TOPOLOGY OF STEADY HEAT CONDUCTION IN A SOLID SLAB SUBJECT TO A NONUNIFORM BOUNDARY CONDITION: THE CARSLAW–JAEGER SOLUTION REVISITED
Temperature distributions recorded by thermocouples in a solid body (slab) subject to surface heating are used in a mathematical model of two-dimensional heat conduction. The corresponding Dirichlet problem for a holomorphic function (complex potential), involving temperature and a heat stream funct...
Saved in:
Published in | The ANZIAM journal Vol. 53; no. 4; pp. 308 - 320 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
01.04.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1446-1811 1446-8735 |
DOI | 10.1017/S1446181112000260 |
Cover
Loading…
Abstract | Temperature distributions recorded by thermocouples in a solid body (slab) subject to surface heating are used in a mathematical model of two-dimensional heat conduction. The corresponding Dirichlet problem for a holomorphic function (complex potential), involving temperature and a heat stream function, is solved in a strip. The Zhukovskii function is reconstructed through singular integrals, involving an auxiliary complex variable. The complex potential is mapped onto an auxiliary half-plane. The flow net (orthogonal isotherms and heat lines) of heat conduction is compared with the known Carslaw–Jaeger solution and shows a puzzling topology of three regimes of energy fluxes for temperature boundary conditions common in passive thermal insulation. The simplest regime is realized if cooling of a shaded zone is mild and heat flows in a slightly distorted “resistor model” flow tube. The second regime emerges when cooling is stronger and two disconnected separatrices demarcate the back-flow of heat from a relatively hot segment of the slab surface to the atmosphere through relatively cold parts of this surface. The third topological regime is characterized by a single separatrix with a critical point inside the slab, where the thermal gradient is nil. In this regime the back-suction of heat into the atmosphere is most intensive. The closed-form solutions obtained can be used in assessment of efficiency of thermal protection of buildings. |
---|---|
AbstractList | Temperature distributions recorded by thermocouples in a solid body (slab) subject to surface heating are used in a mathematical model of two-dimensional heat conduction. The corresponding Dirichlet problem for a holomorphic function (complex potential), involving temperature and a heat stream function, is solved in a strip. The Zhukovskii function is reconstructed through singular integrals, involving an auxiliary complex variable. The complex potential is mapped onto an auxiliary half-plane. The flow net (orthogonal isotherms and heat lines) of heat conduction is compared with the known Carslaw–Jaeger solution and shows a puzzling topology of three regimes of energy fluxes for temperature boundary conditions common in passive thermal insulation. The simplest regime is realized if cooling of a shaded zone is mild and heat flows in a slightly distorted “resistor model” flow tube. The second regime emerges when cooling is stronger and two disconnected separatrices demarcate the back-flow of heat from a relatively hot segment of the slab surface to the atmosphere through relatively cold parts of this surface. The third topological regime is characterized by a single separatrix with a critical point inside the slab, where the thermal gradient is nil. In this regime the back-suction of heat into the atmosphere is most intensive. The closed-form solutions obtained can be used in assessment of efficiency of thermal protection of buildings. |
Author | OBNOSOV, YU. V. KASIMOVA, R. G. |
Author_xml | – sequence: 1 givenname: R. G. surname: KASIMOVA fullname: KASIMOVA, R. G. email: rouzalia.kasimova@gutech.edu.om organization: 1German University of Technology in Oman, Muscat, Sultanate of Oman – sequence: 2 givenname: YU. V. surname: OBNOSOV fullname: OBNOSOV, YU. V. email: yurii.obnosov@gmail.com organization: 2Institute of Mathematics and Mechanics, Kazan Federal University, Kazan, Russia |
BookMark | eNqFkU1u1DAUgC1UJNrCAdhZYsNmwI7_EnaZxNNJNY1R4oBmFTl_KNVM0iaZBTt2HIAL9Cw9CifBaUdCKgJWtt77vqf3cwZOur6rAXiN0TuMsHifYko5djHGDkLI4egZOJ1DC1cQdnL8z_kX4GwcrxGiRBDnFHzX6qPaqIstVCuYaumHW7iWvoaBisMs0JGKYRRDH6ZqE4Uw3fhLmGbLSxloqJWNxyrO4milkiu4VFkc-sn2wY1m9QPUawkDP7He55_fflz68kImc61sTt_fJfJTlEZahi_B88bsxvrV8T0H2UrqYL2wvUWBv1mUhPFpQY1pTOWhpvJYI5qqaex4lAvMvMqlBTMFNZ7nFZQXhHCKaOG6qCgNMQLXoqrJOXj7WPdm6G8P9Tjl-3Ys693OdHV_GHMskCfsmpj3f5RwhplgnFn0zRP0uj8MnR0kdwQjFDlMcEuJR6oc-nEc6iYv28lMbd9Ng2l3OUb5fMv8j1taEz8xb4Z2b4av_3TI0TH7YmirL_Xvpv5u_QISI6cZ |
CitedBy_id | crossref_primary_10_1016_j_petsci_2022_06_008 crossref_primary_10_3390_app13074347 crossref_primary_10_1002_mma_5788 |
Cites_doi | 10.1016/j.aml.2005.08.006 10.1243/0954406001523515 10.1016/j.enbuild.2007.11.004 10.1016/j.ijheatmasstransfer.2009.12.070 10.1016/j.cageo.2010.01.014 10.1071/PH730513 10.1090/S0033-569X-2011-01242-8 10.1016/S0017-9310(00)00162-9 10.1016/B978-0-08-010067-8.50007-4 10.1007/s11242-010-9693-6 |
ContentType | Journal Article |
Copyright | Copyright ©2013 Australian Mathematical Society Copyright ©2013 Australian Mathematical Society |
Copyright_xml | – notice: Copyright ©2013 Australian Mathematical Society – notice: Copyright ©2013 Australian Mathematical Society |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ L6V M2P M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7QH 7UA C1K F1W H96 L.G 7TB 8FD FR3 KR7 |
DOI | 10.1017/S1446181112000260 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aqualine ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
DatabaseTitleList | CrossRef Civil Engineering Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
DocumentTitleAlternate | Topology of steady heat conduction in a solid slab R. G. Kasimova and Yu. V. Obnosov |
EISSN | 1446-8735 |
EndPage | 320 |
ExternalDocumentID | 10_1017_S1446181112000260 |
GroupedDBID | --Z -1D -1F -2P -2V -E. -~6 -~N -~X .FH 09C 09E 0E1 0R~ 123 23M 2WC 4.4 5VS 6J9 6~7 74X 74Y 7~V 88I 9M5 AAAZR AABES AABWE AACJH AAGFV AAKTX AAMNQ AANRG AARAB AASVR AATMM AAUIS AAUKB ABBXD ABBZL ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABQTM ABROB ABUWG ABVFV ABVKB ABVZP ABXAU ABZCX ABZUI ACBMC ACDLN ACETC ACGFS ACIMK ACMRT ACRPL ACUIJ ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADKIL ADNMO ADOVH ADOVT ADVJH AEBAK AEBPU AEGXH AEHGV AEMFK AEMTW AENCP AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AFZFC AGABE AGBYD AGJUD AGLWM AHQXX AHRGI AI. AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALWZO AQJOH ARABE ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BQFHP C0O C1A CAG CBIIA CCPQU CCQAD CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CJCSC COF CS3 DOHLZ DWQXO EBS EGQIC EJD ESX GNUQQ HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IOEEP IOO IS6 I~P J36 J38 J3A JHPGK JQKCU KAFGG KCGVB KFECR KWQ L98 LHUNA LW7 M-V M2P M7S M7~ M8. NIKVX NMFBF NZEOI O9- OK1 PTHSS PYCCK RAMDC RCA RFR RNS ROL RR0 S6U SAAAG SJN T9M TN5 UT1 VH1 WFFJZ WQ3 WXU WYP ZCG ZDLDU ZJOSE ZMEZD ZYDXJ ~02 ~V1 AAKNA AAYXX ABHFL ABXHF ACEJA ACOZI AGQPQ AKMAY AMVHM ANOYL CITATION PHGZM PHGZT 3V. 7XB 8FE 8FG 8FK L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7QH 7UA C1K F1W H96 L.G 7TB 8FD FR3 KR7 |
ID | FETCH-LOGICAL-c356t-4aafad90fd95f7fdff735467159d84b5ab4a999b46b336404b880bca3a71e7de3 |
IEDL.DBID | BENPR |
ISSN | 1446-1811 |
IngestDate | Fri Jul 11 08:45:26 EDT 2025 Fri Jul 11 07:58:24 EDT 2025 Fri Jul 25 11:41:10 EDT 2025 Thu Apr 24 23:11:14 EDT 2025 Tue Jul 01 02:30:24 EDT 2025 Tue Jan 21 06:27:30 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | two-dimensional heat conduction complex potential isotherms Laplace’s equation conformal mappings heat lines |
Language | English |
License | https://www.cambridge.org/core/terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-4aafad90fd95f7fdff735467159d84b5ab4a999b46b336404b880bca3a71e7de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/2BBE9FDE59B498B724DF2A40B0647610/S1446181112000260a.pdf/div-class-title-topology-of-steady-heat-conduction-in-a-solid-slab-subject-to-a-nonuniform-boundary-condition-the-carslaw-jaeger-solution-revisited-div.pdf |
PQID | 2753402576 |
PQPubID | 5516365 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1709781159 proquest_miscellaneous_1365157565 proquest_journals_2753402576 crossref_citationtrail_10_1017_S1446181112000260 crossref_primary_10_1017_S1446181112000260 cambridge_journals_10_1017_S1446181112000260 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20120400 2012-04-00 20120401 |
PublicationDateYYYYMMDD | 2012-04-01 |
PublicationDate_xml | – month: 04 year: 2012 text: 20120400 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | The ANZIAM journal |
PublicationTitleAlternate | ANZIAM J |
PublicationYear | 2012 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | Carslaw (S1446181112000260_r3) 1959 S1446181112000260_r9 S1446181112000260_r7 Gakhov (S1446181112000260_r4) 1966 Wolfram (S1446181112000260_r16) 1991 S1446181112000260_r5 S1446181112000260_r6 Bejan (S1446181112000260_r2) 2004 S1446181112000260_r1 S1446181112000260_r11 S1446181112000260_r10 S1446181112000260_r15 S1446181112000260_r13 S1446181112000260_r12 Polubarinova-Kochina (S1446181112000260_r14) 1962 Mason (S1446181112000260_r8) 2003 |
References_xml | – ident: S1446181112000260_r9 doi: 10.1016/j.aml.2005.08.006 – volume-title: Conduction of heat in solids year: 1959 ident: S1446181112000260_r3 – ident: S1446181112000260_r7 doi: 10.1243/0954406001523515 – ident: S1446181112000260_r15 doi: 10.1016/j.enbuild.2007.11.004 – ident: S1446181112000260_r6 doi: 10.1016/j.ijheatmasstransfer.2009.12.070 – ident: S1446181112000260_r11 doi: 10.1016/j.cageo.2010.01.014 – ident: S1446181112000260_r1 – volume-title: Theory of ground-water movement year: 1962 ident: S1446181112000260_r14 – ident: S1446181112000260_r13 doi: 10.1071/PH730513 – volume-title: Mathematica. A system for doing mathematics by computer year: 1991 ident: S1446181112000260_r16 – ident: S1446181112000260_r10 doi: 10.1090/S0033-569X-2011-01242-8 – volume-title: Convection heat transfer year: 2004 ident: S1446181112000260_r2 – ident: S1446181112000260_r5 doi: 10.1016/S0017-9310(00)00162-9 – volume-title: Boundary value problems year: 1966 ident: S1446181112000260_r4 doi: 10.1016/B978-0-08-010067-8.50007-4 – ident: S1446181112000260_r12 doi: 10.1007/s11242-010-9693-6 – volume-title: Chebyshev polynomials year: 2003 ident: S1446181112000260_r8 |
SSID | ssj0043732 |
Score | 1.8756678 |
Snippet | Temperature distributions recorded by thermocouples in a solid body (slab) subject to surface heating are used in a mathematical model of two-dimensional heat... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 308 |
SubjectTerms | Analytic functions Boundary conditions Complex variables Conduction Conduction heating Conductive heat transfer Cooling Critical point Dirichlet problem Flow nets Heat Heat conduction Heat transfer Heat transmission Mathematical analysis Mathematical models Slabs Suction Temperature gradients Thermal insulation Thermal protection Thermocouples Topology Two dimensional models |
Title | TOPOLOGY OF STEADY HEAT CONDUCTION IN A SOLID SLAB SUBJECT TO A NONUNIFORM BOUNDARY CONDITION: THE CARSLAW–JAEGER SOLUTION REVISITED |
URI | https://www.cambridge.org/core/product/identifier/S1446181112000260/type/journal_article https://www.proquest.com/docview/2753402576 https://www.proquest.com/docview/1365157565 https://www.proquest.com/docview/1709781159 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwELbY9gIPiA0QhTF5Ek-IiDh2kpoXlLbp2mlNpjYR21Nlx_HT1A7avfPEH-Af8ku4S51W06S-Xny2lbPP3_nOd4R8EkpIrmXoVdz3PQFnpqeC0HgS34swaSvT1CGbZNGoFJc34Y27cFu5sMpWJzaK2iwrvCP_GgCuBlsH4PH3-58eVo1C76oroXFAjkAFd8H4Ouql2fW01cWYt6fxd4LR48FZxlq_JiaNRiLSGL5WCTBH5S67wuNT6rGSbk6e4Svy0kFGmmxkfEye1YsT8mKyzbe6ek3-FPl14xGi-ZDOijQZ3NJRmhS0n2eDsokToeOMJnSWX40HdHaV9KgrdUKLHOhZnoElCBbhhPbyMhsk09uGd4ys32gxSmk_mQLfj3-__14m6UU6xb7KpmeMsJihCnxDymFa9Eeeq7AAogmjtSeUsspI3xoZ2tgaa2MeguoEjGO6QodKCwUIUotIcx4JX2jY7rpSXMWsjk3N35LDxXJRvyNUcsOsrxVQrWDMyiAMqm5UcRjDMBZ1yJft3527fbKab2LM4vkTYXSI3wpgXrls5Vg0424fy-cty_0mVce-xqetVHez2a2xDjnffob9hk4UtaiXDzBjjsXjY8DBe9rE-DoGsLZ8v3-YD-Q5ALBgEwl0Sg7Xvx7qjwBy1vqMHHSHF2duPf8HSk7ryw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LjtMw0FqWA3BAPEVhASPBBRGRxE5SIyGUbdJNdtsEtYnYPQUnjk-oXWhXiBsnfoD_4KP4EmbyaLVC6m2vjse2PO_MeIaQl1xywUrhGBUzTYODzjSk7ShD4HsRS-hKNX3Ipokb5fz41DndI3_6tzCYVtnLxEZQq2WF_8jf2mBXg68D5vGH868Gdo3C6GrfQqMli5P6x3dw2Vbv4wDw-8q2x2E2ioyuqwAcx3HXBpdSSyVMrYSjPa209pgD4gL0uhry0pEll2A1ldwtGXO5yUsg8bKSTHpW7amawbrXyHXOmECOGo6PesmPVYKa6Cq4WAZoTquPomKJahzEMQvfxthYEXNby-GyTrysEho9N75DbncGKvVbirpL9urFPXJruqnuurpPfmXpxyb-RNMxnWehH5zRKPQzOkqTIG-yUmicUJ_O00kc0PnEP6RdYxWapTCepAn4neB_TulhmieBPztrYGMEfUezKKQjfwZwn_7-_H3sh0fhDNfKm5Uxn2OOAvcBya_k5h-S_cVyUT8iVDBlabOUMKq5ZWlhO3Y1dCsGeyjLcgfkzeZ2i44rV0Wb0eYV_yFjQMweAUXV1UbHFh1fdoG83oCct4VBdk0-6LG6Pc2WogfkxeYzcDeGbOSiXl7AiRm2qvfA6t4xx8O3OGDZi8e7t3lObkTZdFJM4uTkCbkJpp_d5iAdkP31t4v6KZhX6_JZQ9OUfL5qJvoHnVUnhg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFRSCdEDojxESqGLBBeEVdu7tmskhJzYIW4TO0ps0Z7ctdd7qpJCUiFunPgB_obP4UuY9SNRhZRbr-Od3dXuPD2zMwBvGGcuzV1LK6iuawx1psZNS2iuei9iuLIQVR-ycWQPU3Z6bp3vwJ_2LYxKq2xlYiWoxaJQ_8iPTbSr0ddB8_hYNmkRE3_w6fqrpjpIqUhr206jJpGz8sd3dN-WH0Mf7_qtaQ6CpD_Umg4DuDXLXmmMc8mFq0vhWtKRQkqHWig6UMeLE5ZbPGccLaic2TmlNtNZjuSeF5xyxygdUVKc9x7sOugV6R3Y7QXRZNrqAVUzqIq1osOloR412piqKlitgApmqJcypqqPuanscFtD3lYQldYbPIKHjblKvJq-9mGnnD-GvfG61uvyCfxK4kkVjSLxgMySwPMvyDDwEtKPIz-tclRIGBGPzOJR6JPZyOuRps0KSWKER3GEXih6o2PSi9PI96YXFW6oUD-QZBiQvjdFvC9_f_4-9YLPwVTNlVYzq-yOmRK_TyG9k7N_Bp35Yl4-B-JSYUg95wiVzDCka1pmcWIXFNcQhmF34f36dLOGR5dZnd_mZP9dRhf09gKyoqmUrhp2XG1DebdGua7LhGwbfNje6mY3G_ruwuv1Z-R1FcDh83JxgzumqnG9gzb4ljGOepmDdr57sH2ZI7iPDJSNwujsBTxAO9CsE5IOobP6dlO-RFtrlb9qiJrA5V3z0T8m_S0Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TOPOLOGY+OF+STEADY+HEAT+CONDUCTION+IN+A+SOLID+SLAB+SUBJECT+TO+A+NONUNIFORM+BOUNDARY+CONDITION%3A+THE+CARSLAW%E2%80%93JAEGER+SOLUTION+REVISITED&rft.jtitle=The+ANZIAM+journal&rft.au=Kasimova%2C+R+G&rft.au=OBNOSOV%2C+YU+V&rft.date=2012-04-01&rft.pub=Cambridge+University+Press&rft.issn=1446-1811&rft.eissn=1446-8735&rft.volume=53&rft.issue=4&rft.spage=308&rft.epage=320&rft_id=info:doi/10.1017%2FS1446181112000260&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1446-1811&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1446-1811&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1446-1811&client=summon |