Highly sensitive NO2 gas sensor based on hematite nanoparticles synthesized by sol–gel technique
The sol–gel technique was utilized to synthesize α-Fe 2 O 3 nanoparticles in supercritical conditions of ethanol. The morphology and microstructure were investigated by scanning and transmission electron microscopy (SEM and TEM) analysis and X-ray diffraction (XRD).The average crystallite size estim...
Saved in:
Published in | Journal of materials science. Materials in electronics Vol. 31; no. 6; pp. 5025 - 5031 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0957-4522 1573-482X |
DOI | 10.1007/s10854-020-03069-4 |
Cover
Loading…
Abstract | The sol–gel technique was utilized to synthesize α-Fe
2
O
3
nanoparticles in supercritical conditions of ethanol. The morphology and microstructure were investigated by scanning and transmission electron microscopy (SEM and TEM) analysis and X-ray diffraction (XRD).The average crystallite size estimated by sherrer’s equation was 60 nm. TEM images show that the obtained powder is composed of agglomeration of irregular shaped (between oval and spherical) grains. The prepared nanomaterial was used as sensing layer in gas sensing device. The sensor has been tested towards low concentrations in air of NO
2
at different temperatures from 200 to 350 °C. We noticed that 225 °C was the best operating temperature. At this temperature, the obtained results indicated that the realized sensor has a high response towards 1 ppm of NO
2
gas. The response and recovery times are 26 and 48 s, respectively. To show the selectivity of the sensor, we have tested it with different gases such as CO, CO
2
, and NH
3
. We found that hematite sensor exhibits high selectivity towards NO
2
gas. |
---|---|
AbstractList | The sol–gel technique was utilized to synthesize α-Fe
2
O
3
nanoparticles in supercritical conditions of ethanol. The morphology and microstructure were investigated by scanning and transmission electron microscopy (SEM and TEM) analysis and X-ray diffraction (XRD).The average crystallite size estimated by sherrer’s equation was 60 nm. TEM images show that the obtained powder is composed of agglomeration of irregular shaped (between oval and spherical) grains. The prepared nanomaterial was used as sensing layer in gas sensing device. The sensor has been tested towards low concentrations in air of NO
2
at different temperatures from 200 to 350 °C. We noticed that 225 °C was the best operating temperature. At this temperature, the obtained results indicated that the realized sensor has a high response towards 1 ppm of NO
2
gas. The response and recovery times are 26 and 48 s, respectively. To show the selectivity of the sensor, we have tested it with different gases such as CO, CO
2
, and NH
3
. We found that hematite sensor exhibits high selectivity towards NO
2
gas. The sol–gel technique was utilized to synthesize α-Fe2O3 nanoparticles in supercritical conditions of ethanol. The morphology and microstructure were investigated by scanning and transmission electron microscopy (SEM and TEM) analysis and X-ray diffraction (XRD).The average crystallite size estimated by sherrer’s equation was 60 nm. TEM images show that the obtained powder is composed of agglomeration of irregular shaped (between oval and spherical) grains. The prepared nanomaterial was used as sensing layer in gas sensing device. The sensor has been tested towards low concentrations in air of NO2 at different temperatures from 200 to 350 °C. We noticed that 225 °C was the best operating temperature. At this temperature, the obtained results indicated that the realized sensor has a high response towards 1 ppm of NO2 gas. The response and recovery times are 26 and 48 s, respectively. To show the selectivity of the sensor, we have tested it with different gases such as CO, CO2, and NH3. We found that hematite sensor exhibits high selectivity towards NO2 gas. |
Author | Hjiri, M. |
Author_xml | – sequence: 1 givenname: M. orcidid: 0000-0002-1437-2855 surname: Hjiri fullname: Hjiri, M. email: m.hjiri@yahoo.fr organization: Center of Nanotechnology, King Abdulaziz University, Laboratory of Physics of Materials and Nanomaterials Applied At Environment, Faculty of Sciences of Gabes, University of Gabes |
BookMark | eNp9kM1KXDEUx0NR6PjxAq4udH3bfOfOskithUE3LbgLJ5lzZzJckzGJhXHlO_iGfRKjIwhduDpw-P3Ox_-IHMQUkZAzRr8ySs23wuigZE857amget7LT2TGlBG9HPjNAZnRuTK9VJx_JkelbCilWophRtxlWK2nXVcwllDDX-yurnm3gvLaSblzUHDZpdit8RZqqNhFiGkLuQY_YcN2sa6xhIdGuTYnTf8en1Y4dRX9Ooa7ezwhhyNMBU_f6jH5c_Hj9_llv7j--ev8-6L3QunaK-O0BqZReeWALb1jdATwDuWo59ooZgwXBoyTgwNYAorROeqlUUs-NyCOyZf93G1ObW2pdpPuc2wrLRdaM0M1V40a9pTPqZSMo_WhtsdSrBnCZBm1L4nafaK2JWpfE7Wyqfw_dZvDLeTdx5LYS6XBcYX5_aoPrGfV_I2x |
CitedBy_id | crossref_primary_10_3390_ma15249006 crossref_primary_10_1021_acs_iecr_3c01441 crossref_primary_10_3389_fenrg_2021_683293 crossref_primary_10_1016_j_jallcom_2022_167713 crossref_primary_10_47495_okufbed_1527590 crossref_primary_10_1049_ell2_12749 crossref_primary_10_1007_s00339_024_07927_4 crossref_primary_10_15251_DJNB_2023_181_279 crossref_primary_10_1139_cjc_2021_0302 crossref_primary_10_1016_j_chemosphere_2023_139665 crossref_primary_10_1088_2632_959X_ad585b crossref_primary_10_1007_s11664_021_08786_y crossref_primary_10_1016_j_rechem_2023_101192 crossref_primary_10_1080_09276440_2022_2106053 crossref_primary_10_1016_j_mseb_2023_116721 crossref_primary_10_1063_9_0000547 crossref_primary_10_3390_nano11071767 crossref_primary_10_1016_j_inoche_2025_114147 crossref_primary_10_1016_j_ceramint_2024_11_041 crossref_primary_10_3390_cryst14080723 crossref_primary_10_1007_s42250_022_00398_1 crossref_primary_10_1007_s10853_024_09696_0 crossref_primary_10_1016_j_jallcom_2023_169444 crossref_primary_10_1016_j_apt_2022_103847 crossref_primary_10_1016_j_cartre_2021_100130 crossref_primary_10_1515_zpch_2024_0745 crossref_primary_10_1557_s43578_023_01185_5 crossref_primary_10_3390_cryst12121726 crossref_primary_10_3390_powders2020020 crossref_primary_10_1016_j_diamond_2021_108593 crossref_primary_10_1016_j_sna_2024_116138 crossref_primary_10_1080_24701556_2022_2081189 crossref_primary_10_1016_j_physb_2024_415704 crossref_primary_10_1016_j_cej_2021_130469 crossref_primary_10_3390_cryst10050356 crossref_primary_10_1063_9_0000256 crossref_primary_10_1016_j_inoche_2025_114290 crossref_primary_10_1080_10584587_2023_2227042 crossref_primary_10_3390_molecules29153527 crossref_primary_10_4236_wjnse_2022_121001 crossref_primary_10_1016_j_hazadv_2024_100450 crossref_primary_10_1016_j_chemosphere_2022_136892 crossref_primary_10_1016_j_ceramint_2023_08_102 crossref_primary_10_1155_2021_5510193 crossref_primary_10_1007_s12668_025_01827_4 crossref_primary_10_1016_j_mssp_2022_106567 crossref_primary_10_7759_cureus_64688 crossref_primary_10_1002_batt_202100033 crossref_primary_10_3390_chemosensors10010011 crossref_primary_10_1016_j_ijhydene_2023_11_039 crossref_primary_10_1007_s00339_020_03829_3 crossref_primary_10_1007_s13201_021_01442_0 crossref_primary_10_1002_jccs_202100253 crossref_primary_10_1016_j_surfcoat_2023_129288 crossref_primary_10_1515_zpch_2024_0606 crossref_primary_10_1007_s10562_022_03985_6 crossref_primary_10_1016_j_scenv_2024_100167 crossref_primary_10_1016_j_seppur_2024_129801 crossref_primary_10_1002_jctb_7737 |
Cites_doi | 10.1016/S0167-577X(02)01114-X 10.1016/j.physb.2017.07.053 10.1016/j.ceramint.2013.01.074 10.1016/j.jallcom.2010.03.245 10.1016/j.snb.2004.11.026 10.1016/S0925-4005(01)00716-X 10.1016/j.snb.2016.08.130 10.1016/j.ceramint.2013.12.153 10.1016/j.snb.2013.02.013 10.1016/j.snb.2008.04.018 10.1016/j.snb.2016.08.177 10.1016/j.jpcs.2017.09.019 10.1016/j.ceramint.2011.11.036 10.1016/j.snb.2017.06.155 10.1016/j.jallcom.2017.01.268 10.1016/j.mseb.2011.02.002 10.1016/S0925-4005(00)00304-X 10.1016/j.snb.2014.01.068 10.1016/S0254-0584(03)00170-6 10.1016/j.ceramint.2017.05.285 10.1016/j.materresbull.2017.11.001 10.1016/j.snb.2011.07.035 10.3390/s19010167 10.1016/j.matchemphys.2004.06.004 10.1016/j.jsamd.2016.03.003 10.1016/S0925-4005(00)00368-3 10.1016/j.snb.2012.10.005 10.1016/j.jtice.2017.04.042 10.5194/jsss-4-271-2015 10.1016/j.snb.2011.03.047 10.1016/j.physe.2018.04.009 10.1016/j.jlumin.2017.07.055 10.1021/jp201816d 10.1016/j.snb.2015.05.098 10.1016/S0925-4005(01)00741-9 10.1016/j.snb.2007.11.002 10.1016/j.jallcom.2013.10.202 10.1016/j.snb.2016.08.080 10.1016/j.apsusc.2012.12.057 10.1016/j.snb.2013.12.122 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2020). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2020). All Rights Reserved. |
DBID | AAYXX CITATION 7SP 7SR 8BQ 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU D1I DWQXO F28 FR3 HCIFZ JG9 KB. L7M P5Z P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI S0W |
DOI | 10.1007/s10854-020-03069-4 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database SciTech Premium Collection Materials Research Database Materials Science Database Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection METADEX Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-482X |
EndPage | 5031 |
ExternalDocumentID | 10_1007_s10854_020_03069_4 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P62 P9N PDBOC PKN PT4 PT5 Q2X QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 Z8M Z8N Z8P Z8R Z8T Z8W Z8Z Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SP 7SR 8BQ 8FD ABRTQ DWQXO F28 FR3 JG9 L7M PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c356t-57b66a16e5c5ba1dcb10faacbe4f69675177237a7b48baadae3fbb0c475d297a3 |
IEDL.DBID | U2A |
ISSN | 0957-4522 |
IngestDate | Fri Jul 25 12:16:12 EDT 2025 Tue Jul 01 02:34:43 EDT 2025 Thu Apr 24 22:55:55 EDT 2025 Fri Feb 21 02:39:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-57b66a16e5c5ba1dcb10faacbe4f69675177237a7b48baadae3fbb0c475d297a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1437-2855 |
PQID | 2366170625 |
PQPubID | 326250 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2366170625 crossref_citationtrail_10_1007_s10854_020_03069_4 crossref_primary_10_1007_s10854_020_03069_4 springer_journals_10_1007_s10854_020_03069_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of materials science. Materials in electronics |
PublicationTitleAbbrev | J Mater Sci: Mater Electron |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | NavaleSTBandgarDKNalageSRKhuspeGDChouguleMAKolekarYDSenSPatilVBCeram. Int.2013396645364601:CAS:528:DC%2BC3sXis1Gkt7c%3D RautBTGodsePRPawarSGChouguleMAPatilBJ. Mater. Sci.2012239569631:CAS:528:DC%2BC38XktFCitro%3D WangSYWangWWangWZJiaoZLiuJHQianYTSens Actuators B20006922271:CAS:528:DC%2BD3cXmt1Wqsrc%3D SrivastavaMOjhaAKChaubeySSinghJSharmaPKPandeyACJ. Alloys Compds20105002062101:CAS:528:DC%2BC3cXmslCgsL0%3D WangYCaoJKongFXiaHZhangJZhuBWangSWuSSens. Actuators B20081311831891:CAS:528:DC%2BD1cXktlOis74%3D WuRALinCWTsengWJCeram. Int.201743S535S5401:CAS:528:DC%2BC2sXovVSlsrs%3D LiMHuMLiuQMaSSunPAppl. Surface Sci.20132681881941:CAS:528:DC%2BC3sXktl2mtw%3D%3D MathevulaaLENotoaLLMothudiaBMChithamboMDhlaminiMSJ. Lumin.2017192879887 ChoNGYangDJJinMJKimHGTullerHLKimIDSens. Actuators B2011160146814721:CAS:528:DC%2BC3MXhsVGmsrbM LiuYLLiuZMYangYYangHFShenGLYuRQSens. Actuators B20051076006041:CAS:528:DC%2BD2MXktlartrY%3D ImanakaNOkamotoKAdachiGMater. Lett.200357196619691:CAS:528:DC%2BD3sXit12hsLg%3D HjiriMAidaMSNeriGSens.201919167 ZhangJRGaoLMater. Chem. Phys.20048710131:CAS:528:DC%2BD2cXlvFClsbY%3D CullityBDElements of X-ray diffraction1978Reading, MAAddison-Wesley102 NavaleSTKhupseGDChegouleMAPatilVBCeram. Int.201440801380201:CAS:528:DC%2BC2cXhtVylu7Y%3D ZengQZMaSYJinWXYangHMChenHGeQMaLJ. Alloy. Compd.20177054274371:CAS:528:DC%2BC2sXjsVyhu7w%3D HungCMHoaNDDuyNVToanNVLeDTHieuNVJ. Sci. Adv. Mater. Devices201614550 LeeETJangGEKimCKYoonDHSens. Actuators B2001772212271:CAS:528:DC%2BD3MXksFSksbk%3D ChenMWangZHanDGuFGuoGJ. Phys. Chem. C201111512763127731:CAS:528:DC%2BC3MXnsFWjsro%3D BiswalRCSens. Actuators B20111571831881:CAS:528:DC%2BC3MXnvF2itL8%3D HaoQLiLYinXLiuSLiQWangTMater. Sci. Eng. B20111766006051:CAS:528:DC%2BC3MXkt1WmtL4%3D SatyanarayanaN.L.Madhusudan ReddyKManoramaSVMater. Chem. Phys.20038221261:CAS:528:DC%2BD3sXlvFOqsLg%3D SunLHaidryAAFatimaQLiZYaoZMater. Res. Bull.2018991241311:CAS:528:DC%2BC2sXhsl2jsb3F JinWXMaSYTieZZJiangXHLiWQLuoJXuXLWangTTSens. Actuators B20152202432541:CAS:528:DC%2BC2MXhtVaiurzP ZampettiEPantaleiSMuzyczukABearzottiADe CesareFSpinellaCMacagnanoASens. Actuators B20131763903981:CAS:528:DC%2BC3sXlvVerug%3D%3D VelusamyPBabuRRRamamurthiKElangovanEViegasJSridharanMJPhys. Chem. Solids20181121271361:CAS:528:DC%2BC2sXhsFCktr%2FJ XiaHWuYKongFWangSZhuBGuoXZhangJWangYWuSSens. Actuators B20081341331391:CAS:528:DC%2BD1cXhtVejsr%2FE KorotcenkovGBrinzariVSchwankJDiBattistaMVasilievASens. Actuators B2001772442521:CAS:528:DC%2BD3MXksFSktr4%3D HaidryNKindBSaruhanJSens. Sens. Syst.20154271280 ShendageSSPatilVLVanalakarSAPatilSPHaraleNSBhosaleJLKimJHPatilPSSens. Actuators B20172404264331:CAS:528:DC%2BC28XhsVyitL3J LassouedBDkhilAGadriSAmmarRes. Phys.2017730073015 SonkerRKYadavBCJ. Taiwan Inst. Chem. Eng.2017772762811:CAS:528:DC%2BC2sXntFWkur4%3D HyodoTUrataKKamadaKUedaTShimizuYSens. Actuators B20172536306401:CAS:528:DC%2BC2sXhtFCgu7vO PatilVLVanalakarSAPatilPSKimJHSens. Actuators B2017239118511931:CAS:528:DC%2BC28XhslSms7rN BalouriaVKumarASamantaSSinghaADebnathAKMahajanABediRKAswalDKGuptaSKSens. Actuators B20131814714781:CAS:528:DC%2BC3sXlt1CgtLg%3D PandeeswariRKarnRKJeyaprakashBGSens. Actuators B20141944704771:CAS:528:DC%2BC2cXitFyrurw%3D LassouadMSLassouadBDkhilSAmmarPhysics E2018101212219 HjiriMEl MirLLeonardiSGPistoneAMaviliaLNeriGSens. Actuators B20141964134201:CAS:528:DC%2BC2cXlt1Cgsbw%3D NavaleSTKhuspeGDChouguleMAPatilVBCeram. Int.201440801380201:CAS:528:DC%2BC2cXhtVylu7Y%3D MathevulaLENotoLLMothudiBMDhlaminiMSPhysics B20185352582611:CAS:528:DC%2BC2sXht12ltb7P ChouguleMASenSPatilVBCeram. Int.201238268526921:CAS:528:DC%2BC38XjsVGmsLc%3D NavaleSTBandgarDKNalageSRKhuspeGDChegouleMAKolekarYDSenSPatilVBCeram. Int.201339645364601:CAS:528:DC%2BC3sXis1Gkt7c%3D ChenNSYangXJLiuESHuangJLSens. Actuators B2000661781801:CAS:528:DC%2BD3cXlsleisLY%3D MirzaeiBHashemiKJJ. Mater. Sci201627310931441:CAS:528:DC%2BC2MXitVGgsrvK Urasinska-WojcikBVincentTAChowdhuryMFGardnerJWSens. Actuators B2017239105110591:CAS:528:DC%2BC28XhsVWjtr3J LemineOMGhiloufiIBoudinaMKhezamiLOuld’MhamedMHassanTJ. Alloys Compds20145885925951:CAS:528:DC%2BC2cXitVeltbo%3D QZ Zeng (3069_CR36) 2017; 705 VL Patil (3069_CR3) 2017; 239 T Hyodo (3069_CR6) 2017; 253 M Hjiri (3069_CR12) 2019; 19 L Sun (3069_CR9) 2018; 99 MA Chougule (3069_CR39) 2012; 38 B Urasinska-Wojcik (3069_CR14) 2017; 239 M Chen (3069_CR4) 2011; 115 OM Lemine (3069_CR22) 2014; 588 WX Jin (3069_CR35) 2015; 220 N Imanaka (3069_CR2) 2003; 57 BT Raut (3069_CR31) 2012; 23 Y Wang (3069_CR25) 2008; 131 JR Zhang (3069_CR19) 2004; 87 B Mirzaei (3069_CR11) 2016; 27 P Velusamy (3069_CR34) 2018; 112 CM Hung (3069_CR37) 2016; 1 M Srivastava (3069_CR38) 2010; 500 ET Lee (3069_CR28) 2001; 77 M Li (3069_CR41) 2013; 268 M Hjiri (3069_CR43) 2014; 196 N Haidry (3069_CR5) 2015; 4 G Korotcenkov (3069_CR30) 2001; 77 ST Navale (3069_CR45) 2014; 40 NS Chen (3069_CR16) 2000; 66 RC Biswal (3069_CR26) 2011; 157 MS Lassouad (3069_CR18) 2018; 101 BD Cullity (3069_CR33) 1978 ST Navale (3069_CR10) 2014; 40 LE Mathevulaa (3069_CR32) 2017; 192 R Pandeeswari (3069_CR24) 2014; 194 B Lassoued (3069_CR20) 2017; 7 ST Navale (3069_CR42) 2013; 39 YL Liu (3069_CR15) 2005; 107 RK Sonker (3069_CR44) 2017; 77 SY Wang (3069_CR27) 2000; 69 ST Navale (3069_CR23) 2013; 39 NG Cho (3069_CR7) 2011; 160 RA Wu (3069_CR46) 2017; 43 N.L. Satyanarayana (3069_CR1) 2003; 82 Q Hao (3069_CR29) 2011; 176 SS Shendage (3069_CR13) 2017; 240 V Balouria (3069_CR17) 2013; 181 E Zampetti (3069_CR8) 2013; 176 LE Mathevula (3069_CR21) 2018; 535 H Xia (3069_CR40) 2008; 134 |
References_xml | – reference: SunLHaidryAAFatimaQLiZYaoZMater. Res. Bull.2018991241311:CAS:528:DC%2BC2sXhsl2jsb3F – reference: HjiriMEl MirLLeonardiSGPistoneAMaviliaLNeriGSens. Actuators B20141964134201:CAS:528:DC%2BC2cXlt1Cgsbw%3D – reference: SrivastavaMOjhaAKChaubeySSinghJSharmaPKPandeyACJ. Alloys Compds20105002062101:CAS:528:DC%2BC3cXmslCgsL0%3D – reference: HyodoTUrataKKamadaKUedaTShimizuYSens. Actuators B20172536306401:CAS:528:DC%2BC2sXhtFCgu7vO – reference: HungCMHoaNDDuyNVToanNVLeDTHieuNVJ. Sci. Adv. Mater. Devices201614550 – reference: LiMHuMLiuQMaSSunPAppl. Surface Sci.20132681881941:CAS:528:DC%2BC3sXktl2mtw%3D%3D – reference: NavaleSTBandgarDKNalageSRKhuspeGDChouguleMAKolekarYDSenSPatilVBCeram. Int.2013396645364601:CAS:528:DC%2BC3sXis1Gkt7c%3D – reference: ChouguleMASenSPatilVBCeram. Int.201238268526921:CAS:528:DC%2BC38XjsVGmsLc%3D – reference: ImanakaNOkamotoKAdachiGMater. Lett.200357196619691:CAS:528:DC%2BD3sXit12hsLg%3D – reference: SonkerRKYadavBCJ. Taiwan Inst. Chem. Eng.2017772762811:CAS:528:DC%2BC2sXntFWkur4%3D – reference: ShendageSSPatilVLVanalakarSAPatilSPHaraleNSBhosaleJLKimJHPatilPSSens. Actuators B20172404264331:CAS:528:DC%2BC28XhsVyitL3J – reference: HjiriMAidaMSNeriGSens.201919167 – reference: NavaleSTBandgarDKNalageSRKhuspeGDChegouleMAKolekarYDSenSPatilVBCeram. Int.201339645364601:CAS:528:DC%2BC3sXis1Gkt7c%3D – reference: PandeeswariRKarnRKJeyaprakashBGSens. Actuators B20141944704771:CAS:528:DC%2BC2cXitFyrurw%3D – reference: WangSYWangWWangWZJiaoZLiuJHQianYTSens Actuators B20006922271:CAS:528:DC%2BD3cXmt1Wqsrc%3D – reference: LassouadMSLassouadBDkhilSAmmarPhysics E2018101212219 – reference: BiswalRCSens. Actuators B20111571831881:CAS:528:DC%2BC3MXnvF2itL8%3D – reference: JinWXMaSYTieZZJiangXHLiWQLuoJXuXLWangTTSens. Actuators B20152202432541:CAS:528:DC%2BC2MXhtVaiurzP – reference: KorotcenkovGBrinzariVSchwankJDiBattistaMVasilievASens. Actuators B2001772442521:CAS:528:DC%2BD3MXksFSktr4%3D – reference: SatyanarayanaN.L.Madhusudan ReddyKManoramaSVMater. Chem. Phys.20038221261:CAS:528:DC%2BD3sXlvFOqsLg%3D – reference: VelusamyPBabuRRRamamurthiKElangovanEViegasJSridharanMJPhys. Chem. Solids20181121271361:CAS:528:DC%2BC2sXhsFCktr%2FJ – reference: MirzaeiBHashemiKJJ. Mater. Sci201627310931441:CAS:528:DC%2BC2MXitVGgsrvK – reference: WuRALinCWTsengWJCeram. Int.201743S535S5401:CAS:528:DC%2BC2sXovVSlsrs%3D – reference: MathevulaLENotoLLMothudiBMDhlaminiMSPhysics B20185352582611:CAS:528:DC%2BC2sXht12ltb7P – reference: LeeETJangGEKimCKYoonDHSens. Actuators B2001772212271:CAS:528:DC%2BD3MXksFSksbk%3D – reference: LassouedBDkhilAGadriSAmmarRes. Phys.2017730073015 – reference: PatilVLVanalakarSAPatilPSKimJHSens. Actuators B2017239118511931:CAS:528:DC%2BC28XhslSms7rN – reference: BalouriaVKumarASamantaSSinghaADebnathAKMahajanABediRKAswalDKGuptaSKSens. Actuators B20131814714781:CAS:528:DC%2BC3sXlt1CgtLg%3D – reference: ChenNSYangXJLiuESHuangJLSens. Actuators B2000661781801:CAS:528:DC%2BD3cXlsleisLY%3D – reference: HaoQLiLYinXLiuSLiQWangTMater. Sci. Eng. B20111766006051:CAS:528:DC%2BC3MXkt1WmtL4%3D – reference: HaidryNKindBSaruhanJSens. Sens. Syst.20154271280 – reference: NavaleSTKhupseGDChegouleMAPatilVBCeram. Int.201440801380201:CAS:528:DC%2BC2cXhtVylu7Y%3D – reference: RautBTGodsePRPawarSGChouguleMAPatilBJ. Mater. Sci.2012239569631:CAS:528:DC%2BC38XktFCitro%3D – reference: NavaleSTKhuspeGDChouguleMAPatilVBCeram. Int.201440801380201:CAS:528:DC%2BC2cXhtVylu7Y%3D – reference: LiuYLLiuZMYangYYangHFShenGLYuRQSens. Actuators B20051076006041:CAS:528:DC%2BD2MXktlartrY%3D – reference: CullityBDElements of X-ray diffraction1978Reading, MAAddison-Wesley102 – reference: XiaHWuYKongFWangSZhuBGuoXZhangJWangYWuSSens. Actuators B20081341331391:CAS:528:DC%2BD1cXhtVejsr%2FE – reference: ZengQZMaSYJinWXYangHMChenHGeQMaLJ. Alloy. Compd.20177054274371:CAS:528:DC%2BC2sXjsVyhu7w%3D – reference: ChoNGYangDJJinMJKimHGTullerHLKimIDSens. Actuators B2011160146814721:CAS:528:DC%2BC3MXhsVGmsrbM – reference: ZampettiEPantaleiSMuzyczukABearzottiADe CesareFSpinellaCMacagnanoASens. Actuators B20131763903981:CAS:528:DC%2BC3sXlvVerug%3D%3D – reference: LemineOMGhiloufiIBoudinaMKhezamiLOuld’MhamedMHassanTJ. Alloys Compds20145885925951:CAS:528:DC%2BC2cXitVeltbo%3D – reference: MathevulaaLENotoaLLMothudiaBMChithamboMDhlaminiMSJ. Lumin.2017192879887 – reference: Urasinska-WojcikBVincentTAChowdhuryMFGardnerJWSens. Actuators B2017239105110591:CAS:528:DC%2BC28XhsVWjtr3J – reference: ZhangJRGaoLMater. Chem. Phys.20048710131:CAS:528:DC%2BD2cXlvFClsbY%3D – reference: ChenMWangZHanDGuFGuoGJ. Phys. Chem. C201111512763127731:CAS:528:DC%2BC3MXnsFWjsro%3D – reference: WangYCaoJKongFXiaHZhangJZhuBWangSWuSSens. Actuators B20081311831891:CAS:528:DC%2BD1cXktlOis74%3D – volume: 57 start-page: 1966 year: 2003 ident: 3069_CR2 publication-title: Mater. Lett. doi: 10.1016/S0167-577X(02)01114-X – volume: 23 start-page: 956 year: 2012 ident: 3069_CR31 publication-title: J. Mater. Sci. – volume: 535 start-page: 258 year: 2018 ident: 3069_CR21 publication-title: Physics B doi: 10.1016/j.physb.2017.07.053 – volume: 39 start-page: 6453 issue: 6 year: 2013 ident: 3069_CR23 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.01.074 – volume: 500 start-page: 206 year: 2010 ident: 3069_CR38 publication-title: J. Alloys Compds doi: 10.1016/j.jallcom.2010.03.245 – volume: 107 start-page: 600 year: 2005 ident: 3069_CR15 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2004.11.026 – volume: 77 start-page: 221 year: 2001 ident: 3069_CR28 publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(01)00716-X – volume: 239 start-page: 1185 year: 2017 ident: 3069_CR3 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2016.08.130 – volume: 40 start-page: 8013 year: 2014 ident: 3069_CR45 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.12.153 – volume: 181 start-page: 471 year: 2013 ident: 3069_CR17 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2013.02.013 – volume: 134 start-page: 133 year: 2008 ident: 3069_CR40 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2008.04.018 – volume: 240 start-page: 426 year: 2017 ident: 3069_CR13 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2016.08.177 – volume: 112 start-page: 127 year: 2018 ident: 3069_CR34 publication-title: Phys. Chem. Solids doi: 10.1016/j.jpcs.2017.09.019 – volume: 38 start-page: 2685 year: 2012 ident: 3069_CR39 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2011.11.036 – volume: 253 start-page: 630 year: 2017 ident: 3069_CR6 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2017.06.155 – volume: 705 start-page: 427 year: 2017 ident: 3069_CR36 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2017.01.268 – volume: 176 start-page: 600 year: 2011 ident: 3069_CR29 publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2011.02.002 – volume: 69 start-page: 22 year: 2000 ident: 3069_CR27 publication-title: Sens Actuators B doi: 10.1016/S0925-4005(00)00304-X – volume: 196 start-page: 413 year: 2014 ident: 3069_CR43 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2014.01.068 – volume: 82 start-page: 21 year: 2003 ident: 3069_CR1 publication-title: Mater. Chem. Phys. doi: 10.1016/S0254-0584(03)00170-6 – volume: 43 start-page: S535 year: 2017 ident: 3069_CR46 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.05.285 – volume: 99 start-page: 124 year: 2018 ident: 3069_CR9 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2017.11.001 – volume: 160 start-page: 1468 year: 2011 ident: 3069_CR7 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2011.07.035 – volume: 19 start-page: 167 year: 2019 ident: 3069_CR12 publication-title: Sens. doi: 10.3390/s19010167 – volume: 87 start-page: 10 year: 2004 ident: 3069_CR19 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2004.06.004 – volume: 1 start-page: 45 year: 2016 ident: 3069_CR37 publication-title: J. Sci. Adv. Mater. Devices doi: 10.1016/j.jsamd.2016.03.003 – volume: 66 start-page: 178 year: 2000 ident: 3069_CR16 publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(00)00368-3 – volume: 176 start-page: 390 year: 2013 ident: 3069_CR8 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2012.10.005 – volume: 77 start-page: 276 year: 2017 ident: 3069_CR44 publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2017.04.042 – volume: 4 start-page: 271 year: 2015 ident: 3069_CR5 publication-title: Sens. Sens. Syst. doi: 10.5194/jsss-4-271-2015 – volume: 157 start-page: 183 year: 2011 ident: 3069_CR26 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2011.03.047 – volume: 39 start-page: 6453 year: 2013 ident: 3069_CR42 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.01.074 – volume: 101 start-page: 212 year: 2018 ident: 3069_CR18 publication-title: Physics E doi: 10.1016/j.physe.2018.04.009 – volume: 192 start-page: 879 year: 2017 ident: 3069_CR32 publication-title: J. Lumin. doi: 10.1016/j.jlumin.2017.07.055 – volume: 115 start-page: 12763 year: 2011 ident: 3069_CR4 publication-title: J. Phys. Chem. C doi: 10.1021/jp201816d – start-page: 102 volume-title: Elements of X-ray diffraction year: 1978 ident: 3069_CR33 – volume: 220 start-page: 243 year: 2015 ident: 3069_CR35 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2015.05.098 – volume: 27 start-page: 3109 year: 2016 ident: 3069_CR11 publication-title: J. Mater. Sci – volume: 77 start-page: 244 year: 2001 ident: 3069_CR30 publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(01)00741-9 – volume: 131 start-page: 183 year: 2008 ident: 3069_CR25 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2007.11.002 – volume: 588 start-page: 592 year: 2014 ident: 3069_CR22 publication-title: J. Alloys Compds doi: 10.1016/j.jallcom.2013.10.202 – volume: 239 start-page: 1051 year: 2017 ident: 3069_CR14 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2016.08.080 – volume: 268 start-page: 188 year: 2013 ident: 3069_CR41 publication-title: Appl. Surface Sci. doi: 10.1016/j.apsusc.2012.12.057 – volume: 194 start-page: 470 year: 2014 ident: 3069_CR24 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2013.12.122 – volume: 7 start-page: 3007 year: 2017 ident: 3069_CR20 publication-title: Res. Phys. – volume: 40 start-page: 8013 year: 2014 ident: 3069_CR10 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.12.153 |
SSID | ssj0006438 |
Score | 2.5136821 |
Snippet | The sol–gel technique was utilized to synthesize α-Fe
2
O
3
nanoparticles in supercritical conditions of ethanol. The morphology and microstructure were... The sol–gel technique was utilized to synthesize α-Fe2O3 nanoparticles in supercritical conditions of ethanol. The morphology and microstructure were... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5025 |
SubjectTerms | Ammonia Characterization and Evaluation of Materials Chemistry and Materials Science Crystallites Ethanol Gas sensors Gases Hematite Low concentrations Materials Science Morphology Nanomaterials Nanoparticles Nitrogen dioxide Operating temperature Optical and Electronic Materials Selectivity Sensors Sol-gel processes Synthesis Transmission electron microscopy |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagLDAgnqJQkAc2iKgfeXRCCFEqJMpCpW6RX62QqqQ0ZSgT_4F_yC_hLnFbQKJLBsf2cHe--2yfvyPk3HHR0hwWYJyENpCMRVjIHT5sEFupwG0yfO_82I06PfnQD_v-wK3waZVzn1g6apsbPCO_4iJC7nCA69fj1wCrRuHtqi-hsU42GEQatPCkfb_wxBBtk4prD7m9OfePZvzTuSSUAW6eEDW3Avk7MC3R5p8L0jLutHfItgeM9KbS8C5Zc9ke2fpBI7hPNCZrjGa0wGR0dF-0-8TpUBVlSz6hGKoszTNaMbROHc1UBrtlnxRHi1kGOLB4eYdeGubJR18fn0M3oguG1wPSa98933YCXzshMCKMpkEY6yhSLHKhCbVi1mjWHChltJODqAW7BAawWsQq1jLRSlnlxEDrppFxaHkrVuKQ1LI8c0eEMqGFkBagmjHSIiYTigPMVXHTKKtlnbC54FLjicWxvsUoXVIio7BTEHZaCjuFMReLMeOKVmNl78ZcH6lfYkW6NIg6uZzraPn7_9mOV892QjZ5ZRZBkzVIbTp5c6cAPKb6rLSub7bI1CY priority: 102 providerName: ProQuest |
Title | Highly sensitive NO2 gas sensor based on hematite nanoparticles synthesized by sol–gel technique |
URI | https://link.springer.com/article/10.1007/s10854-020-03069-4 https://www.proquest.com/docview/2366170625 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JSgNBEG00XvQgrrjE0AdvOpDeZibHqFlQE0UN6GnoLSKEiWTiIZ78B__QL7F6liSKCl6mYXo5VHVXvaKrXiN0aCmrKQoHMAiF8TghvnvIHT6kHxguwWwSV-_c6frtHj-_F_d5UVhSZLsXV5KppZ4rdgsF91y443BuzeOLaElA7O72dY_Wp_YXfGyYMew5Rm9K81KZn9f46o5mGPPbtWjqbZpraDWHibie6XUdLdh4A63MkQduIuVSNAYTnLgUdGe0cPeK4keZpH-GI-wclMHDGGe8rGOLYxlDjJynwuFkEgP6S55eYZSCdYaDj7f3RzvAU17XLdRrNu5O217-YoKnmfDHngiU70viW6GFksRoRap9KbWyvO_XIDYgAKZZIAPFQyWlkZb1lapqHghDa4Fk26gUD2O7gzBhijFuAKBpzY1DYkxSALcyqGppFN9FpBBcpHM6cfeqxSCaESE7YUcg7CgVdgRzjqZznjMyjT9Hlwt9RPnBSiLKfEchD1HbLjoudDTr_n21vf8N30fLNNsmXpWUUWk8erEHAD_GqoIWw2argpbqZ53LW9e2Hi4a0J40utc3lXQvfgKS1Na7 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25ThxBEC1xBMYBAhsLDIYO7MgeefuYK7CQBV6Wa52ARDb0tStLqxnMrGUtEf_g_-Cj-BKq5ti1LUFGMsFMdwXV1VWvp6teAbz3QqZG4AaMk9AFivOIGrnjgw9ipzS6TU71zqf9qHeuji7Cizm4a2thKK2y9YmVo3aFpX_kn4WMiDsc4fru1c-AukbR7WrbQqM2i2M_-Y1HtvLL4T6u7wchut_O9npB01UgsDKMxkEYmyjSPPKhDY3mzhreGWhtjVeDKEX8zBFwyljHRiVGa6e9HBjTsSoOnUhjLVHuPCwqKVNKIUy6B1PPj9E9qbn9iEtciKZIpynVS0IV0GGNUHoaqH8D4Qzd_nchW8W57gosNwCVfa0tahXmfP4KXv5FW_gaDCWHjCaspOR3cpes_12woS6rN8U1o9DoWJGzmhF27FmuczydN0l4rJzkiDvLHzc4yqCcYnR_-2foR2zKKLsG58-i1TewkBe5XwfGpZFSOYSG1ipHGFBqgbBaxx2rnVEbwFvFZbYhMqd-GqNsRsFMys5Q2Vml7AznfJzOuappPJ4cvdWuR9Zs6TKbGeAGfGrXaPb5cWlvn5a2Ay96Z6cn2clh_3gTlkRtIkGHb8HC-PqXf4egZ2y2K0tjcPncpv0AA-MTBQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gJkYORnwEkEcf9KQTph8zPXswhAgriK4eJOE29msIyWYGmDVmOfEf_Df8HH-JVfPYVRO5cZnDTHcdqqurvp6u-grgZRByYAVuQJ0lPlKcp9TIHR-80F4ZdJuc6p0_jdKDY_XhJDlZgJu-FobSKnuf2DhqXzn6R74tZErc4QjXt4suLeLL3nDn_CKiDlJ009q302hN5ChMf-DxrX57uIdr_UqI4f7XdwdR12EgcjJJJ1GibZoanobEJdZw7yyPC2OcDapIB4ilOYJPqY22KrPGeBNkYW3slE68GGgjUe49uK9lFlP3hGz4fhYFMNJnLc8f8YoL0RXsdGV7WaIiOrgRYh9E6u-gOEe6_1zONjFv-BgedWCV7bbWtQwLoXwCS39QGD4FS4ki4ymrKRGeXCcbfRbs1NTNm-qSUZj0rCpZyw47Caw0JZ7Uu4Q8Vk9LxKD12RWOsiinGv-6_nkaxmzGLvsMju9Eq89hsazKsAKMSyul8ggTnVOe8KA0AiG20bEz3qpV4L3icteRmlNvjXE-p2MmZeeo7LxRdo5zXs_mnLeUHreOXu_XI--2d53PjXEV3vRrNP_8f2lrt0vbggdo1PnHw9HRC3goWguJYr4Oi5PL72ED8c_EbjaGxuDbXVv2b4mnFzI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+sensitive+NO2+gas+sensor+based+on+hematite+nanoparticles+synthesized+by+sol%E2%80%93gel+technique&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=Hjiri%2C+M.&rft.date=2020-03-01&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=31&rft.issue=6&rft.spage=5025&rft.epage=5031&rft_id=info:doi/10.1007%2Fs10854-020-03069-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10854_020_03069_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon |