Highly sensitive NO2 gas sensor based on hematite nanoparticles synthesized by sol–gel technique

The sol–gel technique was utilized to synthesize α-Fe 2 O 3 nanoparticles in supercritical conditions of ethanol. The morphology and microstructure were investigated by scanning and transmission electron microscopy (SEM and TEM) analysis and X-ray diffraction (XRD).The average crystallite size estim...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science. Materials in electronics Vol. 31; no. 6; pp. 5025 - 5031
Main Author Hjiri, M.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0957-4522
1573-482X
DOI10.1007/s10854-020-03069-4

Cover

Loading…
Abstract The sol–gel technique was utilized to synthesize α-Fe 2 O 3 nanoparticles in supercritical conditions of ethanol. The morphology and microstructure were investigated by scanning and transmission electron microscopy (SEM and TEM) analysis and X-ray diffraction (XRD).The average crystallite size estimated by sherrer’s equation was 60 nm. TEM images show that the obtained powder is composed of agglomeration of irregular shaped (between oval and spherical) grains. The prepared nanomaterial was used as sensing layer in gas sensing device. The sensor has been tested towards low concentrations in air of NO 2 at different temperatures from 200 to 350 °C. We noticed that 225 °C was the best operating temperature. At this temperature, the obtained results indicated that the realized sensor has a high response towards 1 ppm of NO 2 gas. The response and recovery times are 26 and 48 s, respectively. To show the selectivity of the sensor, we have tested it with different gases such as CO, CO 2 , and NH 3 . We found that hematite sensor exhibits high selectivity towards NO 2 gas.
AbstractList The sol–gel technique was utilized to synthesize α-Fe 2 O 3 nanoparticles in supercritical conditions of ethanol. The morphology and microstructure were investigated by scanning and transmission electron microscopy (SEM and TEM) analysis and X-ray diffraction (XRD).The average crystallite size estimated by sherrer’s equation was 60 nm. TEM images show that the obtained powder is composed of agglomeration of irregular shaped (between oval and spherical) grains. The prepared nanomaterial was used as sensing layer in gas sensing device. The sensor has been tested towards low concentrations in air of NO 2 at different temperatures from 200 to 350 °C. We noticed that 225 °C was the best operating temperature. At this temperature, the obtained results indicated that the realized sensor has a high response towards 1 ppm of NO 2 gas. The response and recovery times are 26 and 48 s, respectively. To show the selectivity of the sensor, we have tested it with different gases such as CO, CO 2 , and NH 3 . We found that hematite sensor exhibits high selectivity towards NO 2 gas.
The sol–gel technique was utilized to synthesize α-Fe2O3 nanoparticles in supercritical conditions of ethanol. The morphology and microstructure were investigated by scanning and transmission electron microscopy (SEM and TEM) analysis and X-ray diffraction (XRD).The average crystallite size estimated by sherrer’s equation was 60 nm. TEM images show that the obtained powder is composed of agglomeration of irregular shaped (between oval and spherical) grains. The prepared nanomaterial was used as sensing layer in gas sensing device. The sensor has been tested towards low concentrations in air of NO2 at different temperatures from 200 to 350 °C. We noticed that 225 °C was the best operating temperature. At this temperature, the obtained results indicated that the realized sensor has a high response towards 1 ppm of NO2 gas. The response and recovery times are 26 and 48 s, respectively. To show the selectivity of the sensor, we have tested it with different gases such as CO, CO2, and NH3. We found that hematite sensor exhibits high selectivity towards NO2 gas.
Author Hjiri, M.
Author_xml – sequence: 1
  givenname: M.
  orcidid: 0000-0002-1437-2855
  surname: Hjiri
  fullname: Hjiri, M.
  email: m.hjiri@yahoo.fr
  organization: Center of Nanotechnology, King Abdulaziz University, Laboratory of Physics of Materials and Nanomaterials Applied At Environment, Faculty of Sciences of Gabes, University of Gabes
BookMark eNp9kM1KXDEUx0NR6PjxAq4udH3bfOfOskithUE3LbgLJ5lzZzJckzGJhXHlO_iGfRKjIwhduDpw-P3Ox_-IHMQUkZAzRr8ySs23wuigZE857amget7LT2TGlBG9HPjNAZnRuTK9VJx_JkelbCilWophRtxlWK2nXVcwllDDX-yurnm3gvLaSblzUHDZpdit8RZqqNhFiGkLuQY_YcN2sa6xhIdGuTYnTf8en1Y4dRX9Ooa7ezwhhyNMBU_f6jH5c_Hj9_llv7j--ev8-6L3QunaK-O0BqZReeWALb1jdATwDuWo59ooZgwXBoyTgwNYAorROeqlUUs-NyCOyZf93G1ObW2pdpPuc2wrLRdaM0M1V40a9pTPqZSMo_WhtsdSrBnCZBm1L4nafaK2JWpfE7Wyqfw_dZvDLeTdx5LYS6XBcYX5_aoPrGfV_I2x
CitedBy_id crossref_primary_10_3390_ma15249006
crossref_primary_10_1021_acs_iecr_3c01441
crossref_primary_10_3389_fenrg_2021_683293
crossref_primary_10_1016_j_jallcom_2022_167713
crossref_primary_10_47495_okufbed_1527590
crossref_primary_10_1049_ell2_12749
crossref_primary_10_1007_s00339_024_07927_4
crossref_primary_10_15251_DJNB_2023_181_279
crossref_primary_10_1139_cjc_2021_0302
crossref_primary_10_1016_j_chemosphere_2023_139665
crossref_primary_10_1088_2632_959X_ad585b
crossref_primary_10_1007_s11664_021_08786_y
crossref_primary_10_1016_j_rechem_2023_101192
crossref_primary_10_1080_09276440_2022_2106053
crossref_primary_10_1016_j_mseb_2023_116721
crossref_primary_10_1063_9_0000547
crossref_primary_10_3390_nano11071767
crossref_primary_10_1016_j_inoche_2025_114147
crossref_primary_10_1016_j_ceramint_2024_11_041
crossref_primary_10_3390_cryst14080723
crossref_primary_10_1007_s42250_022_00398_1
crossref_primary_10_1007_s10853_024_09696_0
crossref_primary_10_1016_j_jallcom_2023_169444
crossref_primary_10_1016_j_apt_2022_103847
crossref_primary_10_1016_j_cartre_2021_100130
crossref_primary_10_1515_zpch_2024_0745
crossref_primary_10_1557_s43578_023_01185_5
crossref_primary_10_3390_cryst12121726
crossref_primary_10_3390_powders2020020
crossref_primary_10_1016_j_diamond_2021_108593
crossref_primary_10_1016_j_sna_2024_116138
crossref_primary_10_1080_24701556_2022_2081189
crossref_primary_10_1016_j_physb_2024_415704
crossref_primary_10_1016_j_cej_2021_130469
crossref_primary_10_3390_cryst10050356
crossref_primary_10_1063_9_0000256
crossref_primary_10_1016_j_inoche_2025_114290
crossref_primary_10_1080_10584587_2023_2227042
crossref_primary_10_3390_molecules29153527
crossref_primary_10_4236_wjnse_2022_121001
crossref_primary_10_1016_j_hazadv_2024_100450
crossref_primary_10_1016_j_chemosphere_2022_136892
crossref_primary_10_1016_j_ceramint_2023_08_102
crossref_primary_10_1155_2021_5510193
crossref_primary_10_1007_s12668_025_01827_4
crossref_primary_10_1016_j_mssp_2022_106567
crossref_primary_10_7759_cureus_64688
crossref_primary_10_1002_batt_202100033
crossref_primary_10_3390_chemosensors10010011
crossref_primary_10_1016_j_ijhydene_2023_11_039
crossref_primary_10_1007_s00339_020_03829_3
crossref_primary_10_1007_s13201_021_01442_0
crossref_primary_10_1002_jccs_202100253
crossref_primary_10_1016_j_surfcoat_2023_129288
crossref_primary_10_1515_zpch_2024_0606
crossref_primary_10_1007_s10562_022_03985_6
crossref_primary_10_1016_j_scenv_2024_100167
crossref_primary_10_1016_j_seppur_2024_129801
crossref_primary_10_1002_jctb_7737
Cites_doi 10.1016/S0167-577X(02)01114-X
10.1016/j.physb.2017.07.053
10.1016/j.ceramint.2013.01.074
10.1016/j.jallcom.2010.03.245
10.1016/j.snb.2004.11.026
10.1016/S0925-4005(01)00716-X
10.1016/j.snb.2016.08.130
10.1016/j.ceramint.2013.12.153
10.1016/j.snb.2013.02.013
10.1016/j.snb.2008.04.018
10.1016/j.snb.2016.08.177
10.1016/j.jpcs.2017.09.019
10.1016/j.ceramint.2011.11.036
10.1016/j.snb.2017.06.155
10.1016/j.jallcom.2017.01.268
10.1016/j.mseb.2011.02.002
10.1016/S0925-4005(00)00304-X
10.1016/j.snb.2014.01.068
10.1016/S0254-0584(03)00170-6
10.1016/j.ceramint.2017.05.285
10.1016/j.materresbull.2017.11.001
10.1016/j.snb.2011.07.035
10.3390/s19010167
10.1016/j.matchemphys.2004.06.004
10.1016/j.jsamd.2016.03.003
10.1016/S0925-4005(00)00368-3
10.1016/j.snb.2012.10.005
10.1016/j.jtice.2017.04.042
10.5194/jsss-4-271-2015
10.1016/j.snb.2011.03.047
10.1016/j.physe.2018.04.009
10.1016/j.jlumin.2017.07.055
10.1021/jp201816d
10.1016/j.snb.2015.05.098
10.1016/S0925-4005(01)00741-9
10.1016/j.snb.2007.11.002
10.1016/j.jallcom.2013.10.202
10.1016/j.snb.2016.08.080
10.1016/j.apsusc.2012.12.057
10.1016/j.snb.2013.12.122
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2020). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2020). All Rights Reserved.
DBID AAYXX
CITATION
7SP
7SR
8BQ
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
F28
FR3
HCIFZ
JG9
KB.
L7M
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
S0W
DOI 10.1007/s10854-020-03069-4
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection
Materials Research Database
Materials Science Database
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Materials Research Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-482X
EndPage 5031
ExternalDocumentID 10_1007_s10854_020_03069_4
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P62
P9N
PDBOC
PKN
PT4
PT5
Q2X
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8W
Z8Z
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SP
7SR
8BQ
8FD
ABRTQ
DWQXO
F28
FR3
JG9
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c356t-57b66a16e5c5ba1dcb10faacbe4f69675177237a7b48baadae3fbb0c475d297a3
IEDL.DBID U2A
ISSN 0957-4522
IngestDate Fri Jul 25 12:16:12 EDT 2025
Tue Jul 01 02:34:43 EDT 2025
Thu Apr 24 22:55:55 EDT 2025
Fri Feb 21 02:39:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-57b66a16e5c5ba1dcb10faacbe4f69675177237a7b48baadae3fbb0c475d297a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1437-2855
PQID 2366170625
PQPubID 326250
PageCount 7
ParticipantIDs proquest_journals_2366170625
crossref_citationtrail_10_1007_s10854_020_03069_4
crossref_primary_10_1007_s10854_020_03069_4
springer_journals_10_1007_s10854_020_03069_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of materials science. Materials in electronics
PublicationTitleAbbrev J Mater Sci: Mater Electron
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References NavaleSTBandgarDKNalageSRKhuspeGDChouguleMAKolekarYDSenSPatilVBCeram. Int.2013396645364601:CAS:528:DC%2BC3sXis1Gkt7c%3D
RautBTGodsePRPawarSGChouguleMAPatilBJ. Mater. Sci.2012239569631:CAS:528:DC%2BC38XktFCitro%3D
WangSYWangWWangWZJiaoZLiuJHQianYTSens Actuators B20006922271:CAS:528:DC%2BD3cXmt1Wqsrc%3D
SrivastavaMOjhaAKChaubeySSinghJSharmaPKPandeyACJ. Alloys Compds20105002062101:CAS:528:DC%2BC3cXmslCgsL0%3D
WangYCaoJKongFXiaHZhangJZhuBWangSWuSSens. Actuators B20081311831891:CAS:528:DC%2BD1cXktlOis74%3D
WuRALinCWTsengWJCeram. Int.201743S535S5401:CAS:528:DC%2BC2sXovVSlsrs%3D
LiMHuMLiuQMaSSunPAppl. Surface Sci.20132681881941:CAS:528:DC%2BC3sXktl2mtw%3D%3D
MathevulaaLENotoaLLMothudiaBMChithamboMDhlaminiMSJ. Lumin.2017192879887
ChoNGYangDJJinMJKimHGTullerHLKimIDSens. Actuators B2011160146814721:CAS:528:DC%2BC3MXhsVGmsrbM
LiuYLLiuZMYangYYangHFShenGLYuRQSens. Actuators B20051076006041:CAS:528:DC%2BD2MXktlartrY%3D
ImanakaNOkamotoKAdachiGMater. Lett.200357196619691:CAS:528:DC%2BD3sXit12hsLg%3D
HjiriMAidaMSNeriGSens.201919167
ZhangJRGaoLMater. Chem. Phys.20048710131:CAS:528:DC%2BD2cXlvFClsbY%3D
CullityBDElements of X-ray diffraction1978Reading, MAAddison-Wesley102
NavaleSTKhupseGDChegouleMAPatilVBCeram. Int.201440801380201:CAS:528:DC%2BC2cXhtVylu7Y%3D
ZengQZMaSYJinWXYangHMChenHGeQMaLJ. Alloy. Compd.20177054274371:CAS:528:DC%2BC2sXjsVyhu7w%3D
HungCMHoaNDDuyNVToanNVLeDTHieuNVJ. Sci. Adv. Mater. Devices201614550
LeeETJangGEKimCKYoonDHSens. Actuators B2001772212271:CAS:528:DC%2BD3MXksFSksbk%3D
ChenMWangZHanDGuFGuoGJ. Phys. Chem. C201111512763127731:CAS:528:DC%2BC3MXnsFWjsro%3D
BiswalRCSens. Actuators B20111571831881:CAS:528:DC%2BC3MXnvF2itL8%3D
HaoQLiLYinXLiuSLiQWangTMater. Sci. Eng. B20111766006051:CAS:528:DC%2BC3MXkt1WmtL4%3D
SatyanarayanaN.L.Madhusudan ReddyKManoramaSVMater. Chem. Phys.20038221261:CAS:528:DC%2BD3sXlvFOqsLg%3D
SunLHaidryAAFatimaQLiZYaoZMater. Res. Bull.2018991241311:CAS:528:DC%2BC2sXhsl2jsb3F
JinWXMaSYTieZZJiangXHLiWQLuoJXuXLWangTTSens. Actuators B20152202432541:CAS:528:DC%2BC2MXhtVaiurzP
ZampettiEPantaleiSMuzyczukABearzottiADe CesareFSpinellaCMacagnanoASens. Actuators B20131763903981:CAS:528:DC%2BC3sXlvVerug%3D%3D
VelusamyPBabuRRRamamurthiKElangovanEViegasJSridharanMJPhys. Chem. Solids20181121271361:CAS:528:DC%2BC2sXhsFCktr%2FJ
XiaHWuYKongFWangSZhuBGuoXZhangJWangYWuSSens. Actuators B20081341331391:CAS:528:DC%2BD1cXhtVejsr%2FE
KorotcenkovGBrinzariVSchwankJDiBattistaMVasilievASens. Actuators B2001772442521:CAS:528:DC%2BD3MXksFSktr4%3D
HaidryNKindBSaruhanJSens. Sens. Syst.20154271280
ShendageSSPatilVLVanalakarSAPatilSPHaraleNSBhosaleJLKimJHPatilPSSens. Actuators B20172404264331:CAS:528:DC%2BC28XhsVyitL3J
LassouedBDkhilAGadriSAmmarRes. Phys.2017730073015
SonkerRKYadavBCJ. Taiwan Inst. Chem. Eng.2017772762811:CAS:528:DC%2BC2sXntFWkur4%3D
HyodoTUrataKKamadaKUedaTShimizuYSens. Actuators B20172536306401:CAS:528:DC%2BC2sXhtFCgu7vO
PatilVLVanalakarSAPatilPSKimJHSens. Actuators B2017239118511931:CAS:528:DC%2BC28XhslSms7rN
BalouriaVKumarASamantaSSinghaADebnathAKMahajanABediRKAswalDKGuptaSKSens. Actuators B20131814714781:CAS:528:DC%2BC3sXlt1CgtLg%3D
PandeeswariRKarnRKJeyaprakashBGSens. Actuators B20141944704771:CAS:528:DC%2BC2cXitFyrurw%3D
LassouadMSLassouadBDkhilSAmmarPhysics E2018101212219
HjiriMEl MirLLeonardiSGPistoneAMaviliaLNeriGSens. Actuators B20141964134201:CAS:528:DC%2BC2cXlt1Cgsbw%3D
NavaleSTKhuspeGDChouguleMAPatilVBCeram. Int.201440801380201:CAS:528:DC%2BC2cXhtVylu7Y%3D
MathevulaLENotoLLMothudiBMDhlaminiMSPhysics B20185352582611:CAS:528:DC%2BC2sXht12ltb7P
ChouguleMASenSPatilVBCeram. Int.201238268526921:CAS:528:DC%2BC38XjsVGmsLc%3D
NavaleSTBandgarDKNalageSRKhuspeGDChegouleMAKolekarYDSenSPatilVBCeram. Int.201339645364601:CAS:528:DC%2BC3sXis1Gkt7c%3D
ChenNSYangXJLiuESHuangJLSens. Actuators B2000661781801:CAS:528:DC%2BD3cXlsleisLY%3D
MirzaeiBHashemiKJJ. Mater. Sci201627310931441:CAS:528:DC%2BC2MXitVGgsrvK
Urasinska-WojcikBVincentTAChowdhuryMFGardnerJWSens. Actuators B2017239105110591:CAS:528:DC%2BC28XhsVWjtr3J
LemineOMGhiloufiIBoudinaMKhezamiLOuld’MhamedMHassanTJ. Alloys Compds20145885925951:CAS:528:DC%2BC2cXitVeltbo%3D
QZ Zeng (3069_CR36) 2017; 705
VL Patil (3069_CR3) 2017; 239
T Hyodo (3069_CR6) 2017; 253
M Hjiri (3069_CR12) 2019; 19
L Sun (3069_CR9) 2018; 99
MA Chougule (3069_CR39) 2012; 38
B Urasinska-Wojcik (3069_CR14) 2017; 239
M Chen (3069_CR4) 2011; 115
OM Lemine (3069_CR22) 2014; 588
WX Jin (3069_CR35) 2015; 220
N Imanaka (3069_CR2) 2003; 57
BT Raut (3069_CR31) 2012; 23
Y Wang (3069_CR25) 2008; 131
JR Zhang (3069_CR19) 2004; 87
B Mirzaei (3069_CR11) 2016; 27
P Velusamy (3069_CR34) 2018; 112
CM Hung (3069_CR37) 2016; 1
M Srivastava (3069_CR38) 2010; 500
ET Lee (3069_CR28) 2001; 77
M Li (3069_CR41) 2013; 268
M Hjiri (3069_CR43) 2014; 196
N Haidry (3069_CR5) 2015; 4
G Korotcenkov (3069_CR30) 2001; 77
ST Navale (3069_CR45) 2014; 40
NS Chen (3069_CR16) 2000; 66
RC Biswal (3069_CR26) 2011; 157
MS Lassouad (3069_CR18) 2018; 101
BD Cullity (3069_CR33) 1978
ST Navale (3069_CR10) 2014; 40
LE Mathevulaa (3069_CR32) 2017; 192
R Pandeeswari (3069_CR24) 2014; 194
B Lassoued (3069_CR20) 2017; 7
ST Navale (3069_CR42) 2013; 39
YL Liu (3069_CR15) 2005; 107
RK Sonker (3069_CR44) 2017; 77
SY Wang (3069_CR27) 2000; 69
ST Navale (3069_CR23) 2013; 39
NG Cho (3069_CR7) 2011; 160
RA Wu (3069_CR46) 2017; 43
N.L. Satyanarayana (3069_CR1) 2003; 82
Q Hao (3069_CR29) 2011; 176
SS Shendage (3069_CR13) 2017; 240
V Balouria (3069_CR17) 2013; 181
E Zampetti (3069_CR8) 2013; 176
LE Mathevula (3069_CR21) 2018; 535
H Xia (3069_CR40) 2008; 134
References_xml – reference: SunLHaidryAAFatimaQLiZYaoZMater. Res. Bull.2018991241311:CAS:528:DC%2BC2sXhsl2jsb3F
– reference: HjiriMEl MirLLeonardiSGPistoneAMaviliaLNeriGSens. Actuators B20141964134201:CAS:528:DC%2BC2cXlt1Cgsbw%3D
– reference: SrivastavaMOjhaAKChaubeySSinghJSharmaPKPandeyACJ. Alloys Compds20105002062101:CAS:528:DC%2BC3cXmslCgsL0%3D
– reference: HyodoTUrataKKamadaKUedaTShimizuYSens. Actuators B20172536306401:CAS:528:DC%2BC2sXhtFCgu7vO
– reference: HungCMHoaNDDuyNVToanNVLeDTHieuNVJ. Sci. Adv. Mater. Devices201614550
– reference: LiMHuMLiuQMaSSunPAppl. Surface Sci.20132681881941:CAS:528:DC%2BC3sXktl2mtw%3D%3D
– reference: NavaleSTBandgarDKNalageSRKhuspeGDChouguleMAKolekarYDSenSPatilVBCeram. Int.2013396645364601:CAS:528:DC%2BC3sXis1Gkt7c%3D
– reference: ChouguleMASenSPatilVBCeram. Int.201238268526921:CAS:528:DC%2BC38XjsVGmsLc%3D
– reference: ImanakaNOkamotoKAdachiGMater. Lett.200357196619691:CAS:528:DC%2BD3sXit12hsLg%3D
– reference: SonkerRKYadavBCJ. Taiwan Inst. Chem. Eng.2017772762811:CAS:528:DC%2BC2sXntFWkur4%3D
– reference: ShendageSSPatilVLVanalakarSAPatilSPHaraleNSBhosaleJLKimJHPatilPSSens. Actuators B20172404264331:CAS:528:DC%2BC28XhsVyitL3J
– reference: HjiriMAidaMSNeriGSens.201919167
– reference: NavaleSTBandgarDKNalageSRKhuspeGDChegouleMAKolekarYDSenSPatilVBCeram. Int.201339645364601:CAS:528:DC%2BC3sXis1Gkt7c%3D
– reference: PandeeswariRKarnRKJeyaprakashBGSens. Actuators B20141944704771:CAS:528:DC%2BC2cXitFyrurw%3D
– reference: WangSYWangWWangWZJiaoZLiuJHQianYTSens Actuators B20006922271:CAS:528:DC%2BD3cXmt1Wqsrc%3D
– reference: LassouadMSLassouadBDkhilSAmmarPhysics E2018101212219
– reference: BiswalRCSens. Actuators B20111571831881:CAS:528:DC%2BC3MXnvF2itL8%3D
– reference: JinWXMaSYTieZZJiangXHLiWQLuoJXuXLWangTTSens. Actuators B20152202432541:CAS:528:DC%2BC2MXhtVaiurzP
– reference: KorotcenkovGBrinzariVSchwankJDiBattistaMVasilievASens. Actuators B2001772442521:CAS:528:DC%2BD3MXksFSktr4%3D
– reference: SatyanarayanaN.L.Madhusudan ReddyKManoramaSVMater. Chem. Phys.20038221261:CAS:528:DC%2BD3sXlvFOqsLg%3D
– reference: VelusamyPBabuRRRamamurthiKElangovanEViegasJSridharanMJPhys. Chem. Solids20181121271361:CAS:528:DC%2BC2sXhsFCktr%2FJ
– reference: MirzaeiBHashemiKJJ. Mater. Sci201627310931441:CAS:528:DC%2BC2MXitVGgsrvK
– reference: WuRALinCWTsengWJCeram. Int.201743S535S5401:CAS:528:DC%2BC2sXovVSlsrs%3D
– reference: MathevulaLENotoLLMothudiBMDhlaminiMSPhysics B20185352582611:CAS:528:DC%2BC2sXht12ltb7P
– reference: LeeETJangGEKimCKYoonDHSens. Actuators B2001772212271:CAS:528:DC%2BD3MXksFSksbk%3D
– reference: LassouedBDkhilAGadriSAmmarRes. Phys.2017730073015
– reference: PatilVLVanalakarSAPatilPSKimJHSens. Actuators B2017239118511931:CAS:528:DC%2BC28XhslSms7rN
– reference: BalouriaVKumarASamantaSSinghaADebnathAKMahajanABediRKAswalDKGuptaSKSens. Actuators B20131814714781:CAS:528:DC%2BC3sXlt1CgtLg%3D
– reference: ChenNSYangXJLiuESHuangJLSens. Actuators B2000661781801:CAS:528:DC%2BD3cXlsleisLY%3D
– reference: HaoQLiLYinXLiuSLiQWangTMater. Sci. Eng. B20111766006051:CAS:528:DC%2BC3MXkt1WmtL4%3D
– reference: HaidryNKindBSaruhanJSens. Sens. Syst.20154271280
– reference: NavaleSTKhupseGDChegouleMAPatilVBCeram. Int.201440801380201:CAS:528:DC%2BC2cXhtVylu7Y%3D
– reference: RautBTGodsePRPawarSGChouguleMAPatilBJ. Mater. Sci.2012239569631:CAS:528:DC%2BC38XktFCitro%3D
– reference: NavaleSTKhuspeGDChouguleMAPatilVBCeram. Int.201440801380201:CAS:528:DC%2BC2cXhtVylu7Y%3D
– reference: LiuYLLiuZMYangYYangHFShenGLYuRQSens. Actuators B20051076006041:CAS:528:DC%2BD2MXktlartrY%3D
– reference: CullityBDElements of X-ray diffraction1978Reading, MAAddison-Wesley102
– reference: XiaHWuYKongFWangSZhuBGuoXZhangJWangYWuSSens. Actuators B20081341331391:CAS:528:DC%2BD1cXhtVejsr%2FE
– reference: ZengQZMaSYJinWXYangHMChenHGeQMaLJ. Alloy. Compd.20177054274371:CAS:528:DC%2BC2sXjsVyhu7w%3D
– reference: ChoNGYangDJJinMJKimHGTullerHLKimIDSens. Actuators B2011160146814721:CAS:528:DC%2BC3MXhsVGmsrbM
– reference: ZampettiEPantaleiSMuzyczukABearzottiADe CesareFSpinellaCMacagnanoASens. Actuators B20131763903981:CAS:528:DC%2BC3sXlvVerug%3D%3D
– reference: LemineOMGhiloufiIBoudinaMKhezamiLOuld’MhamedMHassanTJ. Alloys Compds20145885925951:CAS:528:DC%2BC2cXitVeltbo%3D
– reference: MathevulaaLENotoaLLMothudiaBMChithamboMDhlaminiMSJ. Lumin.2017192879887
– reference: Urasinska-WojcikBVincentTAChowdhuryMFGardnerJWSens. Actuators B2017239105110591:CAS:528:DC%2BC28XhsVWjtr3J
– reference: ZhangJRGaoLMater. Chem. Phys.20048710131:CAS:528:DC%2BD2cXlvFClsbY%3D
– reference: ChenMWangZHanDGuFGuoGJ. Phys. Chem. C201111512763127731:CAS:528:DC%2BC3MXnsFWjsro%3D
– reference: WangYCaoJKongFXiaHZhangJZhuBWangSWuSSens. Actuators B20081311831891:CAS:528:DC%2BD1cXktlOis74%3D
– volume: 57
  start-page: 1966
  year: 2003
  ident: 3069_CR2
  publication-title: Mater. Lett.
  doi: 10.1016/S0167-577X(02)01114-X
– volume: 23
  start-page: 956
  year: 2012
  ident: 3069_CR31
  publication-title: J. Mater. Sci.
– volume: 535
  start-page: 258
  year: 2018
  ident: 3069_CR21
  publication-title: Physics B
  doi: 10.1016/j.physb.2017.07.053
– volume: 39
  start-page: 6453
  issue: 6
  year: 2013
  ident: 3069_CR23
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2013.01.074
– volume: 500
  start-page: 206
  year: 2010
  ident: 3069_CR38
  publication-title: J. Alloys Compds
  doi: 10.1016/j.jallcom.2010.03.245
– volume: 107
  start-page: 600
  year: 2005
  ident: 3069_CR15
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2004.11.026
– volume: 77
  start-page: 221
  year: 2001
  ident: 3069_CR28
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(01)00716-X
– volume: 239
  start-page: 1185
  year: 2017
  ident: 3069_CR3
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2016.08.130
– volume: 40
  start-page: 8013
  year: 2014
  ident: 3069_CR45
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2013.12.153
– volume: 181
  start-page: 471
  year: 2013
  ident: 3069_CR17
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2013.02.013
– volume: 134
  start-page: 133
  year: 2008
  ident: 3069_CR40
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2008.04.018
– volume: 240
  start-page: 426
  year: 2017
  ident: 3069_CR13
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2016.08.177
– volume: 112
  start-page: 127
  year: 2018
  ident: 3069_CR34
  publication-title: Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2017.09.019
– volume: 38
  start-page: 2685
  year: 2012
  ident: 3069_CR39
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2011.11.036
– volume: 253
  start-page: 630
  year: 2017
  ident: 3069_CR6
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2017.06.155
– volume: 705
  start-page: 427
  year: 2017
  ident: 3069_CR36
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2017.01.268
– volume: 176
  start-page: 600
  year: 2011
  ident: 3069_CR29
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2011.02.002
– volume: 69
  start-page: 22
  year: 2000
  ident: 3069_CR27
  publication-title: Sens Actuators B
  doi: 10.1016/S0925-4005(00)00304-X
– volume: 196
  start-page: 413
  year: 2014
  ident: 3069_CR43
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2014.01.068
– volume: 82
  start-page: 21
  year: 2003
  ident: 3069_CR1
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/S0254-0584(03)00170-6
– volume: 43
  start-page: S535
  year: 2017
  ident: 3069_CR46
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.05.285
– volume: 99
  start-page: 124
  year: 2018
  ident: 3069_CR9
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2017.11.001
– volume: 160
  start-page: 1468
  year: 2011
  ident: 3069_CR7
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2011.07.035
– volume: 19
  start-page: 167
  year: 2019
  ident: 3069_CR12
  publication-title: Sens.
  doi: 10.3390/s19010167
– volume: 87
  start-page: 10
  year: 2004
  ident: 3069_CR19
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2004.06.004
– volume: 1
  start-page: 45
  year: 2016
  ident: 3069_CR37
  publication-title: J. Sci. Adv. Mater. Devices
  doi: 10.1016/j.jsamd.2016.03.003
– volume: 66
  start-page: 178
  year: 2000
  ident: 3069_CR16
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(00)00368-3
– volume: 176
  start-page: 390
  year: 2013
  ident: 3069_CR8
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2012.10.005
– volume: 77
  start-page: 276
  year: 2017
  ident: 3069_CR44
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2017.04.042
– volume: 4
  start-page: 271
  year: 2015
  ident: 3069_CR5
  publication-title: Sens. Sens. Syst.
  doi: 10.5194/jsss-4-271-2015
– volume: 157
  start-page: 183
  year: 2011
  ident: 3069_CR26
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2011.03.047
– volume: 39
  start-page: 6453
  year: 2013
  ident: 3069_CR42
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2013.01.074
– volume: 101
  start-page: 212
  year: 2018
  ident: 3069_CR18
  publication-title: Physics E
  doi: 10.1016/j.physe.2018.04.009
– volume: 192
  start-page: 879
  year: 2017
  ident: 3069_CR32
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2017.07.055
– volume: 115
  start-page: 12763
  year: 2011
  ident: 3069_CR4
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp201816d
– start-page: 102
  volume-title: Elements of X-ray diffraction
  year: 1978
  ident: 3069_CR33
– volume: 220
  start-page: 243
  year: 2015
  ident: 3069_CR35
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2015.05.098
– volume: 27
  start-page: 3109
  year: 2016
  ident: 3069_CR11
  publication-title: J. Mater. Sci
– volume: 77
  start-page: 244
  year: 2001
  ident: 3069_CR30
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(01)00741-9
– volume: 131
  start-page: 183
  year: 2008
  ident: 3069_CR25
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2007.11.002
– volume: 588
  start-page: 592
  year: 2014
  ident: 3069_CR22
  publication-title: J. Alloys Compds
  doi: 10.1016/j.jallcom.2013.10.202
– volume: 239
  start-page: 1051
  year: 2017
  ident: 3069_CR14
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2016.08.080
– volume: 268
  start-page: 188
  year: 2013
  ident: 3069_CR41
  publication-title: Appl. Surface Sci.
  doi: 10.1016/j.apsusc.2012.12.057
– volume: 194
  start-page: 470
  year: 2014
  ident: 3069_CR24
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2013.12.122
– volume: 7
  start-page: 3007
  year: 2017
  ident: 3069_CR20
  publication-title: Res. Phys.
– volume: 40
  start-page: 8013
  year: 2014
  ident: 3069_CR10
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2013.12.153
SSID ssj0006438
Score 2.5136821
Snippet The sol–gel technique was utilized to synthesize α-Fe 2 O 3 nanoparticles in supercritical conditions of ethanol. The morphology and microstructure were...
The sol–gel technique was utilized to synthesize α-Fe2O3 nanoparticles in supercritical conditions of ethanol. The morphology and microstructure were...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5025
SubjectTerms Ammonia
Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystallites
Ethanol
Gas sensors
Gases
Hematite
Low concentrations
Materials Science
Morphology
Nanomaterials
Nanoparticles
Nitrogen dioxide
Operating temperature
Optical and Electronic Materials
Selectivity
Sensors
Sol-gel processes
Synthesis
Transmission electron microscopy
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagLDAgnqJQkAc2iKgfeXRCCFEqJMpCpW6RX62QqqQ0ZSgT_4F_yC_hLnFbQKJLBsf2cHe--2yfvyPk3HHR0hwWYJyENpCMRVjIHT5sEFupwG0yfO_82I06PfnQD_v-wK3waZVzn1g6apsbPCO_4iJC7nCA69fj1wCrRuHtqi-hsU42GEQatPCkfb_wxBBtk4prD7m9OfePZvzTuSSUAW6eEDW3Avk7MC3R5p8L0jLutHfItgeM9KbS8C5Zc9ke2fpBI7hPNCZrjGa0wGR0dF-0-8TpUBVlSz6hGKoszTNaMbROHc1UBrtlnxRHi1kGOLB4eYdeGubJR18fn0M3oguG1wPSa98933YCXzshMCKMpkEY6yhSLHKhCbVi1mjWHChltJODqAW7BAawWsQq1jLRSlnlxEDrppFxaHkrVuKQ1LI8c0eEMqGFkBagmjHSIiYTigPMVXHTKKtlnbC54FLjicWxvsUoXVIio7BTEHZaCjuFMReLMeOKVmNl78ZcH6lfYkW6NIg6uZzraPn7_9mOV892QjZ5ZRZBkzVIbTp5c6cAPKb6rLSub7bI1CY
  priority: 102
  providerName: ProQuest
Title Highly sensitive NO2 gas sensor based on hematite nanoparticles synthesized by sol–gel technique
URI https://link.springer.com/article/10.1007/s10854-020-03069-4
https://www.proquest.com/docview/2366170625
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JSgNBEG00XvQgrrjE0AdvOpDeZibHqFlQE0UN6GnoLSKEiWTiIZ78B__QL7F6liSKCl6mYXo5VHVXvaKrXiN0aCmrKQoHMAiF8TghvnvIHT6kHxguwWwSV-_c6frtHj-_F_d5UVhSZLsXV5KppZ4rdgsF91y443BuzeOLaElA7O72dY_Wp_YXfGyYMew5Rm9K81KZn9f46o5mGPPbtWjqbZpraDWHibie6XUdLdh4A63MkQduIuVSNAYTnLgUdGe0cPeK4keZpH-GI-wclMHDGGe8rGOLYxlDjJynwuFkEgP6S55eYZSCdYaDj7f3RzvAU17XLdRrNu5O217-YoKnmfDHngiU70viW6GFksRoRap9KbWyvO_XIDYgAKZZIAPFQyWlkZb1lapqHghDa4Fk26gUD2O7gzBhijFuAKBpzY1DYkxSALcyqGppFN9FpBBcpHM6cfeqxSCaESE7YUcg7CgVdgRzjqZznjMyjT9Hlwt9RPnBSiLKfEchD1HbLjoudDTr_n21vf8N30fLNNsmXpWUUWk8erEHAD_GqoIWw2argpbqZ53LW9e2Hi4a0J40utc3lXQvfgKS1Na7
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25ThxBEC1xBMYBAhsLDIYO7MgeefuYK7CQBV6Wa52ARDb0tStLqxnMrGUtEf_g_-Cj-BKq5ti1LUFGMsFMdwXV1VWvp6teAbz3QqZG4AaMk9AFivOIGrnjgw9ipzS6TU71zqf9qHeuji7Cizm4a2thKK2y9YmVo3aFpX_kn4WMiDsc4fru1c-AukbR7WrbQqM2i2M_-Y1HtvLL4T6u7wchut_O9npB01UgsDKMxkEYmyjSPPKhDY3mzhreGWhtjVeDKEX8zBFwyljHRiVGa6e9HBjTsSoOnUhjLVHuPCwqKVNKIUy6B1PPj9E9qbn9iEtciKZIpynVS0IV0GGNUHoaqH8D4Qzd_nchW8W57gosNwCVfa0tahXmfP4KXv5FW_gaDCWHjCaspOR3cpes_12woS6rN8U1o9DoWJGzmhF27FmuczydN0l4rJzkiDvLHzc4yqCcYnR_-2foR2zKKLsG58-i1TewkBe5XwfGpZFSOYSG1ipHGFBqgbBaxx2rnVEbwFvFZbYhMqd-GqNsRsFMys5Q2Vml7AznfJzOuappPJ4cvdWuR9Zs6TKbGeAGfGrXaPb5cWlvn5a2Ay96Z6cn2clh_3gTlkRtIkGHb8HC-PqXf4egZ2y2K0tjcPncpv0AA-MTBQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gJkYORnwEkEcf9KQTph8zPXswhAgriK4eJOE29msIyWYGmDVmOfEf_Df8HH-JVfPYVRO5cZnDTHcdqqurvp6u-grgZRByYAVuQJ0lPlKcp9TIHR-80F4ZdJuc6p0_jdKDY_XhJDlZgJu-FobSKnuf2DhqXzn6R74tZErc4QjXt4suLeLL3nDn_CKiDlJ009q302hN5ChMf-DxrX57uIdr_UqI4f7XdwdR12EgcjJJJ1GibZoanobEJdZw7yyPC2OcDapIB4ilOYJPqY22KrPGeBNkYW3slE68GGgjUe49uK9lFlP3hGz4fhYFMNJnLc8f8YoL0RXsdGV7WaIiOrgRYh9E6u-gOEe6_1zONjFv-BgedWCV7bbWtQwLoXwCS39QGD4FS4ki4ymrKRGeXCcbfRbs1NTNm-qSUZj0rCpZyw47Caw0JZ7Uu4Q8Vk9LxKD12RWOsiinGv-6_nkaxmzGLvsMju9Eq89hsazKsAKMSyul8ggTnVOe8KA0AiG20bEz3qpV4L3icteRmlNvjXE-p2MmZeeo7LxRdo5zXs_mnLeUHreOXu_XI--2d53PjXEV3vRrNP_8f2lrt0vbggdo1PnHw9HRC3goWguJYr4Oi5PL72ED8c_EbjaGxuDbXVv2b4mnFzI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+sensitive+NO2+gas+sensor+based+on+hematite+nanoparticles+synthesized+by+sol%E2%80%93gel+technique&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=Hjiri%2C+M.&rft.date=2020-03-01&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=31&rft.issue=6&rft.spage=5025&rft.epage=5031&rft_id=info:doi/10.1007%2Fs10854-020-03069-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10854_020_03069_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon