Effect of Cu content on intergranular corrosion and exfoliation corrosion susceptibility of Al−Zn−Mg−(Cu) alloys

The effect of Cu content on intergranular corrosion (IGC) and exfoliation corrosion (EXCO) susceptibility of Al−Zn−Mg−(Cu) alloys was investigated by electrochemical test, immersion test, electron backscattered diffraction, optical microscope, scanning electron microscope, scanning transmission elec...

Full description

Saved in:
Bibliographic Details
Published inTransactions of Nonferrous Metals Society of China Vol. 33; no. 7; pp. 1963 - 1976
Main Authors ZHANG, Meng-han, LIU, Sheng-dan, JIANG, Jing-yu, WEI, Wei-chang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The effect of Cu content on intergranular corrosion (IGC) and exfoliation corrosion (EXCO) susceptibility of Al−Zn−Mg−(Cu) alloys was investigated by electrochemical test, immersion test, electron backscattered diffraction, optical microscope, scanning electron microscope, scanning transmission electron microscope and scanning Kelvin probe force microscope. As Cu content increases from 0 to 2.6 wt.%, IGC susceptibility increases, while EXCO susceptibility first increases and then decreases, reaching the maximum at Cu content of 1 wt.%. With the increase of Cu content, the area fraction of recrystallized grains increases, and the aspect ratio of recrystallized grains first decreases and then increases; moreover, the Volta potential difference between grain boundary precipitates (GBPs) and the matrix increases, making GBPs more susceptible to corrosion. The initiation and propagation of IGC and EXCO are discussed mainly based on the features of GBPs, grain structure, and the Volta potential difference between GBPs and the matrix.
AbstractList The effect of Cu content on intergranular corrosion (IGC) and exfoliation corrosion (EXCO) susceptibility of Al−Zn−Mg−(Cu) alloys was investigated by electrochemical test, immersion test, electron backscattered diffraction, optical microscope, scanning electron microscope, scanning transmission electron microscope and scanning Kelvin probe force microscope. As Cu content increases from 0 to 2.6 wt.%, IGC susceptibility increases, while EXCO susceptibility first increases and then decreases, reaching the maximum at Cu content of 1 wt.%. With the increase of Cu content, the area fraction of recrystallized grains increases, and the aspect ratio of recrystallized grains first decreases and then increases; moreover, the Volta potential difference between grain boundary precipitates (GBPs) and the matrix increases, making GBPs more susceptible to corrosion. The initiation and propagation of IGC and EXCO are discussed mainly based on the features of GBPs, grain structure, and the Volta potential difference between GBPs and the matrix.
Author LIU, Sheng-dan
ZHANG, Meng-han
JIANG, Jing-yu
WEI, Wei-chang
Author_xml – sequence: 1
  givenname: Meng-han
  surname: ZHANG
  fullname: ZHANG, Meng-han
  organization: School of Materials Science and Engineering, Central South University, Changsha 410083, China
– sequence: 2
  givenname: Sheng-dan
  surname: LIU
  fullname: LIU, Sheng-dan
  email: lsd_csu@csu.edu.cn
  organization: School of Materials Science and Engineering, Central South University, Changsha 410083, China
– sequence: 3
  givenname: Jing-yu
  surname: JIANG
  fullname: JIANG, Jing-yu
  organization: School of Metallurgy and Environment, Central South University, Changsha 410083, China
– sequence: 4
  givenname: Wei-chang
  surname: WEI
  fullname: WEI, Wei-chang
  organization: School of Materials Science and Engineering, Central South University, Changsha 410083, China
BookMark eNqFkMtKAzEUhrOoYFt9BGGW7WI0l5m04kJKqRdQXKgbNyGTOSmRmClJptg3cO0j-iRmWlFwUwLnyv9z8g1QzzUOEDoh-JRgws8eCcYs54zyEWVjzinjOeuh_u_4EA1CeMW4KDgnfbReaA0qZo3O5m2mGhfBpc5lJlV-6aVrrfRp4X0TTJpLV2fwrhtrZOz6v01og4JVNJWxJm46x5n9-vh8cSncL1MYzdtxJq1tNuEIHWhpAxz_5CF6vlo8zW_yu4fr2_nsLles5DGfYE41yJoWEoqKUo5LxiUjkyo9AueTCk8rWgKbFkVZ4pIXhEmla6pUSTBINkQXO1-VjgwetFAmbg-PXhorCBYdNrHFJjo-gqbcYRMsqct_6pU3b9Jv9uoudzpIX1sb8CIoA05BbXyCLerG7HH4BjqfjYg
CitedBy_id crossref_primary_10_1016_j_corsci_2023_111461
crossref_primary_10_1016_j_matchar_2024_114681
crossref_primary_10_1016_j_porgcoat_2024_109023
crossref_primary_10_1016_j_mtcomm_2024_110465
crossref_primary_10_3390_met14070776
crossref_primary_10_1016_j_jtice_2024_105596
crossref_primary_10_1016_j_jmrt_2024_07_027
crossref_primary_10_1016_j_jmst_2024_10_031
crossref_primary_10_3390_cryst15020107
crossref_primary_10_1002_adem_202301157
crossref_primary_10_1016_j_jallcom_2024_176895
crossref_primary_10_1016_j_jallcom_2024_176875
crossref_primary_10_1016_j_jallcom_2024_177524
crossref_primary_10_1016_j_matdes_2023_112295
crossref_primary_10_1016_j_jmrt_2025_02_249
crossref_primary_10_1016_S1003_6326_24_66675_6
crossref_primary_10_1016_j_jallcom_2024_174045
crossref_primary_10_1016_j_matdes_2025_113772
Cites_doi 10.5006/1.3287699
10.1016/j.actamat.2009.09.003
10.1007/s12540-016-5504-0
10.1179/026708399101506832
10.1016/j.corsci.2018.08.033
10.1016/j.matdes.2018.107558
10.1016/S1003-6326(11)61138-2
10.1016/j.corsci.2021.109429
10.1016/S1003-6326(14)63342-2
10.1016/j.jallcom.2014.03.010
10.1016/S1003-6326(14)63306-9
10.1007/s11661-998-0240-9
10.1016/j.jallcom.2017.05.047
10.1007/s11661-017-3967-3
10.1016/j.jallcom.2014.10.044
10.1016/j.corsci.2014.11.024
10.1016/S1003-6326(21)65734-5
10.1016/j.matchar.2017.11.029
10.1016/j.corsci.2006.06.033
10.1016/j.corsci.2006.05.037
10.1016/0142-1123(95)93050-C
10.1007/s11771-021-4800-0
10.1016/j.jallcom.2019.02.228
10.1007/BF02643806
10.1016/j.msea.2014.05.021
10.1016/j.corsci.2010.08.024
10.1016/j.corsci.2011.05.057
10.1016/j.mseb.2012.04.008
10.1016/j.scriptamat.2020.04.018
10.1016/j.corsci.2013.10.010
10.1016/0376-0421(95)00004-6
10.1016/j.jallcom.2018.12.151
10.1016/S0010-938X(03)00050-7
10.1149/1.1695385
10.1149/1.1386626
10.1016/j.corsci.2006.12.002
10.1016/j.jmrt.2021.11.115
10.1016/j.jallcom.2019.05.189
10.1016/j.matchar.2019.109837
10.1016/j.apsusc.2020.146081
10.1016/j.engfracmech.2008.11.005
10.1016/0010-938X(82)90013-0
10.1016/j.corsci.2021.109743
10.1016/j.matchar.2020.110533
10.1016/j.matdes.2010.11.036
10.1149/2.0301504jes
10.1016/j.corsci.2015.05.016
10.1149/1.1869984
10.1016/j.msea.2016.12.009
10.1016/j.jallcom.2015.10.122
ContentType Journal Article
Copyright 2023 The Nonferrous Metals Society of China
Copyright_xml – notice: 2023 The Nonferrous Metals Society of China
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/S1003-6326(23)66236-3
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 1976
ExternalDocumentID 10_1016_S1003_6326_23_66236_3
S1003632623662363
GroupedDBID --K
--M
-02
-0B
-SB
-S~
.~1
0R~
123
188
1B1
1~.
1~5
2B.
2C0
4.4
457
4G.
5VR
5VS
5XA
5XC
6I.
7-5
71M
8P~
8RM
92H
92I
92M
92R
93N
9D9
9DB
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXDM
AAXKI
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADVLN
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CAJEB
CCEZO
CDRFL
CHBEP
CS3
CW9
DU5
EBS
EFJIC
EJD
EO9
EP2
EP3
FA0
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
J1W
JUIAU
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q--
Q38
R-B
ROL
RT2
S..
SDC
SDF
SDG
SES
SPC
SSM
SSZ
T5K
T8R
TCJ
TGT
U1F
U1G
U5B
U5L
UGNYK
UZ4
~02
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c356t-7062fead24ae4b2260536a317b7b71e97b08b25e384455056413acfd2cc510ea3
IEDL.DBID .~1
ISSN 1003-6326
IngestDate Thu Apr 24 23:01:16 EDT 2025
Tue Jul 01 00:58:15 EDT 2025
Tue Dec 03 03:45:21 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords scanning Kelvin probe force microscope
Al−Zn−Mg−Cu alloy
copper
intergranular corrosion
exfoliation corrosion
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-7062fead24ae4b2260536a317b7b71e97b08b25e384455056413acfd2cc510ea3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1003632623662363
PageCount 14
ParticipantIDs crossref_citationtrail_10_1016_S1003_6326_23_66236_3
crossref_primary_10_1016_S1003_6326_23_66236_3
elsevier_sciencedirect_doi_10_1016_S1003_6326_23_66236_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Transactions of Nonferrous Metals Society of China
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References WLOKA, HACK, VIRTANEN (bib52) 2007; 49
LIU, YAO, ZHAO, SHI, LI, LI, XI, YANG (bib30) 2016; 657
KNIGHT, BIRBILIS, MUDDEL, TUREMAN, LYNCH (bib23) 2010; 52
LIU, CHEN, LI, DAI, DENG, ZHANG (bib13) 2015; 91
MCNAUGHTAN, WORSFOLD, ROBINSON (bib50) 2003; 45
WANG, HUANG, YANG, JIANG, Chen, DAI, SEIDMAN, FRANKEL, ZHEN (bib36) 2015; 162
BIRBILIS, BUCHHEIT (bib8) 2005; 152
FANG, CHAO, CHEN (bib54) 2015; 622
MENG, FRANKEL (bib17) 2004; 151
LU, HAN, DU, WANG, LU, LEI, ZHOU (bib45) 2018; 135
CHEN, XU, HE, LIU, ZHANG (bib14) 2021; 191
MA, LIU, LIU, ZHANG, DENG (bib53) 2021; 15
VARGEL (bib18) 2019
LI, YIN, LEI, LIU, DENG, ZHANG (bib48) 2016; 22
ROMETSCH, ZHANG, KNIGHT (bib2) 2014; 24
MARLAUD, MALKI, HENON, DESCHAMPS, BAROUX (bib12) 2011; 53
ZUO, HOU, SHI, CUI, ZHUANG, ZHANG (bib43) 2017; 716
SONG, ZHANG, LIU, TAN, LI (bib19) 2014; 78
ZHAO, FRANKEL (bib51) 2007; 49
CHUBB, MORAD, HOCKENHULL, BRISTOW (bib9) 1995; 17
MARLAUD, DESCHAMPS, BLEY, LEFEBVRE, BAROUX (bib34) 2010; 58
KAIRY, TURK, BIRBILIS, SHEKHTER (bib6) 2018; 143
FANG, LUO, CHEN (bib11) 2017; 684
ROBINSON (bib49) 1982; 22
DONG, CHEN, CHEN (bib26) 2019; 788
RAMGOPAL, SCHMUTZ, FRANKEL (bib41) 2001; 148
GB/T 22639—2008. Test method of exfoliation corrosion for wrought aluminium and aluminium alloys [S]. (in Chinese)
MA, LIU, YANG, LIU, ZHANG (bib44) 2020; 168
SINGH, SCHWARTZSTEIN, WILLIAMS, XIAO, CARLO, CHAWLA (bib38) 2014; 602
LI, ZHENG, LI, CHEN, REN, ZHAO (bib7) 2007; 49
KIM, BURNS, GANGLOFF (bib10) 2009; 76
NIVERTY, KALE, SOLANKI, CHAWLA (bib40) 2021; 185
LI, CHEN, HUANG, XU, CHEN (bib24) 2014; 19
GAO, FENG, WEI (bib37) 1998; 29
HE, LI, CAO, HU, ZHANG, QIAO, PAN, SHAO (bib35) 2020; 185
SONG, ZHANG, LIU, TAN, LI (bib33) 2014; 24
SARKAR, MAREK, STARKE (bib21) 1981; 12
TANG, JIANG, LONG, JIANG, LIU, TONG (bib46) 2020; 514
CHEN, CHEN, PENG, LIANG, CHEN (bib5) 2012; 22
XIAO, PAN, LI, LIU, HE (bib15) 2011; 32
HE, LI, LIU, ZHANG, ZHOU (bib4) 2021; 28
RAMGOPAL, GOUMA, FRANKEL (bib20) 2002; 58
KNIGHT, POHL, HOLROYD, BIRBILIS, ROMETSCH, MUDDEL, GOSWAMI, LYNCH (bib22) 2015; 98
FANG, CHAO, CHEN (bib55) 2014; 610
LIU, JIA, JIANG, ZHANG, LI, SHAO, ZHEN (bib27) 2019; 799
UMPHREYS, HATHERLY (bib32) 2004
STARKE, STALEYT (bib1) 1996; 32
YUAN, CHEN, CHEN, ZHOU, CHANG, HUANG, YI (bib25) 2019; 164
ADAM, LONG, FIELD (bib31) 2017; 48
SUN, PAN, SUN, WANG, HUANG, WANG, HU (bib39) 2019; 783
MA, ZHANG, LIU, DENG, ZHANG (bib3) 2021; 31
GB/T 7998—2005. Test method for intergranular corrosion of aluminium alloy [S]. (in Chinese)
DESCHAMPS, BRÉCHET, LIVET (bib16) 1999; 15
LIU, WANG, YANG, CHAI, CHEN, YE, TANG (bib42) 2019; 156
HUANG, CHEN, LI (bib47) 2012; 177
GAO (10.1016/S1003-6326(23)66236-3_bib37) 1998; 29
10.1016/S1003-6326(23)66236-3_bib29
10.1016/S1003-6326(23)66236-3_bib28
HE (10.1016/S1003-6326(23)66236-3_bib35) 2020; 185
ROBINSON (10.1016/S1003-6326(23)66236-3_bib49) 1982; 22
MA (10.1016/S1003-6326(23)66236-3_bib53) 2021; 15
CHEN (10.1016/S1003-6326(23)66236-3_bib5) 2012; 22
ZHAO (10.1016/S1003-6326(23)66236-3_bib51) 2007; 49
HUANG (10.1016/S1003-6326(23)66236-3_bib47) 2012; 177
CHUBB (10.1016/S1003-6326(23)66236-3_bib9) 1995; 17
STARKE (10.1016/S1003-6326(23)66236-3_bib1) 1996; 32
KAIRY (10.1016/S1003-6326(23)66236-3_bib6) 2018; 143
MA (10.1016/S1003-6326(23)66236-3_bib44) 2020; 168
LIU (10.1016/S1003-6326(23)66236-3_bib30) 2016; 657
RAMGOPAL (10.1016/S1003-6326(23)66236-3_bib41) 2001; 148
LI (10.1016/S1003-6326(23)66236-3_bib24) 2014; 19
HE (10.1016/S1003-6326(23)66236-3_bib4) 2021; 28
SINGH (10.1016/S1003-6326(23)66236-3_bib38) 2014; 602
DONG (10.1016/S1003-6326(23)66236-3_bib26) 2019; 788
LIU (10.1016/S1003-6326(23)66236-3_bib13) 2015; 91
MENG (10.1016/S1003-6326(23)66236-3_bib17) 2004; 151
FANG (10.1016/S1003-6326(23)66236-3_bib55) 2014; 610
FANG (10.1016/S1003-6326(23)66236-3_bib54) 2015; 622
VARGEL (10.1016/S1003-6326(23)66236-3_bib18) 2019
WANG (10.1016/S1003-6326(23)66236-3_bib36) 2015; 162
MCNAUGHTAN (10.1016/S1003-6326(23)66236-3_bib50) 2003; 45
MARLAUD (10.1016/S1003-6326(23)66236-3_bib12) 2011; 53
UMPHREYS (10.1016/S1003-6326(23)66236-3_bib32) 2004
LIU (10.1016/S1003-6326(23)66236-3_bib42) 2019; 156
ROMETSCH (10.1016/S1003-6326(23)66236-3_bib2) 2014; 24
CHEN (10.1016/S1003-6326(23)66236-3_bib14) 2021; 191
NIVERTY (10.1016/S1003-6326(23)66236-3_bib40) 2021; 185
KNIGHT (10.1016/S1003-6326(23)66236-3_bib22) 2015; 98
SUN (10.1016/S1003-6326(23)66236-3_bib39) 2019; 783
FANG (10.1016/S1003-6326(23)66236-3_bib11) 2017; 684
ADAM (10.1016/S1003-6326(23)66236-3_bib31) 2017; 48
YUAN (10.1016/S1003-6326(23)66236-3_bib25) 2019; 164
LI (10.1016/S1003-6326(23)66236-3_bib48) 2016; 22
WLOKA (10.1016/S1003-6326(23)66236-3_bib52) 2007; 49
KNIGHT (10.1016/S1003-6326(23)66236-3_bib23) 2010; 52
XIAO (10.1016/S1003-6326(23)66236-3_bib15) 2011; 32
RAMGOPAL (10.1016/S1003-6326(23)66236-3_bib20) 2002; 58
LU (10.1016/S1003-6326(23)66236-3_bib45) 2018; 135
LI (10.1016/S1003-6326(23)66236-3_bib7) 2007; 49
MARLAUD (10.1016/S1003-6326(23)66236-3_bib34) 2010; 58
SONG (10.1016/S1003-6326(23)66236-3_bib19) 2014; 78
KIM (10.1016/S1003-6326(23)66236-3_bib10) 2009; 76
BIRBILIS (10.1016/S1003-6326(23)66236-3_bib8) 2005; 152
TANG (10.1016/S1003-6326(23)66236-3_bib46) 2020; 514
SARKAR (10.1016/S1003-6326(23)66236-3_bib21) 1981; 12
MA (10.1016/S1003-6326(23)66236-3_bib3) 2021; 31
ZUO (10.1016/S1003-6326(23)66236-3_bib43) 2017; 716
LIU (10.1016/S1003-6326(23)66236-3_bib27) 2019; 799
DESCHAMPS (10.1016/S1003-6326(23)66236-3_bib16) 1999; 15
SONG (10.1016/S1003-6326(23)66236-3_bib33) 2014; 24
References_xml – volume: 788
  start-page: 329
  year: 2019
  end-page: 337
  ident: bib26
  article-title: Effects of Cu content on microstructure and properties of super-high-strength Al–9.3Zn–2.4Mg–
  publication-title: Journal of Alloys and Compounds
– reference: GB/T 7998—2005. Test method for intergranular corrosion of aluminium alloy [S]. (in Chinese)
– volume: 185
  start-page: 134
  year: 2020
  end-page: 139
  ident: bib35
  article-title: In situ atomic-scale engineering of the chemistry and structure of the grain boundaries region of Li
  publication-title: Scripta Materialia
– reference: GB/T 22639—2008. Test method of exfoliation corrosion for wrought aluminium and aluminium alloys [S]. (in Chinese)
– volume: 151
  start-page: B271
  year: 2004
  end-page: B283
  ident: bib17
  article-title: Effect of Cu content on corrosion behavior of 7xxx series aluminum alloys [J]
  publication-title: Journal of the Electrochemical Society
– volume: 32
  start-page: 2149
  year: 2011
  end-page: 2156
  ident: bib15
  article-title: Influence of retrogression and re-aging treatment on corrosion behaviour of an Al–Zn–Mg–Cu alloy [J]
  publication-title: Materials & Design
– volume: 622
  start-page: 166
  year: 2015
  end-page: 173
  ident: bib54
  article-title: Effect of recrystallization on intergranular fracture and corrosion of Al–Zn–Mg–Cu–Zr alloy [J]
  publication-title: Journal of Alloys and Compounds
– volume: 152
  start-page: B140
  year: 2005
  end-page: B151
  ident: bib8
  article-title: Electrochemical characteristics of intermetallic phases in aluminum alloys [J]
  publication-title: Journal of the Electrochemical Society
– volume: 48
  start-page: 2062
  year: 2017
  end-page: 2076
  ident: bib31
  article-title: Analysis of particle- stimulated nucleation (PSN)-dominated recrystallization for hot-rolled 7050 aluminum alloy [J]
  publication-title: Metallurgical and Materials Transactions A
– volume: 156
  year: 2019
  ident: bib42
  article-title: Effect of minor Ge addition on microstructure and localized corrosion behavior of Al–Zn–Mg alloy sheet [J]
  publication-title: Materials Characterization
– volume: 24
  start-page: 2258
  year: 2014
  end-page: 2265
  ident: bib33
  article-title: Exfoliation corrosion behavior of 7050-T6 aluminum alloy treated with various quench transfer time [J]
  publication-title: Transactions of Nonferrous Metals Society of China
– volume: 135
  start-page: 167
  year: 2018
  end-page: 174
  ident: bib45
  article-title: Effect of microstructure on exfoliation corrosion resistance in an Al–Zn–Mg alloy [J]
  publication-title: Materials Characterization
– volume: 164
  year: 2019
  ident: bib25
  article-title: Enhancing stress corrosion cracking resistance of low Cu-containing Al–Zn–Mg–Cu alloys by slow quench rate [J]
  publication-title: Materials & Design
– volume: 49
  start-page: 920
  year: 2007
  end-page: 938
  ident: bib51
  article-title: Quantitative study of exfoliation corrosion: Exfoliation of slices in humidity technique [J]
  publication-title: Corrosion Science
– volume: 22
  start-page: 47
  year: 2012
  end-page: 52
  ident: bib5
  article-title: Effect of quenching rate on microstructure and stress corrosion cracking of 7085 aluminum alloy [J]
  publication-title: Transactions of Nonferrous Metals Society of China
– volume: 716
  start-page: 220
  year: 2017
  end-page: 230
  ident: bib43
  article-title: Enhanced plasticity and corrosion resistance of high strength Al–Zn–Mg–Cu alloy processed by an improved thermomechanical processing [J]
  publication-title: Journal of Alloys and Compounds
– volume: 168
  year: 2020
  ident: bib44
  article-title: Effect of cooling rate and grain structure on the exfoliation corrosion susceptibility of AA 7136 alloy [J]
  publication-title: Materials Characterization
– volume: 12
  start-page: 1939
  year: 1981
  end-page: 1943
  ident: bib21
  article-title: The effect of copper content and heat treatment on the stress corrosion characteristics of Al–6Zn–2Mg–XCu alloys [J]
  publication-title: Metallurgical Transactions A
– year: 2019
  ident: bib18
  article-title: Corrosion of aluminium [M]
– volume: 610
  start-page: 10
  year: 2014
  end-page: 16
  ident: bib55
  article-title: Effect of Zr, Er and Cr additions on microstructures and properties of Al–Zn– Mg–Cu alloys [J]
  publication-title: Materials Science and Engineering A
– volume: 514
  year: 2020
  ident: bib46
  article-title: Effect of annealing temperature on microstructure, mechanical properties and corrosion behavior of Al–Mg–Mn–Sc–Zr alloy [J]
  publication-title: Applied Surface Science
– volume: 53
  start-page: 3139
  year: 2011
  end-page: 3149
  ident: bib12
  article-title: Relationship between alloy composition, microstructure and exfoliation corrosion in Al–Zn–Mg–Cu alloys [J]
  publication-title: Corrosion Science
– volume: 783
  start-page: 329
  year: 2019
  end-page: 340
  ident: bib39
  article-title: Localized corrosion behavior associated with Al
  publication-title: Journal of Alloys and Compounds
– volume: 602
  start-page: 163
  year: 2014
  end-page: 174
  ident: bib38
  article-title: 3D microstructural characterization and mechanical properties of constituent particles in Al 7075 alloys using X-ray synchrotron tomography and nanoindentation [J]
  publication-title: Journal of Alloys and Compounds
– volume: 22
  start-page: 775
  year: 1982
  end-page: 790
  ident: bib49
  article-title: Mathematical modelling of exfoliation corrosion in high strength aluminium alloys [J]
  publication-title: Corrosion Science
– volume: 19
  start-page: 727
  year: 2014
  end-page: 735
  ident: bib24
  article-title: Effect of copper content on microstructure and properties of super-high strength Al–Zn–Mg–Cu–Zr–Cr–Yb alloy [J]
  publication-title: Materials Science and Engineering of Powder Metallurgy
– volume: 177
  start-page: 862
  year: 2012
  end-page: 868
  ident: bib47
  article-title: Influence of grain-boundary pre-precipitation and corrosion characteristics of inter-granular phases on corrosion behaviors of an Al–Zn–Mg–Cu alloy [J]
  publication-title: Materials Science and Engineering B
– volume: 49
  start-page: 2436
  year: 2007
  end-page: 2449
  ident: bib7
  article-title: Simulation study on function mechanism of some precipitates in localized corrosion of Al alloys [J]
  publication-title: Corrosion Science
– volume: 148
  start-page: B348
  year: 2001
  end-page: B356
  ident: bib41
  article-title: Electrochemical behavior of thin film analogs of Mg (Zn, Cu, Al)
  publication-title: Journal of the Electrochemical Society
– volume: 15
  start-page: 993
  year: 1999
  end-page: 1000
  ident: bib16
  article-title: Influence of copper addition on precipitation kinetics and hardening in Al–Zn–Mg alloy [J]
  publication-title: Materials Science and Technology
– volume: 98
  start-page: 50
  year: 2015
  end-page: 62
  ident: bib22
  article-title: Some effects of alloy composition on stress corrosion cracking in Al–Zn–Mg–Cu alloys [J]
  publication-title: Corrosion Science
– volume: 24
  start-page: 2003
  year: 2014
  end-page: 2017
  ident: bib2
  article-title: Heat treatment of 7xxx series aluminium alloys–some recent developments [J]
  publication-title: Transactions of Nonferrous Metals Society of China
– volume: 143
  start-page: 414
  year: 2018
  end-page: 427
  ident: bib6
  article-title: The role of microstructure and microchemistry on intergranular corrosion of aluminium alloy AA7085-T7452 [J]
  publication-title: Corrosion Science
– volume: 15
  start-page: 6866
  year: 2021
  end-page: 6870
  ident: bib53
  article-title: Quench-induced contributions of high angle grain boundary and low angle grain boundary to exfoliation corrosion propagation in an AlZnMgCu alloy [J]
  publication-title: Journal of Materials Research and Technology
– volume: 31
  start-page: 3356
  year: 2021
  end-page: 3369
  ident: bib3
  article-title: Quenching sensitivity and heterogeneous precipitation behavior of AA7136 alloy [J]
  publication-title: Transactions of Nonferrous Metals Society of China
– volume: 799
  start-page: 1
  year: 2019
  end-page: 14
  ident: bib27
  article-title: The effect of Cu and Sc on the localized corrosion resistance of Al–Zn–Mg–X alloys [J]
  publication-title: Journal of Alloys and Compounds
– volume: 657
  start-page: 717
  year: 2016
  end-page: 725
  ident: bib30
  article-title: Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al–Zn–Mg–Cu alloys [J]
  publication-title: Journal of Alloys and Compounds
– volume: 17
  start-page: 49
  year: 1995
  end-page: 54
  ident: bib9
  article-title: The effect of exfoliation corrosion on the fracture and fatigue behaviour of 7178-T6 aluminium [J]
  publication-title: International Journal of Fatigue
– volume: 162
  start-page: C150
  year: 2015
  end-page: C160
  ident: bib36
  article-title: Effect of Cu content and aging conditions on pitting corrosion damage of 7xxx series aluminum alloys [J]
  publication-title: Journal of the Electrochemical Society
– volume: 28
  start-page: 2660
  year: 2021
  end-page: 2669
  ident: bib4
  article-title: Influence of pre-stretching on quench sensitive effect of high-strength Al–Zn–Mg–Cu–Zr alloy sheet [J]
  publication-title: Journal of Central South University
– volume: 78
  start-page: 276
  year: 2014
  end-page: 286
  ident: bib19
  article-title: The effect of quench rate and overageing temper on the corrosion behaviour of AA7050 [J]
  publication-title: Corrosion Science
– volume: 49
  start-page: 1437
  year: 2007
  end-page: 1449
  ident: bib52
  article-title: Influence of temper and surface condition on the exfoliation behaviour of high strength Al–Zn–Mg–Cu alloys [J]
  publication-title: Corrosion Science
– volume: 45
  start-page: 2377
  year: 2003
  end-page: 2389
  ident: bib50
  article-title: Corrosion product force measurements in the study of exfoliation and stress corrosion cracking in high strength aluminium alloys [J]
  publication-title: Corrosion Science
– volume: 191
  year: 2021
  ident: bib14
  article-title: Local corrosion mechanism of an Al–Zn–Mg–Cu alloy in oxygenated chloride solution: Cathode activity of quenching-induced η precipitates [J]
  publication-title: Corrosion Science
– volume: 32
  start-page: 131
  year: 1996
  end-page: 172
  ident: bib1
  article-title: Application of modern aluminum alloys to aircraft [J]
  publication-title: Progress in Aerospace Sciences
– volume: 52
  start-page: 4073
  year: 2010
  end-page: 4080
  ident: bib23
  article-title: Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al–Zn–Mg–Cu alloys [J]
  publication-title: Corrosion Science
– volume: 185
  year: 2021
  ident: bib40
  article-title: Multiscale investigation of corrosion damage initiation and propagation in AA7075-T651 alloy using correlative microscopy [J]
  publication-title: Corrosion Science
– volume: 76
  start-page: 651
  year: 2009
  end-page: 667
  ident: bib10
  article-title: Fatigue crack formation and growth from localized corrosion in Al–Zn–Mg–Cu [J]
  publication-title: Engineering Fracture Mechanics
– volume: 58
  start-page: 687
  year: 2002
  end-page: 697
  ident: bib20
  article-title: Role of grain-boundary precipitates and solute-depleted zone on the intergranular corrosion of aluminum alloy 7150 [J]
  publication-title: Corrosion
– volume: 58
  start-page: 248
  year: 2010
  end-page: 260
  ident: bib34
  article-title: Influence of alloy composition and heat treatment on precipitate composition in Al–Zn–Mg–Cu alloys [J]
  publication-title: Acta Materialia
– volume: 684
  start-page: 480
  year: 2017
  end-page: 490
  ident: bib11
  article-title: Effect of intermetallic phases and recrystallization on the corrosion and fracture behavior of an Al–Zn–Mg–Cu–Zr–Yb–Cr alloy [J]
  publication-title: Materials Science and Engineering A
– year: 2004
  ident: bib32
  article-title: Recrystallization and related annealing phenomena [M]
– volume: 22
  start-page: 222
  year: 2016
  end-page: 228
  ident: bib48
  article-title: Critical quenching rate for high hardness and good exfoliation corrosion resistance of Al–Zn–Mg–Cu alloy plate [J]
  publication-title: Metals and Materials International
– volume: 29
  start-page: 1145
  year: 1998
  end-page: 1151
  ident: bib37
  article-title: An analytical electron microscopy study of constituent particles in commercial 7075-T6 and 2024-T3 alloys [J]
  publication-title: Metallurgical and Materials Transactions A
– volume: 91
  start-page: 203
  year: 2015
  end-page: 212
  ident: bib13
  article-title: Mechanism of low exfoliation corrosion resistance due to slow quenching in high strength aluminium alloy [J]
  publication-title: Corrosion Science
– volume: 58
  start-page: 687
  issue: 8
  year: 2002
  ident: 10.1016/S1003-6326(23)66236-3_bib20
  article-title: Role of grain-boundary precipitates and solute-depleted zone on the intergranular corrosion of aluminum alloy 7150 [J]
  publication-title: Corrosion
  doi: 10.5006/1.3287699
– volume: 58
  start-page: 248
  year: 2010
  ident: 10.1016/S1003-6326(23)66236-3_bib34
  article-title: Influence of alloy composition and heat treatment on precipitate composition in Al–Zn–Mg–Cu alloys [J]
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2009.09.003
– volume: 22
  start-page: 222
  issue: 2
  year: 2016
  ident: 10.1016/S1003-6326(23)66236-3_bib48
  article-title: Critical quenching rate for high hardness and good exfoliation corrosion resistance of Al–Zn–Mg–Cu alloy plate [J]
  publication-title: Metals and Materials International
  doi: 10.1007/s12540-016-5504-0
– volume: 15
  start-page: 993
  year: 1999
  ident: 10.1016/S1003-6326(23)66236-3_bib16
  article-title: Influence of copper addition on precipitation kinetics and hardening in Al–Zn–Mg alloy [J]
  publication-title: Materials Science and Technology
  doi: 10.1179/026708399101506832
– volume: 143
  start-page: 414
  year: 2018
  ident: 10.1016/S1003-6326(23)66236-3_bib6
  article-title: The role of microstructure and microchemistry on intergranular corrosion of aluminium alloy AA7085-T7452 [J]
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2018.08.033
– volume: 164
  year: 2019
  ident: 10.1016/S1003-6326(23)66236-3_bib25
  article-title: Enhancing stress corrosion cracking resistance of low Cu-containing Al–Zn–Mg–Cu alloys by slow quench rate [J]
  publication-title: Materials & Design
  doi: 10.1016/j.matdes.2018.107558
– volume: 22
  start-page: 47
  issue: 1
  year: 2012
  ident: 10.1016/S1003-6326(23)66236-3_bib5
  article-title: Effect of quenching rate on microstructure and stress corrosion cracking of 7085 aluminum alloy [J]
  publication-title: Transactions of Nonferrous Metals Society of China
  doi: 10.1016/S1003-6326(11)61138-2
– volume: 185
  year: 2021
  ident: 10.1016/S1003-6326(23)66236-3_bib40
  article-title: Multiscale investigation of corrosion damage initiation and propagation in AA7075-T651 alloy using correlative microscopy [J]
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2021.109429
– volume: 24
  start-page: 2258
  issue: 7
  year: 2014
  ident: 10.1016/S1003-6326(23)66236-3_bib33
  article-title: Exfoliation corrosion behavior of 7050-T6 aluminum alloy treated with various quench transfer time [J]
  publication-title: Transactions of Nonferrous Metals Society of China
  doi: 10.1016/S1003-6326(14)63342-2
– volume: 602
  start-page: 163
  year: 2014
  ident: 10.1016/S1003-6326(23)66236-3_bib38
  article-title: 3D microstructural characterization and mechanical properties of constituent particles in Al 7075 alloys using X-ray synchrotron tomography and nanoindentation [J]
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2014.03.010
– volume: 24
  start-page: 2003
  issue: 7
  year: 2014
  ident: 10.1016/S1003-6326(23)66236-3_bib2
  article-title: Heat treatment of 7xxx series aluminium alloys–some recent developments [J]
  publication-title: Transactions of Nonferrous Metals Society of China
  doi: 10.1016/S1003-6326(14)63306-9
– volume: 29
  start-page: 1145
  year: 1998
  ident: 10.1016/S1003-6326(23)66236-3_bib37
  article-title: An analytical electron microscopy study of constituent particles in commercial 7075-T6 and 2024-T3 alloys [J]
  publication-title: Metallurgical and Materials Transactions A
  doi: 10.1007/s11661-998-0240-9
– volume: 716
  start-page: 220
  year: 2017
  ident: 10.1016/S1003-6326(23)66236-3_bib43
  article-title: Enhanced plasticity and corrosion resistance of high strength Al–Zn–Mg–Cu alloy processed by an improved thermomechanical processing [J]
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2017.05.047
– volume: 48
  start-page: 2062
  year: 2017
  ident: 10.1016/S1003-6326(23)66236-3_bib31
  article-title: Analysis of particle- stimulated nucleation (PSN)-dominated recrystallization for hot-rolled 7050 aluminum alloy [J]
  publication-title: Metallurgical and Materials Transactions A
  doi: 10.1007/s11661-017-3967-3
– volume: 622
  start-page: 166
  year: 2015
  ident: 10.1016/S1003-6326(23)66236-3_bib54
  article-title: Effect of recrystallization on intergranular fracture and corrosion of Al–Zn–Mg–Cu–Zr alloy [J]
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2014.10.044
– volume: 91
  start-page: 203
  year: 2015
  ident: 10.1016/S1003-6326(23)66236-3_bib13
  article-title: Mechanism of low exfoliation corrosion resistance due to slow quenching in high strength aluminium alloy [J]
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2014.11.024
– volume: 31
  start-page: 3356
  issue: 11
  year: 2021
  ident: 10.1016/S1003-6326(23)66236-3_bib3
  article-title: Quenching sensitivity and heterogeneous precipitation behavior of AA7136 alloy [J]
  publication-title: Transactions of Nonferrous Metals Society of China
  doi: 10.1016/S1003-6326(21)65734-5
– volume: 135
  start-page: 167
  year: 2018
  ident: 10.1016/S1003-6326(23)66236-3_bib45
  article-title: Effect of microstructure on exfoliation corrosion resistance in an Al–Zn–Mg alloy [J]
  publication-title: Materials Characterization
  doi: 10.1016/j.matchar.2017.11.029
– volume: 49
  start-page: 1437
  year: 2007
  ident: 10.1016/S1003-6326(23)66236-3_bib52
  article-title: Influence of temper and surface condition on the exfoliation behaviour of high strength Al–Zn–Mg–Cu alloys [J]
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2006.06.033
– volume: 49
  start-page: 920
  year: 2007
  ident: 10.1016/S1003-6326(23)66236-3_bib51
  article-title: Quantitative study of exfoliation corrosion: Exfoliation of slices in humidity technique [J]
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2006.05.037
– volume: 17
  start-page: 49
  issue: 1
  year: 1995
  ident: 10.1016/S1003-6326(23)66236-3_bib9
  article-title: The effect of exfoliation corrosion on the fracture and fatigue behaviour of 7178-T6 aluminium [J]
  publication-title: International Journal of Fatigue
  doi: 10.1016/0142-1123(95)93050-C
– volume: 28
  start-page: 2660
  issue: 9
  year: 2021
  ident: 10.1016/S1003-6326(23)66236-3_bib4
  article-title: Influence of pre-stretching on quench sensitive effect of high-strength Al–Zn–Mg–Cu–Zr alloy sheet [J]
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-021-4800-0
– volume: 788
  start-page: 329
  year: 2019
  ident: 10.1016/S1003-6326(23)66236-3_bib26
  article-title: Effects of Cu content on microstructure and properties of super-high-strength Al–9.3Zn–2.4Mg–xCu–Zr alloy [J]
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2019.02.228
– volume: 12
  start-page: 1939
  year: 1981
  ident: 10.1016/S1003-6326(23)66236-3_bib21
  article-title: The effect of copper content and heat treatment on the stress corrosion characteristics of Al–6Zn–2Mg–XCu alloys [J]
  publication-title: Metallurgical Transactions A
  doi: 10.1007/BF02643806
– volume: 610
  start-page: 10
  year: 2014
  ident: 10.1016/S1003-6326(23)66236-3_bib55
  article-title: Effect of Zr, Er and Cr additions on microstructures and properties of Al–Zn– Mg–Cu alloys [J]
  publication-title: Materials Science and Engineering A
  doi: 10.1016/j.msea.2014.05.021
– volume: 52
  start-page: 4073
  year: 2010
  ident: 10.1016/S1003-6326(23)66236-3_bib23
  article-title: Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al–Zn–Mg–Cu alloys [J]
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2010.08.024
– volume: 53
  start-page: 3139
  year: 2011
  ident: 10.1016/S1003-6326(23)66236-3_bib12
  article-title: Relationship between alloy composition, microstructure and exfoliation corrosion in Al–Zn–Mg–Cu alloys [J]
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2011.05.057
– volume: 177
  start-page: 862
  year: 2012
  ident: 10.1016/S1003-6326(23)66236-3_bib47
  article-title: Influence of grain-boundary pre-precipitation and corrosion characteristics of inter-granular phases on corrosion behaviors of an Al–Zn–Mg–Cu alloy [J]
  publication-title: Materials Science and Engineering B
  doi: 10.1016/j.mseb.2012.04.008
– volume: 185
  start-page: 134
  year: 2020
  ident: 10.1016/S1003-6326(23)66236-3_bib35
  article-title: In situ atomic-scale engineering of the chemistry and structure of the grain boundaries region of Li3xLa2/3–xTiO3 [J]
  publication-title: Scripta Materialia
  doi: 10.1016/j.scriptamat.2020.04.018
– volume: 78
  start-page: 276
  year: 2014
  ident: 10.1016/S1003-6326(23)66236-3_bib19
  article-title: The effect of quench rate and overageing temper on the corrosion behaviour of AA7050 [J]
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2013.10.010
– volume: 32
  start-page: 131
  year: 1996
  ident: 10.1016/S1003-6326(23)66236-3_bib1
  article-title: Application of modern aluminum alloys to aircraft [J]
  publication-title: Progress in Aerospace Sciences
  doi: 10.1016/0376-0421(95)00004-6
– volume: 783
  start-page: 329
  year: 2019
  ident: 10.1016/S1003-6326(23)66236-3_bib39
  article-title: Localized corrosion behavior associated with Al7Cu2Fe intermetallic in Al–Zn–Mg–Cu–Zr alloy [J]
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2018.12.151
– volume: 19
  start-page: 727
  issue: 5
  year: 2014
  ident: 10.1016/S1003-6326(23)66236-3_bib24
  article-title: Effect of copper content on microstructure and properties of super-high strength Al–Zn–Mg–Cu–Zr–Cr–Yb alloy [J]
  publication-title: Materials Science and Engineering of Powder Metallurgy
– volume: 45
  start-page: 2377
  year: 2003
  ident: 10.1016/S1003-6326(23)66236-3_bib50
  article-title: Corrosion product force measurements in the study of exfoliation and stress corrosion cracking in high strength aluminium alloys [J]
  publication-title: Corrosion Science
  doi: 10.1016/S0010-938X(03)00050-7
– volume: 151
  start-page: B271
  issue: 5
  year: 2004
  ident: 10.1016/S1003-6326(23)66236-3_bib17
  article-title: Effect of Cu content on corrosion behavior of 7xxx series aluminum alloys [J]
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/1.1695385
– volume: 148
  start-page: B348
  issue: 9
  year: 2001
  ident: 10.1016/S1003-6326(23)66236-3_bib41
  article-title: Electrochemical behavior of thin film analogs of Mg (Zn, Cu, Al)2 [J]
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/1.1386626
– volume: 49
  start-page: 2436
  year: 2007
  ident: 10.1016/S1003-6326(23)66236-3_bib7
  article-title: Simulation study on function mechanism of some precipitates in localized corrosion of Al alloys [J]
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2006.12.002
– volume: 15
  start-page: 6866
  year: 2021
  ident: 10.1016/S1003-6326(23)66236-3_bib53
  article-title: Quench-induced contributions of high angle grain boundary and low angle grain boundary to exfoliation corrosion propagation in an AlZnMgCu alloy [J]
  publication-title: Journal of Materials Research and Technology
  doi: 10.1016/j.jmrt.2021.11.115
– volume: 799
  start-page: 1
  year: 2019
  ident: 10.1016/S1003-6326(23)66236-3_bib27
  article-title: The effect of Cu and Sc on the localized corrosion resistance of Al–Zn–Mg–X alloys [J]
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2019.05.189
– volume: 156
  year: 2019
  ident: 10.1016/S1003-6326(23)66236-3_bib42
  article-title: Effect of minor Ge addition on microstructure and localized corrosion behavior of Al–Zn–Mg alloy sheet [J]
  publication-title: Materials Characterization
  doi: 10.1016/j.matchar.2019.109837
– volume: 514
  year: 2020
  ident: 10.1016/S1003-6326(23)66236-3_bib46
  article-title: Effect of annealing temperature on microstructure, mechanical properties and corrosion behavior of Al–Mg–Mn–Sc–Zr alloy [J]
  publication-title: Applied Surface Science
  doi: 10.1016/j.apsusc.2020.146081
– ident: 10.1016/S1003-6326(23)66236-3_bib28
– volume: 76
  start-page: 651
  issue: 5
  year: 2009
  ident: 10.1016/S1003-6326(23)66236-3_bib10
  article-title: Fatigue crack formation and growth from localized corrosion in Al–Zn–Mg–Cu [J]
  publication-title: Engineering Fracture Mechanics
  doi: 10.1016/j.engfracmech.2008.11.005
– volume: 22
  start-page: 775
  year: 1982
  ident: 10.1016/S1003-6326(23)66236-3_bib49
  article-title: Mathematical modelling of exfoliation corrosion in high strength aluminium alloys [J]
  publication-title: Corrosion Science
  doi: 10.1016/0010-938X(82)90013-0
– volume: 191
  year: 2021
  ident: 10.1016/S1003-6326(23)66236-3_bib14
  article-title: Local corrosion mechanism of an Al–Zn–Mg–Cu alloy in oxygenated chloride solution: Cathode activity of quenching-induced η precipitates [J]
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2021.109743
– year: 2004
  ident: 10.1016/S1003-6326(23)66236-3_bib32
– volume: 168
  year: 2020
  ident: 10.1016/S1003-6326(23)66236-3_bib44
  article-title: Effect of cooling rate and grain structure on the exfoliation corrosion susceptibility of AA 7136 alloy [J]
  publication-title: Materials Characterization
  doi: 10.1016/j.matchar.2020.110533
– volume: 32
  start-page: 2149
  year: 2011
  ident: 10.1016/S1003-6326(23)66236-3_bib15
  article-title: Influence of retrogression and re-aging treatment on corrosion behaviour of an Al–Zn–Mg–Cu alloy [J]
  publication-title: Materials & Design
  doi: 10.1016/j.matdes.2010.11.036
– year: 2019
  ident: 10.1016/S1003-6326(23)66236-3_bib18
– volume: 162
  start-page: C150
  issue: 4
  year: 2015
  ident: 10.1016/S1003-6326(23)66236-3_bib36
  article-title: Effect of Cu content and aging conditions on pitting corrosion damage of 7xxx series aluminum alloys [J]
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/2.0301504jes
– volume: 98
  start-page: 50
  year: 2015
  ident: 10.1016/S1003-6326(23)66236-3_bib22
  article-title: Some effects of alloy composition on stress corrosion cracking in Al–Zn–Mg–Cu alloys [J]
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2015.05.016
– volume: 152
  start-page: B140
  issue: 4
  year: 2005
  ident: 10.1016/S1003-6326(23)66236-3_bib8
  article-title: Electrochemical characteristics of intermetallic phases in aluminum alloys [J]
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/1.1869984
– volume: 684
  start-page: 480
  year: 2017
  ident: 10.1016/S1003-6326(23)66236-3_bib11
  article-title: Effect of intermetallic phases and recrystallization on the corrosion and fracture behavior of an Al–Zn–Mg–Cu–Zr–Yb–Cr alloy [J]
  publication-title: Materials Science and Engineering A
  doi: 10.1016/j.msea.2016.12.009
– ident: 10.1016/S1003-6326(23)66236-3_bib29
– volume: 657
  start-page: 717
  year: 2016
  ident: 10.1016/S1003-6326(23)66236-3_bib30
  article-title: Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al–Zn–Mg–Cu alloys [J]
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2015.10.122
SSID ssj0044661
Score 2.4677987
Snippet The effect of Cu content on intergranular corrosion (IGC) and exfoliation corrosion (EXCO) susceptibility of Al−Zn−Mg−(Cu) alloys was investigated by...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1963
SubjectTerms Al−Zn−Mg−Cu alloy
copper
exfoliation corrosion
intergranular corrosion
scanning Kelvin probe force microscope
Title Effect of Cu content on intergranular corrosion and exfoliation corrosion susceptibility of Al−Zn−Mg−(Cu) alloys
URI https://dx.doi.org/10.1016/S1003-6326(23)66236-3
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuI3OXjQQ_eRpGl2HMMxHfOgDsVLadJUhNGNbRW9ePbsn-hf4ntpNyeIgpQmkPSl5b3XvBfyey-EHCslYhnUhMcafuJhdhQvUizwDFPKWrBHiYty7V3KTl9c3Pl3JdKaxcIgrLKY-_M53c3WRUu14GZ19PhYva5jLhXwPhiXeGPGTyEC1PLK6xzmgduVbtGFGCx8-iuKJx_BNZ4wfuoG8fjP9mnB5rTXyGrhLNJm_j3rpGTTDbKykEJwkzzl6YfpMKGtjCLwHKwIHaYU80CMH8ASIc4UOsbwOpABjdKY2udkOMhlstAzySYO4-Lgsi84YnPw8fZ-n0LRe4DipJWdUtyof5lskX777KbV8YqzFDzDfTn1gppkCWgNE5EVmuEqhssInAcNV902Al1TmvmWK4Fxzr4E4xaZJGbGwF9rI75NyukwtTuE1rWS0piEaw3r6kBEJohirq0TbYPzXSJmHAxNkWgcz7sYhHNEGTI-RMaHDGpkfAhklTnZKM-08ReBmokn_KYyIViD30n3_k-6T5bxxPkcsXtAytNxZg_BL5nqI6d4R2Sped7tXGLdvbrtfgKEy-Bl
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RRvPDDQIbS1HccdqwpUHmUBJMQSxa5TVaqSqg9EF2ZmfiK_hDsnLUVCIKEojmTnnOjO9p3l7-4IOVFKtGVQER6r-bGH0VG8SLHAM0wpa0Efxc7LtXUrmw_i6tF_LJDG1BcGYZX52p-t6W61zmvKOTfL_W63fFfFWCpgfTAu8eYLZFHA9MU0BmevM5wHnle6XReCsPD1LzeerAtXecp4yfXi8Z8V1JzSuVgjq7m1SOvZD62Tgk02yMpcDMFN8pzFH6ZpTBtjishzUCM0TSgGghh0QBUh0BQaBvA5EAKNkja1L3Hay4Qy1zIcDx3IxeFlJ9hjvffx9v6UQNHqQHHaGJcontRPhlvk4eL8vtH08mQKnuG-HHlBRbIYhg0TkRWa4TaGywisBw1X1dYCXVGa-ZYrgY7OvgTtFpm4zYyBaWsjvk2KSZrYHUKrWklpTMy1ho11ICITRG2urZNtjfNdIqYcDE0eaRwTXvTCGaQMGR8i40MGT2R8CGRnM7J-FmrjLwI1FU_4bcyEoA5-J937P-kxWWret27Cm8vb632yjOnnHXxXHZDiaDC2h2CkjPSRG4SfvJPgVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Cu+content+on+intergranular+corrosion+and+exfoliation+corrosion+susceptibility+of+Al%E2%88%92Zn%E2%88%92Mg%E2%88%92%28Cu%29+alloys&rft.jtitle=Transactions+of+Nonferrous+Metals+Society+of+China&rft.au=ZHANG%2C+Meng-han&rft.au=LIU%2C+Sheng-dan&rft.au=JIANG%2C+Jing-yu&rft.au=WEI%2C+Wei-chang&rft.date=2023-07-01&rft.pub=Elsevier+Ltd&rft.issn=1003-6326&rft.volume=33&rft.issue=7&rft.spage=1963&rft.epage=1976&rft_id=info:doi/10.1016%2FS1003-6326%2823%2966236-3&rft.externalDocID=S1003632623662363
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1003-6326&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1003-6326&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1003-6326&client=summon