015 end-page: 62 ident: bib22 article-title: Some effects of alloy composition on stress corrosion cracking in Al–Zn–Mg–Cu alloys [J] publication-title: Corrosion Science – volume: 24 start-page: 2003 year: 2014 end-page: 2017 ident: bib2 article-title: Heat treatment of 7xxx series aluminium alloys–some recent developments [J] publication-title: Transactions of Nonferrous Metals Society of China – volume: 143 start-page: 414 year: 2018 end-page: 427 ident: bib6 article-title: The role of microstructure and microchemistry on intergranular corrosion of aluminium alloy AA7085-T7452 [J] publication-title: Corrosion Science – volume: 15 start-page: 6866 year: 2021 end-page: 6870 ident: bib53 article-title: Quench-induced contributions of high angle grain boundary and low angle grain boundary to exfoliation corrosion propagation in an AlZnMgCu alloy [J] publication-title: Journal of Materials Research and Technology – volume: 31 start-page: 3356 year: 2021 end-page: 3369 ident: bib3 article-title: Quenching sensitivity and heterogeneous precipitation behavior of AA7136 alloy [J] publication-title: Transactions of Nonferrous Metals Society of China – volume: 799 start-page: 1 year: 2019 end-page: 14 ident: bib27 article-title: The effect of Cu and Sc on the localized corrosion resistance of Al–Zn–Mg–X alloys [J] publication-title: Journal of Alloys and Compounds – volume: 657 start-page: 717 year: 2016 end-page: 725 ident: bib30 article-title: Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al–Zn–Mg–Cu alloys [J] publication-title: Journal of Alloys and Compounds – volume: 17 start-page: 49 year: 1995 end-page: 54 ident: bib9 article-title: The effect of exfoliation corrosion on the fracture and fatigue behaviour of 7178-T6 aluminium [J] publication-title: International Journal of Fatigue – volume: 162 start-page: C150 year: 2015 end-page: C160 ident: bib36 article-title: Effect of Cu content and aging conditions on pitting corrosion damage of 7xxx series aluminum alloys [J] publication-title: Journal of the Electrochemical Society – volume: 28 start-page: 2660 year: 2021 end-page: 2669 ident: bib4 article-title: Influence of pre-stretching on quench sensitive effect of high-strength Al–Zn–Mg–Cu–Zr alloy sheet [J] publication-title: Journal of Central South University – volume: 78 start-page: 276 year: 2014 end-page: 286 ident: bib19 article-title: The effect of quench rate and overageing temper on the corrosion behaviour of AA7050 [J] publication-title: Corrosion Science – volume: 49 start-page: 1437 year: 2007 end-page: 1449 ident: bib52 article-title: Influence of temper and surface condition on the exfoliation behaviour of high strength Al–Zn–Mg–Cu alloys [J] publication-title: Corrosion Science – volume: 45 start-page: 2377 year: 2003 end-page: 2389 ident: bib50 article-title: Corrosion product force measurements in the study of exfoliation and stress corrosion cracking in high strength aluminium alloys [J] publication-title: Corrosion Science – volume: 191 year: 2021 ident: bib14 article-title: Local corrosion mechanism of an Al–Zn–Mg–Cu alloy in oxygenated chloride solution: Cathode activity of quenching-induced η precipitates [J] publication-title: Corrosion Science – volume: 32 start-page: 131 year: 1996 end-page: 172 ident: bib1 article-title: Application of modern aluminum alloys to aircraft [J] publication-title: Progress in Aerospace Sciences – volume: 52 start-page: 4073 year: 2010 end-page: 4080 ident: bib23 article-title: Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al–Zn–Mg–Cu alloys [J] publication-title: Corrosion Science – volume: 185 year: 2021 ident: bib40 article-title: Multiscale investigation of corrosion damage initiation and propagation in AA7075-T651 alloy using correlative microscopy [J] publication-title: Corrosion Science – volume: 76 start-page: 651 year: 2009 end-page: 667 ident: bib10 article-title: Fatigue crack formation and growth from localized corrosion in Al–Zn–Mg–Cu [J] publication-title: Engineering Fracture Mechanics – volume: 58 start-page: 687 year: 2002 end-page: 697 ident: bib20 article-title: Role of grain-boundary precipitates and solute-depleted zone on the intergranular corrosion of aluminum alloy 7150 [J] publication-title: Corrosion – volume: 58 start-page: 248 year: 2010 end-page: 260 ident: bib34 article-title: Influence of alloy composition and heat treatment on precipitate composition in Al–Zn–Mg–Cu alloys [J] publication-title: Acta Materialia – volume: 684 start-page: 480 year: 2017 end-page: 490 ident: bib11 article-title: Effect of intermetallic phases and recrystallization on the corrosion and fracture behavior of an Al–Zn–Mg–Cu–Zr–Yb–Cr alloy [J] publication-title: Materials Science and Engineering A – year: 2004 ident: bib32 article-title: Recrystallization and related annealing phenomena [M] – volume: 22 start-page: 222 year: 2016 end-page: 228 ident: bib48 article-title: Critical quenching rate for high hardness and good exfoliation corrosion resistance of Al–Zn–Mg–Cu alloy plate [J] publication-title: Metals and Materials International – volume: 29 start-page: 1145 year: 1998 end-page: 1151 ident: bib37 article-title: An analytical electron microscopy study of constituent particles in commercial 7075-T6 and 2024-T3 alloys [J] publication-title: Metallurgical and Materials Transactions A – volume: 91 start-page: 203 year: 2015 end-page: 212 ident: bib13 article-title: Mechanism of low exfoliation corrosion resistance due to slow quenching in high strength aluminium alloy [J] publication-title: Corrosion Science – volume: 58 start-page: 687 issue: 8 year: 2002 ident: 10.1016/S1003-6326(23)66236-3_bib20 article-title: Role of grain-boundary precipitates and solute-depleted zone on the intergranular corrosion of aluminum alloy 7150 [J] publication-title: Corrosion doi: 10.5006/1.3287699 – volume: 58 start-page: 248 year: 2010 ident: 10.1016/S1003-6326(23)66236-3_bib34 article-title: Influence of alloy composition and heat treatment on precipitate composition in Al–Zn–Mg–Cu alloys [J] publication-title: Acta Materialia doi: 10.1016/j.actamat.2009.09.003 – volume: 22 start-page: 222 issue: 2 year: 2016 ident: 10.1016/S1003-6326(23)66236-3_bib48 article-title: Critical quenching rate for high hardness and good exfoliation corrosion resistance of Al–Zn–Mg–Cu alloy plate [J] publication-title: Metals and Materials International doi: 10.1007/s12540-016-5504-0 – volume: 15 start-page: 993 year: 1999 ident: 10.1016/S1003-6326(23)66236-3_bib16 article-title: Influence of copper addition on precipitation kinetics and hardening in Al–Zn–Mg alloy [J] publication-title: Materials Science and Technology doi: 10.1179/026708399101506832 – volume: 143 start-page: 414 year: 2018 ident: 10.1016/S1003-6326(23)66236-3_bib6 article-title: The role of microstructure and microchemistry on intergranular corrosion of aluminium alloy AA7085-T7452 [J] publication-title: Corrosion Science doi: 10.1016/j.corsci.2018.08.033 – volume: 164 year: 2019 ident: 10.1016/S1003-6326(23)66236-3_bib25 article-title: Enhancing stress corrosion cracking resistance of low Cu-containing Al–Zn–Mg–Cu alloys by slow quench rate [J] publication-title: Materials & Design doi: 10.1016/j.matdes.2018.107558 – volume: 22 start-page: 47 issue: 1 year: 2012 ident: 10.1016/S1003-6326(23)66236-3_bib5 article-title: Effect of quenching rate on microstructure and stress corrosion cracking of 7085 aluminum alloy [J] publication-title: Transactions of Nonferrous Metals Society of China doi: 10.1016/S1003-6326(11)61138-2 – volume: 185 year: 2021 ident: 10.1016/S1003-6326(23)66236-3_bib40 article-title: Multiscale investigation of corrosion damage initiation and propagation in AA7075-T651 alloy using correlative microscopy [J] publication-title: Corrosion Science doi: 10.1016/j.corsci.2021.109429 – volume: 24 start-page: 2258 issue: 7 year: 2014 ident: 10.1016/S1003-6326(23)66236-3_bib33 article-title: Exfoliation corrosion behavior of 7050-T6 aluminum alloy treated with various quench transfer time [J] publication-title: Transactions of Nonferrous Metals Society of China doi: 10.1016/S1003-6326(14)63342-2 – volume: 602 start-page: 163 year: 2014 ident: 10.1016/S1003-6326(23)66236-3_bib38 article-title: 3D microstructural characterization and mechanical properties of constituent particles in Al 7075 alloys using X-ray synchrotron tomography and nanoindentation [J] publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2014.03.010 – volume: 24 start-page: 2003 issue: 7 year: 2014 ident: 10.1016/S1003-6326(23)66236-3_bib2 article-title: Heat treatment of 7xxx series aluminium alloys–some recent developments [J] publication-title: Transactions of Nonferrous Metals Society of China doi: 10.1016/S1003-6326(14)63306-9 – volume: 29 start-page: 1145 year: 1998 ident: 10.1016/S1003-6326(23)66236-3_bib37 article-title: An analytical electron microscopy study of constituent particles in commercial 7075-T6 and 2024-T3 alloys [J] publication-title: Metallurgical and Materials Transactions A doi: 10.1007/s11661-998-0240-9 – volume: 716 start-page: 220 year: 2017 ident: 10.1016/S1003-6326(23)66236-3_bib43 article-title: Enhanced plasticity and corrosion resistance of high strength Al–Zn–Mg–Cu alloy processed by an improved thermomechanical processing [J] publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2017.05.047 – volume: 48 start-page: 2062 year: 2017 ident: 10.1016/S1003-6326(23)66236-3_bib31 article-title: Analysis of particle- stimulated nucleation (PSN)-dominated recrystallization for hot-rolled 7050 aluminum alloy [J] publication-title: Metallurgical and Materials Transactions A doi: 10.1007/s11661-017-3967-3 – volume: 622 start-page: 166 year: 2015 ident: 10.1016/S1003-6326(23)66236-3_bib54 article-title: Effect of recrystallization on intergranular fracture and corrosion of Al–Zn–Mg–Cu–Zr alloy [J] publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2014.10.044 – volume: 91 start-page: 203 year: 2015 ident: 10.1016/S1003-6326(23)66236-3_bib13 article-title: Mechanism of low exfoliation corrosion resistance due to slow quenching in high strength aluminium alloy [J] publication-title: Corrosion Science doi: 10.1016/j.corsci.2014.11.024 – volume: 31 start-page: 3356 issue: 11 year: 2021 ident: 10.1016/S1003-6326(23)66236-3_bib3 article-title: Quenching sensitivity and heterogeneous precipitation behavior of AA7136 alloy [J] publication-title: Transactions of Nonferrous Metals Society of China doi: 10.1016/S1003-6326(21)65734-5 – volume: 135 start-page: 167 year: 2018 ident: 10.1016/S1003-6326(23)66236-3_bib45 article-title: Effect of microstructure on exfoliation corrosion resistance in an Al–Zn–Mg alloy [J] publication-title: Materials Characterization doi: 10.1016/j.matchar.2017.11.029 – volume: 49 start-page: 1437 year: 2007 ident: 10.1016/S1003-6326(23)66236-3_bib52 article-title: Influence of temper and surface condition on the exfoliation behaviour of high strength Al–Zn–Mg–Cu alloys [J] publication-title: Corrosion Science doi: 10.1016/j.corsci.2006.06.033 – volume: 49 start-page: 920 year: 2007 ident: 10.1016/S1003-6326(23)66236-3_bib51 article-title: Quantitative study of exfoliation corrosion: Exfoliation of slices in humidity technique [J] publication-title: Corrosion Science doi: 10.1016/j.corsci.2006.05.037 – volume: 17 start-page: 49 issue: 1 year: 1995 ident: 10.1016/S1003-6326(23)66236-3_bib9 article-title: The effect of exfoliation corrosion on the fracture and fatigue behaviour of 7178-T6 aluminium [J] publication-title: International Journal of Fatigue doi: 10.1016/0142-1123(95)93050-C – volume: 28 start-page: 2660 issue: 9 year: 2021 ident: 10.1016/S1003-6326(23)66236-3_bib4 article-title: Influence of pre-stretching on quench sensitive effect of high-strength Al–Zn–Mg–Cu–Zr alloy sheet [J] publication-title: Journal of Central South University doi: 10.1007/s11771-021-4800-0 – volume: 788 start-page: 329 year: 2019 ident: 10.1016/S1003-6326(23)66236-3_bib26 article-title: Effects of Cu content on microstructure and properties of super-high-strength Al–9.3Zn–2.4Mg–xCu–Zr alloy [J] publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2019.02.228 – volume: 12 start-page: 1939 year: 1981 ident: 10.1016/S1003-6326(23)66236-3_bib21 article-title: The effect of copper content and heat treatment on the stress corrosion characteristics of Al–6Zn–2Mg–XCu alloys [J] publication-title: Metallurgical Transactions A doi: 10.1007/BF02643806 – volume: 610 start-page: 10 year: 2014 ident: 10.1016/S1003-6326(23)66236-3_bib55 article-title: Effect of Zr, Er and Cr additions on microstructures and properties of Al–Zn– Mg–Cu alloys [J] publication-title: Materials Science and Engineering A doi: 10.1016/j.msea.2014.05.021 – volume: 52 start-page: 4073 year: 2010 ident: 10.1016/S1003-6326(23)66236-3_bib23 article-title: Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al–Zn–Mg–Cu alloys [J] publication-title: Corrosion Science doi: 10.1016/j.corsci.2010.08.024 – volume: 53 start-page: 3139 year: 2011 ident: 10.1016/S1003-6326(23)66236-3_bib12 article-title: Relationship between alloy composition, microstructure and exfoliation corrosion in Al–Zn–Mg–Cu alloys [J] publication-title: Corrosion Science doi: 10.1016/j.corsci.2011.05.057 – volume: 177 start-page: 862 year: 2012 ident: 10.1016/S1003-6326(23)66236-3_bib47 article-title: Influence of grain-boundary pre-precipitation and corrosion characteristics of inter-granular phases on corrosion behaviors of an Al–Zn–Mg–Cu alloy [J] publication-title: Materials Science and Engineering B doi: 10.1016/j.mseb.2012.04.008 – volume: 185 start-page: 134 year: 2020 ident: 10.1016/S1003-6326(23)66236-3_bib35 article-title: In situ atomic-scale engineering of the chemistry and structure of the grain boundaries region of Li3xLa2/3–xTiO3 [J] publication-title: Scripta Materialia doi: 10.1016/j.scriptamat.2020.04.018 – volume: 78 start-page: 276 year: 2014 ident: 10.1016/S1003-6326(23)66236-3_bib19 article-title: The effect of quench rate and overageing temper on the corrosion behaviour of AA7050 [J] publication-title: Corrosion Science doi: 10.1016/j.corsci.2013.10.010 – volume: 32 start-page: 131 year: 1996 ident: 10.1016/S1003-6326(23)66236-3_bib1 article-title: Application of modern aluminum alloys to aircraft [J] publication-title: Progress in Aerospace Sciences doi: 10.1016/0376-0421(95)00004-6 – volume: 783 start-page: 329 year: 2019 ident: 10.1016/S1003-6326(23)66236-3_bib39 article-title: Localized corrosion behavior associated with Al7Cu2Fe intermetallic in Al–Zn–Mg–Cu–Zr alloy [J] publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2018.12.151 – volume: 19 start-page: 727 issue: 5 year: 2014 ident: 10.1016/S1003-6326(23)66236-3_bib24 article-title: Effect of copper content on microstructure and properties of super-high strength Al–Zn–Mg–Cu–Zr–Cr–Yb alloy [J] publication-title: Materials Science and Engineering of Powder Metallurgy – volume: 45 start-page: 2377 year: 2003 ident: 10.1016/S1003-6326(23)66236-3_bib50 article-title: Corrosion product force measurements in the study of exfoliation and stress corrosion cracking in high strength aluminium alloys [J] publication-title: Corrosion Science doi: 10.1016/S0010-938X(03)00050-7 – volume: 151 start-page: B271 issue: 5 year: 2004 ident: 10.1016/S1003-6326(23)66236-3_bib17 article-title: Effect of Cu content on corrosion behavior of 7xxx series aluminum alloys [J] publication-title: Journal of the Electrochemical Society doi: 10.1149/1.1695385 – volume: 148 start-page: B348 issue: 9 year: 2001 ident: 10.1016/S1003-6326(23)66236-3_bib41 article-title: Electrochemical behavior of thin film analogs of Mg (Zn, Cu, Al)2 [J] publication-title: Journal of the Electrochemical Society doi: 10.1149/1.1386626 – volume: 49 start-page: 2436 year: 2007 ident: 10.1016/S1003-6326(23)66236-3_bib7 article-title: Simulation study on function mechanism of some precipitates in localized corrosion of Al alloys [J] publication-title: Corrosion Science doi: 10.1016/j.corsci.2006.12.002 – volume: 15 start-page: 6866 year: 2021 ident: 10.1016/S1003-6326(23)66236-3_bib53 article-title: Quench-induced contributions of high angle grain boundary and low angle grain boundary to exfoliation corrosion propagation in an AlZnMgCu alloy [J] publication-title: Journal of Materials Research and Technology doi: 10.1016/j.jmrt.2021.11.115 – volume: 799 start-page: 1 year: 2019 ident: 10.1016/S1003-6326(23)66236-3_bib27 article-title: The effect of Cu and Sc on the localized corrosion resistance of Al–Zn–Mg–X alloys [J] publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2019.05.189 – volume: 156 year: 2019 ident: 10.1016/S1003-6326(23)66236-3_bib42 article-title: Effect of minor Ge addition on microstructure and localized corrosion behavior of Al–Zn–Mg alloy sheet [J] publication-title: Materials Characterization doi: 10.1016/j.matchar.2019.109837 – volume: 514 year: 2020 ident: 10.1016/S1003-6326(23)66236-3_bib46 article-title: Effect of annealing temperature on microstructure, mechanical properties and corrosion behavior of Al–Mg–Mn–Sc–Zr alloy [J] publication-title: Applied Surface Science doi: 10.1016/j.apsusc.2020.146081 – ident: 10.1016/S1003-6326(23)66236-3_bib28 – volume: 76 start-page: 651 issue: 5 year: 2009 ident: 10.1016/S1003-6326(23)66236-3_bib10 article-title: Fatigue crack formation and growth from localized corrosion in Al–Zn–Mg–Cu [J] publication-title: Engineering Fracture Mechanics doi: 10.1016/j.engfracmech.2008.11.005 – volume: 22 start-page: 775 year: 1982 ident: 10.1016/S1003-6326(23)66236-3_bib49 article-title: Mathematical modelling of exfoliation corrosion in high strength aluminium alloys [J] publication-title: Corrosion Science doi: 10.1016/0010-938X(82)90013-0 – volume: 191 year: 2021 ident: 10.1016/S1003-6326(23)66236-3_bib14 article-title: Local corrosion mechanism of an Al–Zn–Mg–Cu alloy in oxygenated chloride solution: Cathode activity of quenching-induced η precipitates [J] publication-title: Corrosion Science doi: 10.1016/j.corsci.2021.109743 – year: 2004 ident: 10.1016/S1003-6326(23)66236-3_bib32 – volume: 168 year: 2020 ident: 10.1016/S1003-6326(23)66236-3_bib44 article-title: Effect of cooling rate and grain structure on the exfoliation corrosion susceptibility of AA 7136 alloy [J] publication-title: Materials Characterization doi: 10.1016/j.matchar.2020.110533 – volume: 32 start-page: 2149 year: 2011 ident: 10.1016/S1003-6326(23)66236-3_bib15 article-title: Influence of retrogression and re-aging treatment on corrosion behaviour of an Al–Zn–Mg–Cu alloy [J] publication-title: Materials & Design doi: 10.1016/j.matdes.2010.11.036 – year: 2019 ident: 10.1016/S1003-6326(23)66236-3_bib18 – volume: 162 start-page: C150 issue: 4 year: 2015 ident: 10.1016/S1003-6326(23)66236-3_bib36 article-title: Effect of Cu content and aging conditions on pitting corrosion damage of 7xxx series aluminum alloys [J] publication-title: Journal of the Electrochemical Society doi: 10.1149/2.0301504jes – volume: 98 start-page: 50 year: 2015 ident: 10.1016/S1003-6326(23)66236-3_bib22 article-title: Some effects of alloy composition on stress corrosion cracking in Al–Zn–Mg–Cu alloys [J] publication-title: Corrosion Science doi: 10.1016/j.corsci.2015.05.016 – volume: 152 start-page: B140 issue: 4 year: 2005 ident: 10.1016/S1003-6326(23)66236-3_bib8 article-title: Electrochemical characteristics of intermetallic phases in aluminum alloys [J] publication-title: Journal of the Electrochemical Society doi: 10.1149/1.1869984 – volume: 684 start-page: 480 year: 2017 ident: 10.1016/S1003-6326(23)66236-3_bib11 article-title: Effect of intermetallic phases and recrystallization on the corrosion and fracture behavior of an Al–Zn–Mg–Cu–Zr–Yb–Cr alloy [J] publication-title: Materials Science and Engineering A doi: 10.1016/j.msea.2016.12.009 – ident: 10.1016/S1003-6326(23)66236-3_bib29 – volume: 657 start-page: 717 year: 2016 ident: 10.1016/S1003-6326(23)66236-3_bib30 article-title: Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al–Zn–Mg–Cu alloys [J] publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2015.10.122 |
SSID | ssj0044661 |
Score | 2.4677987 |
Snippet | The effect of Cu content on intergranular corrosion (IGC) and exfoliation corrosion (EXCO) susceptibility of Al−Zn−Mg−(Cu) alloys was investigated by... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1963 |
SubjectTerms | Al−Zn−Mg−Cu alloy copper exfoliation corrosion intergranular corrosion scanning Kelvin probe force microscope |
Title | Effect of Cu content on intergranular corrosion and exfoliation corrosion susceptibility of Al−Zn−Mg−(Cu) alloys |
URI | https://dx.doi.org/10.1016/S1003-6326(23)66236-3 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuI3OXjQQ_eRpGl2HMMxHfOgDsVLadJUhNGNbRW9ePbsn-hf4ntpNyeIgpQmkPSl5b3XvBfyey-EHCslYhnUhMcafuJhdhQvUizwDFPKWrBHiYty7V3KTl9c3Pl3JdKaxcIgrLKY-_M53c3WRUu14GZ19PhYva5jLhXwPhiXeGPGTyEC1PLK6xzmgduVbtGFGCx8-iuKJx_BNZ4wfuoG8fjP9mnB5rTXyGrhLNJm_j3rpGTTDbKykEJwkzzl6YfpMKGtjCLwHKwIHaYU80CMH8ASIc4UOsbwOpABjdKY2udkOMhlstAzySYO4-Lgsi84YnPw8fZ-n0LRe4DipJWdUtyof5lskX777KbV8YqzFDzDfTn1gppkCWgNE5EVmuEqhssInAcNV902Al1TmvmWK4Fxzr4E4xaZJGbGwF9rI75NyukwtTuE1rWS0piEaw3r6kBEJohirq0TbYPzXSJmHAxNkWgcz7sYhHNEGTI-RMaHDGpkfAhklTnZKM-08ReBmokn_KYyIViD30n3_k-6T5bxxPkcsXtAytNxZg_BL5nqI6d4R2Sped7tXGLdvbrtfgKEy-Bl |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RRvPDDQIbS1HccdqwpUHmUBJMQSxa5TVaqSqg9EF2ZmfiK_hDsnLUVCIKEojmTnnOjO9p3l7-4IOVFKtGVQER6r-bGH0VG8SLHAM0wpa0Efxc7LtXUrmw_i6tF_LJDG1BcGYZX52p-t6W61zmvKOTfL_W63fFfFWCpgfTAu8eYLZFHA9MU0BmevM5wHnle6XReCsPD1LzeerAtXecp4yfXi8Z8V1JzSuVgjq7m1SOvZD62Tgk02yMpcDMFN8pzFH6ZpTBtjishzUCM0TSgGghh0QBUh0BQaBvA5EAKNkja1L3Hay4Qy1zIcDx3IxeFlJ9hjvffx9v6UQNHqQHHaGJcontRPhlvk4eL8vtH08mQKnuG-HHlBRbIYhg0TkRWa4TaGywisBw1X1dYCXVGa-ZYrgY7OvgTtFpm4zYyBaWsjvk2KSZrYHUKrWklpTMy1ho11ICITRG2urZNtjfNdIqYcDE0eaRwTXvTCGaQMGR8i40MGT2R8CGRnM7J-FmrjLwI1FU_4bcyEoA5-J937P-kxWWret27Cm8vb632yjOnnHXxXHZDiaDC2h2CkjPSRG4SfvJPgVw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Cu+content+on+intergranular+corrosion+and+exfoliation+corrosion+susceptibility+of+Al%E2%88%92Zn%E2%88%92Mg%E2%88%92%28Cu%29+alloys&rft.jtitle=Transactions+of+Nonferrous+Metals+Society+of+China&rft.au=ZHANG%2C+Meng-han&rft.au=LIU%2C+Sheng-dan&rft.au=JIANG%2C+Jing-yu&rft.au=WEI%2C+Wei-chang&rft.date=2023-07-01&rft.pub=Elsevier+Ltd&rft.issn=1003-6326&rft.volume=33&rft.issue=7&rft.spage=1963&rft.epage=1976&rft_id=info:doi/10.1016%2FS1003-6326%2823%2966236-3&rft.externalDocID=S1003632623662363 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1003-6326&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1003-6326&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1003-6326&client=summon |