The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis
Renal fibrosis is a common characteristic of chronic kidney disease (CKD). Aberrant and excessive depositions of extracellular matrix (ECM) proteins in both glomeruli and interstitial regions are typical hallmarks of renal fibrosis and amplify the severity of kidney injury. To date, an approved ther...
Saved in:
Published in | Differentiation (London) Vol. 92; no. 3; pp. 102 - 107 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
01.09.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Renal fibrosis is a common characteristic of chronic kidney disease (CKD). Aberrant and excessive depositions of extracellular matrix (ECM) proteins in both glomeruli and interstitial regions are typical hallmarks of renal fibrosis and amplify the severity of kidney injury. To date, an approved therapy specifically targeted to renal fibrosis is needed to mitigate or even retard renal fibrosis. Recent findings have identified a unique population of myofibroblasts as a primary source of ECM in scar tissue formation. However, the origin of myofibroblasts in renal fibrosis remains the subject of controversial debates. The advancement in lineage tracing and immunofluorescent microscopy technologies have suggested that myofibroblasts may arise from a number of sources such as activated renal fibroblasts, pericytes, epithelial-to-mesenchymal transition (EMT), endothelial-to-mesenchymal transition (EndoMT), bone marrow derived cells and fibrocytes. Recent studies also indicate that multiple ligands of TGF-β/Smads are the direct mediators for renal fibrosis. Consistently, inhibition of the TGF-β/Smads signaling pathway using various strategies significantly reduce renal fibrotic lesions and ameliorate kidney injury, suggesting that targeting the TGF-β/Smads signaling pathway could be a new strategy for effective therapies. In this review, we will briefly discuss the diverse origins of myofibroblasts and molecular pathways triggering renal fibrosis. Prospective therapeutic approaches based on those molecular mechanisms will hopefully offer exciting insights in the development of new therapeutic interventions for patients in the near future. |
---|---|
AbstractList | Renal fibrosis is a common characteristic of chronic kidney disease (CKD). Aberrant and excessive depositions of extracellular matrix (ECM) proteins in both glomeruli and interstitial regions are typical hallmarks of renal fibrosis and amplify the severity of kidney injury. To date, an approved therapy specifically targeted to renal fibrosis is needed to mitigate or even retard renal fibrosis. Recent findings have identified a unique population of myofibroblasts as a primary source of ECM in scar tissue formation. However, the origin of myofibroblasts in renal fibrosis remains the subject of controversial debates. The advancement in lineage tracing and immunofluorescent microscopy technologies have suggested that myofibroblasts may arise from a number of sources such as activated renal fibroblasts, pericytes, epithelial-to-mesenchymal transition (EMT), endothelial-to-mesenchymal transition (EndoMT), bone marrow derived cells and fibrocytes. Recent studies also indicate that multiple ligands of TGF-β/Smads are the direct mediators for renal fibrosis. Consistently, inhibition of the TGF-β/Smads signaling pathway using various strategies significantly reduce renal fibrotic lesions and ameliorate kidney injury, suggesting that targeting the TGF-β/Smads signaling pathway could be a new strategy for effective therapies. In this review, we will briefly discuss the diverse origins of myofibroblasts and molecular pathways triggering renal fibrosis. Prospective therapeutic approaches based on those molecular mechanisms will hopefully offer exciting insights in the development of new therapeutic interventions for patients in the near future.Renal fibrosis is a common characteristic of chronic kidney disease (CKD). Aberrant and excessive depositions of extracellular matrix (ECM) proteins in both glomeruli and interstitial regions are typical hallmarks of renal fibrosis and amplify the severity of kidney injury. To date, an approved therapy specifically targeted to renal fibrosis is needed to mitigate or even retard renal fibrosis. Recent findings have identified a unique population of myofibroblasts as a primary source of ECM in scar tissue formation. However, the origin of myofibroblasts in renal fibrosis remains the subject of controversial debates. The advancement in lineage tracing and immunofluorescent microscopy technologies have suggested that myofibroblasts may arise from a number of sources such as activated renal fibroblasts, pericytes, epithelial-to-mesenchymal transition (EMT), endothelial-to-mesenchymal transition (EndoMT), bone marrow derived cells and fibrocytes. Recent studies also indicate that multiple ligands of TGF-β/Smads are the direct mediators for renal fibrosis. Consistently, inhibition of the TGF-β/Smads signaling pathway using various strategies significantly reduce renal fibrotic lesions and ameliorate kidney injury, suggesting that targeting the TGF-β/Smads signaling pathway could be a new strategy for effective therapies. In this review, we will briefly discuss the diverse origins of myofibroblasts and molecular pathways triggering renal fibrosis. Prospective therapeutic approaches based on those molecular mechanisms will hopefully offer exciting insights in the development of new therapeutic interventions for patients in the near future. Renal fibrosis is a common characteristic of chronic kidney disease (CKD). Aberrant and excessive depositions of extracellular matrix (ECM) proteins in both glomeruli and interstitial regions are typical hallmarks of renal fibrosis and amplify the severity of kidney injury. To date, an approved therapy specifically targeted to renal fibrosis is needed to mitigate or even retard renal fibrosis. Recent findings have identified a unique population of myofibroblasts as a primary source of ECM in scar tissue formation. However, the origin of myofibroblasts in renal fibrosis remains the subject of controversial debates. The advancement in lineage tracing and immunofluorescent microscopy technologies have suggested that myofibroblasts may arise from a number of sources such as activated renal fibroblasts, pericytes, epithelial-to-mesenchymal transition (EMT), endothelial-to-mesenchymal transition (EndoMT), bone marrow derived cells and fibrocytes. Recent studies also indicate that multiple ligands of TGF-β/Smads are the direct mediators for renal fibrosis. Consistently, inhibition of the TGF-β/Smads signaling pathway using various strategies significantly reduce renal fibrotic lesions and ameliorate kidney injury, suggesting that targeting the TGF-β/Smads signaling pathway could be a new strategy for effective therapies. In this review, we will briefly discuss the diverse origins of myofibroblasts and molecular pathways triggering renal fibrosis. Prospective therapeutic approaches based on those molecular mechanisms will hopefully offer exciting insights in the development of new therapeutic interventions for patients in the near future. |
Author | Caruana, Georgina Sun, Yu Bo Yang Li, Jinhua Qu, Xinli |
Author_xml | – sequence: 1 givenname: Yu Bo Yang surname: Sun fullname: Sun, Yu Bo Yang organization: Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia – sequence: 2 givenname: Xinli surname: Qu fullname: Qu, Xinli organization: Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia – sequence: 3 givenname: Georgina surname: Caruana fullname: Caruana, Georgina organization: Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia – sequence: 4 givenname: Jinhua surname: Li fullname: Li, Jinhua email: jinhua.li@monash.edu organization: Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27262400$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1LwzAYgIMobk7_gAfp0UtrkqZpCl5E_IKBl3kOafJmZnSNJpngvzdjU8SDp7whzxN4nxN0OPoREDonuCKY8KtVZZy1Fc1zhZsKY3GApoTVtMSs5odoimtMSsYFmaCTGFc4E5ySYzShLeWUYTxFi8UrFD64pRsLb4sAoxoK6_rg-0HFFK_Wn_7XtVCjKVJWoltmMuZZpSJlfwlh50UXT9GRzY9wtj9n6OX-bnH7WM6fH55ub-alrhueSqaIsaxpO4uZUqbXnbYNhb7LQ9cL3WhVM6F60Vna4lqAamlXU26oAgOC1TN0ufv3Lfj3DcQk1y5qGAY1gt9ESQTlvONtu0Uv9uimX4ORb8GtVfiU3yUyQHeAzivEAPYHIVhuc8uV3OaW29wSNzLHzJL4I2mXVHJ-TEG54X_1eqdCDvThIMioHYwajAugkzTe_ad_ASJ2m_w |
CitedBy_id | crossref_primary_10_1177_09731296231172549 crossref_primary_10_2139_ssrn_4150497 crossref_primary_10_1038_s41440_023_01312_z crossref_primary_10_2217_epi_2020_0449 crossref_primary_10_18632_aging_102395 crossref_primary_10_3389_fphar_2019_00348 crossref_primary_10_1111_jcmm_17535 crossref_primary_10_3389_fimmu_2021_676082 crossref_primary_10_4103_egjp_egjp_45_21 crossref_primary_10_3390_ijms18102157 crossref_primary_10_1038_s41598_017_15162_6 crossref_primary_10_1111_1756_185X_14434 crossref_primary_10_1111_bph_15786 crossref_primary_10_1016_j_cellsig_2022_110352 crossref_primary_10_1016_j_biopha_2024_117023 crossref_primary_10_3389_fimmu_2022_1094556 crossref_primary_10_1007_s00441_019_03110_x crossref_primary_10_1016_j_apsb_2022_01_007 crossref_primary_10_3390_nu14245316 crossref_primary_10_1159_000517318 crossref_primary_10_1007_s00109_019_01870_1 crossref_primary_10_1016_j_nano_2019_03_010 crossref_primary_10_1681_ASN_2019111160 crossref_primary_10_1080_13880209_2022_2097700 crossref_primary_10_1016_j_ejcb_2022_151221 crossref_primary_10_1039_D2CC04825F crossref_primary_10_1111_jpi_12482 crossref_primary_10_3389_fcell_2021_678524 crossref_primary_10_3390_ncrna8030036 crossref_primary_10_3389_fimmu_2017_01787 crossref_primary_10_1007_s00011_021_01457_y crossref_primary_10_1042_CS20201161 crossref_primary_10_1080_0886022X_2019_1612430 crossref_primary_10_1167_iovs_61_2_28 crossref_primary_10_1186_s12967_023_04356_4 crossref_primary_10_3389_fphar_2018_01213 crossref_primary_10_3389_fphar_2024_1403227 crossref_primary_10_3892_etm_2022_11359 crossref_primary_10_1111_jcmm_13836 crossref_primary_10_1016_j_metabol_2019_153998 crossref_primary_10_1515_med_2023_0736 crossref_primary_10_3389_fmed_2020_00047 crossref_primary_10_1016_j_addr_2021_113911 crossref_primary_10_1111_bph_15450 crossref_primary_10_1007_s11302_023_09977_4 crossref_primary_10_1016_j_cbi_2018_07_008 crossref_primary_10_1186_s12906_022_03535_y crossref_primary_10_3389_fcimb_2018_00384 crossref_primary_10_3389_fimmu_2023_1122409 crossref_primary_10_1186_s42834_025_00240_6 crossref_primary_10_1016_j_apmt_2020_100725 crossref_primary_10_1177_25152564241291374 crossref_primary_10_3389_fimmu_2020_00734 crossref_primary_10_1155_2023_3352353 crossref_primary_10_15212_AMM_2023_0031 crossref_primary_10_3892_etm_2021_10741 crossref_primary_10_1152_ajprenal_00604_2016 crossref_primary_10_3390_cells11213472 crossref_primary_10_1016_j_cellsig_2017_11_005 crossref_primary_10_3390_cells9010125 crossref_primary_10_3390_biology11020232 crossref_primary_10_1111_bph_15314 crossref_primary_10_1186_s12882_023_03103_7 crossref_primary_10_1016_j_intimp_2019_105683 crossref_primary_10_1016_j_biocel_2022_106257 crossref_primary_10_1080_13880209_2022_2030759 crossref_primary_10_3390_ijms22168629 crossref_primary_10_1016_j_biopha_2018_02_090 crossref_primary_10_1042_CS20180623 crossref_primary_10_2147_JIR_S413374 crossref_primary_10_1097_TP_0000000000003678 crossref_primary_10_3390_ijms26010343 crossref_primary_10_1186_s13287_021_02391_w crossref_primary_10_1016_j_labinv_2022_100016 crossref_primary_10_1038_s41419_023_06005_6 crossref_primary_10_1007_s13577_021_00617_w crossref_primary_10_1177_09603271211038743 crossref_primary_10_3389_fphys_2024_1296504 crossref_primary_10_1042_CS20201016 crossref_primary_10_1016_j_biopha_2021_111870 crossref_primary_10_1016_j_jbc_2022_101725 crossref_primary_10_1007_s11033_024_09307_w crossref_primary_10_1016_j_arr_2024_102296 crossref_primary_10_3389_fphar_2022_992421 crossref_primary_10_1080_21655979_2021_2002493 crossref_primary_10_1186_s13020_022_00646_z crossref_primary_10_1016_j_molimm_2022_07_007 crossref_primary_10_1021_acsami_1c10818 crossref_primary_10_3389_fphar_2022_1016635 crossref_primary_10_1007_s10741_020_10046_w crossref_primary_10_1080_19336918_2019_1638691 crossref_primary_10_1016_j_mam_2018_06_002 crossref_primary_10_1016_j_ajpath_2016_10_004 crossref_primary_10_1080_21655979_2022_2033465 crossref_primary_10_1016_j_isci_2019_02_032 crossref_primary_10_3892_etm_2017_4662 crossref_primary_10_1515_med_2021_0319 crossref_primary_10_18632_oncotarget_26324 crossref_primary_10_1002_adhm_202000255 crossref_primary_10_1016_j_exer_2018_02_018 crossref_primary_10_1186_s13287_019_1201_5 crossref_primary_10_3390_antiox14010013 crossref_primary_10_18632_aging_104151 crossref_primary_10_1096_fj_201900943R crossref_primary_10_3389_fpubh_2022_767591 crossref_primary_10_1016_j_mam_2023_101191 crossref_primary_10_3390_ijms251910803 crossref_primary_10_3390_jcm7020015 crossref_primary_10_3389_fendo_2023_1135530 crossref_primary_10_1007_s11033_023_08857_9 crossref_primary_10_1152_physrev_00027_2022 crossref_primary_10_1155_2022_5967804 crossref_primary_10_1016_j_intimp_2023_111010 crossref_primary_10_3390_cells9041051 crossref_primary_10_3390_biomedicines9020182 crossref_primary_10_3390_ijms24032133 crossref_primary_10_1016_j_lfs_2020_117589 crossref_primary_10_3390_antiox13121454 crossref_primary_10_1021_acs_jafc_8b00099 crossref_primary_10_1097_MD_0000000000007824 crossref_primary_10_1016_j_jff_2023_105670 crossref_primary_10_5301_jsrd_5000254 crossref_primary_10_1186_s12890_024_02978_y crossref_primary_10_1155_2023_7625817 crossref_primary_10_3389_fgene_2021_682904 crossref_primary_10_3892_mmr_2023_12929 crossref_primary_10_1097_MOT_0000000000000839 crossref_primary_10_3389_fimmu_2021_688647 crossref_primary_10_1016_j_phytochem_2023_113799 crossref_primary_10_1016_j_ymgme_2019_10_010 crossref_primary_10_1016_j_jnutbio_2022_109066 crossref_primary_10_1186_s12951_021_00900_w crossref_primary_10_1371_journal_pone_0267704 crossref_primary_10_1007_s11255_016_1426_5 crossref_primary_10_1016_j_lfs_2024_123072 crossref_primary_10_1093_jleuko_qiac001 crossref_primary_10_1016_j_tice_2022_101905 crossref_primary_10_1002_jcp_30780 crossref_primary_10_1067_j_cpsurg_2017_01_001 crossref_primary_10_15825_1995_1191_2022_3_94_101 crossref_primary_10_1292_jvms_18_0599 crossref_primary_10_3389_fphar_2020_619201 crossref_primary_10_1007_s00441_018_2904_0 crossref_primary_10_1007_s00441_019_03124_5 crossref_primary_10_1016_j_exger_2021_111403 crossref_primary_10_1369_00221554241274878 crossref_primary_10_1016_j_exer_2020_108271 crossref_primary_10_1016_j_exer_2020_108272 crossref_primary_10_1080_21655979_2022_2054596 crossref_primary_10_1369_0022155419852932 crossref_primary_10_4236_ojtr_2020_84012 crossref_primary_10_1016_j_intimp_2024_112483 crossref_primary_10_1016_j_heliyon_2023_e13508 crossref_primary_10_1007_s11255_020_02474_2 crossref_primary_10_2147_DDDT_S247091 crossref_primary_10_1016_j_lfs_2020_117729 crossref_primary_10_1038_s41589_018_0190_5 crossref_primary_10_1021_acs_molpharmaceut_0c01182 crossref_primary_10_1016_j_kint_2019_06_021 crossref_primary_10_1538_expanim_16_0121 crossref_primary_10_1038_s41598_019_46439_7 crossref_primary_10_3389_fphar_2022_932172 crossref_primary_10_1186_s13287_022_03071_z crossref_primary_10_1039_D1MO00498K crossref_primary_10_3389_fcvm_2022_889553 crossref_primary_10_3390_ijms25084350 crossref_primary_10_1159_000514680 crossref_primary_10_1002_jcp_25879 crossref_primary_10_1016_j_addr_2017_05_017 crossref_primary_10_1016_j_biopha_2022_113978 crossref_primary_10_1155_2019_4946580 crossref_primary_10_14814_phy2_13794 crossref_primary_10_1155_2017_1480514 crossref_primary_10_1016_j_biopha_2024_117079 crossref_primary_10_1016_j_fitote_2024_106031 crossref_primary_10_1155_2019_3423981 crossref_primary_10_1002_jbt_23795 crossref_primary_10_1002_jcp_26144 crossref_primary_10_3389_fphar_2022_919967 crossref_primary_10_3390_cells12030412 crossref_primary_10_1038_s41598_020_59355_y crossref_primary_10_3389_fimmu_2022_1042983 crossref_primary_10_1016_j_freeradbiomed_2022_12_096 crossref_primary_10_3390_biomedicines9121747 crossref_primary_10_1016_j_yexcr_2019_111670 crossref_primary_10_2147_DDDT_S224308 crossref_primary_10_1186_s12929_020_00658_7 crossref_primary_10_3892_mmr_2019_9806 crossref_primary_10_1097_GOX_0000000000005034 crossref_primary_10_1038_s41419_019_2218_5 crossref_primary_10_1093_postmj_qgad124 crossref_primary_10_1016_j_jphs_2019_06_008 crossref_primary_10_1080_13880209_2022_2088809 crossref_primary_10_3892_ijmm_2018_3667 crossref_primary_10_2147_JIR_S313910 crossref_primary_10_3892_etm_2017_4968 crossref_primary_10_1016_j_phrs_2021_105630 crossref_primary_10_1002_jcp_28203 crossref_primary_10_1016_j_matbio_2017_06_003 crossref_primary_10_1016_j_aanat_2017_12_015 crossref_primary_10_1042_CS20201340 crossref_primary_10_1161_ATVBAHA_120_313991 crossref_primary_10_1016_j_ecoenv_2024_117124 crossref_primary_10_1166_jbt_2023_3249 crossref_primary_10_1016_j_phymed_2022_154246 crossref_primary_10_1159_000511661 crossref_primary_10_1093_icvts_ivz275 crossref_primary_10_1016_j_biopha_2017_10_091 crossref_primary_10_1016_j_bioactmat_2024_06_009 crossref_primary_10_3389_fcell_2021_696542 crossref_primary_10_1155_2017_2418671 crossref_primary_10_1126_scitranslmed_aau2814 crossref_primary_10_1042_BCJ20200360 crossref_primary_10_1080_0886022X_2018_1490322 crossref_primary_10_1159_000521100 crossref_primary_10_1016_j_tice_2022_101831 crossref_primary_10_3389_fphar_2023_1335094 crossref_primary_10_1152_ajprenal_00596_2017 crossref_primary_10_1155_2020_7950457 crossref_primary_10_3390_ijms231810702 crossref_primary_10_1016_j_jphs_2021_10_009 crossref_primary_10_1016_j_ijbiomac_2020_06_153 crossref_primary_10_3389_fphar_2023_1230174 crossref_primary_10_3390_biom14111433 crossref_primary_10_1038_s41419_020_03322_y crossref_primary_10_1155_2022_4301033 crossref_primary_10_1002_dvdy_24518 crossref_primary_10_1021_acsptsci_9b00095 crossref_primary_10_3389_fphar_2022_845892 crossref_primary_10_3389_fcell_2021_683594 crossref_primary_10_1186_s12964_019_0455_y crossref_primary_10_1016_j_bbrc_2017_11_027 crossref_primary_10_1080_0886022X_2020_1847145 crossref_primary_10_3389_fendo_2023_1172199 crossref_primary_10_1152_ajpendo_00071_2019 crossref_primary_10_1080_13880209_2023_2243086 crossref_primary_10_1096_fj_201903188R crossref_primary_10_1016_j_yexcr_2019_07_005 crossref_primary_10_3390_jcm12144770 crossref_primary_10_1159_000488697 crossref_primary_10_1096_fj_202200706RR crossref_primary_10_1038_s41598_022_24420_1 crossref_primary_10_1016_j_toxlet_2022_04_005 crossref_primary_10_1186_s41038_017_0080_1 crossref_primary_10_1016_j_jep_2024_117986 crossref_primary_10_1016_j_phymed_2022_154134 crossref_primary_10_1080_0886022X_2022_2079528 crossref_primary_10_3390_toxins13070474 crossref_primary_10_3389_fphar_2017_00473 crossref_primary_10_1016_j_molmed_2018_02_003 crossref_primary_10_1080_0886022X_2021_1997764 crossref_primary_10_1155_2020_7291075 crossref_primary_10_1016_j_ajpath_2021_05_013 crossref_primary_10_1016_j_arr_2023_101995 crossref_primary_10_1016_j_labinv_2023_100131 crossref_primary_10_1038_s41598_017_11829_2 crossref_primary_10_2174_1389201024666230417084507 crossref_primary_10_1002_jcb_29508 crossref_primary_10_1007_s12013_025_01698_2 crossref_primary_10_3389_fphar_2022_842720 |
Cites_doi | 10.1016/j.ajpath.2012.09.009 10.1096/fj.11-183194 10.1038/kisup.2014.7 10.1038/ki.2011.327 10.1016/j.cellsig.2014.05.018 10.1681/ASN.2009010018 10.1681/ASN.2006050459 10.1038/ki.2015.51 10.3390/cells4040631 10.1038/ki.2015.121 10.1038/nm.3901 10.1002/dvg.20654 10.1038/ki.2015.235 10.1681/ASN.2010111168 10.1038/ki.1994.68 10.1681/ASN.2007101109 10.2353/ajpath.2008.080433 10.1681/ASN.2015010006 10.1074/jbc.M413081200 10.1172/JCI44595 10.1111/j.1440-1681.2009.05139.x 10.2741/3057 10.1016/j.cellsig.2013.07.007 10.1097/MNH.0b013e328305b994 10.1152/ajprenal.00274.2007 10.1007/s11906-012-0245-z 10.1038/kisup.2014.16 10.1038/nrneph.2011.149 10.1016/j.bbrc.2010.02.098 10.1159/000312882 10.1111/j.1478-3231.2005.01047.x 10.1093/ndt/gfn699 10.1111/j.1523-1755.2004.00393.x 10.1165/rcmb.2009-0282OC 10.1038/nm.3218 10.2353/ajpath.2010.090517 10.1369/jhc.7A7354.2008 10.1038/ki.2015.170 10.1089/jir.2006.0054 10.1210/en.2004-1393 10.1038/ki.2015.63 10.1002/hep.1840380414 10.1186/s13069-015-0030-0 10.2353/ajpath.2008.070057 10.1038/ki.2014.235 10.1097/01.ASN.0000067632.04658.B8 10.1007/s00441-011-1169-7 10.1038/ncb2099 10.2353/ajpath.2009.090096 10.2337/db09-1631 10.1096/fj.02-1117fje 10.1016/S0002-9440(10)63225-7 10.1681/ASN.2006080901 10.1681/ASN.2008050513 10.1016/j.stem.2014.11.004 10.1681/ASN.2010121308 10.1038/ki.2011.300 10.1038/ki.2014.287 10.1007/s00125-008-1215-5 10.1074/jbc.M101602200 10.1038/nm.3902 10.1016/j.ajpath.2013.12.003 10.1038/ncb2455 10.1172/JCI0215518 |
ContentType | Journal Article |
Copyright | 2016 International Society of Differentiation Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2016 International Society of Differentiation – notice: Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.diff.2016.05.008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1432-0436 |
EndPage | 107 |
ExternalDocumentID | 27262400 10_1016_j_diff_2016_05_008 S0301468115300876 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .3N .GJ .~1 0R~ 1B1 1OC 1RT 1VV 1~. 29G 31~ 36B 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 8-1 8P~ 9JM 9M8 AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ACXQS ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFBPY AFEBI AFKWA AFTJW AFXIZ AFZJQ AGHFR AGRDE AGUBO AGYEJ AHEFC AHHHB AI. AIEXJ AIKHN AITUG AJAOE AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BFHJK BKOJK BLXMC CAG CO8 COF CS3 DCZOG DOVZS DU5 EBS EFJIC EFLBG EJD EMB EMOBN F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 GBLVA HLW HVGLF HZ~ H~9 IH2 IHE KOM LAS LH4 LW6 M41 MO0 O-L O9- OAUVE OBS OVD P-8 P-9 P2P PC. Q38 R2- RIG ROL SBG SDF SDH SES SPCBC SSU SSZ SV3 T5K TEORI TN5 UNMZH VH1 W99 WH7 WUQ YFH YUY ZGI ZXP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 |
ID | FETCH-LOGICAL-c356t-4a1df4579f04aadbc9cf52eb9c9c9b8c5ca348ab89f27038ea729326d2aede843 |
IEDL.DBID | .~1 |
ISSN | 0301-4681 1432-0436 |
IngestDate | Fri Jul 11 02:19:04 EDT 2025 Mon Jul 21 05:38:52 EDT 2025 Tue Jul 01 04:21:21 EDT 2025 Thu Apr 24 23:09:27 EDT 2025 Fri Feb 23 02:29:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Fibroblasts Myofibroblasts Renal fibrosis TGF-β1/Smad signaling |
Language | English |
License | Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-4a1df4579f04aadbc9cf52eb9c9c9b8c5ca348ab89f27038ea729326d2aede843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 27262400 |
PQID | 1826696774 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1826696774 pubmed_primary_27262400 crossref_primary_10_1016_j_diff_2016_05_008 crossref_citationtrail_10_1016_j_diff_2016_05_008 elsevier_sciencedirect_doi_10_1016_j_diff_2016_05_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2016 2016-09-00 2016-Sep 20160901 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: September 2016 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Differentiation (London) |
PublicationTitleAlternate | Differentiation |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sun, Qu, Howard (bib52) 2015 Tang, Harrington, Yang, Friesel, Liaw (bib56) 2010; 48 Qu, Jiang, Sun (bib48) 2015; 88 Qin, Chung, Huang (bib46) 2011; 22 Lecru, Desterke, Grassin-Delyle (bib24) 2015; 88 Samarakoon, Dobberfuhl, Cooley (bib50) 2013; 25 Zhang, Nanji, Luk (bib69) 2005; 25 Cvetkovic, Al-Abed, Miljkovic (bib5) 2005; 146 Meng, Huang, Xiao (bib40) 2012; 81 Liu (bib34) 2011; 7 Kramann, Schneider, DiRocco (bib18) 2015; 16 LeBleu, Kalluri (bib22) 2011; 80 Sun, Qu, Li, Nikolic-Paterson, Li (bib53) 2013; 8 Gasser, Winkler, Peng (bib9) 2013 Zhong, Chung, Chen, Meng, Lan (bib70) 2011; 22 Li, Huang, Zhu (bib29) 2004; 18 Thethi, Kamiyama, Kobori (bib57) 2012; 14 Grande, Sánchez-Laorden, López-Blau (bib10) 2015; 21 Fukasawa, Yamamoto, Suzuki (bib6) 2004; 65 Gao, Sasaoka, Fujimori (bib8) 2005; 280 Kessler, Dethlefsen, Haase (bib17) 2001; 276 Huang, Chung, Wang, Lai, Lan (bib12) 2008; 295 Nakagawa, Sato, Glushakova (bib42) 2007; 18 Zeisberg, Potenta, Sugimoto, Zeisberg, Kalluri (bib68) 2008; 19 Lan, Mu, Tomita (bib21) 2003; 14 Li, Qu, Bertram (bib26) 2009; 175 Kriz, Kaissling, Le Hir (bib19) 2011; 121 Li, Kang, Dai, Kiss, Wen, Liu (bib30) 2008; 172 Quigley, Elmarakby, Knight (bib49) 2009; 36 Mack, Yanagita (bib38) 2014; 87 Nikolic-Paterson, Wang, Lan (bib45) 2014; 4 Yang, DS-S, Wang (bib65) 2010; 12 Furukawa, Matsuzaki, Mori (bib7) 2003; 38 Chung, Zhang, Kong (bib3) 2010; 21 Venkatachalam, Weinberg, Kriz, Bidani (bib60) 2015; 26 Liu, Hubchak, Browne, Schnaper (bib33) 2014; 26 Sarafidis (bib51) 2008; 17 Yu, Lin, Huang (bib67) 2007; 27 Inoue, Umezawa, Takenaka, Suzuki, Okada (bib14) 2015; 87 Wu, Chiang, Lai (bib63) 2013; 182 Wang, Ziyadeh, Lee (bib61) 2007; 293 Tan, Zhou, Zhou, Liu (bib55) 2014; 4 Venkatachalam, Weinberg (bib59) 2015; 88 Yamashita, Fujimiya, Nagaishi (bib64) 2012; 26 Ka, Huang, Lan (bib16) 2007; 18 Yang, Lan, Huang (bib66) 2012; 14 Lan (bib20) 2008; 13 Lin, Kisseleva, Brenner, Duffield (bib32) 2008; 173 Humphreys, Lin, Kobayashi (bib13) 2010; 176 LeBleu, Taduri, O’Connell (bib23) 2013; 19 Mikulak, Singhal (bib41) 2010; 115 Choudhury, Tuncel, Levi (bib2) 2010; 10 Guo, Ananthakrishnan, Qu (bib11) 2008; 19 Tamaki, Okuda, Ando, Iwamoto, Nakayama, Fujishima (bib54) 1994; 45 Lim, Nikolic-Paterson, Ma (bib31) 2009; 52 Loeffler, Wolf (bib35) 2015; 4 Li, Qu, Yao (bib27) 2010; 59 Lovisa, LeBleu, Tampe (bib36) 2015; 21 Qu, Li, Zheng (bib47) 2014; 184 Iwano, Plieth, Danoff, Xue, Okada, Neilson (bib15) 2002; 110 Li, Wang, Huang (bib28) 2004; 164 Lee (bib25) 2012; 347 Acevedo, Londono, Oubaha, Ghitescu, Bendayan (bib1) 2008; 56 Mariasegaram, Tesch, Verhardt, Hurst, Lan, Nikolic-Paterson (bib39) 2010; 393 Nakasatomi, Maeshima, Mishima (bib43) 2015; 8 Wang, Zhou, Tan (bib62) 2010; 299 Chung, Huang, Zhou, Heuchel, Lai, Lan (bib4) 2009; 24 Velden, Alcorn, Guala, Badura, Janssen-Heininger (bib58) 2011; 44 Neelisetty, Alford, Reynolds (bib44) 2015; 88 Maarouf, Aravamudhan, Rangarajan (bib37) 2015 Inoue (10.1016/j.diff.2016.05.008_bib14) 2015; 87 Yang (10.1016/j.diff.2016.05.008_bib66) 2012; 14 Liu (10.1016/j.diff.2016.05.008_bib33) 2014; 26 Lim (10.1016/j.diff.2016.05.008_bib31) 2009; 52 Meng (10.1016/j.diff.2016.05.008_bib40) 2012; 81 Furukawa (10.1016/j.diff.2016.05.008_bib7) 2003; 38 Guo (10.1016/j.diff.2016.05.008_bib11) 2008; 19 Sarafidis (10.1016/j.diff.2016.05.008_bib51) 2008; 17 Chung (10.1016/j.diff.2016.05.008_bib3) 2010; 21 Mariasegaram (10.1016/j.diff.2016.05.008_bib39) 2010; 393 Nakagawa (10.1016/j.diff.2016.05.008_bib42) 2007; 18 Tamaki (10.1016/j.diff.2016.05.008_bib54) 1994; 45 Lovisa (10.1016/j.diff.2016.05.008_bib36) 2015; 21 Neelisetty (10.1016/j.diff.2016.05.008_bib44) 2015; 88 Lecru (10.1016/j.diff.2016.05.008_bib24) 2015; 88 Liu (10.1016/j.diff.2016.05.008_bib34) 2011; 7 Tan (10.1016/j.diff.2016.05.008_bib55) 2014; 4 Li (10.1016/j.diff.2016.05.008_bib28) 2004; 164 Yamashita (10.1016/j.diff.2016.05.008_bib64) 2012; 26 Ka (10.1016/j.diff.2016.05.008_bib16) 2007; 18 Yu (10.1016/j.diff.2016.05.008_bib67) 2007; 27 Tang (10.1016/j.diff.2016.05.008_bib56) 2010; 48 Li (10.1016/j.diff.2016.05.008_bib29) 2004; 18 Lan (10.1016/j.diff.2016.05.008_bib20) 2008; 13 Gasser (10.1016/j.diff.2016.05.008_bib9) 2013 Li (10.1016/j.diff.2016.05.008_bib30) 2008; 172 Chung (10.1016/j.diff.2016.05.008_bib4) 2009; 24 Qu (10.1016/j.diff.2016.05.008_bib47) 2014; 184 Wang (10.1016/j.diff.2016.05.008_bib62) 2010; 299 Thethi (10.1016/j.diff.2016.05.008_bib57) 2012; 14 Fukasawa (10.1016/j.diff.2016.05.008_bib6) 2004; 65 Lan (10.1016/j.diff.2016.05.008_bib21) 2003; 14 Wu (10.1016/j.diff.2016.05.008_bib63) 2013; 182 Sun (10.1016/j.diff.2016.05.008_bib52) 2015 Zhong (10.1016/j.diff.2016.05.008_bib70) 2011; 22 Huang (10.1016/j.diff.2016.05.008_bib12) 2008; 295 Samarakoon (10.1016/j.diff.2016.05.008_bib50) 2013; 25 Cvetkovic (10.1016/j.diff.2016.05.008_bib5) 2005; 146 Gao (10.1016/j.diff.2016.05.008_bib8) 2005; 280 Lee (10.1016/j.diff.2016.05.008_bib25) 2012; 347 Acevedo (10.1016/j.diff.2016.05.008_bib1) 2008; 56 LeBleu (10.1016/j.diff.2016.05.008_bib22) 2011; 80 Choudhury (10.1016/j.diff.2016.05.008_bib2) 2010; 10 Mack (10.1016/j.diff.2016.05.008_bib38) 2014; 87 Mikulak (10.1016/j.diff.2016.05.008_bib41) 2010; 115 Kramann (10.1016/j.diff.2016.05.008_bib18) 2015; 16 Iwano (10.1016/j.diff.2016.05.008_bib15) 2002; 110 LeBleu (10.1016/j.diff.2016.05.008_bib23) 2013; 19 Humphreys (10.1016/j.diff.2016.05.008_bib13) 2010; 176 Lin (10.1016/j.diff.2016.05.008_bib32) 2008; 173 Qin (10.1016/j.diff.2016.05.008_bib46) 2011; 22 Maarouf (10.1016/j.diff.2016.05.008_bib37) 2015 Yang (10.1016/j.diff.2016.05.008_bib65) 2010; 12 Zeisberg (10.1016/j.diff.2016.05.008_bib68) 2008; 19 Kriz (10.1016/j.diff.2016.05.008_bib19) 2011; 121 Wang (10.1016/j.diff.2016.05.008_bib61) 2007; 293 Venkatachalam (10.1016/j.diff.2016.05.008_bib60) 2015; 26 Quigley (10.1016/j.diff.2016.05.008_bib49) 2009; 36 Li (10.1016/j.diff.2016.05.008_bib27) 2010; 59 Velden (10.1016/j.diff.2016.05.008_bib58) 2011; 44 Zhang (10.1016/j.diff.2016.05.008_bib69) 2005; 25 Grande (10.1016/j.diff.2016.05.008_bib10) 2015; 21 Qu (10.1016/j.diff.2016.05.008_bib48) 2015; 88 Venkatachalam (10.1016/j.diff.2016.05.008_bib59) 2015; 88 Li (10.1016/j.diff.2016.05.008_bib26) 2009; 175 Kessler (10.1016/j.diff.2016.05.008_bib17) 2001; 276 Loeffler (10.1016/j.diff.2016.05.008_bib35) 2015; 4 Sun (10.1016/j.diff.2016.05.008_bib53) 2013; 8 Nakasatomi (10.1016/j.diff.2016.05.008_bib43) 2015; 8 Nikolic-Paterson (10.1016/j.diff.2016.05.008_bib45) 2014; 4 |
References_xml | – volume: 24 start-page: 1443 year: 2009 end-page: 1454 ident: bib4 article-title: Disruption of the Smad7 gene promotes renal fibrosis and inflammation in unilateral ureteral obstruction (UUO) in mice publication-title: Nephrol. Dial. Transpl. – volume: 8 start-page: e84063 year: 2013 ident: bib53 article-title: Endothelial dysfunction exacerbates renal interstitial fibrosis through enhancing fibroblast smad3 linker phosphorylation in the mouse obstructed kidney publication-title: PLoS One – volume: 121 start-page: 468 year: 2011 end-page: 474 ident: bib19 article-title: Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? publication-title: J. Clin. Investig. – volume: 276 start-page: 36575 year: 2001 end-page: 36585 ident: bib17 article-title: Fibroblasts in mechanically stressed collagen lattices assume a “synthetic” phenotype publication-title: J. Biol. Chem. – volume: 44 start-page: 571 year: 2011 end-page: 581 ident: bib58 article-title: c-Jun N-terminal kinase 1 promotes transforming growth factor-β1-induced epithelial-to-mesenchymal transition via control of linker phosphorylation and transcriptional activity of Smad3 publication-title: Am. J. Respir. Cell Mol. Biol. – volume: 347 start-page: 129 year: 2012 end-page: 140 ident: bib25 article-title: Mechanisms and consequences of TGF-ss overexpression by podocytes in progressive podocyte disease publication-title: Cell Tissue Res. – volume: 27 start-page: 103 year: 2007 end-page: 109 ident: bib67 article-title: Macrophage migration inhibitory factor induces MMP-9 expression in macrophages via the MEK-ERK MAP kinase pathway publication-title: J. Interferon Cytokine Res. – volume: 176 start-page: 85 year: 2010 end-page: 97 ident: bib13 article-title: Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis publication-title: Am. J. Pathol. – volume: 26 start-page: 1559 year: 2012 end-page: 1568 ident: bib64 article-title: Fusion of bone marrow-derived cells with renal tubules contributes to renal dysfunction in diabetic nephropathy publication-title: FASEB J. – volume: 110 start-page: 341 year: 2002 end-page: 350 ident: bib15 article-title: Evidence that fibroblasts derive from epithelium during tissue fibrosis publication-title: J. Clin. Investig. – volume: 146 start-page: 2942 year: 2005 end-page: 2951 ident: bib5 article-title: Critical role of macrophage migration inhibitory factor activity in experimental autoimmune diabetes publication-title: Endocrinology – volume: 14 start-page: 366 year: 2012 end-page: 374 ident: bib66 article-title: RAC1 activation mediates Twist1-induced cancer cell migration publication-title: Nat. Cell Biol. – volume: 19 start-page: 2282 year: 2008 end-page: 2287 ident: bib68 article-title: Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition publication-title: J. Am. Soc. Nephrol. – volume: 4 start-page: 84 year: 2014 end-page: 90 ident: bib55 article-title: Wnt/β-catenin signaling and kidney fibrosis publication-title: Kidney Int. Suppl. – volume: 182 start-page: 118 year: 2013 end-page: 131 ident: bib63 article-title: Transforming growth factor β-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis publication-title: Am. J. Pathol. – volume: 26 start-page: 1765 year: 2015 end-page: 1776 ident: bib60 article-title: Failed tubule recovery, AKI-CKD transition, and kidney disease progression publication-title: J. Am. Soc. Nephrol. – volume: 25 start-page: 2198 year: 2013 end-page: 2209 ident: bib50 article-title: Induction of renal fibrotic genes by TGF-β1 requires EGFR activation, p53 and reactive oxygen species publication-title: Cell. Signal. – volume: 16 start-page: 51 year: 2015 end-page: 66 ident: bib18 article-title: Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis publication-title: Cell Stem Cell – volume: 8 start-page: 12 year: 2015 ident: bib43 article-title: Novel approach for the detection of tubular cell migration into the interstitium during renal fibrosis in rats publication-title: Fibrogenesis Tissue Repair – volume: 4 start-page: 631 year: 2015 end-page: 652 ident: bib35 article-title: Epithelial-to-mesenchymal transition in diabetic nephropathy: fact or fiction? publication-title: Cells – volume: 4 start-page: 34 year: 2014 end-page: 38 ident: bib45 article-title: Macrophages promote renal fibrosis through direct and indirect mechanisms publication-title: Kidney Int. Suppl. – volume: 22 start-page: 1668 year: 2011 end-page: 1681 ident: bib70 article-title: Smad3-mediated upregulation of miR-21 promotes renal fibrosis publication-title: J. Am. Soc. Nephrol. – volume: 18 start-page: 1777 year: 2007 end-page: 1788 ident: bib16 article-title: Smad7 gene therapy ameliorates an autoimmune crescentic glomerulonephritis in mice publication-title: J. Am. Soc. Nephrol. – volume: 175 start-page: 1380 year: 2009 end-page: 1388 ident: bib26 article-title: Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice publication-title: Am. J. Pathol. – volume: 48 start-page: 563 year: 2010 end-page: 567 ident: bib56 article-title: The contribution of the Tie2+ lineage to primitive and definitive hematopoietic cells publication-title: Genesis – volume: 115 start-page: e15 year: 2010 end-page: e21 ident: bib41 article-title: HIV-1 and kidney cells: better understanding of viral interaction publication-title: Nephron Exp. Nephrol. – volume: 21 start-page: 989 year: 2015 end-page: 997 ident: bib10 article-title: Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease publication-title: Nat. Med. – volume: 164 start-page: 1389 year: 2004 end-page: 1397 ident: bib28 article-title: Advanced glycation end products induce tubular epithelial-myofibroblast transition through the RAGE-ERK1/2 MAP kinase signaling pathway publication-title: Am. J. Pathol. – volume: 17 start-page: 450 year: 2008 end-page: 456 ident: bib51 article-title: Obesity, insulin resistance and kidney disease risk: insights into the relationship publication-title: Curr. Opin. Nephrol. Hypertens. – volume: 172 start-page: 299 year: 2008 end-page: 308 ident: bib30 article-title: Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria publication-title: Am. J. Pathol. – volume: 88 start-page: 434 year: 2015 end-page: 437 ident: bib59 article-title: Fibrosis without fibroblast TGF-β receptors? publication-title: Kidney Int. – year: 2013 ident: bib9 article-title: Focal segmental glomerulosclerosis is associated with a PDSS2 haplotype and independently, with a decreased content of coenzyme Q10 publication-title: AJP: Ren. Physiol. – volume: 88 start-page: 503 year: 2015 end-page: 514 ident: bib44 article-title: Renal fibrosis is not reduced by blocking transforming growth factor-β signaling in matrix-producing interstitial cells publication-title: Kidney Int. – volume: 36 start-page: 724 year: 2009 end-page: 728 ident: bib49 article-title: Obesity induced renal oxidative stress contributes to renal injury in salt-sensitive hypertension publication-title: Clin. Exp. Pharmacol. Physiol. – volume: 80 start-page: 1119 year: 2011 end-page: 1121 ident: bib22 article-title: Blockade of PDGF receptor signaling reduces myofibroblast number and attenuates renal fibrosis publication-title: Kidney Int. – volume: 299 start-page: F973 year: 2010 end-page: F982 ident: bib62 article-title: Mice lacking the matrix metalloproteinase-9 gene reduce renal interstitial fibrosis in obstructive nephropathy publication-title: AJP: Ren. Physiol. – volume: 18 start-page: 176 year: 2004 end-page: 178 ident: bib29 article-title: Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease publication-title: FASEB J. – volume: 59 start-page: 2612 year: 2010 end-page: 2624 ident: bib27 article-title: Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy publication-title: Diabetes – year: 2015 ident: bib37 article-title: Paracrine Wnt1 drives interstitial fibrosis without inflammation by Tubulointerstitial Cross-Talk publication-title: J Am Soc Nephrol – volume: 19 start-page: 1047 year: 2013 end-page: 1053 ident: bib23 article-title: Origin and function of myofibroblasts in kidney fibrosis publication-title: Nat. Med. – volume: 173 start-page: 1617 year: 2008 end-page: 1627 ident: bib32 article-title: Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney publication-title: Am. J. Pathol. – volume: 14 start-page: 160 year: 2012 end-page: 169 ident: bib57 article-title: The link between the renin-angiotensin-aldosterone system and renal injury in obesity and the metabolic syndrome publication-title: Curr. Hypertens. Rep. – volume: 10 start-page: 406 year: 2010 end-page: 415 ident: bib2 article-title: Diabetic nephropathy – a multifaceted target of new therapies publication-title: Discov. Med. – volume: 52 start-page: 347 year: 2009 end-page: 358 ident: bib31 article-title: Role of MKK3-p38 MAPK signalling in the development of type 2 diabetes and renal injury in obese db/db mice publication-title: Diabetologia – volume: 280 start-page: 9375 year: 2005 end-page: 9389 ident: bib8 article-title: Deletion of the PDGFR-beta gene affects key fibroblast functions important for wound healing publication-title: J. Biol. Chem. – volume: 293 start-page: F1657 year: 2007 end-page: F1665 ident: bib61 article-title: Interference with TGF-beta signaling by Smad3-knockout in mice limits diabetic glomerulosclerosis without affecting albuminuria publication-title: Am. J. Physiol. Ren. Physiol. – volume: 38 start-page: 879 year: 2003 end-page: 889 ident: bib7 article-title: p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts publication-title: Hepatology – volume: 18 start-page: 539 year: 2007 end-page: 550 ident: bib42 article-title: Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy publication-title: J. Am. Soc. Nephrol. – volume: 22 start-page: 1462 year: 2011 end-page: 1474 ident: bib46 article-title: TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29 publication-title: J. Am. Soc. Nephrol. – volume: 87 start-page: 297 year: 2014 end-page: 307 ident: bib38 article-title: Origin of myofibroblasts and cellular events triggering fibrosis publication-title: Kidney Int. – volume: 393 start-page: 855 year: 2010 end-page: 859 ident: bib39 article-title: Lefty antagonises TGF-beta1 induced epithelial-mesenchymal transition in tubular epithelial cells publication-title: Biochem. Biophys. Res. Commun. – volume: 56 start-page: 605 year: 2008 end-page: 614 ident: bib1 article-title: Glomerular CD34 expression in short- and long-term diabetes publication-title: J. Histochem. Cytochem. – volume: 295 start-page: F118 year: 2008 end-page: F127 ident: bib12 article-title: Mice overexpressing latent TGF-beta1 are protected against renal fibrosis in obstructive kidney disease publication-title: AJP: Ren. Physiol. – volume: 19 start-page: 961 year: 2008 end-page: 972 ident: bib11 article-title: RAGE mediates podocyte injury in adriamycin-induced glomerulosclerosis publication-title: J. Am. Soc. Nephrol. – volume: 12 start-page: 982 year: 2010 end-page: 992 ident: bib65 article-title: Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition publication-title: Nat. Cell Biol. – volume: 13 start-page: 4984 year: 2008 end-page: 4992 ident: bib20 article-title: Smad7 as a therapeutic agent for chronic kidney diseases publication-title: Front Biosci. – volume: 21 start-page: 249 year: 2010 end-page: 260 ident: bib3 article-title: Advanced glycation end-products induce tubular CTGF via TGF-beta-independent Smad3 signaling publication-title: J. Am. Soc. Nephrol. – volume: 87 start-page: 233 year: 2015 end-page: 238 ident: bib14 article-title: The contribution of epithelial-mesenchymal transition to renal fibrosis differs among kidney disease models publication-title: Kidney Int. – volume: 184 start-page: 944 year: 2014 end-page: 952 ident: bib47 article-title: Regulation of renal fibrosis by Smad3 Thr388 phosphorylation publication-title: Am. J. Pathol. – volume: 25 start-page: 571 year: 2005 end-page: 579 ident: bib69 article-title: Macrophage migration inhibitory factor expression correlates with inflammatory changes in human chronic hepatitis B infection publication-title: Liver Int. – volume: 65 start-page: 63 year: 2004 end-page: 74 ident: bib6 article-title: Treatment with anti-TGF-beta antibody ameliorates chronic progressive nephritis by inhibiting Smad/TGF-beta signaling publication-title: Kidney Int. – volume: 88 start-page: 72 year: 2015 end-page: 84 ident: bib24 article-title: Cannabinoid receptor 1 is a major mediator of renal fibrosis publication-title: Kidney Int. – volume: 21 start-page: 998 year: 2015 end-page: 1009 ident: bib36 article-title: Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis publication-title: Nat. Med. – volume: 81 start-page: 266 year: 2012 end-page: 279 ident: bib40 article-title: Disruption of Smad4 impairs TGF-b/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis publication-title: Kidney Int. – volume: 7 start-page: 684 year: 2011 end-page: 696 ident: bib34 article-title: Cellular and molecular mechanisms of renal fibrosis publication-title: Nat. Rev. Nephrol. – year: 2015 ident: bib52 article-title: Smad3 deficiency protects mice from obesity-induced podocyte injury that precedes insulin resistance publication-title: Kidney Int. – volume: 26 start-page: 2276 year: 2014 end-page: 2283 ident: bib33 article-title: Epidermal growth factor inhibits transforming growth factor-β-induced fibrogenic differentiation marker expression through ERK activation publication-title: Cell. Signal. – volume: 14 start-page: 1535 year: 2003 end-page: 1548 ident: bib21 article-title: Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model publication-title: J. Am. Soc. Nephrol. – volume: 88 start-page: 1323 year: 2015 end-page: 1335 ident: bib48 article-title: The Smad3/Smad4/CDK9 complex promotes renal fibrosis in mice with unilateral ureteral obstruction publication-title: Kidney Int. – volume: 45 start-page: 525 year: 1994 end-page: 536 ident: bib54 article-title: TGF-beta 1 in glomerulosclerosis and interstitial fibrosis of adriamycin nephropathy publication-title: Kidney Int. – year: 2015 ident: 10.1016/j.diff.2016.05.008_bib37 article-title: Paracrine Wnt1 drives interstitial fibrosis without inflammation by Tubulointerstitial Cross-Talk publication-title: J Am Soc Nephrol – volume: 182 start-page: 118 year: 2013 ident: 10.1016/j.diff.2016.05.008_bib63 article-title: Transforming growth factor β-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2012.09.009 – volume: 26 start-page: 1559 year: 2012 ident: 10.1016/j.diff.2016.05.008_bib64 article-title: Fusion of bone marrow-derived cells with renal tubules contributes to renal dysfunction in diabetic nephropathy publication-title: FASEB J. doi: 10.1096/fj.11-183194 – volume: 4 start-page: 34 year: 2014 ident: 10.1016/j.diff.2016.05.008_bib45 article-title: Macrophages promote renal fibrosis through direct and indirect mechanisms publication-title: Kidney Int. Suppl. doi: 10.1038/kisup.2014.7 – volume: 81 start-page: 266 year: 2012 ident: 10.1016/j.diff.2016.05.008_bib40 article-title: Disruption of Smad4 impairs TGF-b/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo and in vitro publication-title: Kidney Int. doi: 10.1038/ki.2011.327 – volume: 26 start-page: 2276 year: 2014 ident: 10.1016/j.diff.2016.05.008_bib33 article-title: Epidermal growth factor inhibits transforming growth factor-β-induced fibrogenic differentiation marker expression through ERK activation publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2014.05.018 – volume: 21 start-page: 249 year: 2010 ident: 10.1016/j.diff.2016.05.008_bib3 article-title: Advanced glycation end-products induce tubular CTGF via TGF-beta-independent Smad3 signaling publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2009010018 – volume: 18 start-page: 539 year: 2007 ident: 10.1016/j.diff.2016.05.008_bib42 article-title: Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2006050459 – volume: 88 start-page: 503 year: 2015 ident: 10.1016/j.diff.2016.05.008_bib44 article-title: Renal fibrosis is not reduced by blocking transforming growth factor-β signaling in matrix-producing interstitial cells publication-title: Kidney Int. doi: 10.1038/ki.2015.51 – volume: 4 start-page: 631 year: 2015 ident: 10.1016/j.diff.2016.05.008_bib35 article-title: Epithelial-to-mesenchymal transition in diabetic nephropathy: fact or fiction? publication-title: Cells doi: 10.3390/cells4040631 – year: 2015 ident: 10.1016/j.diff.2016.05.008_bib52 article-title: Smad3 deficiency protects mice from obesity-induced podocyte injury that precedes insulin resistance publication-title: Kidney Int. doi: 10.1038/ki.2015.121 – volume: 21 start-page: 989 year: 2015 ident: 10.1016/j.diff.2016.05.008_bib10 article-title: Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease publication-title: Nat. Med. doi: 10.1038/nm.3901 – volume: 48 start-page: 563 year: 2010 ident: 10.1016/j.diff.2016.05.008_bib56 article-title: The contribution of the Tie2+ lineage to primitive and definitive hematopoietic cells publication-title: Genesis doi: 10.1002/dvg.20654 – volume: 88 start-page: 1323 year: 2015 ident: 10.1016/j.diff.2016.05.008_bib48 article-title: The Smad3/Smad4/CDK9 complex promotes renal fibrosis in mice with unilateral ureteral obstruction publication-title: Kidney Int. doi: 10.1038/ki.2015.235 – volume: 22 start-page: 1668 year: 2011 ident: 10.1016/j.diff.2016.05.008_bib70 article-title: Smad3-mediated upregulation of miR-21 promotes renal fibrosis publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2010111168 – volume: 299 start-page: F973 year: 2010 ident: 10.1016/j.diff.2016.05.008_bib62 article-title: Mice lacking the matrix metalloproteinase-9 gene reduce renal interstitial fibrosis in obstructive nephropathy publication-title: AJP: Ren. Physiol. – volume: 45 start-page: 525 year: 1994 ident: 10.1016/j.diff.2016.05.008_bib54 article-title: TGF-beta 1 in glomerulosclerosis and interstitial fibrosis of adriamycin nephropathy publication-title: Kidney Int. doi: 10.1038/ki.1994.68 – volume: 19 start-page: 961 year: 2008 ident: 10.1016/j.diff.2016.05.008_bib11 article-title: RAGE mediates podocyte injury in adriamycin-induced glomerulosclerosis publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2007101109 – volume: 173 start-page: 1617 year: 2008 ident: 10.1016/j.diff.2016.05.008_bib32 article-title: Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2008.080433 – volume: 26 start-page: 1765 year: 2015 ident: 10.1016/j.diff.2016.05.008_bib60 article-title: Failed tubule recovery, AKI-CKD transition, and kidney disease progression publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2015010006 – volume: 8 start-page: e84063 year: 2013 ident: 10.1016/j.diff.2016.05.008_bib53 article-title: Endothelial dysfunction exacerbates renal interstitial fibrosis through enhancing fibroblast smad3 linker phosphorylation in the mouse obstructed kidney – volume: 280 start-page: 9375 year: 2005 ident: 10.1016/j.diff.2016.05.008_bib8 article-title: Deletion of the PDGFR-beta gene affects key fibroblast functions important for wound healing publication-title: J. Biol. Chem. doi: 10.1074/jbc.M413081200 – volume: 121 start-page: 468 year: 2011 ident: 10.1016/j.diff.2016.05.008_bib19 article-title: Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? publication-title: J. Clin. Investig. doi: 10.1172/JCI44595 – volume: 36 start-page: 724 year: 2009 ident: 10.1016/j.diff.2016.05.008_bib49 article-title: Obesity induced renal oxidative stress contributes to renal injury in salt-sensitive hypertension publication-title: Clin. Exp. Pharmacol. Physiol. doi: 10.1111/j.1440-1681.2009.05139.x – volume: 13 start-page: 4984 year: 2008 ident: 10.1016/j.diff.2016.05.008_bib20 article-title: Smad7 as a therapeutic agent for chronic kidney diseases publication-title: Front Biosci. doi: 10.2741/3057 – volume: 25 start-page: 2198 year: 2013 ident: 10.1016/j.diff.2016.05.008_bib50 article-title: Induction of renal fibrotic genes by TGF-β1 requires EGFR activation, p53 and reactive oxygen species publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2013.07.007 – volume: 17 start-page: 450 year: 2008 ident: 10.1016/j.diff.2016.05.008_bib51 article-title: Obesity, insulin resistance and kidney disease risk: insights into the relationship publication-title: Curr. Opin. Nephrol. Hypertens. doi: 10.1097/MNH.0b013e328305b994 – volume: 293 start-page: F1657 year: 2007 ident: 10.1016/j.diff.2016.05.008_bib61 article-title: Interference with TGF-beta signaling by Smad3-knockout in mice limits diabetic glomerulosclerosis without affecting albuminuria publication-title: Am. J. Physiol. Ren. Physiol. doi: 10.1152/ajprenal.00274.2007 – volume: 14 start-page: 160 year: 2012 ident: 10.1016/j.diff.2016.05.008_bib57 article-title: The link between the renin-angiotensin-aldosterone system and renal injury in obesity and the metabolic syndrome publication-title: Curr. Hypertens. Rep. doi: 10.1007/s11906-012-0245-z – volume: 4 start-page: 84 year: 2014 ident: 10.1016/j.diff.2016.05.008_bib55 article-title: Wnt/β-catenin signaling and kidney fibrosis publication-title: Kidney Int. Suppl. doi: 10.1038/kisup.2014.16 – volume: 7 start-page: 684 year: 2011 ident: 10.1016/j.diff.2016.05.008_bib34 article-title: Cellular and molecular mechanisms of renal fibrosis publication-title: Nat. Rev. Nephrol. doi: 10.1038/nrneph.2011.149 – volume: 10 start-page: 406 year: 2010 ident: 10.1016/j.diff.2016.05.008_bib2 article-title: Diabetic nephropathy – a multifaceted target of new therapies publication-title: Discov. Med. – volume: 393 start-page: 855 year: 2010 ident: 10.1016/j.diff.2016.05.008_bib39 article-title: Lefty antagonises TGF-beta1 induced epithelial-mesenchymal transition in tubular epithelial cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2010.02.098 – volume: 115 start-page: e15 year: 2010 ident: 10.1016/j.diff.2016.05.008_bib41 article-title: HIV-1 and kidney cells: better understanding of viral interaction publication-title: Nephron Exp. Nephrol. doi: 10.1159/000312882 – volume: 25 start-page: 571 year: 2005 ident: 10.1016/j.diff.2016.05.008_bib69 article-title: Macrophage migration inhibitory factor expression correlates with inflammatory changes in human chronic hepatitis B infection publication-title: Liver Int. doi: 10.1111/j.1478-3231.2005.01047.x – volume: 24 start-page: 1443 year: 2009 ident: 10.1016/j.diff.2016.05.008_bib4 article-title: Disruption of the Smad7 gene promotes renal fibrosis and inflammation in unilateral ureteral obstruction (UUO) in mice publication-title: Nephrol. Dial. Transpl. doi: 10.1093/ndt/gfn699 – volume: 65 start-page: 63 year: 2004 ident: 10.1016/j.diff.2016.05.008_bib6 article-title: Treatment with anti-TGF-beta antibody ameliorates chronic progressive nephritis by inhibiting Smad/TGF-beta signaling publication-title: Kidney Int. doi: 10.1111/j.1523-1755.2004.00393.x – volume: 44 start-page: 571 year: 2011 ident: 10.1016/j.diff.2016.05.008_bib58 article-title: c-Jun N-terminal kinase 1 promotes transforming growth factor-β1-induced epithelial-to-mesenchymal transition via control of linker phosphorylation and transcriptional activity of Smad3 publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/rcmb.2009-0282OC – volume: 19 start-page: 1047 year: 2013 ident: 10.1016/j.diff.2016.05.008_bib23 article-title: Origin and function of myofibroblasts in kidney fibrosis publication-title: Nat. Med. doi: 10.1038/nm.3218 – volume: 176 start-page: 85 year: 2010 ident: 10.1016/j.diff.2016.05.008_bib13 article-title: Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2010.090517 – volume: 56 start-page: 605 year: 2008 ident: 10.1016/j.diff.2016.05.008_bib1 article-title: Glomerular CD34 expression in short- and long-term diabetes publication-title: J. Histochem. Cytochem. doi: 10.1369/jhc.7A7354.2008 – volume: 88 start-page: 434 year: 2015 ident: 10.1016/j.diff.2016.05.008_bib59 article-title: Fibrosis without fibroblast TGF-β receptors? publication-title: Kidney Int. doi: 10.1038/ki.2015.170 – volume: 27 start-page: 103 year: 2007 ident: 10.1016/j.diff.2016.05.008_bib67 article-title: Macrophage migration inhibitory factor induces MMP-9 expression in macrophages via the MEK-ERK MAP kinase pathway publication-title: J. Interferon Cytokine Res. doi: 10.1089/jir.2006.0054 – volume: 146 start-page: 2942 year: 2005 ident: 10.1016/j.diff.2016.05.008_bib5 article-title: Critical role of macrophage migration inhibitory factor activity in experimental autoimmune diabetes publication-title: Endocrinology doi: 10.1210/en.2004-1393 – volume: 88 start-page: 72 year: 2015 ident: 10.1016/j.diff.2016.05.008_bib24 article-title: Cannabinoid receptor 1 is a major mediator of renal fibrosis publication-title: Kidney Int. doi: 10.1038/ki.2015.63 – volume: 38 start-page: 879 year: 2003 ident: 10.1016/j.diff.2016.05.008_bib7 article-title: p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts publication-title: Hepatology doi: 10.1002/hep.1840380414 – volume: 8 start-page: 12 year: 2015 ident: 10.1016/j.diff.2016.05.008_bib43 article-title: Novel approach for the detection of tubular cell migration into the interstitium during renal fibrosis in rats publication-title: Fibrogenesis Tissue Repair doi: 10.1186/s13069-015-0030-0 – volume: 172 start-page: 299 year: 2008 ident: 10.1016/j.diff.2016.05.008_bib30 article-title: Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2008.070057 – volume: 87 start-page: 233 year: 2015 ident: 10.1016/j.diff.2016.05.008_bib14 article-title: The contribution of epithelial-mesenchymal transition to renal fibrosis differs among kidney disease models publication-title: Kidney Int. doi: 10.1038/ki.2014.235 – volume: 14 start-page: 1535 year: 2003 ident: 10.1016/j.diff.2016.05.008_bib21 article-title: Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model publication-title: J. Am. Soc. Nephrol. doi: 10.1097/01.ASN.0000067632.04658.B8 – volume: 347 start-page: 129 year: 2012 ident: 10.1016/j.diff.2016.05.008_bib25 article-title: Mechanisms and consequences of TGF-ss overexpression by podocytes in progressive podocyte disease publication-title: Cell Tissue Res. doi: 10.1007/s00441-011-1169-7 – volume: 12 start-page: 982 year: 2010 ident: 10.1016/j.diff.2016.05.008_bib65 article-title: Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition publication-title: Nat. Cell Biol. doi: 10.1038/ncb2099 – volume: 175 start-page: 1380 year: 2009 ident: 10.1016/j.diff.2016.05.008_bib26 article-title: Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2009.090096 – volume: 59 start-page: 2612 year: 2010 ident: 10.1016/j.diff.2016.05.008_bib27 article-title: Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy publication-title: Diabetes doi: 10.2337/db09-1631 – volume: 18 start-page: 176 year: 2004 ident: 10.1016/j.diff.2016.05.008_bib29 article-title: Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease publication-title: FASEB J. doi: 10.1096/fj.02-1117fje – volume: 164 start-page: 1389 year: 2004 ident: 10.1016/j.diff.2016.05.008_bib28 article-title: Advanced glycation end products induce tubular epithelial-myofibroblast transition through the RAGE-ERK1/2 MAP kinase signaling pathway publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)63225-7 – volume: 295 start-page: F118 year: 2008 ident: 10.1016/j.diff.2016.05.008_bib12 article-title: Mice overexpressing latent TGF-beta1 are protected against renal fibrosis in obstructive kidney disease publication-title: AJP: Ren. Physiol. – volume: 18 start-page: 1777 year: 2007 ident: 10.1016/j.diff.2016.05.008_bib16 article-title: Smad7 gene therapy ameliorates an autoimmune crescentic glomerulonephritis in mice publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2006080901 – volume: 19 start-page: 2282 year: 2008 ident: 10.1016/j.diff.2016.05.008_bib68 article-title: Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2008050513 – year: 2013 ident: 10.1016/j.diff.2016.05.008_bib9 article-title: Focal segmental glomerulosclerosis is associated with a PDSS2 haplotype and independently, with a decreased content of coenzyme Q10 publication-title: AJP: Ren. Physiol. – volume: 16 start-page: 51 year: 2015 ident: 10.1016/j.diff.2016.05.008_bib18 article-title: Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.11.004 – volume: 22 start-page: 1462 year: 2011 ident: 10.1016/j.diff.2016.05.008_bib46 article-title: TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29 publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2010121308 – volume: 80 start-page: 1119 year: 2011 ident: 10.1016/j.diff.2016.05.008_bib22 article-title: Blockade of PDGF receptor signaling reduces myofibroblast number and attenuates renal fibrosis publication-title: Kidney Int. doi: 10.1038/ki.2011.300 – volume: 87 start-page: 297 year: 2014 ident: 10.1016/j.diff.2016.05.008_bib38 article-title: Origin of myofibroblasts and cellular events triggering fibrosis publication-title: Kidney Int. doi: 10.1038/ki.2014.287 – volume: 52 start-page: 347 year: 2009 ident: 10.1016/j.diff.2016.05.008_bib31 article-title: Role of MKK3-p38 MAPK signalling in the development of type 2 diabetes and renal injury in obese db/db mice publication-title: Diabetologia doi: 10.1007/s00125-008-1215-5 – volume: 276 start-page: 36575 year: 2001 ident: 10.1016/j.diff.2016.05.008_bib17 article-title: Fibroblasts in mechanically stressed collagen lattices assume a “synthetic” phenotype publication-title: J. Biol. Chem. doi: 10.1074/jbc.M101602200 – volume: 21 start-page: 998 year: 2015 ident: 10.1016/j.diff.2016.05.008_bib36 article-title: Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis publication-title: Nat. Med. doi: 10.1038/nm.3902 – volume: 184 start-page: 944 year: 2014 ident: 10.1016/j.diff.2016.05.008_bib47 article-title: Regulation of renal fibrosis by Smad3 Thr388 phosphorylation publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2013.12.003 – volume: 14 start-page: 366 year: 2012 ident: 10.1016/j.diff.2016.05.008_bib66 article-title: RAC1 activation mediates Twist1-induced cancer cell migration publication-title: Nat. Cell Biol. doi: 10.1038/ncb2455 – volume: 110 start-page: 341 year: 2002 ident: 10.1016/j.diff.2016.05.008_bib15 article-title: Evidence that fibroblasts derive from epithelium during tissue fibrosis publication-title: J. Clin. Investig. doi: 10.1172/JCI0215518 |
SSID | ssj0008621 |
Score | 2.5880933 |
SecondaryResourceType | review_article |
Snippet | Renal fibrosis is a common characteristic of chronic kidney disease (CKD). Aberrant and excessive depositions of extracellular matrix (ECM) proteins in both... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102 |
SubjectTerms | Animals Epithelial-Mesenchymal Transition - physiology Fibroblasts Fibroblasts - metabolism Fibrosis - diagnosis Fibrosis - pathology Humans Kidney - metabolism Kidney - pathology Kidney Diseases - metabolism Kidney Diseases - pathology Myofibroblasts Myofibroblasts - pathology Renal fibrosis TGF-β1/Smad signaling |
Title | The origin of renal fibroblasts/myofibroblasts and the signals that trigger fibrosis |
URI | https://dx.doi.org/10.1016/j.diff.2016.05.008 https://www.ncbi.nlm.nih.gov/pubmed/27262400 https://www.proquest.com/docview/1826696774 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jIngRv50fI4I3qVvTJG2PYzim4i5usFtIm1Qm2o61O-zi3-5L004F3cFbUvJoeO_l5ffIL3kIXavEjwLiaodpRRyaEO1ExFMO83hX6a4rVVmm82nEhxP6MGXTBurXd2EMrbKK_Taml9G6-tKptNmZz2ad5zIb4AFAGq98WM3cYKe-8fLbjy-aByB2154kQK4Eo6uLM5bjZYqQGHoXL1_vNCUmf9-c_gKf5SY02EO7FXrEPTvBfdTQ6QHatvUkV4doDEbHttQVzhK80GZwAglxFgFILvLO-yr71sUyVRgAIDYkDnBDaMsCFyD_ohdWLp_lR2gyuBv3h05VNsGJPcYLh0pXJZT5YdKlUqooDuOEER2F0AijIGax9GggoyBMCKz3QEsA2IDiFJFa6YB6x6iZZqk-RZj4oRtIKn0aQyJWiihp6hByLl2qdAu5tb5EXL0pbkpbvImaPPYqjI6F0bHoMgE6bqGbtczcvqixcTSrzSB--IWAkL9R7qq2mYAFY05BZKqzZS5MQsVDDrC3hU6sMdfzID7hhlR79s-_nqMd07MctAvULBZLfQmgpYjapVe20Vbv_nE4-gRxVOut |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_mRPRF_HZ-RvBNytY0SdtHEWU63YsT9hbSJpWJtrLVB_97L007FHQPvqVtjoa75PI7crkfwLnOwiSivvG40dRjGTVeQgPt8UD0tOn5Slc0nQ9D0X9id2M-bsFVcxfGplXWvt_59Mpb12-6tTa775NJ97GKBkSEkCaoCqstwbKtTsXbsHx5O-gP5w4ZQbvvDhMwXEKB-u6MS_OyPCQ2w0tUBTwty-Tv-9Nf-LPah242YL0GkOTSjXETWibfghVHKfm5DSO0O3FsV6TIyNTYzhnGxEWCOLmcdd8-i2-PROWaIAYkNo8DZyK2VUlKlH82Uyc3m8x24OnmenTV92rmBC8NuCg9pnydMR7GWY8ppZM0TjNOTRJjI06ilKcqYJFKojijuOQjoxBjI5DTVBltIhbsQjsvcrMPhIaxHymmQpZiLFaJaGWpCIVQPtOmA36jL5nWZcUtu8WrbPLHXqTVsbQ6lj0uUccduJjLvLuiGgt788YM8sfUkOj1F8qdNTaTuGbsQYjKTfExkzamErFA5NuBPWfM-ThoSIXNqz34519PYbU_eriX97fDwSGs2S8uJe0I2uX0wxwjhimTk3qOfgGKD-5e |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+origin+of+renal+fibroblasts%2Fmyofibroblasts+and+the+signals+that+trigger+fibrosis&rft.jtitle=Differentiation+%28London%29&rft.au=Sun%2C+Yu+Bo+Yang&rft.au=Qu%2C+Xinli&rft.au=Caruana%2C+Georgina&rft.au=Li%2C+Jinhua&rft.date=2016-09-01&rft.issn=1432-0436&rft.eissn=1432-0436&rft.volume=92&rft.issue=3&rft.spage=102&rft_id=info:doi/10.1016%2Fj.diff.2016.05.008&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4681&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4681&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4681&client=summon |