Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on paracontact geometry

We prove that if an -Einstein para-Kenmotsu manifold admits a conformal -Ricci soliton then it is Einstein. Next, we proved that a para-Kenmotsu metric as a conformal -Ricci soliton is Einstein if its potential vector field is infinitesimal paracontact transformation or collinear with the Reeb vecto...

Full description

Saved in:
Bibliographic Details
Published inOpen mathematics (Warsaw, Poland) Vol. 20; no. 1; pp. 574 - 589
Main Authors Li, Yanlin, Dey, Santu, Pahan, Sampa, Ali, Akram
Format Journal Article
LanguageEnglish
Published Warsaw De Gruyter 09.08.2022
De Gruyter Poland
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We prove that if an -Einstein para-Kenmotsu manifold admits a conformal -Ricci soliton then it is Einstein. Next, we proved that a para-Kenmotsu metric as a conformal -Ricci soliton is Einstein if its potential vector field is infinitesimal paracontact transformation or collinear with the Reeb vector field. Furthermore, we prove that if a para-Kenmotsu manifold admits a gradient conformal -Ricci almost soliton and the Reeb vector field leaves the scalar curvature invariant then it is Einstein. We also construct an example of para-Kenmotsu manifold that admits conformal -Ricci soliton and satisfy our results. We also have studied conformal -Ricci soliton in three-dimensional para-cosymplectic manifolds.
AbstractList We prove that if an η-Einstein para-Kenmotsu manifold admits a conformal η-Ricci soliton then it is Einstein. Next, we proved that a para-Kenmotsu metric as a conformal η-Ricci soliton is Einstein if its potential vector field V is infinitesimal paracontact transformation or collinear with the Reeb vector field. Furthermore, we prove that if a para-Kenmotsu manifold admits a gradient conformal η-Ricci almost soliton and the Reeb vector field leaves the scalar curvature invariant then it is Einstein. We also construct an example of para-Kenmotsu manifold that admits conformal η-Ricci soliton and satisfy our results. We also have studied conformal η-Ricci soliton in three-dimensional para-cosymplectic manifolds.
We prove that if an -Einstein para-Kenmotsu manifold admits a conformal -Ricci soliton then it is Einstein. Next, we proved that a para-Kenmotsu metric as a conformal -Ricci soliton is Einstein if its potential vector field is infinitesimal paracontact transformation or collinear with the Reeb vector field. Furthermore, we prove that if a para-Kenmotsu manifold admits a gradient conformal -Ricci almost soliton and the Reeb vector field leaves the scalar curvature invariant then it is Einstein. We also construct an example of para-Kenmotsu manifold that admits conformal -Ricci soliton and satisfy our results. We also have studied conformal -Ricci soliton in three-dimensional para-cosymplectic manifolds.
We prove that if an η \eta -Einstein para-Kenmotsu manifold admits a conformal η \eta -Ricci soliton then it is Einstein. Next, we proved that a para-Kenmotsu metric as a conformal η \eta -Ricci soliton is Einstein if its potential vector field V V is infinitesimal paracontact transformation or collinear with the Reeb vector field. Furthermore, we prove that if a para-Kenmotsu manifold admits a gradient conformal η \eta -Ricci almost soliton and the Reeb vector field leaves the scalar curvature invariant then it is Einstein. We also construct an example of para-Kenmotsu manifold that admits conformal η \eta -Ricci soliton and satisfy our results. We also have studied conformal η \eta -Ricci soliton in three-dimensional para-cosymplectic manifolds.
We prove that if an η\eta -Einstein para-Kenmotsu manifold admits a conformal η\eta -Ricci soliton then it is Einstein. Next, we proved that a para-Kenmotsu metric as a conformal η\eta -Ricci soliton is Einstein if its potential vector field VV is infinitesimal paracontact transformation or collinear with the Reeb vector field. Furthermore, we prove that if a para-Kenmotsu manifold admits a gradient conformal η\eta -Ricci almost soliton and the Reeb vector field leaves the scalar curvature invariant then it is Einstein. We also construct an example of para-Kenmotsu manifold that admits conformal η\eta -Ricci soliton and satisfy our results. We also have studied conformal η\eta -Ricci soliton in three-dimensional para-cosymplectic manifolds.
Author Li, Yanlin
Ali, Akram
Dey, Santu
Pahan, Sampa
Author_xml – sequence: 1
  givenname: Yanlin
  surname: Li
  fullname: Li, Yanlin
  email: liyl@hznu.edu.cn
  organization: School of Mathematics, Hangzhou Normal University, Hangzhou 311121, China
– sequence: 2
  givenname: Santu
  surname: Dey
  fullname: Dey, Santu
  email: santu.mathju@gmail.com
  organization: Department of Mathematics, Bidhan Chandra College, Asansol 713304, India
– sequence: 3
  givenname: Sampa
  surname: Pahan
  fullname: Pahan, Sampa
  email: sampapahan25@gmail.com
  organization: Department of Mathematics, Mrinalini Datta Mahavidyapith, Kolkata 700 051, India
– sequence: 4
  givenname: Akram
  surname: Ali
  fullname: Ali, Akram
  email: akramali133@gmail.com
  organization: Department of Mathematics, College of Science, King Khalid University, 61421 Abha, Saudi Arabia
BookMark eNp1kV9LHDEUxUNRqFpffR7weWz-3MxkoC8iugpCofge7maSNcvMZJtkKfvJ_BZ-JjOuxSL2KZfk_A4n9xyTgylMlpAzRi-YZPL7iPmx5pTzmlJQX8gRFx2rJUh58M_8lZymtKaUFoa2jB0Rt7BhtDnuquAqEyYX4ohD9fxU__LG-CqFwecwpQqn_rN3HMaQ8rssTNUGIxZlRpOr1Zv7N3LocEj29O08IQ831w9Xt_X9z8Xd1eV9bYRscg22tbikrgXRWSYRlqAcIKeGWUX71jFqoDcItumVQalE0_FGQKv6FrARJ-Rub9sHXOtN9CPGnQ7o9etFiCuNMXszWA2t6bjhrlt2ChRtlqJp0AiAjpmyGlG8zvdemxh-b23Keh22cSrpNW_nFTIloahgrzIxpBSt08ZnzL78P6IfNKN67kfP_ei5Hz33U7CLD9jfsP8FfuyBPzhkG3u7ittdGd5DfQ7yUnXZ5gtGuang
CitedBy_id crossref_primary_10_3390_sym14091879
crossref_primary_10_3390_sym14061203
crossref_primary_10_3390_sym14091899
crossref_primary_10_15672_hujms_1074722
crossref_primary_10_3390_math10142530
crossref_primary_10_2298_FIL2311601D
crossref_primary_10_1142_S0219887824502888
crossref_primary_10_3934_cam_2023037
crossref_primary_10_3390_sym14091914
crossref_primary_10_2989_16073606_2023_2224587
crossref_primary_10_3390_sym14051062
crossref_primary_10_3390_sym14051001
crossref_primary_10_3390_sym14091930
crossref_primary_10_1142_S0129055X24500326
crossref_primary_10_3390_sym14050982
crossref_primary_10_1155_2022_7270446
crossref_primary_10_1007_s44198_022_00088_z
crossref_primary_10_3390_sym14061191
crossref_primary_10_1007_s10114_023_2233_4
crossref_primary_10_3390_sym14101996
crossref_primary_10_3390_sym15010077
crossref_primary_10_3390_universe8110595
crossref_primary_10_3390_sym14122471
crossref_primary_10_3390_axioms11070324
crossref_primary_10_1142_S0219887823501979
crossref_primary_10_1016_j_geomphys_2022_104725
crossref_primary_10_1142_S021988782350041X
crossref_primary_10_1142_S0219887823500305
crossref_primary_10_1142_S0219887823501438
crossref_primary_10_3390_sym14050975
crossref_primary_10_1142_S0129055X23500125
crossref_primary_10_3390_axioms11090461
crossref_primary_10_3390_sym14081730
crossref_primary_10_3390_sym14112251
crossref_primary_10_3390_sym15010206
crossref_primary_10_1155_2022_6605127
crossref_primary_10_1007_s11565_023_00467_4
crossref_primary_10_26637_mjm1104_004
Cites_doi 10.55937/sut/1610320633
10.1142/S0219887819501342
10.5486/PMD.2013.5344
10.1007/s40065-019-00269-7
10.1515/awutm-2017-0009
10.2422/2036-2145.2011.4.01
10.1016/j.geomphys.2021.104339
10.1016/j.geomphys.2022.104513
10.2748/tmj/1178241594
10.1090/conm/071/954419
10.1007/s00009-016-0687-7
10.3934/math.2021541
10.1007/s10455-008-9147-3
10.3390/math9243156
10.1007/s00025-009-0364-2
10.5486/PMD.2015.6078
10.1007/s00009-019-1419-6
10.1007/s10998-019-00303-3
10.2748/tmj/1245849443
10.1080/1726037X.2020.1856339
10.2298/FIL2115001S
10.3934/math.2022300
10.1007/s00605-013-0581-3
10.11650/tjm.19.2015.4094
10.15330/cmp.13.1.110-118
10.1142/0067
10.1007/s00022-008-2004-5
10.2989/16073606.2021.1929539
10.1007/s00009-013-0361-2
10.2298/FIL1814971Z
10.1142/S0219887821500080
10.1088/0264-9381/21/3/011
10.36045/bbms/1547780426
10.1142/S0219887822501213
10.1142/S1793557122500358
10.1016/j.chaos.2011.05.015
10.1155/2021/5777554
10.1017/S0027763000021565
10.21099/tkbjm/1496164721
10.1090/S0002-9939-2011-11029-3
10.15330/cmp.11.1.59-69
10.1155/2021/8554738
10.1142/S0219887810004646
10.36890/iejg.592276
10.2989/16073606.2020.1850538
10.1016/j.geomphys.2015.07.021
ContentType Journal Article
Copyright 2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M2P
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1515/math-2022-0048
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2391-5455
EndPage 589
ExternalDocumentID oai_doaj_org_article_47c92c2f9b984806b366ac34491c0713
10_1515_math_2022_0048
10_1515_math_2022_0048201574
GroupedDBID 5VS
88I
AAFWJ
ABFKT
ABUWG
ACGFS
ADBBV
AENEX
AFBDD
AFKRA
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
CCPQU
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
K7-
KQ8
M2P
M48
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
QD8
SLJYH
AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
Y2W
PUEGO
ID FETCH-LOGICAL-c356t-4e7eab0f7439e15a4b48f4a20c1e80d7f10c4dca4e6d8ca58369263478d74a63
IEDL.DBID DOA
ISSN 2391-5455
IngestDate Wed Aug 27 01:31:43 EDT 2025
Fri Jul 25 03:10:34 EDT 2025
Thu Apr 24 23:05:27 EDT 2025
Tue Jul 01 04:05:18 EDT 2025
Thu Jul 10 10:34:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-4e7eab0f7439e15a4b48f4a20c1e80d7f10c4dca4e6d8ca58369263478d74a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/47c92c2f9b984806b366ac34491c0713
PQID 2700011854
PQPubID 5000747
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_47c92c2f9b984806b366ac34491c0713
proquest_journals_2700011854
crossref_citationtrail_10_1515_math_2022_0048
crossref_primary_10_1515_math_2022_0048
walterdegruyter_journals_10_1515_math_2022_0048201574
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-09
PublicationDateYYYYMMDD 2022-08-09
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-09
  day: 09
PublicationDecade 2020
PublicationPlace Warsaw
PublicationPlace_xml – name: Warsaw
PublicationTitle Open mathematics (Warsaw, Poland)
PublicationYear 2022
Publisher De Gruyter
De Gruyter Poland
Publisher_xml – name: De Gruyter
– name: De Gruyter Poland
References 2022120621035167556_j_math-2022-0048_ref_020
2022120621035167556_j_math-2022-0048_ref_024
2022120621035167556_j_math-2022-0048_ref_023
2022120621035167556_j_math-2022-0048_ref_022
2022120621035167556_j_math-2022-0048_ref_021
2022120621035167556_j_math-2022-0048_ref_028
2022120621035167556_j_math-2022-0048_ref_027
2022120621035167556_j_math-2022-0048_ref_026
2022120621035167556_j_math-2022-0048_ref_025
2022120621035167556_j_math-2022-0048_ref_029
2022120621035167556_j_math-2022-0048_ref_053
2022120621035167556_j_math-2022-0048_ref_052
2022120621035167556_j_math-2022-0048_ref_051
2022120621035167556_j_math-2022-0048_ref_050
2022120621035167556_j_math-2022-0048_ref_013
2022120621035167556_j_math-2022-0048_ref_012
2022120621035167556_j_math-2022-0048_ref_056
2022120621035167556_j_math-2022-0048_ref_011
2022120621035167556_j_math-2022-0048_ref_055
2022120621035167556_j_math-2022-0048_ref_010
2022120621035167556_j_math-2022-0048_ref_054
2022120621035167556_j_math-2022-0048_ref_017
2022120621035167556_j_math-2022-0048_ref_016
2022120621035167556_j_math-2022-0048_ref_015
2022120621035167556_j_math-2022-0048_ref_014
2022120621035167556_j_math-2022-0048_ref_019
2022120621035167556_j_math-2022-0048_ref_018
2022120621035167556_j_math-2022-0048_ref_042
2022120621035167556_j_math-2022-0048_ref_041
2022120621035167556_j_math-2022-0048_ref_040
2022120621035167556_j_math-2022-0048_ref_002
2022120621035167556_j_math-2022-0048_ref_046
2022120621035167556_j_math-2022-0048_ref_001
2022120621035167556_j_math-2022-0048_ref_045
2022120621035167556_j_math-2022-0048_ref_044
2022120621035167556_j_math-2022-0048_ref_043
2022120621035167556_j_math-2022-0048_ref_006
2022120621035167556_j_math-2022-0048_ref_005
2022120621035167556_j_math-2022-0048_ref_049
2022120621035167556_j_math-2022-0048_ref_004
2022120621035167556_j_math-2022-0048_ref_048
2022120621035167556_j_math-2022-0048_ref_003
2022120621035167556_j_math-2022-0048_ref_047
2022120621035167556_j_math-2022-0048_ref_009
2022120621035167556_j_math-2022-0048_ref_008
2022120621035167556_j_math-2022-0048_ref_007
2022120621035167556_j_math-2022-0048_ref_031
2022120621035167556_j_math-2022-0048_ref_030
2022120621035167556_j_math-2022-0048_ref_035
2022120621035167556_j_math-2022-0048_ref_034
2022120621035167556_j_math-2022-0048_ref_033
2022120621035167556_j_math-2022-0048_ref_032
2022120621035167556_j_math-2022-0048_ref_039
2022120621035167556_j_math-2022-0048_ref_038
2022120621035167556_j_math-2022-0048_ref_037
2022120621035167556_j_math-2022-0048_ref_036
References_xml – ident: 2022120621035167556_j_math-2022-0048_ref_016
  doi: 10.55937/sut/1610320633
– ident: 2022120621035167556_j_math-2022-0048_ref_018
  doi: 10.1142/S0219887819501342
– ident: 2022120621035167556_j_math-2022-0048_ref_014
  doi: 10.5486/PMD.2013.5344
– ident: 2022120621035167556_j_math-2022-0048_ref_035
  doi: 10.1007/s40065-019-00269-7
– ident: 2022120621035167556_j_math-2022-0048_ref_032
  doi: 10.1515/awutm-2017-0009
– ident: 2022120621035167556_j_math-2022-0048_ref_002
  doi: 10.2422/2036-2145.2011.4.01
– ident: 2022120621035167556_j_math-2022-0048_ref_030
  doi: 10.1016/j.geomphys.2021.104339
– ident: 2022120621035167556_j_math-2022-0048_ref_043
  doi: 10.1016/j.geomphys.2022.104513
– ident: 2022120621035167556_j_math-2022-0048_ref_049
– ident: 2022120621035167556_j_math-2022-0048_ref_020
  doi: 10.2748/tmj/1178241594
– ident: 2022120621035167556_j_math-2022-0048_ref_001
  doi: 10.1090/conm/071/954419
– ident: 2022120621035167556_j_math-2022-0048_ref_046
  doi: 10.1007/s00009-016-0687-7
– ident: 2022120621035167556_j_math-2022-0048_ref_041
– ident: 2022120621035167556_j_math-2022-0048_ref_039
  doi: 10.3934/math.2021541
– ident: 2022120621035167556_j_math-2022-0048_ref_045
  doi: 10.1007/s10455-008-9147-3
– ident: 2022120621035167556_j_math-2022-0048_ref_038
  doi: 10.3390/math9243156
– ident: 2022120621035167556_j_math-2022-0048_ref_031
– ident: 2022120621035167556_j_math-2022-0048_ref_056
  doi: 10.1007/s00025-009-0364-2
– ident: 2022120621035167556_j_math-2022-0048_ref_044
  doi: 10.5486/PMD.2015.6078
– ident: 2022120621035167556_j_math-2022-0048_ref_054
  doi: 10.1007/s00009-019-1419-6
– ident: 2022120621035167556_j_math-2022-0048_ref_036
  doi: 10.1007/s10998-019-00303-3
– ident: 2022120621035167556_j_math-2022-0048_ref_008
– ident: 2022120621035167556_j_math-2022-0048_ref_005
  doi: 10.2748/tmj/1245849443
– ident: 2022120621035167556_j_math-2022-0048_ref_028
  doi: 10.1080/1726037X.2020.1856339
– ident: 2022120621035167556_j_math-2022-0048_ref_047
  doi: 10.2298/FIL2115001S
– ident: 2022120621035167556_j_math-2022-0048_ref_025
  doi: 10.3934/math.2022300
– ident: 2022120621035167556_j_math-2022-0048_ref_004
  doi: 10.1007/s00605-013-0581-3
– ident: 2022120621035167556_j_math-2022-0048_ref_012
  doi: 10.11650/tjm.19.2015.4094
– ident: 2022120621035167556_j_math-2022-0048_ref_026
  doi: 10.15330/cmp.13.1.110-118
– ident: 2022120621035167556_j_math-2022-0048_ref_048
  doi: 10.1142/0067
– ident: 2022120621035167556_j_math-2022-0048_ref_010
  doi: 10.1007/s00022-008-2004-5
– ident: 2022120621035167556_j_math-2022-0048_ref_009
– ident: 2022120621035167556_j_math-2022-0048_ref_017
  doi: 10.2989/16073606.2021.1929539
– ident: 2022120621035167556_j_math-2022-0048_ref_019
  doi: 10.1007/s00009-013-0361-2
– ident: 2022120621035167556_j_math-2022-0048_ref_021
  doi: 10.2298/FIL1814971Z
– ident: 2022120621035167556_j_math-2022-0048_ref_037
  doi: 10.1142/S0219887821500080
– ident: 2022120621035167556_j_math-2022-0048_ref_007
  doi: 10.1088/0264-9381/21/3/011
– ident: 2022120621035167556_j_math-2022-0048_ref_022
  doi: 10.36045/bbms/1547780426
– ident: 2022120621035167556_j_math-2022-0048_ref_027
  doi: 10.1142/S0219887822501213
– ident: 2022120621035167556_j_math-2022-0048_ref_033
– ident: 2022120621035167556_j_math-2022-0048_ref_029
  doi: 10.1142/S1793557122500358
– ident: 2022120621035167556_j_math-2022-0048_ref_013
  doi: 10.1016/j.chaos.2011.05.015
– ident: 2022120621035167556_j_math-2022-0048_ref_006
– ident: 2022120621035167556_j_math-2022-0048_ref_040
  doi: 10.1155/2021/5777554
– ident: 2022120621035167556_j_math-2022-0048_ref_053
  doi: 10.1017/S0027763000021565
– ident: 2022120621035167556_j_math-2022-0048_ref_023
– ident: 2022120621035167556_j_math-2022-0048_ref_050
  doi: 10.21099/tkbjm/1496164721
– ident: 2022120621035167556_j_math-2022-0048_ref_003
  doi: 10.1090/S0002-9939-2011-11029-3
– ident: 2022120621035167556_j_math-2022-0048_ref_052
  doi: 10.15330/cmp.11.1.59-69
– ident: 2022120621035167556_j_math-2022-0048_ref_042
  doi: 10.1155/2021/8554738
– ident: 2022120621035167556_j_math-2022-0048_ref_011
  doi: 10.1142/S0219887810004646
– ident: 2022120621035167556_j_math-2022-0048_ref_055
  doi: 10.36890/iejg.592276
– ident: 2022120621035167556_j_math-2022-0048_ref_024
  doi: 10.2989/16073606.2020.1850538
– ident: 2022120621035167556_j_math-2022-0048_ref_051
– ident: 2022120621035167556_j_math-2022-0048_ref_015
  doi: 10.1016/j.geomphys.2015.07.021
– ident: 2022120621035167556_j_math-2022-0048_ref_034
SSID ssj0001510711
Score 2.4256692
Snippet We prove that if an -Einstein para-Kenmotsu manifold admits a conformal -Ricci soliton then it is Einstein. Next, we proved that a para-Kenmotsu metric as a...
We prove that if an η \eta -Einstein para-Kenmotsu manifold admits a conformal η \eta -Ricci soliton then it is Einstein. Next, we proved that a para-Kenmotsu...
We prove that if an η-Einstein para-Kenmotsu manifold admits a conformal η-Ricci soliton then it is Einstein. Next, we proved that a para-Kenmotsu metric as a...
We prove that if an η\eta -Einstein para-Kenmotsu manifold admits a conformal η\eta -Ricci soliton then it is Einstein. Next, we proved that a para-Kenmotsu...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 574
SubjectTerms 53C15
53C25
53D15
conformal η-Ricci soliton
Einstein manifold
Fields (mathematics)
infinitesimal contact transformation
Kenmotsu manifold
Manifolds (mathematics)
para-cosymplectic manifold
Solitary waves
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fSxwxEA-tvtgH0VbptSp5KPi0uNnMZrNPpYp_KCgiFnwL-XsVzl29XSl-sn6LfqZm9nJ3KLavu0MIM7-ZzGQmM4R8gYiDIDxkTBcxQAFnMm28j-puC1cxL3yO753PL8TZD_h-U96kC7culVXObeJgqF1r8Y78ABOk-EqyhK_3DxlOjcLsahqh8ZasRhMsY_C1enh8cXm1vGWJkKsYS90a49l9EP3AnxEaMQRD8D47jYam_c88zfVfQ87a-fH08amf50iHo-dkg6wnn5F-mwl5k7zxzXvy7nzRcLX7QMKpb-98P32ibaAxxB1c0Qn98zu7urX2lnZY5hYBRnXjXvuvJ3dt1y_J2oZiU3AsZNe2p-O0-ha5Pjm-PjrL0giFzPJS9Bn4ymuTBww7PCs1GJABdJFb5mXuqsByC85q8MJJq0vJRV0IDpV0FWjBt8lK0zb-I6GBGSTkgVsOpebRitoQ6rw2QXMjxYhkc04qm9qL45SLicIwI3JeIecVcl4h50dkf0F_P2us8U_KQxTMggobYg8f2ulYJf1SUNm6sEWoTS1B5sJwIXTcKdTMYiA-IjtzsaqkpZ1aYmpEyheiXlK9vqvoOJUVfPr_sp_J2gxqWGKyQ1b66aPfjU5Mb_YSUv8Coub0zw
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUKvcABQQGxQCsfKvWUNo7HTnJACKpSVGl7QCBxs2zHXpCWBLJBsL-Mf8FvwpPN7gq63HpNJitrPtbvyeM3hHyFkAdeOoiYTgJBgcJE2jgXyt0mRcqcdDHed-7_lacX8OdSXM77nzoHjhZSO5wndVEPvz_ejQ9DwR-003uY-BGg3VWIdmBVmI9L5GPYlVIs0n4H9Sc3hgPRYazTbfz3s1f7Uivf_wpzrj20p9eFG9T342Z6WtpuQifrZK1Dj_RoEu4N8sGVn8hqfya9Otok_rerblxTj2nlaSC7LSgd0uen6Oza2ms6woa3kGpUl8Wi93p4U42auVlVUpQHx5Z2bRs66H59i5yf_Dr_eRp1wxQiy4VsInCp0yb2SEAcExoMZB50ElvmsrhIPYstFFaDk0Vmtci4zBPJIc2KFLTk22S5rEq3Q6hnBg2555aD0Dz8n1rv8zg3XnOTyR6Jpp5UthMax3kXQ4WEI3heoecVel6h53vk28z-diKx8a7lMQZmZoXS2O2Dqh6ortIUpDZPbOJzk2eQxdJwKXVYKeTMIiXvkf1pWNU03RQev-MdXAE9It6Eem61eFUBQokUdv_H2vbIyiQhsSVlnyw39b37HEBPY7602fwCLQsC3A
  priority: 102
  providerName: Scholars Portal
Title Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on paracontact geometry
URI https://www.degruyter.com/doi/10.1515/math-2022-0048
https://www.proquest.com/docview/2700011854
https://doaj.org/article/47c92c2f9b984806b366ac34491c0713
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELVaeqEHVGhRt6UrH5A4RcTxxHGOpWJBSIsqBBI3y3ZsirQk1W5QxZf1L_gmZpLsAhVVL73kkIwia-bZM08ePzO2C4iDqAIkwmZIUKByiXUh4HT3WVWIoEJK552np-r4Ak4u88snV31RT1gvD9w7bh8KX2Y-i6UrNehUOamU9RKgFJ4YFq2-mPOekKn-fDDSGiEGlUbM2ftY__1ASCD1ItA-y0KdWP-zCnPjV7dXXYWr-e1du9wb7VLO5B3bGGpF_rUf4yZ7Feot9na6ElpdvGfxKDQ3oZ3f8SZypLZdCTrj97-Ts2vvr_mC2tsQWNzW1Uvf7eymWbSPZk3NSQycGtitb_nV8PcP7HxyeP7tOBmuTki8zFWbQCiCdWkkuhFEbsGBjmCz1Iug06qIIvVQeQtBVdrbXEtVZkpCoasCrJLbbK1u6vCR8SgcGcoo0em5lbh6-hjLtHTRSqfViCVLTxo_yIrT7RYzQ_QCPW_I84Y8b8jzI7a3sv_ZC2r81fKAArOyIiHs7gXCwwzwMP-Cx4jtLMNqhtm5MLTZTiducxix_I9QP1q9PCosmPICPv2PsX1m6z0gqQFlh62189vwBUuc1o3Zaz05GrM3B4en38_GHbbxOQX9AHXD_gg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOFb_qlgI-gDhFTeKJkxwQ4m-7pd0e0CL1ZtmOvVTaJu0mVbUPxZm34JnwZJNdFRVuvSYjy5r5ZjzjGc8AvEaPAycsBpGKfYCChQ6Uttaru4mLNLLChvTeeXwsRt_x60lysgE_-7cwVFbZ28TWUBeVoTvyPUqQ0ivJBN-fXwQ0NYqyq_0IjSUsDu3iyods9buDz16-b-J4-GXyaRR0UwUCwxPRBGhTq3ToyBO3UaJQY-ZQxaGJbBYWqYtCg4VRaEWRGZVkXOSx4JhmRYpKcL_sHbiLnOekUNlwf32l4_GdRlHXGtI7Cnve6fzhcejjPdKUa0dfOyHgmlu7ddUmyAs7nV8umj4h255zw4ew1Tmo7MMSUY9gw5aP4cF41d21fgJu31ZntpkvWOWYj6dbv3fGfv8Kvp0ac8pqqqnzaGaqLG76r2ZnVd2syaqSUQdyqppXpmHTbvWnMLkNzj6DzbIq7TYwF2ki5I4bjoni3mQb5_Iw105xnYkBBD0npel6mdNIjZmkmMZzXhLnJXFeEucH8HZFf77s4vFPyo8kmBUVdd9uP1TzqeyUWWJq8tjELtd5hlkoNBdC-Z1iHhmK-gew24tVdiahlmsADyD5S9Rrqpt35b20JMWd_y_7Cu6NJuMjeXRwfPgc7i9hR7Utu7DZzC_tC-89Nfpli1kG8pZ15A_qHS_E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgKyE4VDzVhQI-IHGKNo4nTnIsj-1CaUFQJG6Wn8tK26TaZIX6y_gX_CY8u94shXLpNRlH1sw3mRl7_JmQFxBw4IWDhKksFChgdaK0c8HdTWYL5oRL8bzz8YmYfIX33_JNN2Eb2yqtmy6WF92aIXVkG7PEhbKeayBE4FHI5r4HA4dCCiE4Orf-JtkRouIwIDsHk8MvH7cLLQF1BWORsPHfwZcC0oq3_1KyuftjtW3dz-mP6DO-S3Zj2kgP1na-R264-j65c9xzrrYPiD90zZnrFhe08TRUuatsdE5__Uw-z4yZ0RY73QLGqKrtVe_V_Kxpu61YU1PkBcdedmU6Oo1ff0hOx29PX0-SeItCYnguugRc4ZROPVYejuUKNJQeVJYa5srUFp6lBqxR4IQtjcpLLqpMcChKW4AS_BEZ1E3t9gj1TKMg99xwyBUPP1LjfZVW2iuuSzEkyUaT0kSGcbzoYi6x0gial6h5iZqXqPkhednLn6-5Nf4r-QoN00shJ_bqQbOYyuhiEgpTZSbzla5KKFOhuRAqzBQqZrAWH5L9jVlldNRW4r47Hr7NYUjyv0y9lbp6ViF3ygt4fM1xz8mtT2_G8sO7k6Mn5PYajtiJsk8G3WLpnoZcp9PPIpp_A5nw_qk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometry+of+conformal+%CE%B7-Ricci+solitons+and+conformal+%CE%B7-Ricci+almost+solitons+on+paracontact+geometry&rft.jtitle=Open+mathematics+%28Warsaw%2C+Poland%29&rft.au=Li+Yanlin&rft.au=Dey+Santu&rft.au=Pahan+Sampa&rft.au=Ali+Akram&rft.date=2022-08-09&rft.pub=De+Gruyter&rft.eissn=2391-5455&rft.volume=20&rft.issue=1&rft.spage=574&rft.epage=589&rft_id=info:doi/10.1515%2Fmath-2022-0048&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_47c92c2f9b984806b366ac34491c0713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2391-5455&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2391-5455&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2391-5455&client=summon