The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis

Renal fibrosis is a common characteristic of chronic kidney disease (CKD). Aberrant and excessive depositions of extracellular matrix (ECM) proteins in both glomeruli and interstitial regions are typical hallmarks of renal fibrosis and amplify the severity of kidney injury. To date, an approved ther...

Full description

Saved in:
Bibliographic Details
Published inDifferentiation (London) Vol. 92; no. 3; pp. 102 - 107
Main Authors Sun, Yu Bo Yang, Qu, Xinli, Caruana, Georgina, Li, Jinhua
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 01.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Renal fibrosis is a common characteristic of chronic kidney disease (CKD). Aberrant and excessive depositions of extracellular matrix (ECM) proteins in both glomeruli and interstitial regions are typical hallmarks of renal fibrosis and amplify the severity of kidney injury. To date, an approved therapy specifically targeted to renal fibrosis is needed to mitigate or even retard renal fibrosis. Recent findings have identified a unique population of myofibroblasts as a primary source of ECM in scar tissue formation. However, the origin of myofibroblasts in renal fibrosis remains the subject of controversial debates. The advancement in lineage tracing and immunofluorescent microscopy technologies have suggested that myofibroblasts may arise from a number of sources such as activated renal fibroblasts, pericytes, epithelial-to-mesenchymal transition (EMT), endothelial-to-mesenchymal transition (EndoMT), bone marrow derived cells and fibrocytes. Recent studies also indicate that multiple ligands of TGF-β/Smads are the direct mediators for renal fibrosis. Consistently, inhibition of the TGF-β/Smads signaling pathway using various strategies significantly reduce renal fibrotic lesions and ameliorate kidney injury, suggesting that targeting the TGF-β/Smads signaling pathway could be a new strategy for effective therapies. In this review, we will briefly discuss the diverse origins of myofibroblasts and molecular pathways triggering renal fibrosis. Prospective therapeutic approaches based on those molecular mechanisms will hopefully offer exciting insights in the development of new therapeutic interventions for patients in the near future.
AbstractList Renal fibrosis is a common characteristic of chronic kidney disease (CKD). Aberrant and excessive depositions of extracellular matrix (ECM) proteins in both glomeruli and interstitial regions are typical hallmarks of renal fibrosis and amplify the severity of kidney injury. To date, an approved therapy specifically targeted to renal fibrosis is needed to mitigate or even retard renal fibrosis. Recent findings have identified a unique population of myofibroblasts as a primary source of ECM in scar tissue formation. However, the origin of myofibroblasts in renal fibrosis remains the subject of controversial debates. The advancement in lineage tracing and immunofluorescent microscopy technologies have suggested that myofibroblasts may arise from a number of sources such as activated renal fibroblasts, pericytes, epithelial-to-mesenchymal transition (EMT), endothelial-to-mesenchymal transition (EndoMT), bone marrow derived cells and fibrocytes. Recent studies also indicate that multiple ligands of TGF-β/Smads are the direct mediators for renal fibrosis. Consistently, inhibition of the TGF-β/Smads signaling pathway using various strategies significantly reduce renal fibrotic lesions and ameliorate kidney injury, suggesting that targeting the TGF-β/Smads signaling pathway could be a new strategy for effective therapies. In this review, we will briefly discuss the diverse origins of myofibroblasts and molecular pathways triggering renal fibrosis. Prospective therapeutic approaches based on those molecular mechanisms will hopefully offer exciting insights in the development of new therapeutic interventions for patients in the near future.Renal fibrosis is a common characteristic of chronic kidney disease (CKD). Aberrant and excessive depositions of extracellular matrix (ECM) proteins in both glomeruli and interstitial regions are typical hallmarks of renal fibrosis and amplify the severity of kidney injury. To date, an approved therapy specifically targeted to renal fibrosis is needed to mitigate or even retard renal fibrosis. Recent findings have identified a unique population of myofibroblasts as a primary source of ECM in scar tissue formation. However, the origin of myofibroblasts in renal fibrosis remains the subject of controversial debates. The advancement in lineage tracing and immunofluorescent microscopy technologies have suggested that myofibroblasts may arise from a number of sources such as activated renal fibroblasts, pericytes, epithelial-to-mesenchymal transition (EMT), endothelial-to-mesenchymal transition (EndoMT), bone marrow derived cells and fibrocytes. Recent studies also indicate that multiple ligands of TGF-β/Smads are the direct mediators for renal fibrosis. Consistently, inhibition of the TGF-β/Smads signaling pathway using various strategies significantly reduce renal fibrotic lesions and ameliorate kidney injury, suggesting that targeting the TGF-β/Smads signaling pathway could be a new strategy for effective therapies. In this review, we will briefly discuss the diverse origins of myofibroblasts and molecular pathways triggering renal fibrosis. Prospective therapeutic approaches based on those molecular mechanisms will hopefully offer exciting insights in the development of new therapeutic interventions for patients in the near future.
Renal fibrosis is a common characteristic of chronic kidney disease (CKD). Aberrant and excessive depositions of extracellular matrix (ECM) proteins in both glomeruli and interstitial regions are typical hallmarks of renal fibrosis and amplify the severity of kidney injury. To date, an approved therapy specifically targeted to renal fibrosis is needed to mitigate or even retard renal fibrosis. Recent findings have identified a unique population of myofibroblasts as a primary source of ECM in scar tissue formation. However, the origin of myofibroblasts in renal fibrosis remains the subject of controversial debates. The advancement in lineage tracing and immunofluorescent microscopy technologies have suggested that myofibroblasts may arise from a number of sources such as activated renal fibroblasts, pericytes, epithelial-to-mesenchymal transition (EMT), endothelial-to-mesenchymal transition (EndoMT), bone marrow derived cells and fibrocytes. Recent studies also indicate that multiple ligands of TGF-β/Smads are the direct mediators for renal fibrosis. Consistently, inhibition of the TGF-β/Smads signaling pathway using various strategies significantly reduce renal fibrotic lesions and ameliorate kidney injury, suggesting that targeting the TGF-β/Smads signaling pathway could be a new strategy for effective therapies. In this review, we will briefly discuss the diverse origins of myofibroblasts and molecular pathways triggering renal fibrosis. Prospective therapeutic approaches based on those molecular mechanisms will hopefully offer exciting insights in the development of new therapeutic interventions for patients in the near future.
Author Caruana, Georgina
Sun, Yu Bo Yang
Li, Jinhua
Qu, Xinli
Author_xml – sequence: 1
  givenname: Yu Bo Yang
  surname: Sun
  fullname: Sun, Yu Bo Yang
  organization: Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
– sequence: 2
  givenname: Xinli
  surname: Qu
  fullname: Qu, Xinli
  organization: Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
– sequence: 3
  givenname: Georgina
  surname: Caruana
  fullname: Caruana, Georgina
  organization: Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
– sequence: 4
  givenname: Jinhua
  surname: Li
  fullname: Li, Jinhua
  email: jinhua.li@monash.edu
  organization: Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27262400$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LwzAYgIMobk7_gAfp0UtrkqZpCl5E_IKBl3kOafJmZnSNJpngvzdjU8SDp7whzxN4nxN0OPoREDonuCKY8KtVZZy1Fc1zhZsKY3GApoTVtMSs5odoimtMSsYFmaCTGFc4E5ySYzShLeWUYTxFi8UrFD64pRsLb4sAoxoK6_rg-0HFFK_Wn_7XtVCjKVJWoltmMuZZpSJlfwlh50UXT9GRzY9wtj9n6OX-bnH7WM6fH55ub-alrhueSqaIsaxpO4uZUqbXnbYNhb7LQ9cL3WhVM6F60Vna4lqAamlXU26oAgOC1TN0ufv3Lfj3DcQk1y5qGAY1gt9ESQTlvONtu0Uv9uimX4ORb8GtVfiU3yUyQHeAzivEAPYHIVhuc8uV3OaW29wSNzLHzJL4I2mXVHJ-TEG54X_1eqdCDvThIMioHYwajAugkzTe_ad_ASJ2m_w
CitedBy_id crossref_primary_10_1177_09731296231172549
crossref_primary_10_2139_ssrn_4150497
crossref_primary_10_1038_s41440_023_01312_z
crossref_primary_10_2217_epi_2020_0449
crossref_primary_10_18632_aging_102395
crossref_primary_10_3389_fphar_2019_00348
crossref_primary_10_1111_jcmm_17535
crossref_primary_10_3389_fimmu_2021_676082
crossref_primary_10_4103_egjp_egjp_45_21
crossref_primary_10_3390_ijms18102157
crossref_primary_10_1038_s41598_017_15162_6
crossref_primary_10_1111_1756_185X_14434
crossref_primary_10_1111_bph_15786
crossref_primary_10_1016_j_cellsig_2022_110352
crossref_primary_10_1016_j_biopha_2024_117023
crossref_primary_10_3389_fimmu_2022_1094556
crossref_primary_10_1007_s00441_019_03110_x
crossref_primary_10_1016_j_apsb_2022_01_007
crossref_primary_10_3390_nu14245316
crossref_primary_10_1159_000517318
crossref_primary_10_1007_s00109_019_01870_1
crossref_primary_10_1016_j_nano_2019_03_010
crossref_primary_10_1681_ASN_2019111160
crossref_primary_10_1080_13880209_2022_2097700
crossref_primary_10_1016_j_ejcb_2022_151221
crossref_primary_10_1039_D2CC04825F
crossref_primary_10_1111_jpi_12482
crossref_primary_10_3389_fcell_2021_678524
crossref_primary_10_3390_ncrna8030036
crossref_primary_10_3389_fimmu_2017_01787
crossref_primary_10_1007_s00011_021_01457_y
crossref_primary_10_1042_CS20201161
crossref_primary_10_1080_0886022X_2019_1612430
crossref_primary_10_1167_iovs_61_2_28
crossref_primary_10_1186_s12967_023_04356_4
crossref_primary_10_3389_fphar_2018_01213
crossref_primary_10_3389_fphar_2024_1403227
crossref_primary_10_3892_etm_2022_11359
crossref_primary_10_1111_jcmm_13836
crossref_primary_10_1016_j_metabol_2019_153998
crossref_primary_10_1515_med_2023_0736
crossref_primary_10_3389_fmed_2020_00047
crossref_primary_10_1016_j_addr_2021_113911
crossref_primary_10_1111_bph_15450
crossref_primary_10_1007_s11302_023_09977_4
crossref_primary_10_1016_j_cbi_2018_07_008
crossref_primary_10_1186_s12906_022_03535_y
crossref_primary_10_3389_fcimb_2018_00384
crossref_primary_10_3389_fimmu_2023_1122409
crossref_primary_10_1186_s42834_025_00240_6
crossref_primary_10_1016_j_apmt_2020_100725
crossref_primary_10_1177_25152564241291374
crossref_primary_10_3389_fimmu_2020_00734
crossref_primary_10_1155_2023_3352353
crossref_primary_10_15212_AMM_2023_0031
crossref_primary_10_3892_etm_2021_10741
crossref_primary_10_1152_ajprenal_00604_2016
crossref_primary_10_3390_cells11213472
crossref_primary_10_1016_j_cellsig_2017_11_005
crossref_primary_10_3390_cells9010125
crossref_primary_10_3390_biology11020232
crossref_primary_10_1111_bph_15314
crossref_primary_10_1186_s12882_023_03103_7
crossref_primary_10_1016_j_intimp_2019_105683
crossref_primary_10_1016_j_biocel_2022_106257
crossref_primary_10_1080_13880209_2022_2030759
crossref_primary_10_3390_ijms22168629
crossref_primary_10_1016_j_biopha_2018_02_090
crossref_primary_10_1042_CS20180623
crossref_primary_10_2147_JIR_S413374
crossref_primary_10_1097_TP_0000000000003678
crossref_primary_10_3390_ijms26010343
crossref_primary_10_1186_s13287_021_02391_w
crossref_primary_10_1016_j_labinv_2022_100016
crossref_primary_10_1038_s41419_023_06005_6
crossref_primary_10_1007_s13577_021_00617_w
crossref_primary_10_1177_09603271211038743
crossref_primary_10_3389_fphys_2024_1296504
crossref_primary_10_1042_CS20201016
crossref_primary_10_1016_j_biopha_2021_111870
crossref_primary_10_1016_j_jbc_2022_101725
crossref_primary_10_1007_s11033_024_09307_w
crossref_primary_10_1016_j_arr_2024_102296
crossref_primary_10_3389_fphar_2022_992421
crossref_primary_10_1080_21655979_2021_2002493
crossref_primary_10_1186_s13020_022_00646_z
crossref_primary_10_1016_j_molimm_2022_07_007
crossref_primary_10_1021_acsami_1c10818
crossref_primary_10_3389_fphar_2022_1016635
crossref_primary_10_1007_s10741_020_10046_w
crossref_primary_10_1080_19336918_2019_1638691
crossref_primary_10_1016_j_mam_2018_06_002
crossref_primary_10_1016_j_ajpath_2016_10_004
crossref_primary_10_1080_21655979_2022_2033465
crossref_primary_10_1016_j_isci_2019_02_032
crossref_primary_10_3892_etm_2017_4662
crossref_primary_10_1515_med_2021_0319
crossref_primary_10_18632_oncotarget_26324
crossref_primary_10_1002_adhm_202000255
crossref_primary_10_1016_j_exer_2018_02_018
crossref_primary_10_1186_s13287_019_1201_5
crossref_primary_10_3390_antiox14010013
crossref_primary_10_18632_aging_104151
crossref_primary_10_1096_fj_201900943R
crossref_primary_10_3389_fpubh_2022_767591
crossref_primary_10_1016_j_mam_2023_101191
crossref_primary_10_3390_ijms251910803
crossref_primary_10_3390_jcm7020015
crossref_primary_10_3389_fendo_2023_1135530
crossref_primary_10_1007_s11033_023_08857_9
crossref_primary_10_1152_physrev_00027_2022
crossref_primary_10_1155_2022_5967804
crossref_primary_10_1016_j_intimp_2023_111010
crossref_primary_10_3390_cells9041051
crossref_primary_10_3390_biomedicines9020182
crossref_primary_10_3390_ijms24032133
crossref_primary_10_1016_j_lfs_2020_117589
crossref_primary_10_3390_antiox13121454
crossref_primary_10_1021_acs_jafc_8b00099
crossref_primary_10_1097_MD_0000000000007824
crossref_primary_10_1016_j_jff_2023_105670
crossref_primary_10_5301_jsrd_5000254
crossref_primary_10_1186_s12890_024_02978_y
crossref_primary_10_1155_2023_7625817
crossref_primary_10_3389_fgene_2021_682904
crossref_primary_10_3892_mmr_2023_12929
crossref_primary_10_1097_MOT_0000000000000839
crossref_primary_10_3389_fimmu_2021_688647
crossref_primary_10_1016_j_phytochem_2023_113799
crossref_primary_10_1016_j_ymgme_2019_10_010
crossref_primary_10_1016_j_jnutbio_2022_109066
crossref_primary_10_1186_s12951_021_00900_w
crossref_primary_10_1371_journal_pone_0267704
crossref_primary_10_1007_s11255_016_1426_5
crossref_primary_10_1016_j_lfs_2024_123072
crossref_primary_10_1093_jleuko_qiac001
crossref_primary_10_1016_j_tice_2022_101905
crossref_primary_10_1002_jcp_30780
crossref_primary_10_1067_j_cpsurg_2017_01_001
crossref_primary_10_15825_1995_1191_2022_3_94_101
crossref_primary_10_1292_jvms_18_0599
crossref_primary_10_3389_fphar_2020_619201
crossref_primary_10_1007_s00441_018_2904_0
crossref_primary_10_1007_s00441_019_03124_5
crossref_primary_10_1016_j_exger_2021_111403
crossref_primary_10_1369_00221554241274878
crossref_primary_10_1016_j_exer_2020_108271
crossref_primary_10_1016_j_exer_2020_108272
crossref_primary_10_1080_21655979_2022_2054596
crossref_primary_10_1369_0022155419852932
crossref_primary_10_4236_ojtr_2020_84012
crossref_primary_10_1016_j_intimp_2024_112483
crossref_primary_10_1016_j_heliyon_2023_e13508
crossref_primary_10_1007_s11255_020_02474_2
crossref_primary_10_2147_DDDT_S247091
crossref_primary_10_1016_j_lfs_2020_117729
crossref_primary_10_1038_s41589_018_0190_5
crossref_primary_10_1021_acs_molpharmaceut_0c01182
crossref_primary_10_1016_j_kint_2019_06_021
crossref_primary_10_1538_expanim_16_0121
crossref_primary_10_1038_s41598_019_46439_7
crossref_primary_10_3389_fphar_2022_932172
crossref_primary_10_1186_s13287_022_03071_z
crossref_primary_10_1039_D1MO00498K
crossref_primary_10_3389_fcvm_2022_889553
crossref_primary_10_3390_ijms25084350
crossref_primary_10_1159_000514680
crossref_primary_10_1002_jcp_25879
crossref_primary_10_1016_j_addr_2017_05_017
crossref_primary_10_1016_j_biopha_2022_113978
crossref_primary_10_1155_2019_4946580
crossref_primary_10_14814_phy2_13794
crossref_primary_10_1155_2017_1480514
crossref_primary_10_1016_j_biopha_2024_117079
crossref_primary_10_1016_j_fitote_2024_106031
crossref_primary_10_1155_2019_3423981
crossref_primary_10_1002_jbt_23795
crossref_primary_10_1002_jcp_26144
crossref_primary_10_3389_fphar_2022_919967
crossref_primary_10_3390_cells12030412
crossref_primary_10_1038_s41598_020_59355_y
crossref_primary_10_3389_fimmu_2022_1042983
crossref_primary_10_1016_j_freeradbiomed_2022_12_096
crossref_primary_10_3390_biomedicines9121747
crossref_primary_10_1016_j_yexcr_2019_111670
crossref_primary_10_2147_DDDT_S224308
crossref_primary_10_1186_s12929_020_00658_7
crossref_primary_10_3892_mmr_2019_9806
crossref_primary_10_1097_GOX_0000000000005034
crossref_primary_10_1038_s41419_019_2218_5
crossref_primary_10_1093_postmj_qgad124
crossref_primary_10_1016_j_jphs_2019_06_008
crossref_primary_10_1080_13880209_2022_2088809
crossref_primary_10_3892_ijmm_2018_3667
crossref_primary_10_2147_JIR_S313910
crossref_primary_10_3892_etm_2017_4968
crossref_primary_10_1016_j_phrs_2021_105630
crossref_primary_10_1002_jcp_28203
crossref_primary_10_1016_j_matbio_2017_06_003
crossref_primary_10_1016_j_aanat_2017_12_015
crossref_primary_10_1042_CS20201340
crossref_primary_10_1161_ATVBAHA_120_313991
crossref_primary_10_1016_j_ecoenv_2024_117124
crossref_primary_10_1166_jbt_2023_3249
crossref_primary_10_1016_j_phymed_2022_154246
crossref_primary_10_1159_000511661
crossref_primary_10_1093_icvts_ivz275
crossref_primary_10_1016_j_biopha_2017_10_091
crossref_primary_10_1016_j_bioactmat_2024_06_009
crossref_primary_10_3389_fcell_2021_696542
crossref_primary_10_1155_2017_2418671
crossref_primary_10_1126_scitranslmed_aau2814
crossref_primary_10_1042_BCJ20200360
crossref_primary_10_1080_0886022X_2018_1490322
crossref_primary_10_1159_000521100
crossref_primary_10_1016_j_tice_2022_101831
crossref_primary_10_3389_fphar_2023_1335094
crossref_primary_10_1152_ajprenal_00596_2017
crossref_primary_10_1155_2020_7950457
crossref_primary_10_3390_ijms231810702
crossref_primary_10_1016_j_jphs_2021_10_009
crossref_primary_10_1016_j_ijbiomac_2020_06_153
crossref_primary_10_3389_fphar_2023_1230174
crossref_primary_10_3390_biom14111433
crossref_primary_10_1038_s41419_020_03322_y
crossref_primary_10_1155_2022_4301033
crossref_primary_10_1002_dvdy_24518
crossref_primary_10_1021_acsptsci_9b00095
crossref_primary_10_3389_fphar_2022_845892
crossref_primary_10_3389_fcell_2021_683594
crossref_primary_10_1186_s12964_019_0455_y
crossref_primary_10_1016_j_bbrc_2017_11_027
crossref_primary_10_1080_0886022X_2020_1847145
crossref_primary_10_3389_fendo_2023_1172199
crossref_primary_10_1152_ajpendo_00071_2019
crossref_primary_10_1080_13880209_2023_2243086
crossref_primary_10_1096_fj_201903188R
crossref_primary_10_1016_j_yexcr_2019_07_005
crossref_primary_10_3390_jcm12144770
crossref_primary_10_1159_000488697
crossref_primary_10_1096_fj_202200706RR
crossref_primary_10_1038_s41598_022_24420_1
crossref_primary_10_1016_j_toxlet_2022_04_005
crossref_primary_10_1186_s41038_017_0080_1
crossref_primary_10_1016_j_jep_2024_117986
crossref_primary_10_1016_j_phymed_2022_154134
crossref_primary_10_1080_0886022X_2022_2079528
crossref_primary_10_3390_toxins13070474
crossref_primary_10_3389_fphar_2017_00473
crossref_primary_10_1016_j_molmed_2018_02_003
crossref_primary_10_1080_0886022X_2021_1997764
crossref_primary_10_1155_2020_7291075
crossref_primary_10_1016_j_ajpath_2021_05_013
crossref_primary_10_1016_j_arr_2023_101995
crossref_primary_10_1016_j_labinv_2023_100131
crossref_primary_10_1038_s41598_017_11829_2
crossref_primary_10_2174_1389201024666230417084507
crossref_primary_10_1002_jcb_29508
crossref_primary_10_1007_s12013_025_01698_2
crossref_primary_10_3389_fphar_2022_842720
Cites_doi 10.1016/j.ajpath.2012.09.009
10.1096/fj.11-183194
10.1038/kisup.2014.7
10.1038/ki.2011.327
10.1016/j.cellsig.2014.05.018
10.1681/ASN.2009010018
10.1681/ASN.2006050459
10.1038/ki.2015.51
10.3390/cells4040631
10.1038/ki.2015.121
10.1038/nm.3901
10.1002/dvg.20654
10.1038/ki.2015.235
10.1681/ASN.2010111168
10.1038/ki.1994.68
10.1681/ASN.2007101109
10.2353/ajpath.2008.080433
10.1681/ASN.2015010006
10.1074/jbc.M413081200
10.1172/JCI44595
10.1111/j.1440-1681.2009.05139.x
10.2741/3057
10.1016/j.cellsig.2013.07.007
10.1097/MNH.0b013e328305b994
10.1152/ajprenal.00274.2007
10.1007/s11906-012-0245-z
10.1038/kisup.2014.16
10.1038/nrneph.2011.149
10.1016/j.bbrc.2010.02.098
10.1159/000312882
10.1111/j.1478-3231.2005.01047.x
10.1093/ndt/gfn699
10.1111/j.1523-1755.2004.00393.x
10.1165/rcmb.2009-0282OC
10.1038/nm.3218
10.2353/ajpath.2010.090517
10.1369/jhc.7A7354.2008
10.1038/ki.2015.170
10.1089/jir.2006.0054
10.1210/en.2004-1393
10.1038/ki.2015.63
10.1002/hep.1840380414
10.1186/s13069-015-0030-0
10.2353/ajpath.2008.070057
10.1038/ki.2014.235
10.1097/01.ASN.0000067632.04658.B8
10.1007/s00441-011-1169-7
10.1038/ncb2099
10.2353/ajpath.2009.090096
10.2337/db09-1631
10.1096/fj.02-1117fje
10.1016/S0002-9440(10)63225-7
10.1681/ASN.2006080901
10.1681/ASN.2008050513
10.1016/j.stem.2014.11.004
10.1681/ASN.2010121308
10.1038/ki.2011.300
10.1038/ki.2014.287
10.1007/s00125-008-1215-5
10.1074/jbc.M101602200
10.1038/nm.3902
10.1016/j.ajpath.2013.12.003
10.1038/ncb2455
10.1172/JCI0215518
ContentType Journal Article
Copyright 2016 International Society of Differentiation
Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2016 International Society of Differentiation
– notice: Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.diff.2016.05.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1432-0436
EndPage 107
ExternalDocumentID 27262400
10_1016_j_diff_2016_05_008
S0301468115300876
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.3N
.GJ
.~1
0R~
1B1
1OC
1RT
1VV
1~.
29G
31~
36B
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
8-1
8P~
9JM
9M8
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACPRK
ACRLP
ACXQS
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFBPY
AFEBI
AFKWA
AFTJW
AFXIZ
AFZJQ
AGHFR
AGRDE
AGUBO
AGYEJ
AHEFC
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJAOE
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BFHJK
BKOJK
BLXMC
CAG
CO8
COF
CS3
DCZOG
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EMB
EMOBN
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
GBLVA
HLW
HVGLF
HZ~
H~9
IH2
IHE
KOM
LAS
LH4
LW6
M41
MO0
O-L
O9-
OAUVE
OBS
OVD
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
SBG
SDF
SDH
SES
SPCBC
SSU
SSZ
SV3
T5K
TEORI
TN5
UNMZH
VH1
W99
WH7
WUQ
YFH
YUY
ZGI
ZXP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ID FETCH-LOGICAL-c356t-4a1df4579f04aadbc9cf52eb9c9c9b8c5ca348ab89f27038ea729326d2aede843
IEDL.DBID .~1
ISSN 0301-4681
1432-0436
IngestDate Fri Jul 11 02:19:04 EDT 2025
Mon Jul 21 05:38:52 EDT 2025
Tue Jul 01 04:21:21 EDT 2025
Thu Apr 24 23:09:27 EDT 2025
Fri Feb 23 02:29:37 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Fibroblasts
Myofibroblasts
Renal fibrosis
TGF-β1/Smad signaling
Language English
License Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-4a1df4579f04aadbc9cf52eb9c9c9b8c5ca348ab89f27038ea729326d2aede843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 27262400
PQID 1826696774
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1826696774
pubmed_primary_27262400
crossref_primary_10_1016_j_diff_2016_05_008
crossref_citationtrail_10_1016_j_diff_2016_05_008
elsevier_sciencedirect_doi_10_1016_j_diff_2016_05_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2016
2016-09-00
2016-Sep
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Differentiation (London)
PublicationTitleAlternate Differentiation
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sun, Qu, Howard (bib52) 2015
Tang, Harrington, Yang, Friesel, Liaw (bib56) 2010; 48
Qu, Jiang, Sun (bib48) 2015; 88
Qin, Chung, Huang (bib46) 2011; 22
Lecru, Desterke, Grassin-Delyle (bib24) 2015; 88
Samarakoon, Dobberfuhl, Cooley (bib50) 2013; 25
Zhang, Nanji, Luk (bib69) 2005; 25
Cvetkovic, Al-Abed, Miljkovic (bib5) 2005; 146
Meng, Huang, Xiao (bib40) 2012; 81
Liu (bib34) 2011; 7
Kramann, Schneider, DiRocco (bib18) 2015; 16
LeBleu, Kalluri (bib22) 2011; 80
Sun, Qu, Li, Nikolic-Paterson, Li (bib53) 2013; 8
Gasser, Winkler, Peng (bib9) 2013
Zhong, Chung, Chen, Meng, Lan (bib70) 2011; 22
Li, Huang, Zhu (bib29) 2004; 18
Thethi, Kamiyama, Kobori (bib57) 2012; 14
Grande, Sánchez-Laorden, López-Blau (bib10) 2015; 21
Fukasawa, Yamamoto, Suzuki (bib6) 2004; 65
Gao, Sasaoka, Fujimori (bib8) 2005; 280
Kessler, Dethlefsen, Haase (bib17) 2001; 276
Huang, Chung, Wang, Lai, Lan (bib12) 2008; 295
Nakagawa, Sato, Glushakova (bib42) 2007; 18
Zeisberg, Potenta, Sugimoto, Zeisberg, Kalluri (bib68) 2008; 19
Lan, Mu, Tomita (bib21) 2003; 14
Li, Qu, Bertram (bib26) 2009; 175
Kriz, Kaissling, Le Hir (bib19) 2011; 121
Li, Kang, Dai, Kiss, Wen, Liu (bib30) 2008; 172
Quigley, Elmarakby, Knight (bib49) 2009; 36
Mack, Yanagita (bib38) 2014; 87
Nikolic-Paterson, Wang, Lan (bib45) 2014; 4
Yang, DS-S, Wang (bib65) 2010; 12
Furukawa, Matsuzaki, Mori (bib7) 2003; 38
Chung, Zhang, Kong (bib3) 2010; 21
Venkatachalam, Weinberg, Kriz, Bidani (bib60) 2015; 26
Liu, Hubchak, Browne, Schnaper (bib33) 2014; 26
Sarafidis (bib51) 2008; 17
Yu, Lin, Huang (bib67) 2007; 27
Inoue, Umezawa, Takenaka, Suzuki, Okada (bib14) 2015; 87
Wu, Chiang, Lai (bib63) 2013; 182
Wang, Ziyadeh, Lee (bib61) 2007; 293
Tan, Zhou, Zhou, Liu (bib55) 2014; 4
Venkatachalam, Weinberg (bib59) 2015; 88
Yamashita, Fujimiya, Nagaishi (bib64) 2012; 26
Ka, Huang, Lan (bib16) 2007; 18
Yang, Lan, Huang (bib66) 2012; 14
Lan (bib20) 2008; 13
Lin, Kisseleva, Brenner, Duffield (bib32) 2008; 173
Humphreys, Lin, Kobayashi (bib13) 2010; 176
LeBleu, Taduri, O’Connell (bib23) 2013; 19
Mikulak, Singhal (bib41) 2010; 115
Choudhury, Tuncel, Levi (bib2) 2010; 10
Guo, Ananthakrishnan, Qu (bib11) 2008; 19
Tamaki, Okuda, Ando, Iwamoto, Nakayama, Fujishima (bib54) 1994; 45
Lim, Nikolic-Paterson, Ma (bib31) 2009; 52
Loeffler, Wolf (bib35) 2015; 4
Li, Qu, Yao (bib27) 2010; 59
Lovisa, LeBleu, Tampe (bib36) 2015; 21
Qu, Li, Zheng (bib47) 2014; 184
Iwano, Plieth, Danoff, Xue, Okada, Neilson (bib15) 2002; 110
Li, Wang, Huang (bib28) 2004; 164
Lee (bib25) 2012; 347
Acevedo, Londono, Oubaha, Ghitescu, Bendayan (bib1) 2008; 56
Mariasegaram, Tesch, Verhardt, Hurst, Lan, Nikolic-Paterson (bib39) 2010; 393
Nakasatomi, Maeshima, Mishima (bib43) 2015; 8
Wang, Zhou, Tan (bib62) 2010; 299
Chung, Huang, Zhou, Heuchel, Lai, Lan (bib4) 2009; 24
Velden, Alcorn, Guala, Badura, Janssen-Heininger (bib58) 2011; 44
Neelisetty, Alford, Reynolds (bib44) 2015; 88
Maarouf, Aravamudhan, Rangarajan (bib37) 2015
Inoue (10.1016/j.diff.2016.05.008_bib14) 2015; 87
Yang (10.1016/j.diff.2016.05.008_bib66) 2012; 14
Liu (10.1016/j.diff.2016.05.008_bib33) 2014; 26
Lim (10.1016/j.diff.2016.05.008_bib31) 2009; 52
Meng (10.1016/j.diff.2016.05.008_bib40) 2012; 81
Furukawa (10.1016/j.diff.2016.05.008_bib7) 2003; 38
Guo (10.1016/j.diff.2016.05.008_bib11) 2008; 19
Sarafidis (10.1016/j.diff.2016.05.008_bib51) 2008; 17
Chung (10.1016/j.diff.2016.05.008_bib3) 2010; 21
Mariasegaram (10.1016/j.diff.2016.05.008_bib39) 2010; 393
Nakagawa (10.1016/j.diff.2016.05.008_bib42) 2007; 18
Tamaki (10.1016/j.diff.2016.05.008_bib54) 1994; 45
Lovisa (10.1016/j.diff.2016.05.008_bib36) 2015; 21
Neelisetty (10.1016/j.diff.2016.05.008_bib44) 2015; 88
Lecru (10.1016/j.diff.2016.05.008_bib24) 2015; 88
Liu (10.1016/j.diff.2016.05.008_bib34) 2011; 7
Tan (10.1016/j.diff.2016.05.008_bib55) 2014; 4
Li (10.1016/j.diff.2016.05.008_bib28) 2004; 164
Yamashita (10.1016/j.diff.2016.05.008_bib64) 2012; 26
Ka (10.1016/j.diff.2016.05.008_bib16) 2007; 18
Yu (10.1016/j.diff.2016.05.008_bib67) 2007; 27
Tang (10.1016/j.diff.2016.05.008_bib56) 2010; 48
Li (10.1016/j.diff.2016.05.008_bib29) 2004; 18
Lan (10.1016/j.diff.2016.05.008_bib20) 2008; 13
Gasser (10.1016/j.diff.2016.05.008_bib9) 2013
Li (10.1016/j.diff.2016.05.008_bib30) 2008; 172
Chung (10.1016/j.diff.2016.05.008_bib4) 2009; 24
Qu (10.1016/j.diff.2016.05.008_bib47) 2014; 184
Wang (10.1016/j.diff.2016.05.008_bib62) 2010; 299
Thethi (10.1016/j.diff.2016.05.008_bib57) 2012; 14
Fukasawa (10.1016/j.diff.2016.05.008_bib6) 2004; 65
Lan (10.1016/j.diff.2016.05.008_bib21) 2003; 14
Wu (10.1016/j.diff.2016.05.008_bib63) 2013; 182
Sun (10.1016/j.diff.2016.05.008_bib52) 2015
Zhong (10.1016/j.diff.2016.05.008_bib70) 2011; 22
Huang (10.1016/j.diff.2016.05.008_bib12) 2008; 295
Samarakoon (10.1016/j.diff.2016.05.008_bib50) 2013; 25
Cvetkovic (10.1016/j.diff.2016.05.008_bib5) 2005; 146
Gao (10.1016/j.diff.2016.05.008_bib8) 2005; 280
Lee (10.1016/j.diff.2016.05.008_bib25) 2012; 347
Acevedo (10.1016/j.diff.2016.05.008_bib1) 2008; 56
LeBleu (10.1016/j.diff.2016.05.008_bib22) 2011; 80
Choudhury (10.1016/j.diff.2016.05.008_bib2) 2010; 10
Mack (10.1016/j.diff.2016.05.008_bib38) 2014; 87
Mikulak (10.1016/j.diff.2016.05.008_bib41) 2010; 115
Kramann (10.1016/j.diff.2016.05.008_bib18) 2015; 16
Iwano (10.1016/j.diff.2016.05.008_bib15) 2002; 110
LeBleu (10.1016/j.diff.2016.05.008_bib23) 2013; 19
Humphreys (10.1016/j.diff.2016.05.008_bib13) 2010; 176
Lin (10.1016/j.diff.2016.05.008_bib32) 2008; 173
Qin (10.1016/j.diff.2016.05.008_bib46) 2011; 22
Maarouf (10.1016/j.diff.2016.05.008_bib37) 2015
Yang (10.1016/j.diff.2016.05.008_bib65) 2010; 12
Zeisberg (10.1016/j.diff.2016.05.008_bib68) 2008; 19
Kriz (10.1016/j.diff.2016.05.008_bib19) 2011; 121
Wang (10.1016/j.diff.2016.05.008_bib61) 2007; 293
Venkatachalam (10.1016/j.diff.2016.05.008_bib60) 2015; 26
Quigley (10.1016/j.diff.2016.05.008_bib49) 2009; 36
Li (10.1016/j.diff.2016.05.008_bib27) 2010; 59
Velden (10.1016/j.diff.2016.05.008_bib58) 2011; 44
Zhang (10.1016/j.diff.2016.05.008_bib69) 2005; 25
Grande (10.1016/j.diff.2016.05.008_bib10) 2015; 21
Qu (10.1016/j.diff.2016.05.008_bib48) 2015; 88
Venkatachalam (10.1016/j.diff.2016.05.008_bib59) 2015; 88
Li (10.1016/j.diff.2016.05.008_bib26) 2009; 175
Kessler (10.1016/j.diff.2016.05.008_bib17) 2001; 276
Loeffler (10.1016/j.diff.2016.05.008_bib35) 2015; 4
Sun (10.1016/j.diff.2016.05.008_bib53) 2013; 8
Nakasatomi (10.1016/j.diff.2016.05.008_bib43) 2015; 8
Nikolic-Paterson (10.1016/j.diff.2016.05.008_bib45) 2014; 4
References_xml – volume: 24
  start-page: 1443
  year: 2009
  end-page: 1454
  ident: bib4
  article-title: Disruption of the Smad7 gene promotes renal fibrosis and inflammation in unilateral ureteral obstruction (UUO) in mice
  publication-title: Nephrol. Dial. Transpl.
– volume: 8
  start-page: e84063
  year: 2013
  ident: bib53
  article-title: Endothelial dysfunction exacerbates renal interstitial fibrosis through enhancing fibroblast smad3 linker phosphorylation in the mouse obstructed kidney
  publication-title: PLoS One
– volume: 121
  start-page: 468
  year: 2011
  end-page: 474
  ident: bib19
  article-title: Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy?
  publication-title: J. Clin. Investig.
– volume: 276
  start-page: 36575
  year: 2001
  end-page: 36585
  ident: bib17
  article-title: Fibroblasts in mechanically stressed collagen lattices assume a “synthetic” phenotype
  publication-title: J. Biol. Chem.
– volume: 44
  start-page: 571
  year: 2011
  end-page: 581
  ident: bib58
  article-title: c-Jun N-terminal kinase 1 promotes transforming growth factor-β1-induced epithelial-to-mesenchymal transition via control of linker phosphorylation and transcriptional activity of Smad3
  publication-title: Am. J. Respir. Cell Mol. Biol.
– volume: 347
  start-page: 129
  year: 2012
  end-page: 140
  ident: bib25
  article-title: Mechanisms and consequences of TGF-ss overexpression by podocytes in progressive podocyte disease
  publication-title: Cell Tissue Res.
– volume: 27
  start-page: 103
  year: 2007
  end-page: 109
  ident: bib67
  article-title: Macrophage migration inhibitory factor induces MMP-9 expression in macrophages via the MEK-ERK MAP kinase pathway
  publication-title: J. Interferon Cytokine Res.
– volume: 176
  start-page: 85
  year: 2010
  end-page: 97
  ident: bib13
  article-title: Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis
  publication-title: Am. J. Pathol.
– volume: 26
  start-page: 1559
  year: 2012
  end-page: 1568
  ident: bib64
  article-title: Fusion of bone marrow-derived cells with renal tubules contributes to renal dysfunction in diabetic nephropathy
  publication-title: FASEB J.
– volume: 110
  start-page: 341
  year: 2002
  end-page: 350
  ident: bib15
  article-title: Evidence that fibroblasts derive from epithelium during tissue fibrosis
  publication-title: J. Clin. Investig.
– volume: 146
  start-page: 2942
  year: 2005
  end-page: 2951
  ident: bib5
  article-title: Critical role of macrophage migration inhibitory factor activity in experimental autoimmune diabetes
  publication-title: Endocrinology
– volume: 14
  start-page: 366
  year: 2012
  end-page: 374
  ident: bib66
  article-title: RAC1 activation mediates Twist1-induced cancer cell migration
  publication-title: Nat. Cell Biol.
– volume: 19
  start-page: 2282
  year: 2008
  end-page: 2287
  ident: bib68
  article-title: Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition
  publication-title: J. Am. Soc. Nephrol.
– volume: 4
  start-page: 84
  year: 2014
  end-page: 90
  ident: bib55
  article-title: Wnt/β-catenin signaling and kidney fibrosis
  publication-title: Kidney Int. Suppl.
– volume: 182
  start-page: 118
  year: 2013
  end-page: 131
  ident: bib63
  article-title: Transforming growth factor β-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis
  publication-title: Am. J. Pathol.
– volume: 26
  start-page: 1765
  year: 2015
  end-page: 1776
  ident: bib60
  article-title: Failed tubule recovery, AKI-CKD transition, and kidney disease progression
  publication-title: J. Am. Soc. Nephrol.
– volume: 25
  start-page: 2198
  year: 2013
  end-page: 2209
  ident: bib50
  article-title: Induction of renal fibrotic genes by TGF-β1 requires EGFR activation, p53 and reactive oxygen species
  publication-title: Cell. Signal.
– volume: 16
  start-page: 51
  year: 2015
  end-page: 66
  ident: bib18
  article-title: Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis
  publication-title: Cell Stem Cell
– volume: 8
  start-page: 12
  year: 2015
  ident: bib43
  article-title: Novel approach for the detection of tubular cell migration into the interstitium during renal fibrosis in rats
  publication-title: Fibrogenesis Tissue Repair
– volume: 4
  start-page: 631
  year: 2015
  end-page: 652
  ident: bib35
  article-title: Epithelial-to-mesenchymal transition in diabetic nephropathy: fact or fiction?
  publication-title: Cells
– volume: 4
  start-page: 34
  year: 2014
  end-page: 38
  ident: bib45
  article-title: Macrophages promote renal fibrosis through direct and indirect mechanisms
  publication-title: Kidney Int. Suppl.
– volume: 22
  start-page: 1668
  year: 2011
  end-page: 1681
  ident: bib70
  article-title: Smad3-mediated upregulation of miR-21 promotes renal fibrosis
  publication-title: J. Am. Soc. Nephrol.
– volume: 18
  start-page: 1777
  year: 2007
  end-page: 1788
  ident: bib16
  article-title: Smad7 gene therapy ameliorates an autoimmune crescentic glomerulonephritis in mice
  publication-title: J. Am. Soc. Nephrol.
– volume: 175
  start-page: 1380
  year: 2009
  end-page: 1388
  ident: bib26
  article-title: Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice
  publication-title: Am. J. Pathol.
– volume: 48
  start-page: 563
  year: 2010
  end-page: 567
  ident: bib56
  article-title: The contribution of the Tie2+ lineage to primitive and definitive hematopoietic cells
  publication-title: Genesis
– volume: 115
  start-page: e15
  year: 2010
  end-page: e21
  ident: bib41
  article-title: HIV-1 and kidney cells: better understanding of viral interaction
  publication-title: Nephron Exp. Nephrol.
– volume: 21
  start-page: 989
  year: 2015
  end-page: 997
  ident: bib10
  article-title: Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease
  publication-title: Nat. Med.
– volume: 164
  start-page: 1389
  year: 2004
  end-page: 1397
  ident: bib28
  article-title: Advanced glycation end products induce tubular epithelial-myofibroblast transition through the RAGE-ERK1/2 MAP kinase signaling pathway
  publication-title: Am. J. Pathol.
– volume: 17
  start-page: 450
  year: 2008
  end-page: 456
  ident: bib51
  article-title: Obesity, insulin resistance and kidney disease risk: insights into the relationship
  publication-title: Curr. Opin. Nephrol. Hypertens.
– volume: 172
  start-page: 299
  year: 2008
  end-page: 308
  ident: bib30
  article-title: Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria
  publication-title: Am. J. Pathol.
– volume: 88
  start-page: 434
  year: 2015
  end-page: 437
  ident: bib59
  article-title: Fibrosis without fibroblast TGF-β receptors?
  publication-title: Kidney Int.
– year: 2013
  ident: bib9
  article-title: Focal segmental glomerulosclerosis is associated with a PDSS2 haplotype and independently, with a decreased content of coenzyme Q10
  publication-title: AJP: Ren. Physiol.
– volume: 88
  start-page: 503
  year: 2015
  end-page: 514
  ident: bib44
  article-title: Renal fibrosis is not reduced by blocking transforming growth factor-β signaling in matrix-producing interstitial cells
  publication-title: Kidney Int.
– volume: 36
  start-page: 724
  year: 2009
  end-page: 728
  ident: bib49
  article-title: Obesity induced renal oxidative stress contributes to renal injury in salt-sensitive hypertension
  publication-title: Clin. Exp. Pharmacol. Physiol.
– volume: 80
  start-page: 1119
  year: 2011
  end-page: 1121
  ident: bib22
  article-title: Blockade of PDGF receptor signaling reduces myofibroblast number and attenuates renal fibrosis
  publication-title: Kidney Int.
– volume: 299
  start-page: F973
  year: 2010
  end-page: F982
  ident: bib62
  article-title: Mice lacking the matrix metalloproteinase-9 gene reduce renal interstitial fibrosis in obstructive nephropathy
  publication-title: AJP: Ren. Physiol.
– volume: 18
  start-page: 176
  year: 2004
  end-page: 178
  ident: bib29
  article-title: Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease
  publication-title: FASEB J.
– volume: 59
  start-page: 2612
  year: 2010
  end-page: 2624
  ident: bib27
  article-title: Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy
  publication-title: Diabetes
– year: 2015
  ident: bib37
  article-title: Paracrine Wnt1 drives interstitial fibrosis without inflammation by Tubulointerstitial Cross-Talk
  publication-title: J Am Soc Nephrol
– volume: 19
  start-page: 1047
  year: 2013
  end-page: 1053
  ident: bib23
  article-title: Origin and function of myofibroblasts in kidney fibrosis
  publication-title: Nat. Med.
– volume: 173
  start-page: 1617
  year: 2008
  end-page: 1627
  ident: bib32
  article-title: Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney
  publication-title: Am. J. Pathol.
– volume: 14
  start-page: 160
  year: 2012
  end-page: 169
  ident: bib57
  article-title: The link between the renin-angiotensin-aldosterone system and renal injury in obesity and the metabolic syndrome
  publication-title: Curr. Hypertens. Rep.
– volume: 10
  start-page: 406
  year: 2010
  end-page: 415
  ident: bib2
  article-title: Diabetic nephropathy – a multifaceted target of new therapies
  publication-title: Discov. Med.
– volume: 52
  start-page: 347
  year: 2009
  end-page: 358
  ident: bib31
  article-title: Role of MKK3-p38 MAPK signalling in the development of type 2 diabetes and renal injury in obese db/db mice
  publication-title: Diabetologia
– volume: 280
  start-page: 9375
  year: 2005
  end-page: 9389
  ident: bib8
  article-title: Deletion of the PDGFR-beta gene affects key fibroblast functions important for wound healing
  publication-title: J. Biol. Chem.
– volume: 293
  start-page: F1657
  year: 2007
  end-page: F1665
  ident: bib61
  article-title: Interference with TGF-beta signaling by Smad3-knockout in mice limits diabetic glomerulosclerosis without affecting albuminuria
  publication-title: Am. J. Physiol. Ren. Physiol.
– volume: 38
  start-page: 879
  year: 2003
  end-page: 889
  ident: bib7
  article-title: p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts
  publication-title: Hepatology
– volume: 18
  start-page: 539
  year: 2007
  end-page: 550
  ident: bib42
  article-title: Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy
  publication-title: J. Am. Soc. Nephrol.
– volume: 22
  start-page: 1462
  year: 2011
  end-page: 1474
  ident: bib46
  article-title: TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29
  publication-title: J. Am. Soc. Nephrol.
– volume: 87
  start-page: 297
  year: 2014
  end-page: 307
  ident: bib38
  article-title: Origin of myofibroblasts and cellular events triggering fibrosis
  publication-title: Kidney Int.
– volume: 393
  start-page: 855
  year: 2010
  end-page: 859
  ident: bib39
  article-title: Lefty antagonises TGF-beta1 induced epithelial-mesenchymal transition in tubular epithelial cells
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 56
  start-page: 605
  year: 2008
  end-page: 614
  ident: bib1
  article-title: Glomerular CD34 expression in short- and long-term diabetes
  publication-title: J. Histochem. Cytochem.
– volume: 295
  start-page: F118
  year: 2008
  end-page: F127
  ident: bib12
  article-title: Mice overexpressing latent TGF-beta1 are protected against renal fibrosis in obstructive kidney disease
  publication-title: AJP: Ren. Physiol.
– volume: 19
  start-page: 961
  year: 2008
  end-page: 972
  ident: bib11
  article-title: RAGE mediates podocyte injury in adriamycin-induced glomerulosclerosis
  publication-title: J. Am. Soc. Nephrol.
– volume: 12
  start-page: 982
  year: 2010
  end-page: 992
  ident: bib65
  article-title: Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition
  publication-title: Nat. Cell Biol.
– volume: 13
  start-page: 4984
  year: 2008
  end-page: 4992
  ident: bib20
  article-title: Smad7 as a therapeutic agent for chronic kidney diseases
  publication-title: Front Biosci.
– volume: 21
  start-page: 249
  year: 2010
  end-page: 260
  ident: bib3
  article-title: Advanced glycation end-products induce tubular CTGF via TGF-beta-independent Smad3 signaling
  publication-title: J. Am. Soc. Nephrol.
– volume: 87
  start-page: 233
  year: 2015
  end-page: 238
  ident: bib14
  article-title: The contribution of epithelial-mesenchymal transition to renal fibrosis differs among kidney disease models
  publication-title: Kidney Int.
– volume: 184
  start-page: 944
  year: 2014
  end-page: 952
  ident: bib47
  article-title: Regulation of renal fibrosis by Smad3 Thr388 phosphorylation
  publication-title: Am. J. Pathol.
– volume: 25
  start-page: 571
  year: 2005
  end-page: 579
  ident: bib69
  article-title: Macrophage migration inhibitory factor expression correlates with inflammatory changes in human chronic hepatitis B infection
  publication-title: Liver Int.
– volume: 65
  start-page: 63
  year: 2004
  end-page: 74
  ident: bib6
  article-title: Treatment with anti-TGF-beta antibody ameliorates chronic progressive nephritis by inhibiting Smad/TGF-beta signaling
  publication-title: Kidney Int.
– volume: 88
  start-page: 72
  year: 2015
  end-page: 84
  ident: bib24
  article-title: Cannabinoid receptor 1 is a major mediator of renal fibrosis
  publication-title: Kidney Int.
– volume: 21
  start-page: 998
  year: 2015
  end-page: 1009
  ident: bib36
  article-title: Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis
  publication-title: Nat. Med.
– volume: 81
  start-page: 266
  year: 2012
  end-page: 279
  ident: bib40
  article-title: Disruption of Smad4 impairs TGF-b/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis
  publication-title: Kidney Int.
– volume: 7
  start-page: 684
  year: 2011
  end-page: 696
  ident: bib34
  article-title: Cellular and molecular mechanisms of renal fibrosis
  publication-title: Nat. Rev. Nephrol.
– year: 2015
  ident: bib52
  article-title: Smad3 deficiency protects mice from obesity-induced podocyte injury that precedes insulin resistance
  publication-title: Kidney Int.
– volume: 26
  start-page: 2276
  year: 2014
  end-page: 2283
  ident: bib33
  article-title: Epidermal growth factor inhibits transforming growth factor-β-induced fibrogenic differentiation marker expression through ERK activation
  publication-title: Cell. Signal.
– volume: 14
  start-page: 1535
  year: 2003
  end-page: 1548
  ident: bib21
  article-title: Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model
  publication-title: J. Am. Soc. Nephrol.
– volume: 88
  start-page: 1323
  year: 2015
  end-page: 1335
  ident: bib48
  article-title: The Smad3/Smad4/CDK9 complex promotes renal fibrosis in mice with unilateral ureteral obstruction
  publication-title: Kidney Int.
– volume: 45
  start-page: 525
  year: 1994
  end-page: 536
  ident: bib54
  article-title: TGF-beta 1 in glomerulosclerosis and interstitial fibrosis of adriamycin nephropathy
  publication-title: Kidney Int.
– year: 2015
  ident: 10.1016/j.diff.2016.05.008_bib37
  article-title: Paracrine Wnt1 drives interstitial fibrosis without inflammation by Tubulointerstitial Cross-Talk
  publication-title: J Am Soc Nephrol
– volume: 182
  start-page: 118
  year: 2013
  ident: 10.1016/j.diff.2016.05.008_bib63
  article-title: Transforming growth factor β-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2012.09.009
– volume: 26
  start-page: 1559
  year: 2012
  ident: 10.1016/j.diff.2016.05.008_bib64
  article-title: Fusion of bone marrow-derived cells with renal tubules contributes to renal dysfunction in diabetic nephropathy
  publication-title: FASEB J.
  doi: 10.1096/fj.11-183194
– volume: 4
  start-page: 34
  year: 2014
  ident: 10.1016/j.diff.2016.05.008_bib45
  article-title: Macrophages promote renal fibrosis through direct and indirect mechanisms
  publication-title: Kidney Int. Suppl.
  doi: 10.1038/kisup.2014.7
– volume: 81
  start-page: 266
  year: 2012
  ident: 10.1016/j.diff.2016.05.008_bib40
  article-title: Disruption of Smad4 impairs TGF-b/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro
  publication-title: Kidney Int.
  doi: 10.1038/ki.2011.327
– volume: 26
  start-page: 2276
  year: 2014
  ident: 10.1016/j.diff.2016.05.008_bib33
  article-title: Epidermal growth factor inhibits transforming growth factor-β-induced fibrogenic differentiation marker expression through ERK activation
  publication-title: Cell. Signal.
  doi: 10.1016/j.cellsig.2014.05.018
– volume: 21
  start-page: 249
  year: 2010
  ident: 10.1016/j.diff.2016.05.008_bib3
  article-title: Advanced glycation end-products induce tubular CTGF via TGF-beta-independent Smad3 signaling
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2009010018
– volume: 18
  start-page: 539
  year: 2007
  ident: 10.1016/j.diff.2016.05.008_bib42
  article-title: Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2006050459
– volume: 88
  start-page: 503
  year: 2015
  ident: 10.1016/j.diff.2016.05.008_bib44
  article-title: Renal fibrosis is not reduced by blocking transforming growth factor-β signaling in matrix-producing interstitial cells
  publication-title: Kidney Int.
  doi: 10.1038/ki.2015.51
– volume: 4
  start-page: 631
  year: 2015
  ident: 10.1016/j.diff.2016.05.008_bib35
  article-title: Epithelial-to-mesenchymal transition in diabetic nephropathy: fact or fiction?
  publication-title: Cells
  doi: 10.3390/cells4040631
– year: 2015
  ident: 10.1016/j.diff.2016.05.008_bib52
  article-title: Smad3 deficiency protects mice from obesity-induced podocyte injury that precedes insulin resistance
  publication-title: Kidney Int.
  doi: 10.1038/ki.2015.121
– volume: 21
  start-page: 989
  year: 2015
  ident: 10.1016/j.diff.2016.05.008_bib10
  article-title: Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease
  publication-title: Nat. Med.
  doi: 10.1038/nm.3901
– volume: 48
  start-page: 563
  year: 2010
  ident: 10.1016/j.diff.2016.05.008_bib56
  article-title: The contribution of the Tie2+ lineage to primitive and definitive hematopoietic cells
  publication-title: Genesis
  doi: 10.1002/dvg.20654
– volume: 88
  start-page: 1323
  year: 2015
  ident: 10.1016/j.diff.2016.05.008_bib48
  article-title: The Smad3/Smad4/CDK9 complex promotes renal fibrosis in mice with unilateral ureteral obstruction
  publication-title: Kidney Int.
  doi: 10.1038/ki.2015.235
– volume: 22
  start-page: 1668
  year: 2011
  ident: 10.1016/j.diff.2016.05.008_bib70
  article-title: Smad3-mediated upregulation of miR-21 promotes renal fibrosis
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2010111168
– volume: 299
  start-page: F973
  year: 2010
  ident: 10.1016/j.diff.2016.05.008_bib62
  article-title: Mice lacking the matrix metalloproteinase-9 gene reduce renal interstitial fibrosis in obstructive nephropathy
  publication-title: AJP: Ren. Physiol.
– volume: 45
  start-page: 525
  year: 1994
  ident: 10.1016/j.diff.2016.05.008_bib54
  article-title: TGF-beta 1 in glomerulosclerosis and interstitial fibrosis of adriamycin nephropathy
  publication-title: Kidney Int.
  doi: 10.1038/ki.1994.68
– volume: 19
  start-page: 961
  year: 2008
  ident: 10.1016/j.diff.2016.05.008_bib11
  article-title: RAGE mediates podocyte injury in adriamycin-induced glomerulosclerosis
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2007101109
– volume: 173
  start-page: 1617
  year: 2008
  ident: 10.1016/j.diff.2016.05.008_bib32
  article-title: Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2008.080433
– volume: 26
  start-page: 1765
  year: 2015
  ident: 10.1016/j.diff.2016.05.008_bib60
  article-title: Failed tubule recovery, AKI-CKD transition, and kidney disease progression
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2015010006
– volume: 8
  start-page: e84063
  year: 2013
  ident: 10.1016/j.diff.2016.05.008_bib53
  article-title: Endothelial dysfunction exacerbates renal interstitial fibrosis through enhancing fibroblast smad3 linker phosphorylation in the mouse obstructed kidney
– volume: 280
  start-page: 9375
  year: 2005
  ident: 10.1016/j.diff.2016.05.008_bib8
  article-title: Deletion of the PDGFR-beta gene affects key fibroblast functions important for wound healing
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M413081200
– volume: 121
  start-page: 468
  year: 2011
  ident: 10.1016/j.diff.2016.05.008_bib19
  article-title: Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy?
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI44595
– volume: 36
  start-page: 724
  year: 2009
  ident: 10.1016/j.diff.2016.05.008_bib49
  article-title: Obesity induced renal oxidative stress contributes to renal injury in salt-sensitive hypertension
  publication-title: Clin. Exp. Pharmacol. Physiol.
  doi: 10.1111/j.1440-1681.2009.05139.x
– volume: 13
  start-page: 4984
  year: 2008
  ident: 10.1016/j.diff.2016.05.008_bib20
  article-title: Smad7 as a therapeutic agent for chronic kidney diseases
  publication-title: Front Biosci.
  doi: 10.2741/3057
– volume: 25
  start-page: 2198
  year: 2013
  ident: 10.1016/j.diff.2016.05.008_bib50
  article-title: Induction of renal fibrotic genes by TGF-β1 requires EGFR activation, p53 and reactive oxygen species
  publication-title: Cell. Signal.
  doi: 10.1016/j.cellsig.2013.07.007
– volume: 17
  start-page: 450
  year: 2008
  ident: 10.1016/j.diff.2016.05.008_bib51
  article-title: Obesity, insulin resistance and kidney disease risk: insights into the relationship
  publication-title: Curr. Opin. Nephrol. Hypertens.
  doi: 10.1097/MNH.0b013e328305b994
– volume: 293
  start-page: F1657
  year: 2007
  ident: 10.1016/j.diff.2016.05.008_bib61
  article-title: Interference with TGF-beta signaling by Smad3-knockout in mice limits diabetic glomerulosclerosis without affecting albuminuria
  publication-title: Am. J. Physiol. Ren. Physiol.
  doi: 10.1152/ajprenal.00274.2007
– volume: 14
  start-page: 160
  year: 2012
  ident: 10.1016/j.diff.2016.05.008_bib57
  article-title: The link between the renin-angiotensin-aldosterone system and renal injury in obesity and the metabolic syndrome
  publication-title: Curr. Hypertens. Rep.
  doi: 10.1007/s11906-012-0245-z
– volume: 4
  start-page: 84
  year: 2014
  ident: 10.1016/j.diff.2016.05.008_bib55
  article-title: Wnt/β-catenin signaling and kidney fibrosis
  publication-title: Kidney Int. Suppl.
  doi: 10.1038/kisup.2014.16
– volume: 7
  start-page: 684
  year: 2011
  ident: 10.1016/j.diff.2016.05.008_bib34
  article-title: Cellular and molecular mechanisms of renal fibrosis
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/nrneph.2011.149
– volume: 10
  start-page: 406
  year: 2010
  ident: 10.1016/j.diff.2016.05.008_bib2
  article-title: Diabetic nephropathy – a multifaceted target of new therapies
  publication-title: Discov. Med.
– volume: 393
  start-page: 855
  year: 2010
  ident: 10.1016/j.diff.2016.05.008_bib39
  article-title: Lefty antagonises TGF-beta1 induced epithelial-mesenchymal transition in tubular epithelial cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2010.02.098
– volume: 115
  start-page: e15
  year: 2010
  ident: 10.1016/j.diff.2016.05.008_bib41
  article-title: HIV-1 and kidney cells: better understanding of viral interaction
  publication-title: Nephron Exp. Nephrol.
  doi: 10.1159/000312882
– volume: 25
  start-page: 571
  year: 2005
  ident: 10.1016/j.diff.2016.05.008_bib69
  article-title: Macrophage migration inhibitory factor expression correlates with inflammatory changes in human chronic hepatitis B infection
  publication-title: Liver Int.
  doi: 10.1111/j.1478-3231.2005.01047.x
– volume: 24
  start-page: 1443
  year: 2009
  ident: 10.1016/j.diff.2016.05.008_bib4
  article-title: Disruption of the Smad7 gene promotes renal fibrosis and inflammation in unilateral ureteral obstruction (UUO) in mice
  publication-title: Nephrol. Dial. Transpl.
  doi: 10.1093/ndt/gfn699
– volume: 65
  start-page: 63
  year: 2004
  ident: 10.1016/j.diff.2016.05.008_bib6
  article-title: Treatment with anti-TGF-beta antibody ameliorates chronic progressive nephritis by inhibiting Smad/TGF-beta signaling
  publication-title: Kidney Int.
  doi: 10.1111/j.1523-1755.2004.00393.x
– volume: 44
  start-page: 571
  year: 2011
  ident: 10.1016/j.diff.2016.05.008_bib58
  article-title: c-Jun N-terminal kinase 1 promotes transforming growth factor-β1-induced epithelial-to-mesenchymal transition via control of linker phosphorylation and transcriptional activity of Smad3
  publication-title: Am. J. Respir. Cell Mol. Biol.
  doi: 10.1165/rcmb.2009-0282OC
– volume: 19
  start-page: 1047
  year: 2013
  ident: 10.1016/j.diff.2016.05.008_bib23
  article-title: Origin and function of myofibroblasts in kidney fibrosis
  publication-title: Nat. Med.
  doi: 10.1038/nm.3218
– volume: 176
  start-page: 85
  year: 2010
  ident: 10.1016/j.diff.2016.05.008_bib13
  article-title: Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2010.090517
– volume: 56
  start-page: 605
  year: 2008
  ident: 10.1016/j.diff.2016.05.008_bib1
  article-title: Glomerular CD34 expression in short- and long-term diabetes
  publication-title: J. Histochem. Cytochem.
  doi: 10.1369/jhc.7A7354.2008
– volume: 88
  start-page: 434
  year: 2015
  ident: 10.1016/j.diff.2016.05.008_bib59
  article-title: Fibrosis without fibroblast TGF-β receptors?
  publication-title: Kidney Int.
  doi: 10.1038/ki.2015.170
– volume: 27
  start-page: 103
  year: 2007
  ident: 10.1016/j.diff.2016.05.008_bib67
  article-title: Macrophage migration inhibitory factor induces MMP-9 expression in macrophages via the MEK-ERK MAP kinase pathway
  publication-title: J. Interferon Cytokine Res.
  doi: 10.1089/jir.2006.0054
– volume: 146
  start-page: 2942
  year: 2005
  ident: 10.1016/j.diff.2016.05.008_bib5
  article-title: Critical role of macrophage migration inhibitory factor activity in experimental autoimmune diabetes
  publication-title: Endocrinology
  doi: 10.1210/en.2004-1393
– volume: 88
  start-page: 72
  year: 2015
  ident: 10.1016/j.diff.2016.05.008_bib24
  article-title: Cannabinoid receptor 1 is a major mediator of renal fibrosis
  publication-title: Kidney Int.
  doi: 10.1038/ki.2015.63
– volume: 38
  start-page: 879
  year: 2003
  ident: 10.1016/j.diff.2016.05.008_bib7
  article-title: p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts
  publication-title: Hepatology
  doi: 10.1002/hep.1840380414
– volume: 8
  start-page: 12
  year: 2015
  ident: 10.1016/j.diff.2016.05.008_bib43
  article-title: Novel approach for the detection of tubular cell migration into the interstitium during renal fibrosis in rats
  publication-title: Fibrogenesis Tissue Repair
  doi: 10.1186/s13069-015-0030-0
– volume: 172
  start-page: 299
  year: 2008
  ident: 10.1016/j.diff.2016.05.008_bib30
  article-title: Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2008.070057
– volume: 87
  start-page: 233
  year: 2015
  ident: 10.1016/j.diff.2016.05.008_bib14
  article-title: The contribution of epithelial-mesenchymal transition to renal fibrosis differs among kidney disease models
  publication-title: Kidney Int.
  doi: 10.1038/ki.2014.235
– volume: 14
  start-page: 1535
  year: 2003
  ident: 10.1016/j.diff.2016.05.008_bib21
  article-title: Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1097/01.ASN.0000067632.04658.B8
– volume: 347
  start-page: 129
  year: 2012
  ident: 10.1016/j.diff.2016.05.008_bib25
  article-title: Mechanisms and consequences of TGF-ss overexpression by podocytes in progressive podocyte disease
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-011-1169-7
– volume: 12
  start-page: 982
  year: 2010
  ident: 10.1016/j.diff.2016.05.008_bib65
  article-title: Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2099
– volume: 175
  start-page: 1380
  year: 2009
  ident: 10.1016/j.diff.2016.05.008_bib26
  article-title: Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2009.090096
– volume: 59
  start-page: 2612
  year: 2010
  ident: 10.1016/j.diff.2016.05.008_bib27
  article-title: Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy
  publication-title: Diabetes
  doi: 10.2337/db09-1631
– volume: 18
  start-page: 176
  year: 2004
  ident: 10.1016/j.diff.2016.05.008_bib29
  article-title: Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease
  publication-title: FASEB J.
  doi: 10.1096/fj.02-1117fje
– volume: 164
  start-page: 1389
  year: 2004
  ident: 10.1016/j.diff.2016.05.008_bib28
  article-title: Advanced glycation end products induce tubular epithelial-myofibroblast transition through the RAGE-ERK1/2 MAP kinase signaling pathway
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)63225-7
– volume: 295
  start-page: F118
  year: 2008
  ident: 10.1016/j.diff.2016.05.008_bib12
  article-title: Mice overexpressing latent TGF-beta1 are protected against renal fibrosis in obstructive kidney disease
  publication-title: AJP: Ren. Physiol.
– volume: 18
  start-page: 1777
  year: 2007
  ident: 10.1016/j.diff.2016.05.008_bib16
  article-title: Smad7 gene therapy ameliorates an autoimmune crescentic glomerulonephritis in mice
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2006080901
– volume: 19
  start-page: 2282
  year: 2008
  ident: 10.1016/j.diff.2016.05.008_bib68
  article-title: Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2008050513
– year: 2013
  ident: 10.1016/j.diff.2016.05.008_bib9
  article-title: Focal segmental glomerulosclerosis is associated with a PDSS2 haplotype and independently, with a decreased content of coenzyme Q10
  publication-title: AJP: Ren. Physiol.
– volume: 16
  start-page: 51
  year: 2015
  ident: 10.1016/j.diff.2016.05.008_bib18
  article-title: Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.11.004
– volume: 22
  start-page: 1462
  year: 2011
  ident: 10.1016/j.diff.2016.05.008_bib46
  article-title: TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2010121308
– volume: 80
  start-page: 1119
  year: 2011
  ident: 10.1016/j.diff.2016.05.008_bib22
  article-title: Blockade of PDGF receptor signaling reduces myofibroblast number and attenuates renal fibrosis
  publication-title: Kidney Int.
  doi: 10.1038/ki.2011.300
– volume: 87
  start-page: 297
  year: 2014
  ident: 10.1016/j.diff.2016.05.008_bib38
  article-title: Origin of myofibroblasts and cellular events triggering fibrosis
  publication-title: Kidney Int.
  doi: 10.1038/ki.2014.287
– volume: 52
  start-page: 347
  year: 2009
  ident: 10.1016/j.diff.2016.05.008_bib31
  article-title: Role of MKK3-p38 MAPK signalling in the development of type 2 diabetes and renal injury in obese db/db mice
  publication-title: Diabetologia
  doi: 10.1007/s00125-008-1215-5
– volume: 276
  start-page: 36575
  year: 2001
  ident: 10.1016/j.diff.2016.05.008_bib17
  article-title: Fibroblasts in mechanically stressed collagen lattices assume a “synthetic” phenotype
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M101602200
– volume: 21
  start-page: 998
  year: 2015
  ident: 10.1016/j.diff.2016.05.008_bib36
  article-title: Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis
  publication-title: Nat. Med.
  doi: 10.1038/nm.3902
– volume: 184
  start-page: 944
  year: 2014
  ident: 10.1016/j.diff.2016.05.008_bib47
  article-title: Regulation of renal fibrosis by Smad3 Thr388 phosphorylation
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2013.12.003
– volume: 14
  start-page: 366
  year: 2012
  ident: 10.1016/j.diff.2016.05.008_bib66
  article-title: RAC1 activation mediates Twist1-induced cancer cell migration
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2455
– volume: 110
  start-page: 341
  year: 2002
  ident: 10.1016/j.diff.2016.05.008_bib15
  article-title: Evidence that fibroblasts derive from epithelium during tissue fibrosis
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI0215518
SSID ssj0008621
Score 2.5880933
SecondaryResourceType review_article
Snippet Renal fibrosis is a common characteristic of chronic kidney disease (CKD). Aberrant and excessive depositions of extracellular matrix (ECM) proteins in both...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102
SubjectTerms Animals
Epithelial-Mesenchymal Transition - physiology
Fibroblasts
Fibroblasts - metabolism
Fibrosis - diagnosis
Fibrosis - pathology
Humans
Kidney - metabolism
Kidney - pathology
Kidney Diseases - metabolism
Kidney Diseases - pathology
Myofibroblasts
Myofibroblasts - pathology
Renal fibrosis
TGF-β1/Smad signaling
Title The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis
URI https://dx.doi.org/10.1016/j.diff.2016.05.008
https://www.ncbi.nlm.nih.gov/pubmed/27262400
https://www.proquest.com/docview/1826696774
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jIngRv50fI4I3qVvTJG2PYzim4i5usFtIm1Qm2o61O-zi3-5L004F3cFbUvJoeO_l5ffIL3kIXavEjwLiaodpRRyaEO1ExFMO83hX6a4rVVmm82nEhxP6MGXTBurXd2EMrbKK_Taml9G6-tKptNmZz2ad5zIb4AFAGq98WM3cYKe-8fLbjy-aByB2154kQK4Eo6uLM5bjZYqQGHoXL1_vNCUmf9-c_gKf5SY02EO7FXrEPTvBfdTQ6QHatvUkV4doDEbHttQVzhK80GZwAglxFgFILvLO-yr71sUyVRgAIDYkDnBDaMsCFyD_ohdWLp_lR2gyuBv3h05VNsGJPcYLh0pXJZT5YdKlUqooDuOEER2F0AijIGax9GggoyBMCKz3QEsA2IDiFJFa6YB6x6iZZqk-RZj4oRtIKn0aQyJWiihp6hByLl2qdAu5tb5EXL0pbkpbvImaPPYqjI6F0bHoMgE6bqGbtczcvqixcTSrzSB--IWAkL9R7qq2mYAFY05BZKqzZS5MQsVDDrC3hU6sMdfzID7hhlR79s-_nqMd07MctAvULBZLfQmgpYjapVe20Vbv_nE4-gRxVOut
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_mRPRF_HZ-RvBNytY0SdtHEWU63YsT9hbSJpWJtrLVB_97L007FHQPvqVtjoa75PI7crkfwLnOwiSivvG40dRjGTVeQgPt8UD0tOn5Slc0nQ9D0X9id2M-bsFVcxfGplXWvt_59Mpb12-6tTa775NJ97GKBkSEkCaoCqstwbKtTsXbsHx5O-gP5w4ZQbvvDhMwXEKB-u6MS_OyPCQ2w0tUBTwty-Tv-9Nf-LPah242YL0GkOTSjXETWibfghVHKfm5DSO0O3FsV6TIyNTYzhnGxEWCOLmcdd8-i2-PROWaIAYkNo8DZyK2VUlKlH82Uyc3m8x24OnmenTV92rmBC8NuCg9pnydMR7GWY8ppZM0TjNOTRJjI06ilKcqYJFKojijuOQjoxBjI5DTVBltIhbsQjsvcrMPhIaxHymmQpZiLFaJaGWpCIVQPtOmA36jL5nWZcUtu8WrbPLHXqTVsbQ6lj0uUccduJjLvLuiGgt788YM8sfUkOj1F8qdNTaTuGbsQYjKTfExkzamErFA5NuBPWfM-ThoSIXNqz34519PYbU_eriX97fDwSGs2S8uJe0I2uX0wxwjhimTk3qOfgGKD-5e
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+origin+of+renal+fibroblasts%2Fmyofibroblasts+and+the+signals+that+trigger+fibrosis&rft.jtitle=Differentiation+%28London%29&rft.au=Sun%2C+Yu+Bo+Yang&rft.au=Qu%2C+Xinli&rft.au=Caruana%2C+Georgina&rft.au=Li%2C+Jinhua&rft.date=2016-09-01&rft.issn=1432-0436&rft.eissn=1432-0436&rft.volume=92&rft.issue=3&rft.spage=102&rft_id=info:doi/10.1016%2Fj.diff.2016.05.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4681&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4681&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4681&client=summon