Anti-CLL1 Chimeric Antigen Receptor T-Cell Therapy in Children with Relapsed/Refractory Acute Myeloid Leukemia
The survival rate of children with refractory/relapsed acute myeloid leukemia (R/R-AML) by salvage chemotherapy is minimal. Treatment with chimeric antigen receptor T cells (CAR T) has emerged as a novel therapy to improve malignancies treatment. C-type lectin-like molecule 1 (CLL1) is highly expres...
Saved in:
Published in | Clinical cancer research Vol. 27; no. 13; pp. 3549 - 3555 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.07.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1078-0432 1557-3265 1557-3265 |
DOI | 10.1158/1078-0432.CCR-20-4543 |
Cover
Loading…
Abstract | The survival rate of children with refractory/relapsed acute myeloid leukemia (R/R-AML) by salvage chemotherapy is minimal. Treatment with chimeric antigen receptor T cells (CAR T) has emerged as a novel therapy to improve malignancies treatment. C-type lectin-like molecule 1 (CLL1) is highly expressed on AML stem cells, blast cells, and monocytes, but not on normal hematopoietic stem cells, indicating the therapeutic potential of anti-CLL1 CAR T in AML treatment. This study aimed to test the safety and efficacy of CAR T-cell therapy in R/R-AML.
Four pediatric patients with R/R-AML were enrolled in the ongoing phase I/II anti-CLL1 CAR T-cell therapy trial. The CAR design was based on an apoptosis-inducing gene, FKBP-caspase 9, to establish a safer CAR (4SCAR) application. Anti-CLL1 CAR was transduced into peripheral blood mononuclear cells of the patients via lentivector 4SCAR, followed by infusion into the recipients after lymphodepletion chemotherapy. Cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and other adverse events were documented. Treatment response was evaluated by morphology and flow cytometry-based minimal residual disease assays.
Three patients with R/R-AML achieved complete remission and minimal residual disease negativity, while the other patient remained alive for 5 months. All these patients experienced low-grade and manageable adverse events.
On the basis of our single-institution experience, autologous anti-CLL1 CAR T-cell therapy has the potential to be a safe and efficient alternative treatment for children with R/R-AML, and therefore requires further investigation. |
---|---|
AbstractList | The survival rate of children with refractory/relapsed acute myeloid leukemia (R/R-AML) by salvage chemotherapy is minimal. Treatment with chimeric antigen receptor T cells (CAR T) has emerged as a novel therapy to improve malignancies treatment. C-type lectin-like molecule 1 (CLL1) is highly expressed on AML stem cells, blast cells, and monocytes, but not on normal hematopoietic stem cells, indicating the therapeutic potential of anti-CLL1 CAR T in AML treatment. This study aimed to test the safety and efficacy of CAR T-cell therapy in R/R-AML.
Four pediatric patients with R/R-AML were enrolled in the ongoing phase I/II anti-CLL1 CAR T-cell therapy trial. The CAR design was based on an apoptosis-inducing gene, FKBP-caspase 9, to establish a safer CAR (4SCAR) application. Anti-CLL1 CAR was transduced into peripheral blood mononuclear cells of the patients via lentivector 4SCAR, followed by infusion into the recipients after lymphodepletion chemotherapy. Cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and other adverse events were documented. Treatment response was evaluated by morphology and flow cytometry-based minimal residual disease assays.
Three patients with R/R-AML achieved complete remission and minimal residual disease negativity, while the other patient remained alive for 5 months. All these patients experienced low-grade and manageable adverse events.
On the basis of our single-institution experience, autologous anti-CLL1 CAR T-cell therapy has the potential to be a safe and efficient alternative treatment for children with R/R-AML, and therefore requires further investigation. The survival rate of children with refractory/relapsed acute myeloid leukemia (R/R-AML) by salvage chemotherapy is minimal. Treatment with chimeric antigen receptor T cells (CAR T) has emerged as a novel therapy to improve malignancies treatment. C-type lectin-like molecule 1 (CLL1) is highly expressed on AML stem cells, blast cells, and monocytes, but not on normal hematopoietic stem cells, indicating the therapeutic potential of anti-CLL1 CAR T in AML treatment. This study aimed to test the safety and efficacy of CAR T-cell therapy in R/R-AML.PURPOSEThe survival rate of children with refractory/relapsed acute myeloid leukemia (R/R-AML) by salvage chemotherapy is minimal. Treatment with chimeric antigen receptor T cells (CAR T) has emerged as a novel therapy to improve malignancies treatment. C-type lectin-like molecule 1 (CLL1) is highly expressed on AML stem cells, blast cells, and monocytes, but not on normal hematopoietic stem cells, indicating the therapeutic potential of anti-CLL1 CAR T in AML treatment. This study aimed to test the safety and efficacy of CAR T-cell therapy in R/R-AML.Four pediatric patients with R/R-AML were enrolled in the ongoing phase I/II anti-CLL1 CAR T-cell therapy trial. The CAR design was based on an apoptosis-inducing gene, FKBP-caspase 9, to establish a safer CAR (4SCAR) application. Anti-CLL1 CAR was transduced into peripheral blood mononuclear cells of the patients via lentivector 4SCAR, followed by infusion into the recipients after lymphodepletion chemotherapy. Cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and other adverse events were documented. Treatment response was evaluated by morphology and flow cytometry-based minimal residual disease assays.PATIENTS AND METHODSFour pediatric patients with R/R-AML were enrolled in the ongoing phase I/II anti-CLL1 CAR T-cell therapy trial. The CAR design was based on an apoptosis-inducing gene, FKBP-caspase 9, to establish a safer CAR (4SCAR) application. Anti-CLL1 CAR was transduced into peripheral blood mononuclear cells of the patients via lentivector 4SCAR, followed by infusion into the recipients after lymphodepletion chemotherapy. Cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and other adverse events were documented. Treatment response was evaluated by morphology and flow cytometry-based minimal residual disease assays.Three patients with R/R-AML achieved complete remission and minimal residual disease negativity, while the other patient remained alive for 5 months. All these patients experienced low-grade and manageable adverse events.RESULTSThree patients with R/R-AML achieved complete remission and minimal residual disease negativity, while the other patient remained alive for 5 months. All these patients experienced low-grade and manageable adverse events.On the basis of our single-institution experience, autologous anti-CLL1 CAR T-cell therapy has the potential to be a safe and efficient alternative treatment for children with R/R-AML, and therefore requires further investigation.CONCLUSIONSOn the basis of our single-institution experience, autologous anti-CLL1 CAR T-cell therapy has the potential to be a safe and efficient alternative treatment for children with R/R-AML, and therefore requires further investigation. |
Author | Zhang, Hui Gan, Wenting Li, Zhuoyan Wang, Pengfei He, Yingyi Jiang, Hua |
Author_xml | – sequence: 1 givenname: Hui surname: Zhang fullname: Zhang, Hui – sequence: 2 givenname: Pengfei surname: Wang fullname: Wang, Pengfei – sequence: 3 givenname: Zhuoyan surname: Li fullname: Li, Zhuoyan – sequence: 4 givenname: Yingyi surname: He fullname: He, Yingyi – sequence: 5 givenname: Wenting surname: Gan fullname: Gan, Wenting – sequence: 6 givenname: Hua surname: Jiang fullname: Jiang, Hua |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33832948$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtr3DAUhUVIaB7tT2jRshslunrYHroaTPoAl8AwXQuNfJ1R61clmTL_vjLJbLroShfxnfs455ZcjtOIhLwHfg-gqwfgZcW4kuK-rndMcKa0khfkBrQumRSFvsz1mbkmtzH-5BwUcPWGXEtZSbFR1Q0Zt2PyrG4aoPXRDxi8o-vXM450hw7nNAW6ZzX2Pd0fMdj5RP24sn0bMvPHp2MGeztHbB922AXrsuREt25JSL-fsJ98SxtcfuHg7Vty1dk-4rvX9478-Py4r7-y5unLt3rbMCd1kZiqQAKUwpYthyIvK1GCLXWBwukOpHOydFIexAaV41h2B-3w0G2U7RSWFZd35ONL3zlMvxeMyQw-unyEHXFaohEaQMhKb4qMfnhFl8OArZmDH2w4mbNHGfj0ArgwxRiwM84nm_w0pmB9b4CbNRGzum1Wt01OxAhu1kSyWv-jPg_4v-4vfvmN3g |
CitedBy_id | crossref_primary_10_1016_j_tranon_2024_102225 crossref_primary_10_1016_j_leukres_2024_107498 crossref_primary_10_3390_biomedicines12061194 crossref_primary_10_1016_j_jcyt_2022_07_008 crossref_primary_10_1186_s12935_025_03697_y crossref_primary_10_1200_EDBK_438690 crossref_primary_10_3390_cancers15113054 crossref_primary_10_1038_s41375_022_01703_0 crossref_primary_10_1016_j_lfs_2024_122685 crossref_primary_10_3324_haematol_2023_283817 crossref_primary_10_3390_cancers14030497 crossref_primary_10_1080_08880018_2025_2453861 crossref_primary_10_1038_s41375_022_01619_9 crossref_primary_10_3390_cells12040633 crossref_primary_10_1080_14712598_2025_2479014 crossref_primary_10_3390_cancers13246157 crossref_primary_10_1080_17474086_2023_2268273 crossref_primary_10_1182_blood_2023022481 crossref_primary_10_3390_ijms24119667 crossref_primary_10_3389_fimmu_2023_1285406 crossref_primary_10_12677_WJCR_2022_121002 crossref_primary_10_1186_s12943_022_01669_8 crossref_primary_10_1097_MOH_0000000000000795 crossref_primary_10_3390_jcm11030504 crossref_primary_10_1007_s10147_023_02319_9 crossref_primary_10_3390_vaccines12020165 crossref_primary_10_1007_s12185_024_03809_w crossref_primary_10_1038_s41467_024_50485_9 crossref_primary_10_1038_s41375_024_02351_2 crossref_primary_10_1097_BS9_0000000000000140 crossref_primary_10_1038_s41467_022_28243_6 crossref_primary_10_3390_cancers14020299 crossref_primary_10_3724_zdxbyxb_2022_0055 crossref_primary_10_1002_cam4_5916 crossref_primary_10_1097_MPH_0000000000002956 crossref_primary_10_3390_cancers15112944 crossref_primary_10_1007_s12015_024_10786_4 crossref_primary_10_3390_jcm10163556 crossref_primary_10_1111_sji_13273 crossref_primary_10_1186_s13045_022_01308_1 crossref_primary_10_1097_CM9_0000000000002549 crossref_primary_10_1097_MOH_0000000000000703 crossref_primary_10_1182_hematology_2023000455 crossref_primary_10_1097_CM9_0000000000002476 crossref_primary_10_1016_j_omto_2023_07_003 crossref_primary_10_1080_17474086_2024_2420614 crossref_primary_10_3389_fcell_2022_928140 crossref_primary_10_56875_2589_0646_1060 crossref_primary_10_3324_haematol_2022_282316 crossref_primary_10_3390_ijms231911526 crossref_primary_10_3390_jcm11010253 crossref_primary_10_1182_blood_2023021705 crossref_primary_10_1038_s43018_025_00934_1 crossref_primary_10_3390_cancers16213627 crossref_primary_10_1080_14728222_2022_2083957 crossref_primary_10_1182_bloodadvances_2022007405 crossref_primary_10_1016_S2352_3026_22_00293_9 crossref_primary_10_3389_fimmu_2023_1260470 crossref_primary_10_3389_fimmu_2024_1459818 crossref_primary_10_3389_fonc_2021_812207 crossref_primary_10_3389_fped_2022_911093 crossref_primary_10_1007_s00262_023_03422_6 crossref_primary_10_3389_fonc_2021_758512 crossref_primary_10_1016_j_trim_2024_102112 |
Cites_doi | 10.2174/1566523218666181116093857 10.1182/blood.V128.22.587.587 10.1182/blood-2007-03-083048 10.1002/ajh.25333 10.3389/fonc.2020.00685 10.1182/blood.V126.23.264.264 10.1016/j.critrevonc.2018.11.010 10.1038/s41571-018-0075-2 10.1038/s41375-018-0180-3 10.1016/S2352-3026(17)30052-2 10.1056/NEJMoa1817226 10.1016/S1470-2045(19)30150-0 10.1111/bjh.12947 10.1016/j.vaccine.2006.02.025 10.1016/S1470-2045(17)30416-3 10.1002/sctm.20-0147 10.1186/s13045-019-0726-5 10.1038/sj.gt.3302509 10.6004/jnccn.2019.0028 10.1038/nrclinonc.2017.148 10.1038/s41375-018-0071-7 10.1038/s41408-021-00455-x 10.1182/blood-2019-122620 10.1038/icb.2014.103 10.1182/blood-2018-99-110579 10.1056/NEJMoa1804980 |
ContentType | Journal Article |
Copyright | 2021 American Association for Cancer Research. |
Copyright_xml | – notice: 2021 American Association for Cancer Research. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1158/1078-0432.CCR-20-4543 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1557-3265 |
EndPage | 3555 |
ExternalDocumentID | 33832948 10_1158_1078_0432_CCR_20_4543 |
Genre | Clinical Trial, Phase II Clinical Trial, Phase I Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 18M 29B 2FS 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BR6 BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 IH2 KQ8 L7B LSO OK1 P0W P2P QTD RCR RHI RNS SJN TR2 W2D W8F WOQ YKV CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c356t-48131172a7d0163833e31a756e2c5f13cc37c33b29e4c0e7fb5cebf94af4e7803 |
ISSN | 1078-0432 1557-3265 |
IngestDate | Fri Jul 11 01:30:49 EDT 2025 Mon Jul 21 05:57:48 EDT 2025 Tue Jul 01 01:30:40 EDT 2025 Thu Apr 24 23:08:03 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | 2021 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c356t-48131172a7d0163833e31a756e2c5f13cc37c33b29e4c0e7fb5cebf94af4e7803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://aacrjournals.org/clincancerres/article-pdf/27/13/3549/3086496/3549.pdf |
PMID | 33832948 |
PQID | 2511238596 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2511238596 pubmed_primary_33832948 crossref_citationtrail_10_1158_1078_0432_CCR_20_4543 crossref_primary_10_1158_1078_0432_CCR_20_4543 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Clinical cancer research |
PublicationTitleAlternate | Clin Cancer Res |
PublicationYear | 2021 |
References | Chang (2022061020163851200_bib12) 2005; 12 Cortes (2022061020163851200_bib22) 2019; 20 Okada (2022061020163851200_bib17) 2015; 93 Bonaventure (2022061020163851200_bib2) 2017; 4 Schuster (2022061020163851200_bib6) 2019; 380 Tallman (2022061020163851200_bib18) 2019; 17 Lung-Ji Chang (2022061020163851200_bib16) 2015; 126 Perl (2022061020163851200_bib24) 2017; 18 Moors (2022061020163851200_bib4) 2019; 133 Fang Liu (2022061020163851200_bib11) 2018; 132 Nair (2022061020163851200_bib14) 2019; 19 Jiao (2022061020163851200_bib25) 2021; 11 Wang (2022061020163851200_bib13) 2006; 24 Neelapu (2022061020163851200_bib20) 2018; 15 van Rhenen (2022061020163851200_bib7) 2007; 110 Ma (2022061020163851200_bib9) 2019; 12 Raje (2022061020163851200_bib5) 2019; 380 Litzow (2022061020163851200_bib23) 2019; 94 Tang (2022061020163851200_bib27) 2018; 8 Mahadeo (2022061020163851200_bib19) 2019; 16 Kaspers (2022061020163851200_bib3) 2014; 166 Rasche (2022061020163851200_bib1) 2018; 32 Haubner (2022061020163851200_bib8) 2019; 33 Valent (2022061020163851200_bib26) 2020; 9 Zhang (2022061020163851200_bib10) 2020; 10 Smith (2022061020163851200_bib21) 2019; 134 Lung-Ji Chang (2022061020163851200_bib15) 2016; 128 |
References_xml | – volume: 19 start-page: 40 year: 2019 ident: 2022061020163851200_bib14 article-title: Functional improvement of chimeric antigen receptor through intrinsic interleukin-15ralpha signaling publication-title: Curr Gene Ther doi: 10.2174/1566523218666181116093857 – volume: 128 start-page: 587 year: 2016 ident: 2022061020163851200_bib15 article-title: Safety and efficacy evaluation of 4SCAR19 chimeric antigen receptor-modified T cells targeting B cell acute lymphoblastic leukemia - three-year follow-up of a multicenter phase I/II study publication-title: Blood doi: 10.1182/blood.V128.22.587.587 – volume: 110 start-page: 2659 year: 2007 ident: 2022061020163851200_bib7 article-title: The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells publication-title: Blood doi: 10.1182/blood-2007-03-083048 – volume: 94 start-page: 111 year: 2019 ident: 2022061020163851200_bib23 article-title: A randomized trial of three novel regimens for recurrent acute myeloid leukemia demonstrates the continuing challenge of treating this difficult disease publication-title: Am J Hematol doi: 10.1002/ajh.25333 – volume: 10 start-page: 685 year: 2020 ident: 2022061020163851200_bib10 article-title: Successful anti-CLL1 CAR T-cell therapy in secondary acute myeloid leukemia publication-title: Front Oncol doi: 10.3389/fonc.2020.00685 – volume: 126 start-page: 264 year: 2015 ident: 2022061020163851200_bib16 article-title: 4SCAR19 chimeric antigen receptor-modified T cells as a breakthrough therapy for highly chemotherapy-resistant late-stage B cell lymphoma patients with bulky tumor mass publication-title: Blood doi: 10.1182/blood.V126.23.264.264 – volume: 133 start-page: 142 year: 2019 ident: 2022061020163851200_bib4 article-title: Clinical implications of measurable residual disease in AML: review of current evidence publication-title: Crit Rev Oncol Hematol doi: 10.1016/j.critrevonc.2018.11.010 – volume: 16 start-page: 45 year: 2019 ident: 2022061020163851200_bib19 article-title: Management guidelines for paediatric patients receiving chimeric antigen receptor T cell therapy publication-title: Nat Rev Clin Oncol doi: 10.1038/s41571-018-0075-2 – volume: 8 start-page: 1083 year: 2018 ident: 2022061020163851200_bib27 article-title: First-in-man clinical trial of CAR NK-92 cells: safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia publication-title: Am J Cancer Res – volume: 33 start-page: 64 year: 2019 ident: 2022061020163851200_bib8 article-title: Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML publication-title: Leukemia doi: 10.1038/s41375-018-0180-3 – volume: 4 start-page: e202 year: 2017 ident: 2022061020163851200_bib2 article-title: Worldwide comparison of survival from childhood leukaemia for 1995–2009, by subtype, age, and sex (CONCORD-2): a population-based study of individual data for 89 828 children from 198 registries in 53 countries publication-title: Lancet Haematol doi: 10.1016/S2352-3026(17)30052-2 – volume: 380 start-page: 1726 year: 2019 ident: 2022061020163851200_bib5 article-title: Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma publication-title: N Engl J Med doi: 10.1056/NEJMoa1817226 – volume: 20 start-page: 984 year: 2019 ident: 2022061020163851200_bib22 article-title: Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R): a multicentre, randomised, controlled, open-label, phase 3 trial publication-title: Lancet Oncol doi: 10.1016/S1470-2045(19)30150-0 – volume: 166 start-page: 636 year: 2014 ident: 2022061020163851200_bib3 article-title: How I treat paediatric relapsed acute myeloid leukaemia publication-title: Br J Haematol doi: 10.1111/bjh.12947 – volume: 24 start-page: 3477 year: 2006 ident: 2022061020163851200_bib13 article-title: An effective cancer vaccine modality: lentiviral modification of dendritic cells expressing multiple cancer-specific antigens publication-title: Vaccine doi: 10.1016/j.vaccine.2006.02.025 – volume: 18 start-page: 1061 year: 2017 ident: 2022061020163851200_bib24 article-title: Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1–2 study publication-title: Lancet Oncol doi: 10.1016/S1470-2045(17)30416-3 – volume: 9 start-page: 1331 year: 2020 ident: 2022061020163851200_bib26 article-title: Cell-based and antibody-mediated immunotherapies directed against leukemic stem cells in acute myeloid leukemia: perspectives and open issues publication-title: Stem Cells Transl Med doi: 10.1002/sctm.20-0147 – volume: 12 start-page: 41 year: 2019 ident: 2022061020163851200_bib9 article-title: Targeting CLL-1 for acute myeloid leukemia therapy publication-title: J Hematol Oncol doi: 10.1186/s13045-019-0726-5 – volume: 12 start-page: 1133 year: 2005 ident: 2022061020163851200_bib12 article-title: Lentiviral siRNAs targeting multiple highly conserved RNA sequences of human immunodeficiency virus type 1 publication-title: Gene Ther doi: 10.1038/sj.gt.3302509 – volume: 17 start-page: 721 year: 2019 ident: 2022061020163851200_bib18 article-title: Acute myeloid leukemia, version 3.2019, NCCN clinical practice guidelines in oncology publication-title: J Natl Compr Canc Netw doi: 10.6004/jnccn.2019.0028 – volume: 15 start-page: 47 year: 2018 ident: 2022061020163851200_bib20 article-title: Chimeric antigen receptor T-cell therapy - assessment and management of toxicities publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2017.148 – volume: 32 start-page: 2167 year: 2018 ident: 2022061020163851200_bib1 article-title: Successes and challenges in the treatment of pediatric acute myeloid leukemia: a retrospective analysis of the AML-BFM trials from 1987 to 2012 publication-title: Leukemia doi: 10.1038/s41375-018-0071-7 – volume: 11 start-page: 59 year: 2021 ident: 2022061020163851200_bib25 article-title: 4SCAR2.0: a multi-CAR-T therapy regimen for the treatment of relapsed/refractory B cell lymphomas publication-title: Blood Cancer J doi: 10.1038/s41408-021-00455-x – volume: 134 start-page: 14 year: 2019 ident: 2022061020163851200_bib21 article-title: Emerging mutations at relapse in patients with FLT3-mutated relapsed/refractory acute myeloid leukemia who received gilteritinib therapy in the phase 3 admiral trial publication-title: Blood doi: 10.1182/blood-2019-122620 – volume: 93 start-page: 461 year: 2015 ident: 2022061020163851200_bib17 article-title: STAT3 signaling contributes to the high effector activities of interleukin-15-derived dendritic cells publication-title: Immunol Cell Biol doi: 10.1038/icb.2014.103 – volume: 132 start-page: 901 year: 2018 ident: 2022061020163851200_bib11 article-title: First-in-human CLL1-CD33 compound CAR T cell therapy induces complete remission in patients with refractory acute myeloid leukemia: update on phase 1 clinical trial publication-title: Blood doi: 10.1182/blood-2018-99-110579 – volume: 380 start-page: 45 year: 2019 ident: 2022061020163851200_bib6 article-title: Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma publication-title: N Engl J Med doi: 10.1056/NEJMoa1804980 |
SSID | ssj0014104 |
Score | 2.5858018 |
Snippet | The survival rate of children with refractory/relapsed acute myeloid leukemia (R/R-AML) by salvage chemotherapy is minimal. Treatment with chimeric antigen... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 3549 |
SubjectTerms | Cell- and Tissue-Based Therapy Child Humans Immunotherapy, Adoptive - adverse effects Leukemia, Myeloid, Acute - genetics Leukocytes, Mononuclear Receptors, Chimeric Antigen |
Title | Anti-CLL1 Chimeric Antigen Receptor T-Cell Therapy in Children with Relapsed/Refractory Acute Myeloid Leukemia |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33832948 https://www.proquest.com/docview/2511238596 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiEuiDflJSNxq7Kbhx0nxypiqVCL0KorFS6R7ThLxJJW3eZQfg6_FI8faUHlsVyiymrGUefreGbyzQxCrysaCi5TEbCa84DwmARZxasgSlnFIsXCVECgOHufTs7JuwVdDAbf91hL3UYcy28H60r-R6t6TesVqmSvodleqF7Qn7V-9VVrWF__ScfjdtMExXQaAaPCkuJhSX8f3EG10vH0aB4UysznNN0DTJHffv22YcOtriDleXqm6rUZv7MdjSXwB2ZbdblsqtFUdV_U14bve7KFL6mUgJv1yHUN6rPLfSZ60jW7rL1d-qDai1r1y1PDKPj0uVtud1idmEzrR32ybpv91EQc9TRWb01DaN9LXAJTOQtLtVWL7YAIb4JtewAPtWTPoCbUdjR1h7P2juhhw08zk4NwGx4XxZmGCnR0T3YnnX-7_8sB2NMSTUBEsxLElCCm1GLKOCxBzA10M9ahCEzJeLvoaURAkyWW12p3dlViWszJwaf52f_5TVBjnJv5XXTHRSV4bCF2Dw1Uex_dmjnexQPU9kjDHmnYIQ17pGGLNOyQhpsWe6RhQBr2SDvZ4QwbnGGHM-xx9hCdn76ZF5PATeoIZELTTUAy6NrEYs6qEBz8BFLrnNFUxZLWUSJlwmSSiDhXRIaK1YJKJeqc8JooloXJI3TULlv1BOGozpMsZnmoREpqTgSlgtYxlyxPoVXTEBH_-5XStbGHaSqX5R-1N0TH_W0r28flbze88soptcWF12i8VcvuqoSgXDu6NE-H6LHVWi8SEj5xTrKn193uGbq9-wc9R0ebdadeaHd3I14avP0As1iguQ |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-CLL1+Chimeric+Antigen+Receptor+T-Cell+Therapy+in+Children+with+Relapsed%2FRefractory+Acute+Myeloid+Leukemia&rft.jtitle=Clinical+cancer+research&rft.au=Zhang%2C+Hui&rft.au=Wang%2C+Pengfei&rft.au=Li%2C+Zhuoyan&rft.au=He%2C+Yingyi&rft.date=2021-07-01&rft.issn=1078-0432&rft.eissn=1557-3265&rft.volume=27&rft.issue=13&rft.spage=3549&rft.epage=3555&rft_id=info:doi/10.1158%2F1078-0432.CCR-20-4543&rft.externalDBID=n%2Fa&rft.externalDocID=10_1158_1078_0432_CCR_20_4543 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon |