Explicit Analytic Solution for the Plane Elastostatic Problem with a Rigid Inclusion of Arbitrary Shape Subject to Arbitrary Far-Field Loadings

We provide an analytical solution for the elastic fields in a two-dimensional unbounded isotropic body with a rigid inclusion. Our analysis is based on the boundary integral formulation of the elastostatic problem and geometric function theory. Specifically, we use the coordinate system provided by...

Full description

Saved in:
Bibliographic Details
Published inJournal of elasticity Vol. 144; no. 1; pp. 81 - 105
Main Authors Mattei, Ornella, Lim, Mikyoung
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.04.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We provide an analytical solution for the elastic fields in a two-dimensional unbounded isotropic body with a rigid inclusion. Our analysis is based on the boundary integral formulation of the elastostatic problem and geometric function theory. Specifically, we use the coordinate system provided by the exterior conformal mapping of the inclusion to define a density basis functions on the boundary of the inclusion, and we use the Faber polynomials associated with the inclusion for a basis inside the inclusion. The latter, which constitutes the main novelty of our approach, allows us to obtain an explicit series solution for the plane elastostatic problem for an inclusion of arbitrary shape in terms of the given arbitrary far-field loading.
AbstractList We provide an analytical solution for the elastic fields in a two-dimensional unbounded isotropic body with a rigid inclusion. Our analysis is based on the boundary integral formulation of the elastostatic problem and geometric function theory. Specifically, we use the coordinate system provided by the exterior conformal mapping of the inclusion to define a density basis functions on the boundary of the inclusion, and we use the Faber polynomials associated with the inclusion for a basis inside the inclusion. The latter, which constitutes the main novelty of our approach, allows us to obtain an explicit series solution for the plane elastostatic problem for an inclusion of arbitrary shape in terms of the given arbitrary far-field loading.
Author Mattei, Ornella
Lim, Mikyoung
Author_xml – sequence: 1
  givenname: Ornella
  orcidid: 0000-0002-9342-6291
  surname: Mattei
  fullname: Mattei, Ornella
  organization: Department of Mathematics, San Francisco State University
– sequence: 2
  givenname: Mikyoung
  surname: Lim
  fullname: Lim, Mikyoung
  email: mklim@kaist.ac.kr
  organization: Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology
BookMark eNp9kMFuGyEURVHkSLWT_EBXSF3TPIaBwUvLsttIlhrVzRoxM2BjkcEFRm2-Ir9cHFdK1YVXT-LdA5czQ5MhDAahjxQ-U4DmPlEQfE6gogTmspJEXKEp5Q0jlZB0gqbAmpowzvgHNEvpAFBiNUzR6-r30bvOZbwYtH_JrsPb4MfswoBtiDjvDX70ejB45XXKIWV9yjzG0HrzjH-5vMcaf3c71-OHofNjOpHB4kVsXY46vuDtXh8N3o7twXQZ5_DPaq0jWTvje7wJunfDLt2ia6t9Mnd_5w16Wq9-LL-SzbcvD8vFhnSMi0xqZnsrqa57SwXUUFWMVx0TveANbet5ZzQ3TW0k9OWMSjm3vK8FCKsbBq1hN-jT-d5jDD9Hk7I6hDEWBUlVnDIuAYQsqeqc6mJIKRqrjtE9l-aKgjqJV2fxqohXb-KVKJD8Dyp69clo-bTzl1F2RlN5Z9iZ-N7qAvUHQJ-bDg
CitedBy_id crossref_primary_10_1103_PhysRevE_109_014901
crossref_primary_10_1016_j_mechrescom_2022_103976
crossref_primary_10_3390_sym16030360
crossref_primary_10_1137_24M1646479
Cites_doi 10.1016/j.jmps.2009.11.008
10.1017/S095679259700315X
10.1115/1.4010216
10.1002/pssa.2210050332
10.1016/S0022-5096(96)00066-X
10.1017/S0305004100039876
10.1007/BF01456720
10.1007/BF01444293
10.1016/j.mechmat.2013.01.005
10.1007/b98245
10.1016/j.ijengsci.2009.01.005
10.1115/1.2788920
10.1007/s00205-007-0087-z
10.1115/1.3636446
10.1016/j.ijengsci.2015.04.007
10.1007/s00205-018-1318-1
10.1007/978-94-007-4101-0
10.1142/2597
10.1007/978-3-662-02770-7
10.1007/BF01580272
10.1007/s00208-020-02041-1
10.1007/978-0-387-68485-7
10.1098/rspa.1967.0170
10.1115/1.2791051
10.1098/rspa.2009.0631
10.1016/j.euromechsol.2016.06.010
10.1115/1.3424140
10.1080/14786442608633614
10.1098/rspa.1957.0133
10.1137/20M1348698
10.1016/0022-5096(75)90012-5
10.1007/978-3-319-02585-8
10.1002/9780470117835
10.1090/proc/14785
10.1115/1.4009702
10.1017/S0956792517000080
10.1177/108128659600100304
10.1063/1.1700099
10.1007/s10659-016-9573-6
10.1016/0020-7683(70)90062-4
10.1115/1.4012173
10.1016/j.mechmat.2009.01.019
10.1016/j.jmaa.2020.124756
10.1098/rspa.2007.0219
10.1115/1.4009928
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2021. corrected publication 2021
The Author(s), under exclusive licence to Springer Nature B.V. 2021. corrected publication 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021. corrected publication 2021
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021. corrected publication 2021.
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1007/s10659-021-09828-6
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1573-2681
EndPage 105
ExternalDocumentID 10_1007_s10659_021_09828_6
GrantInformation_xml – fundername: National Science Foundation (US)
  grantid: DMS - 942514985
– fundername: National Research Foundation of Korea
  grantid: 2019R1A6A1A10073887
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABEFU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9P
PF0
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
Z5O
Z7S
Z7Y
Z7Z
Z86
Z8N
Z8S
Z8T
ZMTXR
ZY4
~02
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7SR
7TB
8BQ
8FD
ABRTQ
FR3
JG9
KR7
ID FETCH-LOGICAL-c356t-43fdf81a4df1604022352c36d6571b49cea5e74e80d6d61889f5d4606fa730be3
IEDL.DBID U2A
ISSN 0374-3535
IngestDate Fri Jul 25 18:55:22 EDT 2025
Tue Jul 01 00:20:28 EDT 2025
Thu Apr 24 22:54:41 EDT 2025
Fri Feb 21 02:48:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Transmission problem
Faber polynomials
30C55
Linear elasticity
74B05
Lamé system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-43fdf81a4df1604022352c36d6571b49cea5e74e80d6d61889f5d4606fa730be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9342-6291
PQID 2513580068
PQPubID 326256
PageCount 25
ParticipantIDs proquest_journals_2513580068
crossref_primary_10_1007_s10659_021_09828_6
crossref_citationtrail_10_1007_s10659_021_09828_6
springer_journals_10_1007_s10659_021_09828_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Groningen
PublicationSubtitle The Physical and Mathematical Science of Solids
PublicationTitle Journal of elasticity
PublicationTitleAbbrev J Elast
PublicationYear 2021
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References LeeY.G.ZouW.N.Exterior elastic fields of non-elliptical inclusions characterized by Laurent polynomialsEur. J. Mech. A, Solids2016601121212016EJMS...60..112L354694710.1016/j.euromechsol.2016.06.0101406.74057
ZouW.HeQ.HuangM.ZhengQ.Eshelby’s problem of non-elliptical inclusionsJ. Mech. Phys. Solids20105833463722010JMPSo..58..346Z265629310.1016/j.jmps.2009.11.0081193.74011
EshelbyJ.D.The determination of the elastic field of an ellipsoidal inclusion and related problemsProc. R. Soc. Lond.195724112263763961957RSPSA.241..376E8732610.1098/rspa.1957.01330079.39606
MaxwellJ.C.A Treatise on Electricity and Magnetism1873OxfordClarendon Press37137205.0556.01Article 322
LuJ.k.Complex Variable Methods in Plane Elasticity1995SingaporeWorld Scientific10.1142/2597
ChiuY.P.On the stress field due to initial strains in a cuboid surrounded by an infinite elastic spaceJ. Appl. Mech.1977445875901977JAM....44..587C10.1115/1.3424140
RobinsonK.Elastic energy of an ellipsoidal inclusion in an infinite solidJ. Appl. Phys.1951228104510541951JAP....22.1045R4903810.1063/1.17000990043.39104
KangH.YuS.Quantitative characterization of stress concentration in the presence of closely spaced hard inclusions in two-dimensional linear elasticityArch. Ration. Mech. Anal.20192321121196391697310.1007/s00205-018-1318-11415.74028
AmmariH.KangH.Reconstruction of Small Inhomogeneities from Boundary Measurements2004BerlinSpringer10.1007/b982451113.35148
RodinG.J.Eshelby’s inclusion problem for polygons and polyhedraJ. Mech. Phys. Solids199644197719951996JMPSo..44.1977R10.1016/S0022-5096(96)00066-X
WalpoleL.J.HillR.The elastic field of an inclusion in an anisotropic mediumProc. R. Soc. Lond. Ser. A, Math. Phys. Sci.196730014612702891967RSPSA.300..270W10.1098/rspa.1967.01700162.56301
KupradzeV.D.Potential Methods in the Theory of Elasticity19650188.56901
RuC.Q.Analytic solution for Eshelby’s problem of an inclusion of arbitrary shape in a plane or half-planeJ. Appl. Mech.19996623155231999JAM....66..315R169873210.1115/1.2791051
HashinZ.The elastic moduli of heterogeneous materialsJ. Appl. Mech.19622911431501962JAM....29..143H13612310.1115/1.36364460102.17401
EshelbyJ.D.SneddonI.N.HillR.Elastic inclusions and inhomogeneitiesProgress in Solid Mechanics1961AmsterdamNorth-Holland87140
SadowskyM.A.SternbergE.Stress concentration around a triaxial ellipsoidal cavityJ. Appl. Mech.1949161491571949JAM....16..149S3042910.1115/1.4009928
Choi, D., Kim, J., Lim, M.: Analytical shape recovery of a conductivity inclusion based on Faber polynomials. Math. Ann. (2020) https://doi.org/10.1007/s00208-020-02041-1
DurenP.Univalent Functions1983New YorkSpringer0514.30001https://www.springer.com/kr/book/9780387907956
FaberG.Über polynomische EntwicklungenMath. Ann.1903573389408151121610.1007/BF01444293
ParnellW.J.The Eshelby, Hill, Moment and Concentration tensors for ellipsoidal inhomogeneities in the Newtonian potential problem and linear elastostaticsJ. Elast.20161252231294356812010.1007/s10659-016-9573-61353.31006
BuryachenkoG.J.Micromechanics of Heterogeneous Materials2007New YorkSpringer10.1007/978-0-387-68485-7
GaoX.L.MaH.M.Strain gradient solution for Eshelby’s ellipsoidal inclusion problemProc. R. Soc. Lond. Ser. A20104662120242524462010RSPSA.466.2425G265950210.1098/rspa.2009.06311194.35455
QuJ.CherkaouiM.Fundamentals of Micromechanics of Solids2006New YorkWiley10.1002/9780470117835
SadowskyM.A.SternbergE.Stress concentration around an ellipsoidal cavity in an infinite body under arbitrary plane stress perpendicular to the axis of revolution of cavityJ. Appl. Mech.1947141912012185410.1115/1.4009702
CarathéodoryC.Über die gegenseitige Beziehung der Ränder bei der konformen Abbildung des Inneren einer Jordanschen Kurve auf einen KreisMath. Ann.1913732305320151173510.1007/BF0145672044.0757.01
AsaroR.J.BarnettD.M.The non-uniform transformation strain problem for an anisotropic ellipsoidal inclusionJ. Mech. Phys. Solids197523177831975JMPSo..23...77A10.1016/0022-5096(75)90012-50294.73039
PoissonS.D.Second mémoire sur la théorie de magnétisme. [Second memoir on the theory of magnetism]Mém. Acad. Sci. Inst. Fr.18265488533
KangH.Conjectures of Pólya–Szegő and Eshelby, and the Newtonian potential problem: a reviewInt. J. Mech. Mater. Des.200941440541010.1016/j.mechmat.2009.01.019Special Issue in Honor of Graeme W. Milton, 2007 Winner of the William Prager Medal of the Society of Engineering Science
PommerenkeC.Boundary Behaviour of Conformal Maps1992BerlinSpringer10.1007/978-3-662-02770-7https://www.springer.com/kr/book/9783540547518
LiuL.P.Solutions to the Eshelby conjecturesProc. R. Soc. A, Math. Phys. Eng. Sci.200846420915735942008RSPSA.464..573L242698510.1098/rspa.2007.02191132.74010
GoodierJ.N.Concentration of stress around spherical and cylindrical inclusions and flawsJ. Appl. Mech.193355394410.1115/1.4012173
KinoshitaN.MuraT.Elastic fields of inclusions in anisotropic mediaPhys. Status Solidi (a)1971537597681971PSSAR...5..759K10.1002/pssa.2210050332
JungY.LimM.A decay estimate for the eigenvalues of the Neumann-Poincaré operator using the Grunsky coefficientsProc. Am. Math. Soc.20201482591600410439810.1090/proc/147851436.35081
ZhouK.HohH.J.WangX.KeerL.M.PangJ.H.SongB.WangQ.J.A review of recent works on inclusionsMech. Mater.20136014415810.1016/j.mechmat.2013.01.005
MovchanA.SerkovS.The Pólya–Szegö matrices in asymptotic models of dilute compositesEur. J. Appl. Math.1997859562110.1017/S095679259700315X0899.73306
Choi, D., Kim, J., Lim, M.: Geometric multipole expansion and its application to neutral inclusions of general shape (2018). arXiv:1808.02446
EnglandA.H.Complex Variable Methods in Elasticity1971New YorkWiley-Interscience0222.73017
AmmariH.GarnierJ.JingW.KangH.LimM.SølnaK.WangH.Mathematical and Statistical Methods for Multistatic Imaging2013ChamSpringer10.1007/978-3-319-02585-81288.35001
EdwardsR.H.Stress concentrations around spheroidal inclusions and cavitiesJ. Appl. Mech.19511819301951JAM....18...19E4094710.1115/1.4010216
AndoK.JiY.G.KangH.KimK.YuS.Spectral properties of the Neumann-Poincaré operator and cloaking by anomalous localized resonance for the elasto-static systemEur. J. Appl. Math.201829218922510.1017/S095679251700008006903421
HuangM.ZouW.ZhengQ.S.Explicit expression of Eshelby tensor for arbitrary weakly non-circular inclusion in two-dimensional elasticityInt. J. Eng. Sci.2009471112401250259049010.1016/j.ijengsci.2009.01.0051213.74253
SendeckyjG.P.Elastic inclusion problems in plane elastostaticsInt. J. Solids Struct.19706121535154310.1016/0020-7683(70)90062-40218.73021
RuC.Q.SchiavoneP.On the elliptic inclusion in anti-plane shearMath. Mech. Solids199613327333140329910.1177/1081286596001003041001.74509
GrunskyH.Koeffizientenbedingungen für schlicht abbildende meromorphe FunktionenMath. Z.19394512961154580310.1007/BF015802720022.15103
ChenF.GiraudA.SevostianovI.GrgicD.Numerical evaluation of the Eshelby tensor for a concave superspherical inclusionInt. J. Eng. Sci.201593515810.1016/j.ijengsci.2015.04.007
KangH.MiltonG.W.Solutions to the Pólya–Szegő conjecture and the Weak Eshelby ConjectureArch. Ration. Mech. Anal.2008188193116237965410.1007/s00205-007-0087-z1134.74013
ListR.D.SilbersteinJ.P.O.Two-dimensional elastic inclusion problemsMath. Proc. Camb. Philos. Soc.19666223033111966PCPS...62..303L10.1017/S0305004100039876
SouthwellR.GoughH.VI. On the concentration of stress in the neighbourhood of a small spherical flaw; and on the propagation of fatigue fractures in “statistically isotropic” materialsPhilos. Mag.192611719710.1080/14786442608633614
DvorakG.J.Micromechanics of Composite Materials2013BerlinSpringer10.1007/978-94-007-4101-0
NozakiH.TayaM.Elastic fields in a polygon-shaped inclusion with uniform eigenstrainsJ. Appl. Mech.1997644955021997JAM....64..495N10.1115/1.2788920
ChoiD.KimK.LimM.J. Math. Anal. Appl.20214952418296710.1016/j.jmaa.2020.124756
JungY.LimM.Series expansions of the layer potential operators using the Faber polynomials and their applications to the transmission problemSIAM J. Math. Anal.202153216301669423470110.1137/20M134869807332079
MuskhelishviliN.I.Some Basic Problems of the Mathematical Theory of Elasticity: Fundamental Equations, Plane Theory of Elasticity, Torsion, and Bending1963Groningen, The NetherlandsP. Noordhoff0124.17404
G.P. Sendeckyj (9828_CR49) 1970; 6
A.H. England (9828_CR15) 1971
9828_CR9
G.J. Rodin (9828_CR44) 1996; 44
Z. Hashin (9828_CR22) 1962; 29
C. Carathéodory (9828_CR6) 1913; 73
C. Pommerenke (9828_CR41) 1992
J.N. Goodier (9828_CR20) 1933; 55
R.D. List (9828_CR32) 1966; 62
K. Robinson (9828_CR43) 1951; 22
L.P. Liu (9828_CR33) 2008; 464
J. Qu (9828_CR42) 2006
R.H. Edwards (9828_CR14) 1951; 18
Y. Jung (9828_CR25) 2020; 148
F. Chen (9828_CR7) 2015; 93
H. Nozaki (9828_CR38) 1997; 64
X.L. Gao (9828_CR19) 2010; 466
M.A. Sadowsky (9828_CR47) 1947; 14
R. Southwell (9828_CR50) 1926; 1
G. Faber (9828_CR18) 1903; 57
H. Kang (9828_CR27) 2008; 188
H. Grunsky (9828_CR21) 1939; 45
V.D. Kupradze (9828_CR30) 1965
H. Ammari (9828_CR2) 2013
N.I. Muskhelishvili (9828_CR37) 1963
W. Zou (9828_CR53) 2010; 58
K. Ando (9828_CR3) 2018; 29
J.C. Maxwell (9828_CR35) 1873
N. Kinoshita (9828_CR29) 1971; 5
D. Choi (9828_CR10) 2021; 495
R.J. Asaro (9828_CR4) 1975; 23
J.D. Eshelby (9828_CR17) 1961
H. Ammari (9828_CR1) 2004
C.Q. Ru (9828_CR46) 1996; 1
G.J. Dvorak (9828_CR13) 2013
C.Q. Ru (9828_CR45) 1999; 66
L.J. Walpole (9828_CR51) 1967; 300
Y.G. Lee (9828_CR31) 2016; 60
Y. Jung (9828_CR24) 2021; 53
J.k. Lu (9828_CR34) 1995
J.D. Eshelby (9828_CR16) 1957; 241
M.A. Sadowsky (9828_CR48) 1949; 16
P. Duren (9828_CR12) 1983
Y.P. Chiu (9828_CR8) 1977; 44
H. Kang (9828_CR26) 2009; 41
A. Movchan (9828_CR36) 1997; 8
G.J. Buryachenko (9828_CR5) 2007
K. Zhou (9828_CR52) 2013; 60
M. Huang (9828_CR23) 2009; 47
W.J. Parnell (9828_CR39) 2016; 125
S.D. Poisson (9828_CR40) 1826; 5
9828_CR11
H. Kang (9828_CR28) 2019; 232
References_xml – reference: KangH.YuS.Quantitative characterization of stress concentration in the presence of closely spaced hard inclusions in two-dimensional linear elasticityArch. Ration. Mech. Anal.20192321121196391697310.1007/s00205-018-1318-11415.74028
– reference: DurenP.Univalent Functions1983New YorkSpringer0514.30001https://www.springer.com/kr/book/9780387907956
– reference: FaberG.Über polynomische EntwicklungenMath. Ann.1903573389408151121610.1007/BF01444293
– reference: KangH.Conjectures of Pólya–Szegő and Eshelby, and the Newtonian potential problem: a reviewInt. J. Mech. Mater. Des.200941440541010.1016/j.mechmat.2009.01.019Special Issue in Honor of Graeme W. Milton, 2007 Winner of the William Prager Medal of the Society of Engineering Science
– reference: KangH.MiltonG.W.Solutions to the Pólya–Szegő conjecture and the Weak Eshelby ConjectureArch. Ration. Mech. Anal.2008188193116237965410.1007/s00205-007-0087-z1134.74013
– reference: GrunskyH.Koeffizientenbedingungen für schlicht abbildende meromorphe FunktionenMath. Z.19394512961154580310.1007/BF015802720022.15103
– reference: ListR.D.SilbersteinJ.P.O.Two-dimensional elastic inclusion problemsMath. Proc. Camb. Philos. Soc.19666223033111966PCPS...62..303L10.1017/S0305004100039876
– reference: EshelbyJ.D.SneddonI.N.HillR.Elastic inclusions and inhomogeneitiesProgress in Solid Mechanics1961AmsterdamNorth-Holland87140
– reference: RuC.Q.Analytic solution for Eshelby’s problem of an inclusion of arbitrary shape in a plane or half-planeJ. Appl. Mech.19996623155231999JAM....66..315R169873210.1115/1.2791051
– reference: CarathéodoryC.Über die gegenseitige Beziehung der Ränder bei der konformen Abbildung des Inneren einer Jordanschen Kurve auf einen KreisMath. Ann.1913732305320151173510.1007/BF0145672044.0757.01
– reference: RuC.Q.SchiavoneP.On the elliptic inclusion in anti-plane shearMath. Mech. Solids199613327333140329910.1177/1081286596001003041001.74509
– reference: AmmariH.KangH.Reconstruction of Small Inhomogeneities from Boundary Measurements2004BerlinSpringer10.1007/b982451113.35148
– reference: JungY.LimM.A decay estimate for the eigenvalues of the Neumann-Poincaré operator using the Grunsky coefficientsProc. Am. Math. Soc.20201482591600410439810.1090/proc/147851436.35081
– reference: ParnellW.J.The Eshelby, Hill, Moment and Concentration tensors for ellipsoidal inhomogeneities in the Newtonian potential problem and linear elastostaticsJ. Elast.20161252231294356812010.1007/s10659-016-9573-61353.31006
– reference: AmmariH.GarnierJ.JingW.KangH.LimM.SølnaK.WangH.Mathematical and Statistical Methods for Multistatic Imaging2013ChamSpringer10.1007/978-3-319-02585-81288.35001
– reference: SendeckyjG.P.Elastic inclusion problems in plane elastostaticsInt. J. Solids Struct.19706121535154310.1016/0020-7683(70)90062-40218.73021
– reference: LeeY.G.ZouW.N.Exterior elastic fields of non-elliptical inclusions characterized by Laurent polynomialsEur. J. Mech. A, Solids2016601121212016EJMS...60..112L354694710.1016/j.euromechsol.2016.06.0101406.74057
– reference: HuangM.ZouW.ZhengQ.S.Explicit expression of Eshelby tensor for arbitrary weakly non-circular inclusion in two-dimensional elasticityInt. J. Eng. Sci.2009471112401250259049010.1016/j.ijengsci.2009.01.0051213.74253
– reference: PoissonS.D.Second mémoire sur la théorie de magnétisme. [Second memoir on the theory of magnetism]Mém. Acad. Sci. Inst. Fr.18265488533
– reference: RobinsonK.Elastic energy of an ellipsoidal inclusion in an infinite solidJ. Appl. Phys.1951228104510541951JAP....22.1045R4903810.1063/1.17000990043.39104
– reference: WalpoleL.J.HillR.The elastic field of an inclusion in an anisotropic mediumProc. R. Soc. Lond. Ser. A, Math. Phys. Sci.196730014612702891967RSPSA.300..270W10.1098/rspa.1967.01700162.56301
– reference: LuJ.k.Complex Variable Methods in Plane Elasticity1995SingaporeWorld Scientific10.1142/2597
– reference: EdwardsR.H.Stress concentrations around spheroidal inclusions and cavitiesJ. Appl. Mech.19511819301951JAM....18...19E4094710.1115/1.4010216
– reference: DvorakG.J.Micromechanics of Composite Materials2013BerlinSpringer10.1007/978-94-007-4101-0
– reference: ZhouK.HohH.J.WangX.KeerL.M.PangJ.H.SongB.WangQ.J.A review of recent works on inclusionsMech. Mater.20136014415810.1016/j.mechmat.2013.01.005
– reference: MovchanA.SerkovS.The Pólya–Szegö matrices in asymptotic models of dilute compositesEur. J. Appl. Math.1997859562110.1017/S095679259700315X0899.73306
– reference: KupradzeV.D.Potential Methods in the Theory of Elasticity19650188.56901
– reference: NozakiH.TayaM.Elastic fields in a polygon-shaped inclusion with uniform eigenstrainsJ. Appl. Mech.1997644955021997JAM....64..495N10.1115/1.2788920
– reference: LiuL.P.Solutions to the Eshelby conjecturesProc. R. Soc. A, Math. Phys. Eng. Sci.200846420915735942008RSPSA.464..573L242698510.1098/rspa.2007.02191132.74010
– reference: SadowskyM.A.SternbergE.Stress concentration around a triaxial ellipsoidal cavityJ. Appl. Mech.1949161491571949JAM....16..149S3042910.1115/1.4009928
– reference: JungY.LimM.Series expansions of the layer potential operators using the Faber polynomials and their applications to the transmission problemSIAM J. Math. Anal.202153216301669423470110.1137/20M134869807332079
– reference: Choi, D., Kim, J., Lim, M.: Analytical shape recovery of a conductivity inclusion based on Faber polynomials. Math. Ann. (2020) https://doi.org/10.1007/s00208-020-02041-1
– reference: MaxwellJ.C.A Treatise on Electricity and Magnetism1873OxfordClarendon Press37137205.0556.01Article 322
– reference: ChoiD.KimK.LimM.J. Math. Anal. Appl.20214952418296710.1016/j.jmaa.2020.124756
– reference: SouthwellR.GoughH.VI. On the concentration of stress in the neighbourhood of a small spherical flaw; and on the propagation of fatigue fractures in “statistically isotropic” materialsPhilos. Mag.192611719710.1080/14786442608633614
– reference: SadowskyM.A.SternbergE.Stress concentration around an ellipsoidal cavity in an infinite body under arbitrary plane stress perpendicular to the axis of revolution of cavityJ. Appl. Mech.1947141912012185410.1115/1.4009702
– reference: GaoX.L.MaH.M.Strain gradient solution for Eshelby’s ellipsoidal inclusion problemProc. R. Soc. Lond. Ser. A20104662120242524462010RSPSA.466.2425G265950210.1098/rspa.2009.06311194.35455
– reference: HashinZ.The elastic moduli of heterogeneous materialsJ. Appl. Mech.19622911431501962JAM....29..143H13612310.1115/1.36364460102.17401
– reference: GoodierJ.N.Concentration of stress around spherical and cylindrical inclusions and flawsJ. Appl. Mech.193355394410.1115/1.4012173
– reference: Choi, D., Kim, J., Lim, M.: Geometric multipole expansion and its application to neutral inclusions of general shape (2018). arXiv:1808.02446
– reference: ChiuY.P.On the stress field due to initial strains in a cuboid surrounded by an infinite elastic spaceJ. Appl. Mech.1977445875901977JAM....44..587C10.1115/1.3424140
– reference: AndoK.JiY.G.KangH.KimK.YuS.Spectral properties of the Neumann-Poincaré operator and cloaking by anomalous localized resonance for the elasto-static systemEur. J. Appl. Math.201829218922510.1017/S095679251700008006903421
– reference: EshelbyJ.D.The determination of the elastic field of an ellipsoidal inclusion and related problemsProc. R. Soc. Lond.195724112263763961957RSPSA.241..376E8732610.1098/rspa.1957.01330079.39606
– reference: BuryachenkoG.J.Micromechanics of Heterogeneous Materials2007New YorkSpringer10.1007/978-0-387-68485-7
– reference: AsaroR.J.BarnettD.M.The non-uniform transformation strain problem for an anisotropic ellipsoidal inclusionJ. Mech. Phys. Solids197523177831975JMPSo..23...77A10.1016/0022-5096(75)90012-50294.73039
– reference: ZouW.HeQ.HuangM.ZhengQ.Eshelby’s problem of non-elliptical inclusionsJ. Mech. Phys. Solids20105833463722010JMPSo..58..346Z265629310.1016/j.jmps.2009.11.0081193.74011
– reference: PommerenkeC.Boundary Behaviour of Conformal Maps1992BerlinSpringer10.1007/978-3-662-02770-7https://www.springer.com/kr/book/9783540547518
– reference: RodinG.J.Eshelby’s inclusion problem for polygons and polyhedraJ. Mech. Phys. Solids199644197719951996JMPSo..44.1977R10.1016/S0022-5096(96)00066-X
– reference: MuskhelishviliN.I.Some Basic Problems of the Mathematical Theory of Elasticity: Fundamental Equations, Plane Theory of Elasticity, Torsion, and Bending1963Groningen, The NetherlandsP. Noordhoff0124.17404
– reference: KinoshitaN.MuraT.Elastic fields of inclusions in anisotropic mediaPhys. Status Solidi (a)1971537597681971PSSAR...5..759K10.1002/pssa.2210050332
– reference: EnglandA.H.Complex Variable Methods in Elasticity1971New YorkWiley-Interscience0222.73017
– reference: QuJ.CherkaouiM.Fundamentals of Micromechanics of Solids2006New YorkWiley10.1002/9780470117835
– reference: ChenF.GiraudA.SevostianovI.GrgicD.Numerical evaluation of the Eshelby tensor for a concave superspherical inclusionInt. J. Eng. Sci.201593515810.1016/j.ijengsci.2015.04.007
– volume: 58
  start-page: 346
  issue: 3
  year: 2010
  ident: 9828_CR53
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2009.11.008
– volume: 8
  start-page: 595
  year: 1997
  ident: 9828_CR36
  publication-title: Eur. J. Appl. Math.
  doi: 10.1017/S095679259700315X
– volume: 18
  start-page: 19
  year: 1951
  ident: 9828_CR14
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4010216
– volume-title: Complex Variable Methods in Elasticity
  year: 1971
  ident: 9828_CR15
– volume: 5
  start-page: 759
  issue: 3
  year: 1971
  ident: 9828_CR29
  publication-title: Phys. Status Solidi (a)
  doi: 10.1002/pssa.2210050332
– volume: 44
  start-page: 1977
  year: 1996
  ident: 9828_CR44
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(96)00066-X
– volume: 62
  start-page: 303
  issue: 2
  year: 1966
  ident: 9828_CR32
  publication-title: Math. Proc. Camb. Philos. Soc.
  doi: 10.1017/S0305004100039876
– volume: 73
  start-page: 305
  issue: 2
  year: 1913
  ident: 9828_CR6
  publication-title: Math. Ann.
  doi: 10.1007/BF01456720
– volume: 57
  start-page: 389
  issue: 3
  year: 1903
  ident: 9828_CR18
  publication-title: Math. Ann.
  doi: 10.1007/BF01444293
– volume: 60
  start-page: 144
  year: 2013
  ident: 9828_CR52
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2013.01.005
– volume-title: Reconstruction of Small Inhomogeneities from Boundary Measurements
  year: 2004
  ident: 9828_CR1
  doi: 10.1007/b98245
– volume: 47
  start-page: 1240
  issue: 11
  year: 2009
  ident: 9828_CR23
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2009.01.005
– volume: 64
  start-page: 495
  year: 1997
  ident: 9828_CR38
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.2788920
– volume: 5
  start-page: 488
  year: 1826
  ident: 9828_CR40
  publication-title: Mém. Acad. Sci. Inst. Fr.
– volume: 188
  start-page: 93
  issue: 1
  year: 2008
  ident: 9828_CR27
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-007-0087-z
– volume: 29
  start-page: 143
  issue: 1
  year: 1962
  ident: 9828_CR22
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3636446
– volume-title: Univalent Functions
  year: 1983
  ident: 9828_CR12
– volume: 93
  start-page: 51
  year: 2015
  ident: 9828_CR7
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2015.04.007
– volume: 232
  start-page: 121
  issue: 1
  year: 2019
  ident: 9828_CR28
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-018-1318-1
– volume-title: Micromechanics of Composite Materials
  year: 2013
  ident: 9828_CR13
  doi: 10.1007/978-94-007-4101-0
– volume-title: Complex Variable Methods in Plane Elasticity
  year: 1995
  ident: 9828_CR34
  doi: 10.1142/2597
– volume-title: Boundary Behaviour of Conformal Maps
  year: 1992
  ident: 9828_CR41
  doi: 10.1007/978-3-662-02770-7
– volume: 45
  start-page: 29
  issue: 1
  year: 1939
  ident: 9828_CR21
  publication-title: Math. Z.
  doi: 10.1007/BF01580272
– ident: 9828_CR11
  doi: 10.1007/s00208-020-02041-1
– volume-title: Micromechanics of Heterogeneous Materials
  year: 2007
  ident: 9828_CR5
  doi: 10.1007/978-0-387-68485-7
– volume: 300
  start-page: 270
  issue: 1461
  year: 1967
  ident: 9828_CR51
  publication-title: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci.
  doi: 10.1098/rspa.1967.0170
– volume: 66
  start-page: 315
  issue: 2
  year: 1999
  ident: 9828_CR45
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.2791051
– volume-title: Some Basic Problems of the Mathematical Theory of Elasticity: Fundamental Equations, Plane Theory of Elasticity, Torsion, and Bending
  year: 1963
  ident: 9828_CR37
– volume: 466
  start-page: 2425
  issue: 2120
  year: 2010
  ident: 9828_CR19
  publication-title: Proc. R. Soc. Lond. Ser. A
  doi: 10.1098/rspa.2009.0631
– volume: 60
  start-page: 112
  year: 2016
  ident: 9828_CR31
  publication-title: Eur. J. Mech. A, Solids
  doi: 10.1016/j.euromechsol.2016.06.010
– volume: 44
  start-page: 587
  year: 1977
  ident: 9828_CR8
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3424140
– volume: 1
  start-page: 71
  issue: 1
  year: 1926
  ident: 9828_CR50
  publication-title: Philos. Mag.
  doi: 10.1080/14786442608633614
– volume: 241
  start-page: 376
  issue: 1226
  year: 1957
  ident: 9828_CR16
  publication-title: Proc. R. Soc. Lond.
  doi: 10.1098/rspa.1957.0133
– volume: 53
  start-page: 1630
  issue: 2
  year: 2021
  ident: 9828_CR24
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/20M1348698
– volume: 23
  start-page: 77
  issue: 1
  year: 1975
  ident: 9828_CR4
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(75)90012-5
– volume-title: Mathematical and Statistical Methods for Multistatic Imaging
  year: 2013
  ident: 9828_CR2
  doi: 10.1007/978-3-319-02585-8
– volume-title: Fundamentals of Micromechanics of Solids
  year: 2006
  ident: 9828_CR42
  doi: 10.1002/9780470117835
– ident: 9828_CR9
– volume: 148
  start-page: 591
  issue: 2
  year: 2020
  ident: 9828_CR25
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/proc/14785
– start-page: 371
  volume-title: A Treatise on Electricity and Magnetism
  year: 1873
  ident: 9828_CR35
– volume: 14
  start-page: 191
  year: 1947
  ident: 9828_CR47
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4009702
– volume: 29
  start-page: 189
  issue: 2
  year: 2018
  ident: 9828_CR3
  publication-title: Eur. J. Appl. Math.
  doi: 10.1017/S0956792517000080
– volume: 1
  start-page: 327
  issue: 3
  year: 1996
  ident: 9828_CR46
  publication-title: Math. Mech. Solids
  doi: 10.1177/108128659600100304
– volume: 22
  start-page: 1045
  issue: 8
  year: 1951
  ident: 9828_CR43
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1700099
– volume: 125
  start-page: 231
  issue: 2
  year: 2016
  ident: 9828_CR39
  publication-title: J. Elast.
  doi: 10.1007/s10659-016-9573-6
– volume: 6
  start-page: 1535
  issue: 12
  year: 1970
  ident: 9828_CR49
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/0020-7683(70)90062-4
– volume: 55
  start-page: 39
  year: 1933
  ident: 9828_CR20
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4012173
– volume-title: Potential Methods in the Theory of Elasticity
  year: 1965
  ident: 9828_CR30
– volume: 41
  start-page: 405
  issue: 4
  year: 2009
  ident: 9828_CR26
  publication-title: Int. J. Mech. Mater. Des.
  doi: 10.1016/j.mechmat.2009.01.019
– volume: 495
  issue: 2
  year: 2021
  ident: 9828_CR10
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2020.124756
– volume: 464
  start-page: 573
  issue: 2091
  year: 2008
  ident: 9828_CR33
  publication-title: Proc. R. Soc. A, Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.2007.0219
– volume: 16
  start-page: 149
  year: 1949
  ident: 9828_CR48
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4009928
– start-page: 87
  volume-title: Progress in Solid Mechanics
  year: 1961
  ident: 9828_CR17
SSID ssj0009840
Score 2.3064923
Snippet We provide an analytical solution for the elastic fields in a two-dimensional unbounded isotropic body with a rigid inclusion. Our analysis is based on the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 81
SubjectTerms Automotive Engineering
Basis functions
Classical Mechanics
Conformal mapping
Coordinates
Elastostatics
Exact solutions
Mathematical analysis
Physics
Physics and Astronomy
Polynomials
Two dimensional bodies
Title Explicit Analytic Solution for the Plane Elastostatic Problem with a Rigid Inclusion of Arbitrary Shape Subject to Arbitrary Far-Field Loadings
URI https://link.springer.com/article/10.1007/s10659-021-09828-6
https://www.proquest.com/docview/2513580068
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB1RUKVyoLCAWKBoDtyopST-2OS4QrugfgnRrkRPkR07bSS0QST8Dv4yY2_CLqit1GvsWJGePXkznjcDcBpZow13msVcFcyLH1nmRpyVaeScMFIY5fXOX7-py5n4dCNvOlFY02e791eSwVKviN2UzJhPKYgy8hOYegMb0vvutItnyXhZajcNMkhfWIVxyWUnlfnzGi9_R0uO-epaNPxtptuw1dFEHC9w3YE1Nx_A-44yYncgmwFsrtQTHMDbkM9ZNLvw6HPrqqJqMVQdoVWwD4Ah0VQk2oe-X5HDCdHntva6IppztWgvgz46ixqvq1-VRTIhtw8-qIZ1SV9kqqDUx--_9Z1DMjw-koNtvTI01fds6lPj8EsdcvSbPZhNJz_OL1nXe4EVXKqWCV7aMo21sGWs6KATi5BJwZVVchQbkRVOSzcSLo0sPYvTNCulFeQNlZpshnF8H9bn9dwdAEo1soUuTWIs0RWrUvKYVKaJ6QmTWZsMIe4hyIuuMLnvj3GbL0sqe9hygi0PsOVqCGfP79wtynL8c_Zxj2zeHdEmJ2Lnr4AjlQ7hY4_2cvjvqx3-3_QjeJeEDeezfY5hvb1_cB-IyLTmBDbGFz8_T07C_n0CAbXq2Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVgg48FiKulBgDtzAUhI_1jlWqKtt2Vao7Uq9RXbstJGqTdWkv6N_mbE3YRcESFzjhyKNPf48_r4ZgE-Js8Zyb1jKVcmC-JHlfsJZpRPvhZXCqqB3PjlVs4U4vpSXvSisHdjuw5Nk9NQbYjclcxYoBUlO9wSmHsEOgQEdiFyL7GCdaldHGWRIrMK45LKXyvx5jl-PozXG_O1ZNJ4205fwvIeJeLCy6yvY8ssRvOghI_Ybsh3Bs418giN4HPmcZfsaHgK3ri7rDmPWEZoFhwAYEkxFgn0Y6hV5PCT43DVBV0R9vq_Ky2CIzqLBs_qqdkgu5OY-BNWwqeiPbB2V-nh-bW49kuMJkRzsmo2mqblj00CNw3kTOfrtLiymhxdfZ6yvvcBKLlXHBK9cpVMjXJUq2uiEImRWcuWUnKRW5KU30k-E14mjb6nWeSWdoNtQZchnWM_fwPayWfo9QKkmrjSVzawjuOKUphuTyg0hPWFz57IxpIMJirJPTB7qY9wU65TKwWwFma2IZivUGD7_HHO7Ssvxz977g2WLfou2BQG78AScKD2GL4O1181_n-3t_3X_CE9mFyfzYn50-u0dPM3i4gvMn33Y7u7u_XsCNZ39ENfwD9qm7Dg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BKxAcaFlAXWjpHLiB1ST-2ORYQaMCbVUVVuotsmO7RKo2q276O_qXGXsTdkGA1Gv8oUhjj5_H894AvEus0YY7zVKuahbIj6xwE858njgnjBRGBb7z6Zk6noovl_JyjcUfs92HJ8klpyGoNM26g7n1B2vENyULFtILkoLuDEw9hE1yx2lY19PscCW7m0dKZBBZYVxy2dNm_j7H70fTCm_-8UQaT55yG571kBEPlzZ-Dg_cbARbPXzEfnMuRvB0TVtwBI9ibme9eAF3Ic-uqZsOowIJzYJDMAwJsiJBQAy1ixweEZTu2sAxoj7ny1IzGCK1qPGiuWoskju5vg0BNmw9_ZFpImsfv_3Qc4fkhEJUB7t2ranUN6wMaXJ40sZ8_cVLmJZH3z8es74OA6u5VB0T3Fufp1pYnyra9IQoZFZzZZWcpEYUtdPSTYTLE0vf0jwvvLSCbkZek_8wjr-CjVk7czuAUk1srb3JjCXoYlVOtydVaEJ9whTWZmNIBxNUdS9SHmplXFcreeVgtorMVkWzVWoM73-NmS8lOv7be3ewbNVv10VFIC88BycqH8OHwdqr5n_P9vp-3ffh8fmnsjr5fPb1DTzJ4toLSUC7sNHd3Lo9wjedeRuX8E-D6fB0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explicit+Analytic+Solution+for+the+Plane+Elastostatic+Problem+with+a+Rigid+Inclusion+of+Arbitrary+Shape+Subject+to+Arbitrary+Far-Field+Loadings&rft.jtitle=Journal+of+elasticity&rft.au=Mattei%2C+Ornella&rft.au=Lim%2C+Mikyoung&rft.date=2021-04-01&rft.pub=Springer+Netherlands&rft.issn=0374-3535&rft.eissn=1573-2681&rft.volume=144&rft.issue=1&rft.spage=81&rft.epage=105&rft_id=info:doi/10.1007%2Fs10659-021-09828-6&rft.externalDocID=10_1007_s10659_021_09828_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0374-3535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0374-3535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0374-3535&client=summon