Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on paracontact geometry
We prove that if an -Einstein para-Kenmotsu manifold admits a conformal -Ricci soliton then it is Einstein. Next, we proved that a para-Kenmotsu metric as a conformal -Ricci soliton is Einstein if its potential vector field is infinitesimal paracontact transformation or collinear with the Reeb vecto...
Saved in:
Published in | Open mathematics (Warsaw, Poland) Vol. 20; no. 1; pp. 574 - 589 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Warsaw
De Gruyter
09.08.2022
De Gruyter Poland |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We prove that if an
-Einstein para-Kenmotsu manifold admits a conformal
-Ricci soliton then it is Einstein. Next, we proved that a para-Kenmotsu metric as a conformal
-Ricci soliton is Einstein if its potential vector field
is infinitesimal paracontact transformation or collinear with the Reeb vector field. Furthermore, we prove that if a para-Kenmotsu manifold admits a gradient conformal
-Ricci almost soliton and the Reeb vector field leaves the scalar curvature invariant then it is Einstein. We also construct an example of para-Kenmotsu manifold that admits conformal
-Ricci soliton and satisfy our results. We also have studied conformal
-Ricci soliton in three-dimensional para-cosymplectic manifolds. |
---|---|
AbstractList | We prove that if an η-Einstein para-Kenmotsu manifold admits a conformal η-Ricci soliton then it is Einstein. Next, we proved that a para-Kenmotsu metric as a conformal η-Ricci soliton is Einstein if its potential vector field V is infinitesimal paracontact transformation or collinear with the Reeb vector field. Furthermore, we prove that if a para-Kenmotsu manifold admits a gradient conformal η-Ricci almost soliton and the Reeb vector field leaves the scalar curvature invariant then it is Einstein. We also construct an example of para-Kenmotsu manifold that admits conformal η-Ricci soliton and satisfy our results. We also have studied conformal η-Ricci soliton in three-dimensional para-cosymplectic manifolds. We prove that if an -Einstein para-Kenmotsu manifold admits a conformal -Ricci soliton then it is Einstein. Next, we proved that a para-Kenmotsu metric as a conformal -Ricci soliton is Einstein if its potential vector field is infinitesimal paracontact transformation or collinear with the Reeb vector field. Furthermore, we prove that if a para-Kenmotsu manifold admits a gradient conformal -Ricci almost soliton and the Reeb vector field leaves the scalar curvature invariant then it is Einstein. We also construct an example of para-Kenmotsu manifold that admits conformal -Ricci soliton and satisfy our results. We also have studied conformal -Ricci soliton in three-dimensional para-cosymplectic manifolds. We prove that if an η \eta -Einstein para-Kenmotsu manifold admits a conformal η \eta -Ricci soliton then it is Einstein. Next, we proved that a para-Kenmotsu metric as a conformal η \eta -Ricci soliton is Einstein if its potential vector field V V is infinitesimal paracontact transformation or collinear with the Reeb vector field. Furthermore, we prove that if a para-Kenmotsu manifold admits a gradient conformal η \eta -Ricci almost soliton and the Reeb vector field leaves the scalar curvature invariant then it is Einstein. We also construct an example of para-Kenmotsu manifold that admits conformal η \eta -Ricci soliton and satisfy our results. We also have studied conformal η \eta -Ricci soliton in three-dimensional para-cosymplectic manifolds. We prove that if an η\eta -Einstein para-Kenmotsu manifold admits a conformal η\eta -Ricci soliton then it is Einstein. Next, we proved that a para-Kenmotsu metric as a conformal η\eta -Ricci soliton is Einstein if its potential vector field VV is infinitesimal paracontact transformation or collinear with the Reeb vector field. Furthermore, we prove that if a para-Kenmotsu manifold admits a gradient conformal η\eta -Ricci almost soliton and the Reeb vector field leaves the scalar curvature invariant then it is Einstein. We also construct an example of para-Kenmotsu manifold that admits conformal η\eta -Ricci soliton and satisfy our results. We also have studied conformal η\eta -Ricci soliton in three-dimensional para-cosymplectic manifolds. |
Author | Li, Yanlin Ali, Akram Dey, Santu Pahan, Sampa |
Author_xml | – sequence: 1 givenname: Yanlin surname: Li fullname: Li, Yanlin email: liyl@hznu.edu.cn organization: School of Mathematics, Hangzhou Normal University, Hangzhou 311121, China – sequence: 2 givenname: Santu surname: Dey fullname: Dey, Santu email: santu.mathju@gmail.com organization: Department of Mathematics, Bidhan Chandra College, Asansol 713304, India – sequence: 3 givenname: Sampa surname: Pahan fullname: Pahan, Sampa email: sampapahan25@gmail.com organization: Department of Mathematics, Mrinalini Datta Mahavidyapith, Kolkata 700 051, India – sequence: 4 givenname: Akram surname: Ali fullname: Ali, Akram email: akramali133@gmail.com organization: Department of Mathematics, College of Science, King Khalid University, 61421 Abha, Saudi Arabia |
BookMark | eNp1kV9LHDEUxUNRqFpffR7weWz-3MxkoC8iugpCofge7maSNcvMZJtkKfvJ_BZ-JjOuxSL2KZfk_A4n9xyTgylMlpAzRi-YZPL7iPmx5pTzmlJQX8gRFx2rJUh58M_8lZymtKaUFoa2jB0Rt7BhtDnuquAqEyYX4ohD9fxU__LG-CqFwecwpQqn_rN3HMaQ8rssTNUGIxZlRpOr1Zv7N3LocEj29O08IQ831w9Xt_X9z8Xd1eV9bYRscg22tbikrgXRWSYRlqAcIKeGWUX71jFqoDcItumVQalE0_FGQKv6FrARJ-Rub9sHXOtN9CPGnQ7o9etFiCuNMXszWA2t6bjhrlt2ChRtlqJp0AiAjpmyGlG8zvdemxh-b23Keh22cSrpNW_nFTIloahgrzIxpBSt08ZnzL78P6IfNKN67kfP_ei5Hz33U7CLD9jfsP8FfuyBPzhkG3u7ittdGd5DfQ7yUnXZ5gtGuang |
CitedBy_id | crossref_primary_10_3390_sym14091879 crossref_primary_10_3390_sym14061203 crossref_primary_10_3390_sym14091899 crossref_primary_10_15672_hujms_1074722 crossref_primary_10_3390_math10142530 crossref_primary_10_2298_FIL2311601D crossref_primary_10_1142_S0219887824502888 crossref_primary_10_3934_cam_2023037 crossref_primary_10_3390_sym14091914 crossref_primary_10_2989_16073606_2023_2224587 crossref_primary_10_3390_sym14051062 crossref_primary_10_3390_sym14051001 crossref_primary_10_3390_sym14091930 crossref_primary_10_1142_S0129055X24500326 crossref_primary_10_3390_sym14050982 crossref_primary_10_1155_2022_7270446 crossref_primary_10_1007_s44198_022_00088_z crossref_primary_10_3390_sym14061191 crossref_primary_10_1007_s10114_023_2233_4 crossref_primary_10_3390_sym14101996 crossref_primary_10_3390_sym15010077 crossref_primary_10_3390_universe8110595 crossref_primary_10_3390_sym14122471 crossref_primary_10_3390_axioms11070324 crossref_primary_10_1142_S0219887823501979 crossref_primary_10_1016_j_geomphys_2022_104725 crossref_primary_10_1142_S021988782350041X crossref_primary_10_1142_S0219887823500305 crossref_primary_10_1142_S0219887823501438 crossref_primary_10_3390_sym14050975 crossref_primary_10_1142_S0129055X23500125 crossref_primary_10_3390_axioms11090461 crossref_primary_10_3390_sym14081730 crossref_primary_10_3390_sym14112251 crossref_primary_10_3390_sym15010206 crossref_primary_10_1155_2022_6605127 crossref_primary_10_1007_s11565_023_00467_4 crossref_primary_10_26637_mjm1104_004 |
Cites_doi | 10.55937/sut/1610320633 10.1142/S0219887819501342 10.5486/PMD.2013.5344 10.1007/s40065-019-00269-7 10.1515/awutm-2017-0009 10.2422/2036-2145.2011.4.01 10.1016/j.geomphys.2021.104339 10.1016/j.geomphys.2022.104513 10.2748/tmj/1178241594 10.1090/conm/071/954419 10.1007/s00009-016-0687-7 10.3934/math.2021541 10.1007/s10455-008-9147-3 10.3390/math9243156 10.1007/s00025-009-0364-2 10.5486/PMD.2015.6078 10.1007/s00009-019-1419-6 10.1007/s10998-019-00303-3 10.2748/tmj/1245849443 10.1080/1726037X.2020.1856339 10.2298/FIL2115001S 10.3934/math.2022300 10.1007/s00605-013-0581-3 10.11650/tjm.19.2015.4094 10.15330/cmp.13.1.110-118 10.1142/0067 10.1007/s00022-008-2004-5 10.2989/16073606.2021.1929539 10.1007/s00009-013-0361-2 10.2298/FIL1814971Z 10.1142/S0219887821500080 10.1088/0264-9381/21/3/011 10.36045/bbms/1547780426 10.1142/S0219887822501213 10.1142/S1793557122500358 10.1016/j.chaos.2011.05.015 10.1155/2021/5777554 10.1017/S0027763000021565 10.21099/tkbjm/1496164721 10.1090/S0002-9939-2011-11029-3 10.15330/cmp.11.1.59-69 10.1155/2021/8554738 10.1142/S0219887810004646 10.36890/iejg.592276 10.2989/16073606.2020.1850538 10.1016/j.geomphys.2015.07.021 |
ContentType | Journal Article |
Copyright | 2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M2P P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1515/math-2022-0048 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2391-5455 |
EndPage | 589 |
ExternalDocumentID | oai_doaj_org_article_47c92c2f9b984806b366ac34491c0713 10_1515_math_2022_0048 10_1515_math_2022_0048201574 |
GroupedDBID | 5VS 88I AAFWJ ABFKT ABUWG ACGFS ADBBV AENEX AFBDD AFKRA AFPKN AHGSO ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ K7- KQ8 M2P M48 M~E OK1 PHGZM PHGZT PIMPY PQGLB QD8 SLJYH AAYXX CITATION 3V. 7XB 8FE 8FG 8FK JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U Y2W PUEGO |
ID | FETCH-LOGICAL-c356t-4e7eab0f7439e15a4b48f4a20c1e80d7f10c4dca4e6d8ca58369263478d74a63 |
IEDL.DBID | DOA |
ISSN | 2391-5455 |
IngestDate | Wed Aug 27 01:31:43 EDT 2025 Fri Jul 25 03:10:34 EDT 2025 Thu Apr 24 23:05:27 EDT 2025 Tue Jul 01 04:05:18 EDT 2025 Thu Jul 10 10:34:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-4e7eab0f7439e15a4b48f4a20c1e80d7f10c4dca4e6d8ca58369263478d74a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/47c92c2f9b984806b366ac34491c0713 |
PQID | 2700011854 |
PQPubID | 5000747 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_47c92c2f9b984806b366ac34491c0713 proquest_journals_2700011854 crossref_citationtrail_10_1515_math_2022_0048 crossref_primary_10_1515_math_2022_0048 walterdegruyter_journals_10_1515_math_2022_0048201574 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-09 |
PublicationDateYYYYMMDD | 2022-08-09 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Warsaw |
PublicationPlace_xml | – name: Warsaw |
PublicationTitle | Open mathematics (Warsaw, Poland) |
PublicationYear | 2022 |
Publisher | De Gruyter De Gruyter Poland |
Publisher_xml | – name: De Gruyter – name: De Gruyter Poland |
References | 2022120621035167556_j_math-2022-0048_ref_020 2022120621035167556_j_math-2022-0048_ref_024 2022120621035167556_j_math-2022-0048_ref_023 2022120621035167556_j_math-2022-0048_ref_022 2022120621035167556_j_math-2022-0048_ref_021 2022120621035167556_j_math-2022-0048_ref_028 2022120621035167556_j_math-2022-0048_ref_027 2022120621035167556_j_math-2022-0048_ref_026 2022120621035167556_j_math-2022-0048_ref_025 2022120621035167556_j_math-2022-0048_ref_029 2022120621035167556_j_math-2022-0048_ref_053 2022120621035167556_j_math-2022-0048_ref_052 2022120621035167556_j_math-2022-0048_ref_051 2022120621035167556_j_math-2022-0048_ref_050 2022120621035167556_j_math-2022-0048_ref_013 2022120621035167556_j_math-2022-0048_ref_012 2022120621035167556_j_math-2022-0048_ref_056 2022120621035167556_j_math-2022-0048_ref_011 2022120621035167556_j_math-2022-0048_ref_055 2022120621035167556_j_math-2022-0048_ref_010 2022120621035167556_j_math-2022-0048_ref_054 2022120621035167556_j_math-2022-0048_ref_017 2022120621035167556_j_math-2022-0048_ref_016 2022120621035167556_j_math-2022-0048_ref_015 2022120621035167556_j_math-2022-0048_ref_014 2022120621035167556_j_math-2022-0048_ref_019 2022120621035167556_j_math-2022-0048_ref_018 2022120621035167556_j_math-2022-0048_ref_042 2022120621035167556_j_math-2022-0048_ref_041 2022120621035167556_j_math-2022-0048_ref_040 2022120621035167556_j_math-2022-0048_ref_002 2022120621035167556_j_math-2022-0048_ref_046 2022120621035167556_j_math-2022-0048_ref_001 2022120621035167556_j_math-2022-0048_ref_045 2022120621035167556_j_math-2022-0048_ref_044 2022120621035167556_j_math-2022-0048_ref_043 2022120621035167556_j_math-2022-0048_ref_006 2022120621035167556_j_math-2022-0048_ref_005 2022120621035167556_j_math-2022-0048_ref_049 2022120621035167556_j_math-2022-0048_ref_004 2022120621035167556_j_math-2022-0048_ref_048 2022120621035167556_j_math-2022-0048_ref_003 2022120621035167556_j_math-2022-0048_ref_047 2022120621035167556_j_math-2022-0048_ref_009 2022120621035167556_j_math-2022-0048_ref_008 2022120621035167556_j_math-2022-0048_ref_007 2022120621035167556_j_math-2022-0048_ref_031 2022120621035167556_j_math-2022-0048_ref_030 2022120621035167556_j_math-2022-0048_ref_035 2022120621035167556_j_math-2022-0048_ref_034 2022120621035167556_j_math-2022-0048_ref_033 2022120621035167556_j_math-2022-0048_ref_032 2022120621035167556_j_math-2022-0048_ref_039 2022120621035167556_j_math-2022-0048_ref_038 2022120621035167556_j_math-2022-0048_ref_037 2022120621035167556_j_math-2022-0048_ref_036 |
References_xml | – ident: 2022120621035167556_j_math-2022-0048_ref_016 doi: 10.55937/sut/1610320633 – ident: 2022120621035167556_j_math-2022-0048_ref_018 doi: 10.1142/S0219887819501342 – ident: 2022120621035167556_j_math-2022-0048_ref_014 doi: 10.5486/PMD.2013.5344 – ident: 2022120621035167556_j_math-2022-0048_ref_035 doi: 10.1007/s40065-019-00269-7 – ident: 2022120621035167556_j_math-2022-0048_ref_032 doi: 10.1515/awutm-2017-0009 – ident: 2022120621035167556_j_math-2022-0048_ref_002 doi: 10.2422/2036-2145.2011.4.01 – ident: 2022120621035167556_j_math-2022-0048_ref_030 doi: 10.1016/j.geomphys.2021.104339 – ident: 2022120621035167556_j_math-2022-0048_ref_043 doi: 10.1016/j.geomphys.2022.104513 – ident: 2022120621035167556_j_math-2022-0048_ref_049 – ident: 2022120621035167556_j_math-2022-0048_ref_020 doi: 10.2748/tmj/1178241594 – ident: 2022120621035167556_j_math-2022-0048_ref_001 doi: 10.1090/conm/071/954419 – ident: 2022120621035167556_j_math-2022-0048_ref_046 doi: 10.1007/s00009-016-0687-7 – ident: 2022120621035167556_j_math-2022-0048_ref_041 – ident: 2022120621035167556_j_math-2022-0048_ref_039 doi: 10.3934/math.2021541 – ident: 2022120621035167556_j_math-2022-0048_ref_045 doi: 10.1007/s10455-008-9147-3 – ident: 2022120621035167556_j_math-2022-0048_ref_038 doi: 10.3390/math9243156 – ident: 2022120621035167556_j_math-2022-0048_ref_031 – ident: 2022120621035167556_j_math-2022-0048_ref_056 doi: 10.1007/s00025-009-0364-2 – ident: 2022120621035167556_j_math-2022-0048_ref_044 doi: 10.5486/PMD.2015.6078 – ident: 2022120621035167556_j_math-2022-0048_ref_054 doi: 10.1007/s00009-019-1419-6 – ident: 2022120621035167556_j_math-2022-0048_ref_036 doi: 10.1007/s10998-019-00303-3 – ident: 2022120621035167556_j_math-2022-0048_ref_008 – ident: 2022120621035167556_j_math-2022-0048_ref_005 doi: 10.2748/tmj/1245849443 – ident: 2022120621035167556_j_math-2022-0048_ref_028 doi: 10.1080/1726037X.2020.1856339 – ident: 2022120621035167556_j_math-2022-0048_ref_047 doi: 10.2298/FIL2115001S – ident: 2022120621035167556_j_math-2022-0048_ref_025 doi: 10.3934/math.2022300 – ident: 2022120621035167556_j_math-2022-0048_ref_004 doi: 10.1007/s00605-013-0581-3 – ident: 2022120621035167556_j_math-2022-0048_ref_012 doi: 10.11650/tjm.19.2015.4094 – ident: 2022120621035167556_j_math-2022-0048_ref_026 doi: 10.15330/cmp.13.1.110-118 – ident: 2022120621035167556_j_math-2022-0048_ref_048 doi: 10.1142/0067 – ident: 2022120621035167556_j_math-2022-0048_ref_010 doi: 10.1007/s00022-008-2004-5 – ident: 2022120621035167556_j_math-2022-0048_ref_009 – ident: 2022120621035167556_j_math-2022-0048_ref_017 doi: 10.2989/16073606.2021.1929539 – ident: 2022120621035167556_j_math-2022-0048_ref_019 doi: 10.1007/s00009-013-0361-2 – ident: 2022120621035167556_j_math-2022-0048_ref_021 doi: 10.2298/FIL1814971Z – ident: 2022120621035167556_j_math-2022-0048_ref_037 doi: 10.1142/S0219887821500080 – ident: 2022120621035167556_j_math-2022-0048_ref_007 doi: 10.1088/0264-9381/21/3/011 – ident: 2022120621035167556_j_math-2022-0048_ref_022 doi: 10.36045/bbms/1547780426 – ident: 2022120621035167556_j_math-2022-0048_ref_027 doi: 10.1142/S0219887822501213 – ident: 2022120621035167556_j_math-2022-0048_ref_033 – ident: 2022120621035167556_j_math-2022-0048_ref_029 doi: 10.1142/S1793557122500358 – ident: 2022120621035167556_j_math-2022-0048_ref_013 doi: 10.1016/j.chaos.2011.05.015 – ident: 2022120621035167556_j_math-2022-0048_ref_006 – ident: 2022120621035167556_j_math-2022-0048_ref_040 doi: 10.1155/2021/5777554 – ident: 2022120621035167556_j_math-2022-0048_ref_053 doi: 10.1017/S0027763000021565 – ident: 2022120621035167556_j_math-2022-0048_ref_023 – ident: 2022120621035167556_j_math-2022-0048_ref_050 doi: 10.21099/tkbjm/1496164721 – ident: 2022120621035167556_j_math-2022-0048_ref_003 doi: 10.1090/S0002-9939-2011-11029-3 – ident: 2022120621035167556_j_math-2022-0048_ref_052 doi: 10.15330/cmp.11.1.59-69 – ident: 2022120621035167556_j_math-2022-0048_ref_042 doi: 10.1155/2021/8554738 – ident: 2022120621035167556_j_math-2022-0048_ref_011 doi: 10.1142/S0219887810004646 – ident: 2022120621035167556_j_math-2022-0048_ref_055 doi: 10.36890/iejg.592276 – ident: 2022120621035167556_j_math-2022-0048_ref_024 doi: 10.2989/16073606.2020.1850538 – ident: 2022120621035167556_j_math-2022-0048_ref_051 – ident: 2022120621035167556_j_math-2022-0048_ref_015 doi: 10.1016/j.geomphys.2015.07.021 – ident: 2022120621035167556_j_math-2022-0048_ref_034 |
SSID | ssj0001510711 |
Score | 2.4256692 |
Snippet | We prove that if an
-Einstein para-Kenmotsu manifold admits a conformal
-Ricci soliton then it is Einstein. Next, we proved that a para-Kenmotsu metric as a... We prove that if an η \eta -Einstein para-Kenmotsu manifold admits a conformal η \eta -Ricci soliton then it is Einstein. Next, we proved that a para-Kenmotsu... We prove that if an η-Einstein para-Kenmotsu manifold admits a conformal η-Ricci soliton then it is Einstein. Next, we proved that a para-Kenmotsu metric as a... We prove that if an η\eta -Einstein para-Kenmotsu manifold admits a conformal η\eta -Ricci soliton then it is Einstein. Next, we proved that a para-Kenmotsu... |
SourceID | doaj proquest crossref walterdegruyter |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 574 |
SubjectTerms | 53C15 53C25 53D15 conformal η-Ricci soliton Einstein manifold Fields (mathematics) infinitesimal contact transformation Kenmotsu manifold Manifolds (mathematics) para-cosymplectic manifold Solitary waves |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fSxwxEA-tvtgH0VbptSp5KPi0uNnMZrNPpYp_KCgiFnwL-XsVzl29XSl-sn6LfqZm9nJ3KLavu0MIM7-ZzGQmM4R8gYiDIDxkTBcxQAFnMm28j-puC1cxL3yO753PL8TZD_h-U96kC7culVXObeJgqF1r8Y78ABOk-EqyhK_3DxlOjcLsahqh8ZasRhMsY_C1enh8cXm1vGWJkKsYS90a49l9EP3AnxEaMQRD8D47jYam_c88zfVfQ87a-fH08amf50iHo-dkg6wnn5F-mwl5k7zxzXvy7nzRcLX7QMKpb-98P32ibaAxxB1c0Qn98zu7urX2lnZY5hYBRnXjXvuvJ3dt1y_J2oZiU3AsZNe2p-O0-ha5Pjm-PjrL0giFzPJS9Bn4ymuTBww7PCs1GJABdJFb5mXuqsByC85q8MJJq0vJRV0IDpV0FWjBt8lK0zb-I6GBGSTkgVsOpebRitoQ6rw2QXMjxYhkc04qm9qL45SLicIwI3JeIecVcl4h50dkf0F_P2us8U_KQxTMggobYg8f2ulYJf1SUNm6sEWoTS1B5sJwIXTcKdTMYiA-IjtzsaqkpZ1aYmpEyheiXlK9vqvoOJUVfPr_sp_J2gxqWGKyQ1b66aPfjU5Mb_YSUv8Coub0zw priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUKvcABQQGxQCsfKvWUNo7HTnJACKpSVGl7QCBxs2zHXpCWBLJBsL-Mf8FvwpPN7gq63HpNJitrPtbvyeM3hHyFkAdeOoiYTgJBgcJE2jgXyt0mRcqcdDHed-7_lacX8OdSXM77nzoHjhZSO5wndVEPvz_ejQ9DwR-003uY-BGg3VWIdmBVmI9L5GPYlVIs0n4H9Sc3hgPRYazTbfz3s1f7Uivf_wpzrj20p9eFG9T342Z6WtpuQifrZK1Dj_RoEu4N8sGVn8hqfya9Otok_rerblxTj2nlaSC7LSgd0uen6Oza2ms6woa3kGpUl8Wi93p4U42auVlVUpQHx5Z2bRs66H59i5yf_Dr_eRp1wxQiy4VsInCp0yb2SEAcExoMZB50ElvmsrhIPYstFFaDk0Vmtci4zBPJIc2KFLTk22S5rEq3Q6hnBg2555aD0Dz8n1rv8zg3XnOTyR6Jpp5UthMax3kXQ4WEI3heoecVel6h53vk28z-diKx8a7lMQZmZoXS2O2Dqh6ortIUpDZPbOJzk2eQxdJwKXVYKeTMIiXvkf1pWNU03RQev-MdXAE9It6Eem61eFUBQokUdv_H2vbIyiQhsSVlnyw39b37HEBPY7602fwCLQsC3A priority: 102 providerName: Scholars Portal |
Title | Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on paracontact geometry |
URI | https://www.degruyter.com/doi/10.1515/math-2022-0048 https://www.proquest.com/docview/2700011854 https://doaj.org/article/47c92c2f9b984806b366ac34491c0713 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELVaeqEHVGhRt6UrH5A4RcTxxHGOpWJBSIsqBBI3y3ZsirQk1W5QxZf1L_gmZpLsAhVVL73kkIwia-bZM08ePzO2C4iDqAIkwmZIUKByiXUh4HT3WVWIoEJK552np-r4Ak4u88snV31RT1gvD9w7bh8KX2Y-i6UrNehUOamU9RKgFJ4YFq2-mPOekKn-fDDSGiEGlUbM2ftY__1ASCD1ItA-y0KdWP-zCnPjV7dXXYWr-e1du9wb7VLO5B3bGGpF_rUf4yZ7Feot9na6ElpdvGfxKDQ3oZ3f8SZypLZdCTrj97-Ts2vvr_mC2tsQWNzW1Uvf7eymWbSPZk3NSQycGtitb_nV8PcP7HxyeP7tOBmuTki8zFWbQCiCdWkkuhFEbsGBjmCz1Iug06qIIvVQeQtBVdrbXEtVZkpCoasCrJLbbK1u6vCR8SgcGcoo0em5lbh6-hjLtHTRSqfViCVLTxo_yIrT7RYzQ_QCPW_I84Y8b8jzI7a3sv_ZC2r81fKAArOyIiHs7gXCwwzwMP-Cx4jtLMNqhtm5MLTZTiducxix_I9QP1q9PCosmPICPv2PsX1m6z0gqQFlh62189vwBUuc1o3Zaz05GrM3B4en38_GHbbxOQX9AHXD_gg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOFb_qlgI-gDhFTeKJkxwQ4m-7pd0e0CL1ZtmOvVTaJu0mVbUPxZm34JnwZJNdFRVuvSYjy5r5ZjzjGc8AvEaPAycsBpGKfYCChQ6Uttaru4mLNLLChvTeeXwsRt_x60lysgE_-7cwVFbZ28TWUBeVoTvyPUqQ0ivJBN-fXwQ0NYqyq_0IjSUsDu3iyods9buDz16-b-J4-GXyaRR0UwUCwxPRBGhTq3ToyBO3UaJQY-ZQxaGJbBYWqYtCg4VRaEWRGZVkXOSx4JhmRYpKcL_sHbiLnOekUNlwf32l4_GdRlHXGtI7Cnve6fzhcejjPdKUa0dfOyHgmlu7ddUmyAs7nV8umj4h255zw4ew1Tmo7MMSUY9gw5aP4cF41d21fgJu31ZntpkvWOWYj6dbv3fGfv8Kvp0ac8pqqqnzaGaqLG76r2ZnVd2syaqSUQdyqppXpmHTbvWnMLkNzj6DzbIq7TYwF2ki5I4bjoni3mQb5_Iw105xnYkBBD0npel6mdNIjZmkmMZzXhLnJXFeEucH8HZFf77s4vFPyo8kmBUVdd9uP1TzqeyUWWJq8tjELtd5hlkoNBdC-Z1iHhmK-gew24tVdiahlmsADyD5S9Rrqpt35b20JMWd_y_7Cu6NJuMjeXRwfPgc7i9hR7Utu7DZzC_tC-89Nfpli1kG8pZ15A_qHS_E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgKyE4VDzVhQI-IHGKNo4nTnIsj-1CaUFQJG6Wn8tK26TaZIX6y_gX_CY8u94shXLpNRlH1sw3mRl7_JmQFxBw4IWDhKksFChgdaK0c8HdTWYL5oRL8bzz8YmYfIX33_JNN2Eb2yqtmy6WF92aIXVkG7PEhbKeayBE4FHI5r4HA4dCCiE4Orf-JtkRouIwIDsHk8MvH7cLLQF1BWORsPHfwZcC0oq3_1KyuftjtW3dz-mP6DO-S3Zj2kgP1na-R264-j65c9xzrrYPiD90zZnrFhe08TRUuatsdE5__Uw-z4yZ0RY73QLGqKrtVe_V_Kxpu61YU1PkBcdedmU6Oo1ff0hOx29PX0-SeItCYnguugRc4ZROPVYejuUKNJQeVJYa5srUFp6lBqxR4IQtjcpLLqpMcChKW4AS_BEZ1E3t9gj1TKMg99xwyBUPP1LjfZVW2iuuSzEkyUaT0kSGcbzoYi6x0gial6h5iZqXqPkhednLn6-5Nf4r-QoN00shJ_bqQbOYyuhiEgpTZSbzla5KKFOhuRAqzBQqZrAWH5L9jVlldNRW4r47Hr7NYUjyv0y9lbp6ViF3ygt4fM1xz8mtT2_G8sO7k6Mn5PYajtiJsk8G3WLpnoZcp9PPIpp_A5nw_qk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometry+of+conformal+%CE%B7-Ricci+solitons+and+conformal+%CE%B7-Ricci+almost+solitons+on+paracontact+geometry&rft.jtitle=Open+mathematics+%28Warsaw%2C+Poland%29&rft.au=Li+Yanlin&rft.au=Dey+Santu&rft.au=Pahan+Sampa&rft.au=Ali+Akram&rft.date=2022-08-09&rft.pub=De+Gruyter&rft.eissn=2391-5455&rft.volume=20&rft.issue=1&rft.spage=574&rft.epage=589&rft_id=info:doi/10.1515%2Fmath-2022-0048&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_47c92c2f9b984806b366ac34491c0713 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2391-5455&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2391-5455&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2391-5455&client=summon |