Explicit Analytic Solution for the Plane Elastostatic Problem with a Rigid Inclusion of Arbitrary Shape Subject to Arbitrary Far-Field Loadings
We provide an analytical solution for the elastic fields in a two-dimensional unbounded isotropic body with a rigid inclusion. Our analysis is based on the boundary integral formulation of the elastostatic problem and geometric function theory. Specifically, we use the coordinate system provided by...
Saved in:
Published in | Journal of elasticity Vol. 144; no. 1; pp. 81 - 105 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.04.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We provide an analytical solution for the elastic fields in a two-dimensional unbounded isotropic body with a rigid inclusion. Our analysis is based on the boundary integral formulation of the elastostatic problem and geometric function theory. Specifically, we use the coordinate system provided by the exterior conformal mapping of the inclusion to define a density basis functions on the boundary of the inclusion, and we use the Faber polynomials associated with the inclusion for a basis inside the inclusion. The latter, which constitutes the main novelty of our approach, allows us to obtain an explicit series solution for the plane elastostatic problem for an inclusion of arbitrary shape in terms of the given arbitrary far-field loading. |
---|---|
AbstractList | We provide an analytical solution for the elastic fields in a two-dimensional unbounded isotropic body with a rigid inclusion. Our analysis is based on the boundary integral formulation of the elastostatic problem and geometric function theory. Specifically, we use the coordinate system provided by the exterior conformal mapping of the inclusion to define a density basis functions on the boundary of the inclusion, and we use the Faber polynomials associated with the inclusion for a basis inside the inclusion. The latter, which constitutes the main novelty of our approach, allows us to obtain an explicit series solution for the plane elastostatic problem for an inclusion of arbitrary shape in terms of the given arbitrary far-field loading. |
Author | Mattei, Ornella Lim, Mikyoung |
Author_xml | – sequence: 1 givenname: Ornella orcidid: 0000-0002-9342-6291 surname: Mattei fullname: Mattei, Ornella organization: Department of Mathematics, San Francisco State University – sequence: 2 givenname: Mikyoung surname: Lim fullname: Lim, Mikyoung email: mklim@kaist.ac.kr organization: Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology |
BookMark | eNp9kMFuGyEURVHkSLWT_EBXSF3TPIaBwUvLsttIlhrVzRoxM2BjkcEFRm2-Ir9cHFdK1YVXT-LdA5czQ5MhDAahjxQ-U4DmPlEQfE6gogTmspJEXKEp5Q0jlZB0gqbAmpowzvgHNEvpAFBiNUzR6-r30bvOZbwYtH_JrsPb4MfswoBtiDjvDX70ejB45XXKIWV9yjzG0HrzjH-5vMcaf3c71-OHofNjOpHB4kVsXY46vuDtXh8N3o7twXQZ5_DPaq0jWTvje7wJunfDLt2ia6t9Mnd_5w16Wq9-LL-SzbcvD8vFhnSMi0xqZnsrqa57SwXUUFWMVx0TveANbet5ZzQ3TW0k9OWMSjm3vK8FCKsbBq1hN-jT-d5jDD9Hk7I6hDEWBUlVnDIuAYQsqeqc6mJIKRqrjtE9l-aKgjqJV2fxqohXb-KVKJD8Dyp69clo-bTzl1F2RlN5Z9iZ-N7qAvUHQJ-bDg |
CitedBy_id | crossref_primary_10_1103_PhysRevE_109_014901 crossref_primary_10_1016_j_mechrescom_2022_103976 crossref_primary_10_3390_sym16030360 crossref_primary_10_1137_24M1646479 |
Cites_doi | 10.1016/j.jmps.2009.11.008 10.1017/S095679259700315X 10.1115/1.4010216 10.1002/pssa.2210050332 10.1016/S0022-5096(96)00066-X 10.1017/S0305004100039876 10.1007/BF01456720 10.1007/BF01444293 10.1016/j.mechmat.2013.01.005 10.1007/b98245 10.1016/j.ijengsci.2009.01.005 10.1115/1.2788920 10.1007/s00205-007-0087-z 10.1115/1.3636446 10.1016/j.ijengsci.2015.04.007 10.1007/s00205-018-1318-1 10.1007/978-94-007-4101-0 10.1142/2597 10.1007/978-3-662-02770-7 10.1007/BF01580272 10.1007/s00208-020-02041-1 10.1007/978-0-387-68485-7 10.1098/rspa.1967.0170 10.1115/1.2791051 10.1098/rspa.2009.0631 10.1016/j.euromechsol.2016.06.010 10.1115/1.3424140 10.1080/14786442608633614 10.1098/rspa.1957.0133 10.1137/20M1348698 10.1016/0022-5096(75)90012-5 10.1007/978-3-319-02585-8 10.1002/9780470117835 10.1090/proc/14785 10.1115/1.4009702 10.1017/S0956792517000080 10.1177/108128659600100304 10.1063/1.1700099 10.1007/s10659-016-9573-6 10.1016/0020-7683(70)90062-4 10.1115/1.4012173 10.1016/j.mechmat.2009.01.019 10.1016/j.jmaa.2020.124756 10.1098/rspa.2007.0219 10.1115/1.4009928 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2021. corrected publication 2021 The Author(s), under exclusive licence to Springer Nature B.V. 2021. corrected publication 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021. corrected publication 2021 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021. corrected publication 2021. |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1007/s10659-021-09828-6 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1573-2681 |
EndPage | 105 |
ExternalDocumentID | 10_1007_s10659_021_09828_6 |
GrantInformation_xml | – fundername: National Science Foundation (US) grantid: DMS - 942514985 – fundername: National Research Foundation of Korea grantid: 2019R1A6A1A10073887 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABEFU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9P PF0 PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WH7 WJK WK8 YLTOR Z45 Z5O Z7S Z7Y Z7Z Z86 Z8N Z8S Z8T ZMTXR ZY4 ~02 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7SR 7TB 8BQ 8FD ABRTQ FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c356t-43fdf81a4df1604022352c36d6571b49cea5e74e80d6d61889f5d4606fa730be3 |
IEDL.DBID | U2A |
ISSN | 0374-3535 |
IngestDate | Fri Jul 25 18:55:22 EDT 2025 Tue Jul 01 00:20:28 EDT 2025 Thu Apr 24 22:54:41 EDT 2025 Fri Feb 21 02:48:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Transmission problem Faber polynomials 30C55 Linear elasticity 74B05 Lamé system |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-43fdf81a4df1604022352c36d6571b49cea5e74e80d6d61889f5d4606fa730be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9342-6291 |
PQID | 2513580068 |
PQPubID | 326256 |
PageCount | 25 |
ParticipantIDs | proquest_journals_2513580068 crossref_primary_10_1007_s10659_021_09828_6 crossref_citationtrail_10_1007_s10659_021_09828_6 springer_journals_10_1007_s10659_021_09828_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Groningen |
PublicationSubtitle | The Physical and Mathematical Science of Solids |
PublicationTitle | Journal of elasticity |
PublicationTitleAbbrev | J Elast |
PublicationYear | 2021 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | LeeY.G.ZouW.N.Exterior elastic fields of non-elliptical inclusions characterized by Laurent polynomialsEur. J. Mech. A, Solids2016601121212016EJMS...60..112L354694710.1016/j.euromechsol.2016.06.0101406.74057 ZouW.HeQ.HuangM.ZhengQ.Eshelby’s problem of non-elliptical inclusionsJ. Mech. Phys. Solids20105833463722010JMPSo..58..346Z265629310.1016/j.jmps.2009.11.0081193.74011 EshelbyJ.D.The determination of the elastic field of an ellipsoidal inclusion and related problemsProc. R. Soc. Lond.195724112263763961957RSPSA.241..376E8732610.1098/rspa.1957.01330079.39606 MaxwellJ.C.A Treatise on Electricity and Magnetism1873OxfordClarendon Press37137205.0556.01Article 322 LuJ.k.Complex Variable Methods in Plane Elasticity1995SingaporeWorld Scientific10.1142/2597 ChiuY.P.On the stress field due to initial strains in a cuboid surrounded by an infinite elastic spaceJ. Appl. Mech.1977445875901977JAM....44..587C10.1115/1.3424140 RobinsonK.Elastic energy of an ellipsoidal inclusion in an infinite solidJ. Appl. Phys.1951228104510541951JAP....22.1045R4903810.1063/1.17000990043.39104 KangH.YuS.Quantitative characterization of stress concentration in the presence of closely spaced hard inclusions in two-dimensional linear elasticityArch. Ration. Mech. Anal.20192321121196391697310.1007/s00205-018-1318-11415.74028 AmmariH.KangH.Reconstruction of Small Inhomogeneities from Boundary Measurements2004BerlinSpringer10.1007/b982451113.35148 RodinG.J.Eshelby’s inclusion problem for polygons and polyhedraJ. Mech. Phys. Solids199644197719951996JMPSo..44.1977R10.1016/S0022-5096(96)00066-X WalpoleL.J.HillR.The elastic field of an inclusion in an anisotropic mediumProc. R. Soc. Lond. Ser. A, Math. Phys. Sci.196730014612702891967RSPSA.300..270W10.1098/rspa.1967.01700162.56301 KupradzeV.D.Potential Methods in the Theory of Elasticity19650188.56901 RuC.Q.Analytic solution for Eshelby’s problem of an inclusion of arbitrary shape in a plane or half-planeJ. Appl. Mech.19996623155231999JAM....66..315R169873210.1115/1.2791051 HashinZ.The elastic moduli of heterogeneous materialsJ. Appl. Mech.19622911431501962JAM....29..143H13612310.1115/1.36364460102.17401 EshelbyJ.D.SneddonI.N.HillR.Elastic inclusions and inhomogeneitiesProgress in Solid Mechanics1961AmsterdamNorth-Holland87140 SadowskyM.A.SternbergE.Stress concentration around a triaxial ellipsoidal cavityJ. Appl. Mech.1949161491571949JAM....16..149S3042910.1115/1.4009928 Choi, D., Kim, J., Lim, M.: Analytical shape recovery of a conductivity inclusion based on Faber polynomials. Math. Ann. (2020) https://doi.org/10.1007/s00208-020-02041-1 DurenP.Univalent Functions1983New YorkSpringer0514.30001https://www.springer.com/kr/book/9780387907956 FaberG.Über polynomische EntwicklungenMath. Ann.1903573389408151121610.1007/BF01444293 ParnellW.J.The Eshelby, Hill, Moment and Concentration tensors for ellipsoidal inhomogeneities in the Newtonian potential problem and linear elastostaticsJ. Elast.20161252231294356812010.1007/s10659-016-9573-61353.31006 BuryachenkoG.J.Micromechanics of Heterogeneous Materials2007New YorkSpringer10.1007/978-0-387-68485-7 GaoX.L.MaH.M.Strain gradient solution for Eshelby’s ellipsoidal inclusion problemProc. R. Soc. Lond. Ser. A20104662120242524462010RSPSA.466.2425G265950210.1098/rspa.2009.06311194.35455 QuJ.CherkaouiM.Fundamentals of Micromechanics of Solids2006New YorkWiley10.1002/9780470117835 SadowskyM.A.SternbergE.Stress concentration around an ellipsoidal cavity in an infinite body under arbitrary plane stress perpendicular to the axis of revolution of cavityJ. Appl. Mech.1947141912012185410.1115/1.4009702 CarathéodoryC.Über die gegenseitige Beziehung der Ränder bei der konformen Abbildung des Inneren einer Jordanschen Kurve auf einen KreisMath. Ann.1913732305320151173510.1007/BF0145672044.0757.01 AsaroR.J.BarnettD.M.The non-uniform transformation strain problem for an anisotropic ellipsoidal inclusionJ. Mech. Phys. Solids197523177831975JMPSo..23...77A10.1016/0022-5096(75)90012-50294.73039 PoissonS.D.Second mémoire sur la théorie de magnétisme. [Second memoir on the theory of magnetism]Mém. Acad. Sci. Inst. Fr.18265488533 KangH.Conjectures of Pólya–Szegő and Eshelby, and the Newtonian potential problem: a reviewInt. J. Mech. Mater. Des.200941440541010.1016/j.mechmat.2009.01.019Special Issue in Honor of Graeme W. Milton, 2007 Winner of the William Prager Medal of the Society of Engineering Science PommerenkeC.Boundary Behaviour of Conformal Maps1992BerlinSpringer10.1007/978-3-662-02770-7https://www.springer.com/kr/book/9783540547518 LiuL.P.Solutions to the Eshelby conjecturesProc. R. Soc. A, Math. Phys. Eng. Sci.200846420915735942008RSPSA.464..573L242698510.1098/rspa.2007.02191132.74010 GoodierJ.N.Concentration of stress around spherical and cylindrical inclusions and flawsJ. Appl. Mech.193355394410.1115/1.4012173 KinoshitaN.MuraT.Elastic fields of inclusions in anisotropic mediaPhys. Status Solidi (a)1971537597681971PSSAR...5..759K10.1002/pssa.2210050332 JungY.LimM.A decay estimate for the eigenvalues of the Neumann-Poincaré operator using the Grunsky coefficientsProc. Am. Math. Soc.20201482591600410439810.1090/proc/147851436.35081 ZhouK.HohH.J.WangX.KeerL.M.PangJ.H.SongB.WangQ.J.A review of recent works on inclusionsMech. Mater.20136014415810.1016/j.mechmat.2013.01.005 MovchanA.SerkovS.The Pólya–Szegö matrices in asymptotic models of dilute compositesEur. J. Appl. Math.1997859562110.1017/S095679259700315X0899.73306 Choi, D., Kim, J., Lim, M.: Geometric multipole expansion and its application to neutral inclusions of general shape (2018). arXiv:1808.02446 EnglandA.H.Complex Variable Methods in Elasticity1971New YorkWiley-Interscience0222.73017 AmmariH.GarnierJ.JingW.KangH.LimM.SølnaK.WangH.Mathematical and Statistical Methods for Multistatic Imaging2013ChamSpringer10.1007/978-3-319-02585-81288.35001 EdwardsR.H.Stress concentrations around spheroidal inclusions and cavitiesJ. Appl. Mech.19511819301951JAM....18...19E4094710.1115/1.4010216 AndoK.JiY.G.KangH.KimK.YuS.Spectral properties of the Neumann-Poincaré operator and cloaking by anomalous localized resonance for the elasto-static systemEur. J. Appl. Math.201829218922510.1017/S095679251700008006903421 HuangM.ZouW.ZhengQ.S.Explicit expression of Eshelby tensor for arbitrary weakly non-circular inclusion in two-dimensional elasticityInt. J. Eng. Sci.2009471112401250259049010.1016/j.ijengsci.2009.01.0051213.74253 SendeckyjG.P.Elastic inclusion problems in plane elastostaticsInt. J. Solids Struct.19706121535154310.1016/0020-7683(70)90062-40218.73021 RuC.Q.SchiavoneP.On the elliptic inclusion in anti-plane shearMath. Mech. Solids199613327333140329910.1177/1081286596001003041001.74509 GrunskyH.Koeffizientenbedingungen für schlicht abbildende meromorphe FunktionenMath. Z.19394512961154580310.1007/BF015802720022.15103 ChenF.GiraudA.SevostianovI.GrgicD.Numerical evaluation of the Eshelby tensor for a concave superspherical inclusionInt. J. Eng. Sci.201593515810.1016/j.ijengsci.2015.04.007 KangH.MiltonG.W.Solutions to the Pólya–Szegő conjecture and the Weak Eshelby ConjectureArch. Ration. Mech. Anal.2008188193116237965410.1007/s00205-007-0087-z1134.74013 ListR.D.SilbersteinJ.P.O.Two-dimensional elastic inclusion problemsMath. Proc. Camb. Philos. Soc.19666223033111966PCPS...62..303L10.1017/S0305004100039876 SouthwellR.GoughH.VI. On the concentration of stress in the neighbourhood of a small spherical flaw; and on the propagation of fatigue fractures in “statistically isotropic” materialsPhilos. Mag.192611719710.1080/14786442608633614 DvorakG.J.Micromechanics of Composite Materials2013BerlinSpringer10.1007/978-94-007-4101-0 NozakiH.TayaM.Elastic fields in a polygon-shaped inclusion with uniform eigenstrainsJ. Appl. Mech.1997644955021997JAM....64..495N10.1115/1.2788920 ChoiD.KimK.LimM.J. Math. Anal. Appl.20214952418296710.1016/j.jmaa.2020.124756 JungY.LimM.Series expansions of the layer potential operators using the Faber polynomials and their applications to the transmission problemSIAM J. Math. Anal.202153216301669423470110.1137/20M134869807332079 MuskhelishviliN.I.Some Basic Problems of the Mathematical Theory of Elasticity: Fundamental Equations, Plane Theory of Elasticity, Torsion, and Bending1963Groningen, The NetherlandsP. Noordhoff0124.17404 G.P. Sendeckyj (9828_CR49) 1970; 6 A.H. England (9828_CR15) 1971 9828_CR9 G.J. Rodin (9828_CR44) 1996; 44 Z. Hashin (9828_CR22) 1962; 29 C. Carathéodory (9828_CR6) 1913; 73 C. Pommerenke (9828_CR41) 1992 J.N. Goodier (9828_CR20) 1933; 55 R.D. List (9828_CR32) 1966; 62 K. Robinson (9828_CR43) 1951; 22 L.P. Liu (9828_CR33) 2008; 464 J. Qu (9828_CR42) 2006 R.H. Edwards (9828_CR14) 1951; 18 Y. Jung (9828_CR25) 2020; 148 F. Chen (9828_CR7) 2015; 93 H. Nozaki (9828_CR38) 1997; 64 X.L. Gao (9828_CR19) 2010; 466 M.A. Sadowsky (9828_CR47) 1947; 14 R. Southwell (9828_CR50) 1926; 1 G. Faber (9828_CR18) 1903; 57 H. Kang (9828_CR27) 2008; 188 H. Grunsky (9828_CR21) 1939; 45 V.D. Kupradze (9828_CR30) 1965 H. Ammari (9828_CR2) 2013 N.I. Muskhelishvili (9828_CR37) 1963 W. Zou (9828_CR53) 2010; 58 K. Ando (9828_CR3) 2018; 29 J.C. Maxwell (9828_CR35) 1873 N. Kinoshita (9828_CR29) 1971; 5 D. Choi (9828_CR10) 2021; 495 R.J. Asaro (9828_CR4) 1975; 23 J.D. Eshelby (9828_CR17) 1961 H. Ammari (9828_CR1) 2004 C.Q. Ru (9828_CR46) 1996; 1 G.J. Dvorak (9828_CR13) 2013 C.Q. Ru (9828_CR45) 1999; 66 L.J. Walpole (9828_CR51) 1967; 300 Y.G. Lee (9828_CR31) 2016; 60 Y. Jung (9828_CR24) 2021; 53 J.k. Lu (9828_CR34) 1995 J.D. Eshelby (9828_CR16) 1957; 241 M.A. Sadowsky (9828_CR48) 1949; 16 P. Duren (9828_CR12) 1983 Y.P. Chiu (9828_CR8) 1977; 44 H. Kang (9828_CR26) 2009; 41 A. Movchan (9828_CR36) 1997; 8 G.J. Buryachenko (9828_CR5) 2007 K. Zhou (9828_CR52) 2013; 60 M. Huang (9828_CR23) 2009; 47 W.J. Parnell (9828_CR39) 2016; 125 S.D. Poisson (9828_CR40) 1826; 5 9828_CR11 H. Kang (9828_CR28) 2019; 232 |
References_xml | – reference: KangH.YuS.Quantitative characterization of stress concentration in the presence of closely spaced hard inclusions in two-dimensional linear elasticityArch. Ration. Mech. Anal.20192321121196391697310.1007/s00205-018-1318-11415.74028 – reference: DurenP.Univalent Functions1983New YorkSpringer0514.30001https://www.springer.com/kr/book/9780387907956 – reference: FaberG.Über polynomische EntwicklungenMath. Ann.1903573389408151121610.1007/BF01444293 – reference: KangH.Conjectures of Pólya–Szegő and Eshelby, and the Newtonian potential problem: a reviewInt. J. Mech. Mater. Des.200941440541010.1016/j.mechmat.2009.01.019Special Issue in Honor of Graeme W. Milton, 2007 Winner of the William Prager Medal of the Society of Engineering Science – reference: KangH.MiltonG.W.Solutions to the Pólya–Szegő conjecture and the Weak Eshelby ConjectureArch. Ration. Mech. Anal.2008188193116237965410.1007/s00205-007-0087-z1134.74013 – reference: GrunskyH.Koeffizientenbedingungen für schlicht abbildende meromorphe FunktionenMath. Z.19394512961154580310.1007/BF015802720022.15103 – reference: ListR.D.SilbersteinJ.P.O.Two-dimensional elastic inclusion problemsMath. Proc. Camb. Philos. Soc.19666223033111966PCPS...62..303L10.1017/S0305004100039876 – reference: EshelbyJ.D.SneddonI.N.HillR.Elastic inclusions and inhomogeneitiesProgress in Solid Mechanics1961AmsterdamNorth-Holland87140 – reference: RuC.Q.Analytic solution for Eshelby’s problem of an inclusion of arbitrary shape in a plane or half-planeJ. Appl. Mech.19996623155231999JAM....66..315R169873210.1115/1.2791051 – reference: CarathéodoryC.Über die gegenseitige Beziehung der Ränder bei der konformen Abbildung des Inneren einer Jordanschen Kurve auf einen KreisMath. Ann.1913732305320151173510.1007/BF0145672044.0757.01 – reference: RuC.Q.SchiavoneP.On the elliptic inclusion in anti-plane shearMath. Mech. Solids199613327333140329910.1177/1081286596001003041001.74509 – reference: AmmariH.KangH.Reconstruction of Small Inhomogeneities from Boundary Measurements2004BerlinSpringer10.1007/b982451113.35148 – reference: JungY.LimM.A decay estimate for the eigenvalues of the Neumann-Poincaré operator using the Grunsky coefficientsProc. Am. Math. Soc.20201482591600410439810.1090/proc/147851436.35081 – reference: ParnellW.J.The Eshelby, Hill, Moment and Concentration tensors for ellipsoidal inhomogeneities in the Newtonian potential problem and linear elastostaticsJ. Elast.20161252231294356812010.1007/s10659-016-9573-61353.31006 – reference: AmmariH.GarnierJ.JingW.KangH.LimM.SølnaK.WangH.Mathematical and Statistical Methods for Multistatic Imaging2013ChamSpringer10.1007/978-3-319-02585-81288.35001 – reference: SendeckyjG.P.Elastic inclusion problems in plane elastostaticsInt. J. Solids Struct.19706121535154310.1016/0020-7683(70)90062-40218.73021 – reference: LeeY.G.ZouW.N.Exterior elastic fields of non-elliptical inclusions characterized by Laurent polynomialsEur. J. Mech. A, Solids2016601121212016EJMS...60..112L354694710.1016/j.euromechsol.2016.06.0101406.74057 – reference: HuangM.ZouW.ZhengQ.S.Explicit expression of Eshelby tensor for arbitrary weakly non-circular inclusion in two-dimensional elasticityInt. J. Eng. Sci.2009471112401250259049010.1016/j.ijengsci.2009.01.0051213.74253 – reference: PoissonS.D.Second mémoire sur la théorie de magnétisme. [Second memoir on the theory of magnetism]Mém. Acad. Sci. Inst. Fr.18265488533 – reference: RobinsonK.Elastic energy of an ellipsoidal inclusion in an infinite solidJ. Appl. Phys.1951228104510541951JAP....22.1045R4903810.1063/1.17000990043.39104 – reference: WalpoleL.J.HillR.The elastic field of an inclusion in an anisotropic mediumProc. R. Soc. Lond. Ser. A, Math. Phys. Sci.196730014612702891967RSPSA.300..270W10.1098/rspa.1967.01700162.56301 – reference: LuJ.k.Complex Variable Methods in Plane Elasticity1995SingaporeWorld Scientific10.1142/2597 – reference: EdwardsR.H.Stress concentrations around spheroidal inclusions and cavitiesJ. Appl. Mech.19511819301951JAM....18...19E4094710.1115/1.4010216 – reference: DvorakG.J.Micromechanics of Composite Materials2013BerlinSpringer10.1007/978-94-007-4101-0 – reference: ZhouK.HohH.J.WangX.KeerL.M.PangJ.H.SongB.WangQ.J.A review of recent works on inclusionsMech. Mater.20136014415810.1016/j.mechmat.2013.01.005 – reference: MovchanA.SerkovS.The Pólya–Szegö matrices in asymptotic models of dilute compositesEur. J. Appl. Math.1997859562110.1017/S095679259700315X0899.73306 – reference: KupradzeV.D.Potential Methods in the Theory of Elasticity19650188.56901 – reference: NozakiH.TayaM.Elastic fields in a polygon-shaped inclusion with uniform eigenstrainsJ. Appl. Mech.1997644955021997JAM....64..495N10.1115/1.2788920 – reference: LiuL.P.Solutions to the Eshelby conjecturesProc. R. Soc. A, Math. Phys. Eng. Sci.200846420915735942008RSPSA.464..573L242698510.1098/rspa.2007.02191132.74010 – reference: SadowskyM.A.SternbergE.Stress concentration around a triaxial ellipsoidal cavityJ. Appl. Mech.1949161491571949JAM....16..149S3042910.1115/1.4009928 – reference: JungY.LimM.Series expansions of the layer potential operators using the Faber polynomials and their applications to the transmission problemSIAM J. Math. Anal.202153216301669423470110.1137/20M134869807332079 – reference: Choi, D., Kim, J., Lim, M.: Analytical shape recovery of a conductivity inclusion based on Faber polynomials. Math. Ann. (2020) https://doi.org/10.1007/s00208-020-02041-1 – reference: MaxwellJ.C.A Treatise on Electricity and Magnetism1873OxfordClarendon Press37137205.0556.01Article 322 – reference: ChoiD.KimK.LimM.J. Math. Anal. Appl.20214952418296710.1016/j.jmaa.2020.124756 – reference: SouthwellR.GoughH.VI. On the concentration of stress in the neighbourhood of a small spherical flaw; and on the propagation of fatigue fractures in “statistically isotropic” materialsPhilos. Mag.192611719710.1080/14786442608633614 – reference: SadowskyM.A.SternbergE.Stress concentration around an ellipsoidal cavity in an infinite body under arbitrary plane stress perpendicular to the axis of revolution of cavityJ. Appl. Mech.1947141912012185410.1115/1.4009702 – reference: GaoX.L.MaH.M.Strain gradient solution for Eshelby’s ellipsoidal inclusion problemProc. R. Soc. Lond. Ser. A20104662120242524462010RSPSA.466.2425G265950210.1098/rspa.2009.06311194.35455 – reference: HashinZ.The elastic moduli of heterogeneous materialsJ. Appl. Mech.19622911431501962JAM....29..143H13612310.1115/1.36364460102.17401 – reference: GoodierJ.N.Concentration of stress around spherical and cylindrical inclusions and flawsJ. Appl. Mech.193355394410.1115/1.4012173 – reference: Choi, D., Kim, J., Lim, M.: Geometric multipole expansion and its application to neutral inclusions of general shape (2018). arXiv:1808.02446 – reference: ChiuY.P.On the stress field due to initial strains in a cuboid surrounded by an infinite elastic spaceJ. Appl. Mech.1977445875901977JAM....44..587C10.1115/1.3424140 – reference: AndoK.JiY.G.KangH.KimK.YuS.Spectral properties of the Neumann-Poincaré operator and cloaking by anomalous localized resonance for the elasto-static systemEur. J. Appl. Math.201829218922510.1017/S095679251700008006903421 – reference: EshelbyJ.D.The determination of the elastic field of an ellipsoidal inclusion and related problemsProc. R. Soc. Lond.195724112263763961957RSPSA.241..376E8732610.1098/rspa.1957.01330079.39606 – reference: BuryachenkoG.J.Micromechanics of Heterogeneous Materials2007New YorkSpringer10.1007/978-0-387-68485-7 – reference: AsaroR.J.BarnettD.M.The non-uniform transformation strain problem for an anisotropic ellipsoidal inclusionJ. Mech. Phys. Solids197523177831975JMPSo..23...77A10.1016/0022-5096(75)90012-50294.73039 – reference: ZouW.HeQ.HuangM.ZhengQ.Eshelby’s problem of non-elliptical inclusionsJ. Mech. Phys. Solids20105833463722010JMPSo..58..346Z265629310.1016/j.jmps.2009.11.0081193.74011 – reference: PommerenkeC.Boundary Behaviour of Conformal Maps1992BerlinSpringer10.1007/978-3-662-02770-7https://www.springer.com/kr/book/9783540547518 – reference: RodinG.J.Eshelby’s inclusion problem for polygons and polyhedraJ. Mech. Phys. Solids199644197719951996JMPSo..44.1977R10.1016/S0022-5096(96)00066-X – reference: MuskhelishviliN.I.Some Basic Problems of the Mathematical Theory of Elasticity: Fundamental Equations, Plane Theory of Elasticity, Torsion, and Bending1963Groningen, The NetherlandsP. Noordhoff0124.17404 – reference: KinoshitaN.MuraT.Elastic fields of inclusions in anisotropic mediaPhys. Status Solidi (a)1971537597681971PSSAR...5..759K10.1002/pssa.2210050332 – reference: EnglandA.H.Complex Variable Methods in Elasticity1971New YorkWiley-Interscience0222.73017 – reference: QuJ.CherkaouiM.Fundamentals of Micromechanics of Solids2006New YorkWiley10.1002/9780470117835 – reference: ChenF.GiraudA.SevostianovI.GrgicD.Numerical evaluation of the Eshelby tensor for a concave superspherical inclusionInt. J. Eng. Sci.201593515810.1016/j.ijengsci.2015.04.007 – volume: 58 start-page: 346 issue: 3 year: 2010 ident: 9828_CR53 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2009.11.008 – volume: 8 start-page: 595 year: 1997 ident: 9828_CR36 publication-title: Eur. J. Appl. Math. doi: 10.1017/S095679259700315X – volume: 18 start-page: 19 year: 1951 ident: 9828_CR14 publication-title: J. Appl. Mech. doi: 10.1115/1.4010216 – volume-title: Complex Variable Methods in Elasticity year: 1971 ident: 9828_CR15 – volume: 5 start-page: 759 issue: 3 year: 1971 ident: 9828_CR29 publication-title: Phys. Status Solidi (a) doi: 10.1002/pssa.2210050332 – volume: 44 start-page: 1977 year: 1996 ident: 9828_CR44 publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(96)00066-X – volume: 62 start-page: 303 issue: 2 year: 1966 ident: 9828_CR32 publication-title: Math. Proc. Camb. Philos. Soc. doi: 10.1017/S0305004100039876 – volume: 73 start-page: 305 issue: 2 year: 1913 ident: 9828_CR6 publication-title: Math. Ann. doi: 10.1007/BF01456720 – volume: 57 start-page: 389 issue: 3 year: 1903 ident: 9828_CR18 publication-title: Math. Ann. doi: 10.1007/BF01444293 – volume: 60 start-page: 144 year: 2013 ident: 9828_CR52 publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2013.01.005 – volume-title: Reconstruction of Small Inhomogeneities from Boundary Measurements year: 2004 ident: 9828_CR1 doi: 10.1007/b98245 – volume: 47 start-page: 1240 issue: 11 year: 2009 ident: 9828_CR23 publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2009.01.005 – volume: 64 start-page: 495 year: 1997 ident: 9828_CR38 publication-title: J. Appl. Mech. doi: 10.1115/1.2788920 – volume: 5 start-page: 488 year: 1826 ident: 9828_CR40 publication-title: Mém. Acad. Sci. Inst. Fr. – volume: 188 start-page: 93 issue: 1 year: 2008 ident: 9828_CR27 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-007-0087-z – volume: 29 start-page: 143 issue: 1 year: 1962 ident: 9828_CR22 publication-title: J. Appl. Mech. doi: 10.1115/1.3636446 – volume-title: Univalent Functions year: 1983 ident: 9828_CR12 – volume: 93 start-page: 51 year: 2015 ident: 9828_CR7 publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2015.04.007 – volume: 232 start-page: 121 issue: 1 year: 2019 ident: 9828_CR28 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-018-1318-1 – volume-title: Micromechanics of Composite Materials year: 2013 ident: 9828_CR13 doi: 10.1007/978-94-007-4101-0 – volume-title: Complex Variable Methods in Plane Elasticity year: 1995 ident: 9828_CR34 doi: 10.1142/2597 – volume-title: Boundary Behaviour of Conformal Maps year: 1992 ident: 9828_CR41 doi: 10.1007/978-3-662-02770-7 – volume: 45 start-page: 29 issue: 1 year: 1939 ident: 9828_CR21 publication-title: Math. Z. doi: 10.1007/BF01580272 – ident: 9828_CR11 doi: 10.1007/s00208-020-02041-1 – volume-title: Micromechanics of Heterogeneous Materials year: 2007 ident: 9828_CR5 doi: 10.1007/978-0-387-68485-7 – volume: 300 start-page: 270 issue: 1461 year: 1967 ident: 9828_CR51 publication-title: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. doi: 10.1098/rspa.1967.0170 – volume: 66 start-page: 315 issue: 2 year: 1999 ident: 9828_CR45 publication-title: J. Appl. Mech. doi: 10.1115/1.2791051 – volume-title: Some Basic Problems of the Mathematical Theory of Elasticity: Fundamental Equations, Plane Theory of Elasticity, Torsion, and Bending year: 1963 ident: 9828_CR37 – volume: 466 start-page: 2425 issue: 2120 year: 2010 ident: 9828_CR19 publication-title: Proc. R. Soc. Lond. Ser. A doi: 10.1098/rspa.2009.0631 – volume: 60 start-page: 112 year: 2016 ident: 9828_CR31 publication-title: Eur. J. Mech. A, Solids doi: 10.1016/j.euromechsol.2016.06.010 – volume: 44 start-page: 587 year: 1977 ident: 9828_CR8 publication-title: J. Appl. Mech. doi: 10.1115/1.3424140 – volume: 1 start-page: 71 issue: 1 year: 1926 ident: 9828_CR50 publication-title: Philos. Mag. doi: 10.1080/14786442608633614 – volume: 241 start-page: 376 issue: 1226 year: 1957 ident: 9828_CR16 publication-title: Proc. R. Soc. Lond. doi: 10.1098/rspa.1957.0133 – volume: 53 start-page: 1630 issue: 2 year: 2021 ident: 9828_CR24 publication-title: SIAM J. Math. Anal. doi: 10.1137/20M1348698 – volume: 23 start-page: 77 issue: 1 year: 1975 ident: 9828_CR4 publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(75)90012-5 – volume-title: Mathematical and Statistical Methods for Multistatic Imaging year: 2013 ident: 9828_CR2 doi: 10.1007/978-3-319-02585-8 – volume-title: Fundamentals of Micromechanics of Solids year: 2006 ident: 9828_CR42 doi: 10.1002/9780470117835 – ident: 9828_CR9 – volume: 148 start-page: 591 issue: 2 year: 2020 ident: 9828_CR25 publication-title: Proc. Am. Math. Soc. doi: 10.1090/proc/14785 – start-page: 371 volume-title: A Treatise on Electricity and Magnetism year: 1873 ident: 9828_CR35 – volume: 14 start-page: 191 year: 1947 ident: 9828_CR47 publication-title: J. Appl. Mech. doi: 10.1115/1.4009702 – volume: 29 start-page: 189 issue: 2 year: 2018 ident: 9828_CR3 publication-title: Eur. J. Appl. Math. doi: 10.1017/S0956792517000080 – volume: 1 start-page: 327 issue: 3 year: 1996 ident: 9828_CR46 publication-title: Math. Mech. Solids doi: 10.1177/108128659600100304 – volume: 22 start-page: 1045 issue: 8 year: 1951 ident: 9828_CR43 publication-title: J. Appl. Phys. doi: 10.1063/1.1700099 – volume: 125 start-page: 231 issue: 2 year: 2016 ident: 9828_CR39 publication-title: J. Elast. doi: 10.1007/s10659-016-9573-6 – volume: 6 start-page: 1535 issue: 12 year: 1970 ident: 9828_CR49 publication-title: Int. J. Solids Struct. doi: 10.1016/0020-7683(70)90062-4 – volume: 55 start-page: 39 year: 1933 ident: 9828_CR20 publication-title: J. Appl. Mech. doi: 10.1115/1.4012173 – volume-title: Potential Methods in the Theory of Elasticity year: 1965 ident: 9828_CR30 – volume: 41 start-page: 405 issue: 4 year: 2009 ident: 9828_CR26 publication-title: Int. J. Mech. Mater. Des. doi: 10.1016/j.mechmat.2009.01.019 – volume: 495 issue: 2 year: 2021 ident: 9828_CR10 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2020.124756 – volume: 464 start-page: 573 issue: 2091 year: 2008 ident: 9828_CR33 publication-title: Proc. R. Soc. A, Math. Phys. Eng. Sci. doi: 10.1098/rspa.2007.0219 – volume: 16 start-page: 149 year: 1949 ident: 9828_CR48 publication-title: J. Appl. Mech. doi: 10.1115/1.4009928 – start-page: 87 volume-title: Progress in Solid Mechanics year: 1961 ident: 9828_CR17 |
SSID | ssj0009840 |
Score | 2.3064923 |
Snippet | We provide an analytical solution for the elastic fields in a two-dimensional unbounded isotropic body with a rigid inclusion. Our analysis is based on the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 81 |
SubjectTerms | Automotive Engineering Basis functions Classical Mechanics Conformal mapping Coordinates Elastostatics Exact solutions Mathematical analysis Physics Physics and Astronomy Polynomials Two dimensional bodies |
Title | Explicit Analytic Solution for the Plane Elastostatic Problem with a Rigid Inclusion of Arbitrary Shape Subject to Arbitrary Far-Field Loadings |
URI | https://link.springer.com/article/10.1007/s10659-021-09828-6 https://www.proquest.com/docview/2513580068 |
Volume | 144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB1RUKVyoLCAWKBoDtyopST-2OS4QrugfgnRrkRPkR07bSS0QST8Dv4yY2_CLqit1GvsWJGePXkznjcDcBpZow13msVcFcyLH1nmRpyVaeScMFIY5fXOX7-py5n4dCNvOlFY02e791eSwVKviN2UzJhPKYgy8hOYegMb0vvutItnyXhZajcNMkhfWIVxyWUnlfnzGi9_R0uO-epaNPxtptuw1dFEHC9w3YE1Nx_A-44yYncgmwFsrtQTHMDbkM9ZNLvw6HPrqqJqMVQdoVWwD4Ah0VQk2oe-X5HDCdHntva6IppztWgvgz46ixqvq1-VRTIhtw8-qIZ1SV9kqqDUx--_9Z1DMjw-koNtvTI01fds6lPj8EsdcvSbPZhNJz_OL1nXe4EVXKqWCV7aMo21sGWs6KATi5BJwZVVchQbkRVOSzcSLo0sPYvTNCulFeQNlZpshnF8H9bn9dwdAEo1soUuTWIs0RWrUvKYVKaJ6QmTWZsMIe4hyIuuMLnvj3GbL0sqe9hygi0PsOVqCGfP79wtynL8c_Zxj2zeHdEmJ2Lnr4AjlQ7hY4_2cvjvqx3-3_QjeJeEDeezfY5hvb1_cB-IyLTmBDbGFz8_T07C_n0CAbXq2Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVgg48FiKulBgDtzAUhI_1jlWqKtt2Vao7Uq9RXbstJGqTdWkv6N_mbE3YRcESFzjhyKNPf48_r4ZgE-Js8Zyb1jKVcmC-JHlfsJZpRPvhZXCqqB3PjlVs4U4vpSXvSisHdjuw5Nk9NQbYjclcxYoBUlO9wSmHsEOgQEdiFyL7GCdaldHGWRIrMK45LKXyvx5jl-PozXG_O1ZNJ4205fwvIeJeLCy6yvY8ssRvOghI_Ybsh3Bs418giN4HPmcZfsaHgK3ri7rDmPWEZoFhwAYEkxFgn0Y6hV5PCT43DVBV0R9vq_Ky2CIzqLBs_qqdkgu5OY-BNWwqeiPbB2V-nh-bW49kuMJkRzsmo2mqblj00CNw3kTOfrtLiymhxdfZ6yvvcBKLlXHBK9cpVMjXJUq2uiEImRWcuWUnKRW5KU30k-E14mjb6nWeSWdoNtQZchnWM_fwPayWfo9QKkmrjSVzawjuOKUphuTyg0hPWFz57IxpIMJirJPTB7qY9wU65TKwWwFma2IZivUGD7_HHO7Ssvxz977g2WLfou2BQG78AScKD2GL4O1181_n-3t_3X_CE9mFyfzYn50-u0dPM3i4gvMn33Y7u7u_XsCNZ39ENfwD9qm7Dg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BKxAcaFlAXWjpHLiB1ST-2ORYQaMCbVUVVuotsmO7RKo2q276O_qXGXsTdkGA1Gv8oUhjj5_H894AvEus0YY7zVKuahbIj6xwE858njgnjBRGBb7z6Zk6noovl_JyjcUfs92HJ8klpyGoNM26g7n1B2vENyULFtILkoLuDEw9hE1yx2lY19PscCW7m0dKZBBZYVxy2dNm_j7H70fTCm_-8UQaT55yG571kBEPlzZ-Dg_cbARbPXzEfnMuRvB0TVtwBI9ibme9eAF3Ic-uqZsOowIJzYJDMAwJsiJBQAy1ixweEZTu2sAxoj7ny1IzGCK1qPGiuWoskju5vg0BNmw9_ZFpImsfv_3Qc4fkhEJUB7t2ranUN6wMaXJ40sZ8_cVLmJZH3z8es74OA6u5VB0T3Fufp1pYnyra9IQoZFZzZZWcpEYUtdPSTYTLE0vf0jwvvLSCbkZek_8wjr-CjVk7czuAUk1srb3JjCXoYlVOtydVaEJ9whTWZmNIBxNUdS9SHmplXFcreeVgtorMVkWzVWoM73-NmS8lOv7be3ewbNVv10VFIC88BycqH8OHwdqr5n_P9vp-3ffh8fmnsjr5fPb1DTzJ4toLSUC7sNHd3Lo9wjedeRuX8E-D6fB0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explicit+Analytic+Solution+for+the+Plane+Elastostatic+Problem+with+a+Rigid+Inclusion+of+Arbitrary+Shape+Subject+to+Arbitrary+Far-Field+Loadings&rft.jtitle=Journal+of+elasticity&rft.au=Mattei%2C+Ornella&rft.au=Lim%2C+Mikyoung&rft.date=2021-04-01&rft.pub=Springer+Netherlands&rft.issn=0374-3535&rft.eissn=1573-2681&rft.volume=144&rft.issue=1&rft.spage=81&rft.epage=105&rft_id=info:doi/10.1007%2Fs10659-021-09828-6&rft.externalDocID=10_1007_s10659_021_09828_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0374-3535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0374-3535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0374-3535&client=summon |