Interfacial double-coordination effect reconstructing anode/electrolyte interface for long-term and highly reversible Zn metal anodes

Thiamine hydrochloride (TH) acts as a highly efficient additive to traditional ZnSO4 electrolyte, which combines zincophilic groups and polar groups, in situ reconfiguring the anode/electrolyte interface based on interfacial coordination chemistry, thus enhancing the electroplating/stripping reversi...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 678; no. Pt B; pp. 772 - 782
Main Authors Zhou, Jie, Yu, Huaming, Qing, Piao, Chen, Dongping, Huang, Shaozhen, Jin, Youliang, He, Hanwei, Zhou, Gang, Xie, Zeqiang, Chen, Yuejiao
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.01.2025
Subjects
Online AccessGet full text
ISSN0021-9797
1095-7103
1095-7103
DOI10.1016/j.jcis.2024.09.051

Cover

Abstract Thiamine hydrochloride (TH) acts as a highly efficient additive to traditional ZnSO4 electrolyte, which combines zincophilic groups and polar groups, in situ reconfiguring the anode/electrolyte interface based on interfacial coordination chemistry, thus enhancing the electroplating/stripping reversibility of Zn metal anodes. [Display omitted] The highly reversible electrochemical deposition and dissolution of zinc metal anode is a critical feature for the practical application of aqueous zinc-ion batteries (ZIBs). Nevertheless, this process is seriously hindered by the uncontrollable electrodeposition and interfacial side reactions caused by thermodynamically unstable anode/electrolyte interface (AEI). Guided by the electrode/electrolyte interface chemistry, thiamine hydrochloride (TH) as a novel additive is added into traditional ZnSO4 (ZS) electrolyte to induce sustained reversible Zn deposition/stripping. Spectroscopic characterizations and electrochemical tests reveal that TH can adsorbed on the anode surface owning to the strong double-coordination effect between N, S atoms and Zn atoms via Zn-N and Zn-S chemical bonds. In addition, there are polar hydroxyl groups in the TH molecular structure which can form hydrogen bonds with water molecules. Thus, the adsorbed TH layer can not only guide the diffusion of Zn2+ ions and achieve dendrite-free electrodeposition process, but also prevent intimate contact between water and anode to suppress the occurrence of interface side reactions. Based on these benefits, the TH additive achieves an ultra-long stable cycle lifespan to 2045 h at 1 mA cm−2 and 1 mAh cm−2. Even at a higher current density of 5 mA cm−2, prolonged cycling performance about 773 h is demonstrated. Besides, the assembled Zn//NVO full cells reveal excellent capacity retention and rate performance under practical conditions, highlighting the efficient and reliable coordination effect of TH additive at the AEI.
AbstractList Thiamine hydrochloride (TH) acts as a highly efficient additive to traditional ZnSO4 electrolyte, which combines zincophilic groups and polar groups, in situ reconfiguring the anode/electrolyte interface based on interfacial coordination chemistry, thus enhancing the electroplating/stripping reversibility of Zn metal anodes. [Display omitted] The highly reversible electrochemical deposition and dissolution of zinc metal anode is a critical feature for the practical application of aqueous zinc-ion batteries (ZIBs). Nevertheless, this process is seriously hindered by the uncontrollable electrodeposition and interfacial side reactions caused by thermodynamically unstable anode/electrolyte interface (AEI). Guided by the electrode/electrolyte interface chemistry, thiamine hydrochloride (TH) as a novel additive is added into traditional ZnSO4 (ZS) electrolyte to induce sustained reversible Zn deposition/stripping. Spectroscopic characterizations and electrochemical tests reveal that TH can adsorbed on the anode surface owning to the strong double-coordination effect between N, S atoms and Zn atoms via Zn-N and Zn-S chemical bonds. In addition, there are polar hydroxyl groups in the TH molecular structure which can form hydrogen bonds with water molecules. Thus, the adsorbed TH layer can not only guide the diffusion of Zn2+ ions and achieve dendrite-free electrodeposition process, but also prevent intimate contact between water and anode to suppress the occurrence of interface side reactions. Based on these benefits, the TH additive achieves an ultra-long stable cycle lifespan to 2045 h at 1 mA cm−2 and 1 mAh cm−2. Even at a higher current density of 5 mA cm−2, prolonged cycling performance about 773 h is demonstrated. Besides, the assembled Zn//NVO full cells reveal excellent capacity retention and rate performance under practical conditions, highlighting the efficient and reliable coordination effect of TH additive at the AEI.
The highly reversible electrochemical deposition and dissolution of zinc metal anode is a critical feature for the practical application of aqueous zinc-ion batteries (ZIBs). Nevertheless, this process is seriously hindered by the uncontrollable electrodeposition and interfacial side reactions caused by thermodynamically unstable anode/electrolyte interface (AEI). Guided by the electrode/electrolyte interface chemistry, thiamine hydrochloride (TH) as a novel additive is added into traditional ZnSO (ZS) electrolyte to induce sustained reversible Zn deposition/stripping. Spectroscopic characterizations and electrochemical tests reveal that TH can adsorbed on the anode surface owning to the strong double-coordination effect between N, S atoms and Zn atoms via Zn-N and Zn-S chemical bonds. In addition, there are polar hydroxyl groups in the TH molecular structure which can form hydrogen bonds with water molecules. Thus, the adsorbed TH layer can not only guide the diffusion of Zn ions and achieve dendrite-free electrodeposition process, but also prevent intimate contact between water and anode to suppress the occurrence of interface side reactions. Based on these benefits, the TH additive achieves an ultra-long stable cycle lifespan to 2045 h at 1 mA cm and 1 mAh cm . Even at a higher current density of 5 mA cm , prolonged cycling performance about 773 h is demonstrated. Besides, the assembled Zn//NVO full cells reveal excellent capacity retention and rate performance under practical conditions, highlighting the efficient and reliable coordination effect of TH additive at the AEI.
The highly reversible electrochemical deposition and dissolution of zinc metal anode is a critical feature for the practical application of aqueous zinc-ion batteries (ZIBs). Nevertheless, this process is seriously hindered by the uncontrollable electrodeposition and interfacial side reactions caused by thermodynamically unstable anode/electrolyte interface (AEI). Guided by the electrode/electrolyte interface chemistry, thiamine hydrochloride (TH) as a novel additive is added into traditional ZnSO4 (ZS) electrolyte to induce sustained reversible Zn deposition/stripping. Spectroscopic characterizations and electrochemical tests reveal that TH can adsorbed on the anode surface owning to the strong double-coordination effect between N, S atoms and Zn atoms via Zn-N and Zn-S chemical bonds. In addition, there are polar hydroxyl groups in the TH molecular structure which can form hydrogen bonds with water molecules. Thus, the adsorbed TH layer can not only guide the diffusion of Zn2+ ions and achieve dendrite-free electrodeposition process, but also prevent intimate contact between water and anode to suppress the occurrence of interface side reactions. Based on these benefits, the TH additive achieves an ultra-long stable cycle lifespan to 2045 h at 1 mA cm-2 and 1 mAh cm-2. Even at a higher current density of 5 mA cm-2, prolonged cycling performance about 773 h is demonstrated. Besides, the assembled Zn//NVO full cells reveal excellent capacity retention and rate performance under practical conditions, highlighting the efficient and reliable coordination effect of TH additive at the AEI.The highly reversible electrochemical deposition and dissolution of zinc metal anode is a critical feature for the practical application of aqueous zinc-ion batteries (ZIBs). Nevertheless, this process is seriously hindered by the uncontrollable electrodeposition and interfacial side reactions caused by thermodynamically unstable anode/electrolyte interface (AEI). Guided by the electrode/electrolyte interface chemistry, thiamine hydrochloride (TH) as a novel additive is added into traditional ZnSO4 (ZS) electrolyte to induce sustained reversible Zn deposition/stripping. Spectroscopic characterizations and electrochemical tests reveal that TH can adsorbed on the anode surface owning to the strong double-coordination effect between N, S atoms and Zn atoms via Zn-N and Zn-S chemical bonds. In addition, there are polar hydroxyl groups in the TH molecular structure which can form hydrogen bonds with water molecules. Thus, the adsorbed TH layer can not only guide the diffusion of Zn2+ ions and achieve dendrite-free electrodeposition process, but also prevent intimate contact between water and anode to suppress the occurrence of interface side reactions. Based on these benefits, the TH additive achieves an ultra-long stable cycle lifespan to 2045 h at 1 mA cm-2 and 1 mAh cm-2. Even at a higher current density of 5 mA cm-2, prolonged cycling performance about 773 h is demonstrated. Besides, the assembled Zn//NVO full cells reveal excellent capacity retention and rate performance under practical conditions, highlighting the efficient and reliable coordination effect of TH additive at the AEI.
Author Zhou, Jie
Qing, Piao
Yu, Huaming
Jin, Youliang
Huang, Shaozhen
Xie, Zeqiang
He, Hanwei
Chen, Yuejiao
Chen, Dongping
Zhou, Gang
Author_xml – sequence: 1
  givenname: Jie
  surname: Zhou
  fullname: Zhou, Jie
  organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China
– sequence: 2
  givenname: Huaming
  surname: Yu
  fullname: Yu, Huaming
  email: hmYu147@outlook.com, hmYu147@stu.hit.edu.cn
  organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China
– sequence: 3
  givenname: Piao
  surname: Qing
  fullname: Qing, Piao
  organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China
– sequence: 4
  givenname: Dongping
  surname: Chen
  fullname: Chen, Dongping
  organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China
– sequence: 5
  givenname: Shaozhen
  surname: Huang
  fullname: Huang, Shaozhen
  organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China
– sequence: 6
  givenname: Youliang
  surname: Jin
  fullname: Jin, Youliang
  organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China
– sequence: 7
  givenname: Hanwei
  surname: He
  fullname: He, Hanwei
  organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China
– sequence: 8
  givenname: Gang
  surname: Zhou
  fullname: Zhou, Gang
  organization: School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, PR China
– sequence: 9
  givenname: Zeqiang
  surname: Xie
  fullname: Xie, Zeqiang
  organization: School of Advanced Interdisciplinary Studies, Hunan University of Technology and Business, Changsha 410205, PR China
– sequence: 10
  givenname: Yuejiao
  surname: Chen
  fullname: Chen, Yuejiao
  organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39265347$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1qHDEQhEVwiNdOXiCHoGMuM26N5hdyCSY_BoMvySUXoZFaay0ayZE0hn2AvHe03vXFB58auquqob4LcuaDR0I-MqgZsP5qV--UTXUDTVvDVEPH3pANg6mrBgb8jGwAGlZNwzSck4uUdgCMdd30jpzzqek73g4b8u_GZ4xGKisd1WGdHVYqhKitl9kGT9EYVJlGVMGnHFeVrd9S6YPGK3TlFIPbZ6T2lIPUhEhd8NuqLJai1PTebu_dvmQ8Yky2vKB_PF0wl5dPQek9eWukS_jhNC_J7-_ffl3_rG7vftxcf72tFO_6XPGpnaE3iG3fjYCqkWY03dS0IwfUspuGjmk2yJEPvWxbPcw4N5Jr3bMR5tnwS_L5mPsQw98VUxaLTQqdkx7DmgRn0AIfB4Ai_XSSrvOCWjxEu8i4F8_VFcF4FKgYUopohLL5qbMcpXWCgThQEjtxoCQOlARMolAq1uaF9Tn9VdOXowlLQY8Wo0jKoleobYGThQ72Nft_fN2ujw
CitedBy_id crossref_primary_10_1002_anie_202422539
crossref_primary_10_1002_ange_202422539
crossref_primary_10_1016_j_apmate_2025_100276
crossref_primary_10_1016_j_jallcom_2024_178193
crossref_primary_10_1016_j_est_2025_116214
crossref_primary_10_1016_S1003_6326_24_66598_2
crossref_primary_10_1016_j_ensm_2025_104012
crossref_primary_10_20517_microstructures_2024_114
crossref_primary_10_1002_anie_202424288
crossref_primary_10_1002_adsu_202401048
crossref_primary_10_1002_ange_202424288
crossref_primary_10_1016_j_cclet_2024_110557
crossref_primary_10_1016_j_cclet_2025_111078
crossref_primary_10_1016_j_jallcom_2025_178521
crossref_primary_10_1016_j_jcis_2024_11_215
crossref_primary_10_1016_j_cclet_2025_110893
crossref_primary_10_1002_adfm_202425680
Cites_doi 10.1002/chem.202400567
10.20517/microstructures.2022.10
10.1002/cey2.330
10.1016/j.cej.2024.152622
10.1002/adma.202400370
10.1039/D3EE02945J
10.1002/ange.202406906
10.1002/adfm.202302293
10.1021/acsnano.3c11115
10.1021/jacs.3c14019
10.1007/s40820-023-01310-3
10.1038/s41467-024-47101-1
10.1002/adma.202308577
10.1002/aenm.202001852
10.1016/j.cej.2022.137742
10.1002/aenm.202204388
10.1002/aenm.202202182
10.1016/j.jcis.2024.03.085
10.1002/adfm.202308762
10.1002/adfm.202310995
10.20517/microstructures.2023.30
10.1002/smtd.202300823
10.1002/adma.202308086
10.1016/j.cej.2023.142711
10.1016/j.joule.2023.10.010
10.1002/anie.202016531
10.1002/adma.202404140
10.1002/anie.202401996
10.1002/adfm.202206695
10.1002/ece2.22
10.1002/aenm.202300550
10.1002/adfm.202307390
10.1364/OL.486417
10.1021/acs.nanolett.2c03919
10.1016/j.jechem.2024.02.011
10.1002/anie.202319091
10.1016/j.est.2024.112360
10.1088/2752-5724/acef41
10.1002/aenm.202302770
10.1016/j.jechem.2022.08.040
10.1002/smtd.202300758
10.1002/adfm.202311773
10.1002/aenm.202304003
10.1002/anie.202319051
10.1021/acs.nanolett.4c01078
10.1016/j.jcis.2024.04.234
10.1002/adma.202304426
10.1038/s41467-022-35630-6
10.1002/adfm.202313358
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright © 2024 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Inc.
– notice: Copyright © 2024 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.jcis.2024.09.051
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 782
ExternalDocumentID 39265347
10_1016_j_jcis_2024_09_051
S002197972402112X
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
53G
6TJ
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEUPX
AFFNX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
RIG
SCB
SCE
SSH
VH1
WUQ
ZGI
ZXP
EFKBS
NPM
7X8
EFLBG
ID FETCH-LOGICAL-c356t-394b06fee46580ec2af8f5924830eda59751d17a8376a44d7beb2a3dd6180bbf3
IEDL.DBID AIKHN
ISSN 0021-9797
1095-7103
IngestDate Fri Sep 05 11:11:05 EDT 2025
Mon Jul 21 06:03:33 EDT 2025
Tue Jul 01 04:19:36 EDT 2025
Thu Apr 24 23:03:47 EDT 2025
Sat Feb 01 16:04:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue Pt B
Keywords Electric double layer
Double-coordination effect
Aqueous zinc-ion batteries
Zinc metal anodes
Electrolyte additives
Language English
License Copyright © 2024 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-394b06fee46580ec2af8f5924830eda59751d17a8376a44d7beb2a3dd6180bbf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 39265347
PQID 3104038700
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_3104038700
pubmed_primary_39265347
crossref_citationtrail_10_1016_j_jcis_2024_09_051
crossref_primary_10_1016_j_jcis_2024_09_051
elsevier_sciencedirect_doi_10_1016_j_jcis_2024_09_051
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-15
PublicationDateYYYYMMDD 2025-01-15
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Tang, Hu, Ma, Weng, Huang, Zhu, Yang, Chen, Yin, Xu, He (b0045) 2024; 2402484
Deng, Xu, Zhao, Kan, Liu (b0275) 2024; 63
Zhu, Sun, Qiao, Wang, Cui, Zhang, Liu (b0220) 2024; 36
Deng, Wu, Feng, Zhao, Liu, Bai, Wang, Zheng, Jiang, Zhuang, Xiong, Wang, Lei (b0145) 2024; 34
He, Yu, Chen, Ni, Yan, Lv, Chen (b0190) 2024; 30
Li, Lou, Zhou, Chen, Zhao, Azizi, Lin, Fu, Han, Pan (b0180) 2024; 136
Yu, Lv, Yan, Yu (b0115) 2023; 8
Zhang, Liu, Cai, Zhou, Zhong, Xiao, Luo, Zhao, An (b0270) 2023; 464
Hu, Lv, Chen, Tang, Zhang, Qin, Huang, Zhu, Chen, Xu, He (b0110) 2024; 34
Wang, Yang, Zhang, Yang, Song, Tang, Sang, Wan, Sun, Chen (b0010) 2024; 94
Wang, Yang, Xu, Cheng, Zhao, Huang, Yang (b0025) 2023; 1
Qiu, Ma, Wang, Liu, Zhang, Li, Qu, Yuan, Nie, Zhang (b0205) 2024; 34
Zheng, Liu, Sun, Luo, Xu, Si, Kang, Yuan, Liu, Ahmad, Jiang, Chen, Wang, Xu, Chuai, Zhu, Peng, Meng, Zhang, Wang, Chen (b0245) 2023; 14
Liang, Chen, Zhai, Yu, Yu, Wang, Meng, Peng, Yin (b0185) 2024; 493
Gao, Mei, Xu, Ren, Zhao, Zhang, Wang, Wu, Liu, Zhang (b0035) 2022; 448
Wang, Zhang, Zhao, Liu, Luo, Zhao, Wu, Ding, Fang, Cheng (b0235) 2023; 5
Huang, Tang, Liu, Zhang, Tang, Wen, Ye, Yang, Li (b0200) 2024; 17
Wang, Zhang, Zhou, Zhao, Liu, Zhao, Sun, Li, Wang, Zhang, Jin, Li, Elzatahry, Hassan, Fan, Zhao, Chao (b0060) 2024; 146
Wu, Huang, Zhang, Yang, Li, Luo, You, Li, Xie, Chen (b0065) 2024; 63
Yu, Chen, Li, Yan, Jiang, Zhou, Wei, Ma, Ji, Chen, Chen (b0265) 2023; 13
Ren, Li, Wang, Liu, Sun, Yuan, Lai, Jiao, Wang (b0165) 2024; 16
Sun, Sun, Yang, Jiang, Tang, Wang (b0095) 2023; 1
Hao, Yuan, Ye, Chao, Davey, Guo, Qiao (b0170) 2021; 60
Xie, Li, Dong (b0070) 2023; 76
Qin, Kuang, Hu, Zhong, Huang, Shen, Wei, Huang, Xu, He (b0080) 2022; 32
Ge, Kong, Wang, Zhao, Ma, Chen, Wan (b0175) 2023; 48
Liu, Liu, Xiao, Zheng, Zhong, Fu, Wang, Zhou (b0230) 2024; 36
Zhang, Zhang, Deng, Xue, Yang, Ma, Wang (b0155) 2024; 34
Ma, Yu, Yan, Chen, Wang, Chen, Chen, Lv (b0135) 2024; 664
Liu, Yao, Ji, Zhang, Gan, Cai, Li, Zhao, Zhao, Zou, Qin, Wang, Liu, Liu, Yang, Miller, Pan, Yang (b0255) 2023; 23
Wang, Tang, Wang, Wu, Bai, Xiong, Yang, Wang, Tan, Liu, Xiong, Lei (b0015) 2023; 33
Cheng, Wang, Fu, Mo, Lu, Gao, Ho, Li, Hu (b0250) 2024; 14
Jiang, Du, Shi, Yang, Liang (b0105) 2023; 8
Liu, Li, Xi, Huang, Li, Jin, Ding, Zhang, Zhang, Guo (b0225) 2024; 63
Guo, Cao, Lu, Zheng, Deng (b0090) 2023; 3
Zheng, Deng, Zheng, Chen, Bai, Liu, Jiang, Zheng, Wang, Wang, Yang, Xiong, Xiong, Lei (b0125) 2024; 24
Ling, Nie, Wu, Zeng, Mo, Ma, Lu, Luo, Huang (b0280) 2024; 18
Yu, He, Chen, Liu, He, Jiang, Chen, Chen (b0130) 2024; 100107
Cao, Sun, Zhang, Luo, Zhang, Chanajaree, Qin, Yang, Lu (b0150) 2023; 14
Zhong, Cao, Zhao, Tadé, Shao (b0020) 2024; 2
Li, Han, Gu, Chou, Wang, Liu, Dou (b0285) 2020; 10
Wang, Wang, Lv, Peng, Song, Yang, Qian (b0210) 2023; 13
Ni, Zhou, Ji, Chen, Yu, Zheng, Qian, Wang, Chen, Yan (b0260) 2023; 33
Zhang, Yang, Wang, Yu, Li, Chen, Chen, Wang (b0140) 2024; 65
Sun, Nian, Ren, Tao (b0055) 2023; 7
Chen, Tan, Guo, Zhang, He, Kuang, Weng, Du, Huang, Huang, Xu, He (b0120) 2024; 669
Qu, Wei, Zhao, Yang, Zhang, Chen, Liu, Li, Han (b0050) 2024; 36
He, Yu, Fu, Li, Li, Li, Zhang, Chen, Chen (b0040) 2024; 70
Cui, Zhang, Yang, Liu, Chen (b0085) 2024; 3
Li, Pan, Peng, Zhao, Zhang, Zhu, Dai, Wang, He (b0160) 2024; 93
Zhang, Weng, Miu, Chen, Hu, Kuang, Huang, Du, Zhu, Chen, Xu, He (b0030) 2024; 482
Chen, Xu (b0075) 2022; 2
Cai, Wang, Ning, He, Chen, Li, Li, Zhou, Wang, Jiang (b0100) 2022; 12
Han, Guo, Ning, Liu, Yi, Luo, Qu, Yue, Lu, Li (b0195) 2024; 36
Chen, Qing, Tang, Yu, He, Huang, Wu, Sun, Wei, Ji, Chen (b0005) 2023; 33
Zhu, Yang, Hu, Yao, Chen, Niu (b0215) 2024; 36
Zhang, Li, Liu, Lu, Liang, Zhou (b0240) 2024; 15
Zhang (10.1016/j.jcis.2024.09.051_b0155) 2024; 34
Deng (10.1016/j.jcis.2024.09.051_b0275) 2024; 63
Wang (10.1016/j.jcis.2024.09.051_b0015) 2023; 33
Zhong (10.1016/j.jcis.2024.09.051_b0020) 2024; 2
Wang (10.1016/j.jcis.2024.09.051_b0060) 2024; 146
Cao (10.1016/j.jcis.2024.09.051_b0150) 2023; 14
Wang (10.1016/j.jcis.2024.09.051_b0210) 2023; 13
Qin (10.1016/j.jcis.2024.09.051_b0080) 2022; 32
Chen (10.1016/j.jcis.2024.09.051_b0075) 2022; 2
Ling (10.1016/j.jcis.2024.09.051_b0280) 2024; 18
Zhu (10.1016/j.jcis.2024.09.051_b0215) 2024; 36
Chen (10.1016/j.jcis.2024.09.051_b0005) 2023; 33
Yu (10.1016/j.jcis.2024.09.051_b0115) 2023; 8
Zheng (10.1016/j.jcis.2024.09.051_b0125) 2024; 24
Ni (10.1016/j.jcis.2024.09.051_b0260) 2023; 33
Wang (10.1016/j.jcis.2024.09.051_b0010) 2024; 94
Yu (10.1016/j.jcis.2024.09.051_b0265) 2023; 13
Zhang (10.1016/j.jcis.2024.09.051_b0030) 2024; 482
Deng (10.1016/j.jcis.2024.09.051_b0145) 2024; 34
Liu (10.1016/j.jcis.2024.09.051_b0255) 2023; 23
Wang (10.1016/j.jcis.2024.09.051_b0235) 2023; 5
Li (10.1016/j.jcis.2024.09.051_b0160) 2024; 93
Qiu (10.1016/j.jcis.2024.09.051_b0205) 2024; 34
Wang (10.1016/j.jcis.2024.09.051_b0025) 2023; 1
Liu (10.1016/j.jcis.2024.09.051_b0225) 2024; 63
Guo (10.1016/j.jcis.2024.09.051_b0090) 2023; 3
Huang (10.1016/j.jcis.2024.09.051_b0200) 2024; 17
Liu (10.1016/j.jcis.2024.09.051_b0230) 2024; 36
Zhang (10.1016/j.jcis.2024.09.051_b0240) 2024; 15
Zhang (10.1016/j.jcis.2024.09.051_b0270) 2023; 464
Liang (10.1016/j.jcis.2024.09.051_b0185) 2024; 493
Hu (10.1016/j.jcis.2024.09.051_b0110) 2024; 34
Zheng (10.1016/j.jcis.2024.09.051_b0245) 2023; 14
Han (10.1016/j.jcis.2024.09.051_b0195) 2024; 36
Sun (10.1016/j.jcis.2024.09.051_b0095) 2023; 1
He (10.1016/j.jcis.2024.09.051_b0190) 2024; 30
Zhu (10.1016/j.jcis.2024.09.051_b0220) 2024; 36
Tang (10.1016/j.jcis.2024.09.051_b0045) 2024; 2402484
Wu (10.1016/j.jcis.2024.09.051_b0065) 2024; 63
Ren (10.1016/j.jcis.2024.09.051_b0165) 2024; 16
Li (10.1016/j.jcis.2024.09.051_b0180) 2024; 136
Xie (10.1016/j.jcis.2024.09.051_b0070) 2023; 76
Cai (10.1016/j.jcis.2024.09.051_b0100) 2022; 12
Sun (10.1016/j.jcis.2024.09.051_b0055) 2023; 7
Chen (10.1016/j.jcis.2024.09.051_b0120) 2024; 669
Gao (10.1016/j.jcis.2024.09.051_b0035) 2022; 448
Jiang (10.1016/j.jcis.2024.09.051_b0105) 2023; 8
Hao (10.1016/j.jcis.2024.09.051_b0170) 2021; 60
Li (10.1016/j.jcis.2024.09.051_b0285) 2020; 10
Zhang (10.1016/j.jcis.2024.09.051_b0140) 2024; 65
Ge (10.1016/j.jcis.2024.09.051_b0175) 2023; 48
Ma (10.1016/j.jcis.2024.09.051_b0135) 2024; 664
He (10.1016/j.jcis.2024.09.051_b0040) 2024; 70
Yu (10.1016/j.jcis.2024.09.051_b0130) 2024; 100107
Qu (10.1016/j.jcis.2024.09.051_b0050) 2024; 36
Cui (10.1016/j.jcis.2024.09.051_b0085) 2024; 3
Cheng (10.1016/j.jcis.2024.09.051_b0250) 2024; 14
References_xml – volume: 100107
  year: 2024
  ident: b0130
  article-title: Zwitterionic materials for aqueous Zn-based energy storage devices: current developments and perspective
  publication-title: Energy Rev.
– volume: 34
  start-page: 2313358
  year: 2024
  ident: b0205
  article-title: Highly Compact Zinc Metal Anode and Wide-Temperature Aqueous Electrolyte Enabled by Acetamide Additives for Deep Cycling Zn Batteries
  publication-title: Adv. Funct. Mater.
– volume: 32
  start-page: 2206695
  year: 2022
  ident: b0080
  article-title: Building Metal-Molecule Interface towards Stable and Reversible Zn Metal Anodes for Aqueous Rechargeable Zinc Batteries
  publication-title: Adv. Funct. Mater.
– volume: 48
  start-page: 2186
  year: 2023
  end-page: 2189
  ident: b0175
  article-title: Simple technique of coupling a diode laser into a linear power buildup cavity for Raman gas sensing
  publication-title: Opt. Lett.
– volume: 3
  start-page: 2023038
  year: 2023
  ident: b0090
  article-title: The concept, structure, and progress of seawater metal-air batteries
  publication-title: Microstructures
– volume: 34
  start-page: 2308762
  year: 2024
  ident: b0145
  article-title: Highly Reversible Zinc-Air Batteries at -40 °C Enabled by Anion-Mediated Biomimetic Fat
  publication-title: Adv. Funct. Mater.
– volume: 30
  start-page: e202400567
  year: 2024
  ident: b0190
  article-title: Achieving Dendrite-Free Zinc Metal Anodes via Molecule Anchoring and lon-Transport pumping
  publication-title: Chem.-Eur. J.
– volume: 36
  start-page: 2304426
  year: 2024
  ident: b0215
  article-title: The Construction of Binary Phase Electrolyte Interface for Highly Stable Zinc Anodes
  publication-title: Adv. Mater.
– volume: 13
  start-page: 2204388
  year: 2023
  ident: b0210
  article-title: Interface Engineering by Hydrophilic and Zincophilic Aluminum Hydroxide Fluoride for Anode-Free Zinc Metal Batteries at Low Temperature
  publication-title: Adv. Energy Mater.
– volume: 36
  start-page: 2400370
  year: 2024
  ident: b0050
  article-title: A Temperature Self-Adaptive Electrolyte for Wide-Temperature Aqueous Zinc-Ion Batteries
  publication-title: Adv. Mater.
– volume: 14
  start-page: 76
  year: 2023
  ident: b0245
  article-title: Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities
  publication-title: Nat. Commun.
– volume: 669
  start-page: 104
  year: 2024
  end-page: 116
  ident: b0120
  article-title: Biomass-derived polymer as a flexible “zincophilic–hydrophobic” solid electrolyte interphase layer to enable practical Zn metal anodes
  publication-title: J. Colloid Interface Sci.
– volume: 7
  start-page: 2700
  year: 2023
  end-page: 2731
  ident: b0055
  article-title: Hydrogen-bond chemistry in rechargeable batteries
  publication-title: Joule
– volume: 63
  start-page: e202319091
  year: 2024
  ident: b0225
  article-title: Interfacial Engineering of Zn Metal via a Localized Conjugated Layer for Highly Reversible Aqueous Zinc Ion Battery
  publication-title: Angew. Chem.-Int. Edit.
– volume: 18
  start-page: 5003
  year: 2024
  end-page: 5016
  ident: b0280
  article-title: Ion Sieve Interface Assisted Zinc Anode with High Zinc Utilization and Ultralong Cycle Life for 61 Wh/kg Mild Aqueous Pouch Battery
  publication-title: ACS Nano
– volume: 8
  start-page: 2300758
  year: 2023
  ident: b0115
  article-title: Interface Engineering for Aqueous Aluminum Metal Batteries: Current Progresses and Future Prospects
  publication-title: Small Methods
– volume: 63
  start-page: e202401996
  year: 2024
  ident: b0275
  article-title: Unlocking Double Redox Reaction of Metal-Organic Framework for Aqueous Zinc-Ion Battery
  publication-title: Angew. Chem.-Int. Edit.
– volume: 12
  start-page: 2202182
  year: 2022
  ident: b0100
  article-title: Advanced In Situ Induced Dual-Mechanism Heterointerface Towards Ultrastable Aqueous Rocking-Chair Zinc-Ion Batteries
  publication-title: Adv. Energy Mater.
– volume: 36
  start-page: 2404140
  year: 2024
  ident: b0230
  article-title: Unraveling Paradoxical Effects of Large Current Density on Zn Deposition
  publication-title: Adv. Mater.
– volume: 482
  year: 2024
  ident: b0030
  article-title: Atomic-scale inorganic carbon additive with rich surface polarity and low lattice mismatch for zinc to boost Zn metal anode reversibility
  publication-title: Chem. Eng. J.
– volume: 70
  year: 2024
  ident: b0040
  article-title: Competitive solvation with regulated ion-coordination chemistry toward dendrite-free and long-life Zn metal anodes
  publication-title: Energy Storage Mater.
– volume: 65
  year: 2024
  ident: b0140
  article-title: A solubility-limited, non-protonic polar small molecule co-solvent reveals additive selection in inorganic zinc salts
  publication-title: Energy Storage Mater.
– volume: 76
  start-page: 32
  year: 2023
  end-page: 40
  ident: b0070
  article-title: Stable anode-free zinc-ion batteries enabled by alloy network- modulated zinc deposition interface
  publication-title: J. Energy Chem.
– volume: 8
  start-page: 2300823
  year: 2023
  ident: b0105
  article-title: Stabilizing Zinc Anodes by a Uniform Nucleation Process with Cysteine Additive
  publication-title: Small Methods
– volume: 3
  year: 2024
  ident: b0085
  article-title: Research progress on the design of electrolyte additives and their functions for zinc-ion batteries
  publication-title: Mater. Futures
– volume: 17
  start-page: 591
  year: 2024
  end-page: 601
  ident: b0200
  article-title: Ion-dipole interaction motivated Zn2+ pump and anion repulsion interface enable ultrahigh-rate Zn metal anodes
  publication-title: Energy Environ. Sci.
– volume: 24
  start-page: 4672
  year: 2024
  end-page: 4681
  ident: b0125
  article-title: Highly Reversible Zn-Air Batteries Enabled by Tuned Valence Electron and Steric Hindrance on Atomic Fe-N4-C Sites
  publication-title: Nano Lett.
– volume: 448
  year: 2022
  ident: b0035
  article-title: Rational design of ZnMn2O4 nanoparticles on carbon nanotubes for high-rate and durable aqueous zinc-ion batteries
  publication-title: Chem. Eng. J.
– volume: 33
  start-page: 2302293
  year: 2023
  ident: b0260
  article-title: Excluding the Trouble from Interfacial Water by Covalent Organic Polymer to Realize Extremely Reversible Zn Anode
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 94
  year: 2024
  end-page: 100
  ident: b0020
  article-title: Optimization of two-dimensional solid-state electrolyte–anode interface by integrating zinc into composite anode with dual-conductive phases, Green
  publication-title: Carbon
– volume: 34
  start-page: 2310995
  year: 2024
  ident: b0155
  article-title: In Situ Electrochemically-Bonded Self-Adapting Polymeric Interface for Durable Aqueous Zinc Ion Batteries
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 2300550
  year: 2023
  ident: b0265
  article-title: In Situ Construction of Anode-Molecule Interface via Lone-Pair Electrons in Trace Organic Molecules Additives to Achieve Stable Zinc Metal Anodes
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 193
  year: 2023
  end-page: 209
  ident: b0025
  article-title: Advances in reactive co-precipitation technology for preparing high-performance cathodes, Green
  publication-title: Carbon
– volume: 464
  year: 2023
  ident: b0270
  article-title: Engineering d-p orbital hybridization through regulation of interband energy separation for durable aqueous Zn//VO2(B) batteries
  publication-title: Chem. Eng. J.
– volume: 493
  year: 2024
  ident: b0185
  article-title: Synergistic modulation of hydrogen bond network reconstruction and pH buffering of electrolyte enables highly reversible Zn anode
  publication-title: Chem. Eng. J.
– volume: 36
  start-page: 2308086
  year: 2024
  ident: b0195
  article-title: Lotus Effect Inspired Hydrophobic Strategy for Stable Zn Metal Anodes
  publication-title: Adv. Mater.
– volume: 14
  start-page: 2304003
  year: 2024
  ident: b0250
  article-title: Texture Exposure of Unconventional (101)Zn Facet: Enabling Dendrite-Free Zn Deposition on Metallic Zinc Anodes
  publication-title: Adv. Energy Mater.
– volume: 146
  start-page: 6199
  year: 2024
  end-page: 6208
  ident: b0060
  article-title: Tandem Chemistry with Janus Mesopores Accelerator for Efficient Aqueous Batteries
  publication-title: J. Am. Chem. Soc.
– volume: 664
  start-page: 539
  year: 2024
  end-page: 548
  ident: b0135
  article-title: Nitroxyl radical triggered the construction of a molecular protective layer for achieving durable Zn metal anodes
  publication-title: J. Colloid Interface Sci.
– volume: 63
  start-page: e202319051
  year: 2024
  ident: b0065
  article-title: Multifunctional Cellulose Nanocrystals Electrolyte Additive Enable Ultrahigh-Rate and Dendrite-Free Zn Anodes for Rechargeable Aqueous Zinc Batteries
  publication-title: Angew. Chem.-Int. Edit.
– volume: 2
  start-page: 2022012
  year: 2022
  ident: b0075
  article-title: Design and manufacture of high-performance microbatteries: lithium and beyond
  publication-title: Microstructures
– volume: 15
  start-page: 2735
  year: 2024
  ident: b0240
  article-title: Single 0001 -oriented zinc metal anode enables sustainable zinc batteries
  publication-title: Nat. Commun.
– volume: 93
  start-page: 213
  year: 2024
  end-page: 220
  ident: b0160
  article-title: Regulating interfacial behavior of zinc metal anode via metal-organic framework functionalized separator
  publication-title: J. Energy Chem.
– volume: 36
  start-page: 2308577
  year: 2024
  ident: b0220
  article-title: Selective Shielding of the (002) Plane Enabling Vertically Oriented Zinc Plating for Dendrite-Free Zinc Anode
  publication-title: Adv. Mater.
– volume: 16
  start-page: 117
  year: 2024
  ident: b0165
  article-title: Thioacetamide Additive Homogenizing Zn Deposition Revealed by In Situ Digital Holography for Advanced Zn Ion Batteries
  publication-title: Nano-Micro Lett.
– volume: 14
  start-page: 2302770
  year: 2023
  ident: b0150
  article-title: Interfacial Double-Coordination Effect Guiding Uniform Electrodeposition for Reversible Zinc Metal Anode
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 375
  year: 2023
  end-page: 404
  ident: b0095
  article-title: Advances in boron nitride-based materials for electrochemical energy storage and conversion
  publication-title: EcoEnergy
– volume: 33
  year: 2023
  ident: b0005
  article-title: A self-supported hierarchic 3D double skeleton host for highly stable lithium metal batteries
  publication-title: Mater. Today Energy
– volume: 94
  year: 2024
  ident: b0010
  article-title: The impact of surface functional groups on MXene anode protective layer in aqueous zinc-ion batteries: Understanding the mechanism
  publication-title: Journal of Energy Storage
– volume: 2402484
  year: 2024
  ident: b0045
  article-title: Interfacial Dual-Modulation via Cationic Electrostatic Shielding and Anionic Preferential Adsorption toward Planar and Reversible Zinc Electrodeposition
  publication-title: Adv. Funct. Mater.
– volume: 33
  start-page: 2307390
  year: 2023
  ident: b0015
  article-title: Electrolyte Tuned Robust Interface toward Fast-Charging Zn-Air Battery with Atomic Mo Site Catalyst
  publication-title: Adv. Funct. Mater.
– volume: 34
  start-page: 2311773
  year: 2024
  ident: b0110
  article-title: A Double-Charged Organic Molecule Additive to Customize Electric Double Layer for Super-Stable and Deep-Rechargeable Zn Metal Pouch Batteries
  publication-title: Adv. Funct. Mater.
– volume: 136
  start-page: e202406906
  year: 2024
  ident: b0180
  article-title: Intrinsically Decoupled Coordination Chemistries Enable Quasi-Eutectic Electrolytes with Fast Kinetics toward Enhanced Zinc-Ion Capacitors
  publication-title: Angew. Chem.-Int. Edit.
– volume: 23
  start-page: 541
  year: 2023
  end-page: 549
  ident: b0255
  article-title: Nanoscale Ultrafine Zinc Metal Anodes for High Stability Aqueous Zinc Ion Batteries
  publication-title: Nano Lett.
– volume: 10
  start-page: 2001852
  year: 2020
  ident: b0285
  article-title: Electron Delocalization and Dissolution-Restraint in Vanadium Oxide Superlattices to Boost Electrochemical Performance of Aqueous Zinc-Ion Batteries
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: e330
  year: 2023
  ident: b0235
  article-title: Designing interstitial boron-doped tunnel-type vanadium dioxide cathode for enhancing zinc ion storage capability
  publication-title: Carbon Energy
– volume: 60
  start-page: 7366
  year: 2021
  end-page: 7375
  ident: b0170
  article-title: Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low-Cost Antisolvents
  publication-title: Angew. Chem.-Int. Edit.
– volume: 30
  start-page: e202400567
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0190
  article-title: Achieving Dendrite-Free Zinc Metal Anodes via Molecule Anchoring and lon-Transport pumping
  publication-title: Chem.-Eur. J.
  doi: 10.1002/chem.202400567
– volume: 2
  start-page: 2022012
  year: 2022
  ident: 10.1016/j.jcis.2024.09.051_b0075
  article-title: Design and manufacture of high-performance microbatteries: lithium and beyond
  publication-title: Microstructures
  doi: 10.20517/microstructures.2022.10
– volume: 5
  start-page: e330
  year: 2023
  ident: 10.1016/j.jcis.2024.09.051_b0235
  article-title: Designing interstitial boron-doped tunnel-type vanadium dioxide cathode for enhancing zinc ion storage capability
  publication-title: Carbon Energy
  doi: 10.1002/cey2.330
– volume: 493
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0185
  article-title: Synergistic modulation of hydrogen bond network reconstruction and pH buffering of electrolyte enables highly reversible Zn anode
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.152622
– volume: 36
  start-page: 2400370
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0050
  article-title: A Temperature Self-Adaptive Electrolyte for Wide-Temperature Aqueous Zinc-Ion Batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202400370
– volume: 17
  start-page: 591
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0200
  article-title: Ion-dipole interaction motivated Zn2+ pump and anion repulsion interface enable ultrahigh-rate Zn metal anodes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE02945J
– volume: 1
  start-page: 193
  year: 2023
  ident: 10.1016/j.jcis.2024.09.051_b0025
  article-title: Advances in reactive co-precipitation technology for preparing high-performance cathodes, Green
  publication-title: Carbon
– volume: 136
  start-page: e202406906
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0180
  article-title: Intrinsically Decoupled Coordination Chemistries Enable Quasi-Eutectic Electrolytes with Fast Kinetics toward Enhanced Zinc-Ion Capacitors
  publication-title: Angew. Chem.-Int. Edit.
  doi: 10.1002/ange.202406906
– volume: 33
  start-page: 2302293
  year: 2023
  ident: 10.1016/j.jcis.2024.09.051_b0260
  article-title: Excluding the Trouble from Interfacial Water by Covalent Organic Polymer to Realize Extremely Reversible Zn Anode
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202302293
– volume: 18
  start-page: 5003
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0280
  article-title: Ion Sieve Interface Assisted Zinc Anode with High Zinc Utilization and Ultralong Cycle Life for 61 Wh/kg Mild Aqueous Pouch Battery
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c11115
– volume: 146
  start-page: 6199
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0060
  article-title: Tandem Chemistry with Janus Mesopores Accelerator for Efficient Aqueous Batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c14019
– volume: 16
  start-page: 117
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0165
  article-title: Thioacetamide Additive Homogenizing Zn Deposition Revealed by In Situ Digital Holography for Advanced Zn Ion Batteries
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01310-3
– volume: 15
  start-page: 2735
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0240
  article-title: Single 0001 -oriented zinc metal anode enables sustainable zinc batteries
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-47101-1
– volume: 33
  year: 2023
  ident: 10.1016/j.jcis.2024.09.051_b0005
  article-title: A self-supported hierarchic 3D double skeleton host for highly stable lithium metal batteries
  publication-title: Mater. Today Energy
– volume: 36
  start-page: 2308577
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0220
  article-title: Selective Shielding of the (002) Plane Enabling Vertically Oriented Zinc Plating for Dendrite-Free Zinc Anode
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202308577
– volume: 10
  start-page: 2001852
  year: 2020
  ident: 10.1016/j.jcis.2024.09.051_b0285
  article-title: Electron Delocalization and Dissolution-Restraint in Vanadium Oxide Superlattices to Boost Electrochemical Performance of Aqueous Zinc-Ion Batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202001852
– volume: 448
  year: 2022
  ident: 10.1016/j.jcis.2024.09.051_b0035
  article-title: Rational design of ZnMn2O4 nanoparticles on carbon nanotubes for high-rate and durable aqueous zinc-ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137742
– volume: 13
  start-page: 2204388
  year: 2023
  ident: 10.1016/j.jcis.2024.09.051_b0210
  article-title: Interface Engineering by Hydrophilic and Zincophilic Aluminum Hydroxide Fluoride for Anode-Free Zinc Metal Batteries at Low Temperature
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202204388
– volume: 12
  start-page: 2202182
  year: 2022
  ident: 10.1016/j.jcis.2024.09.051_b0100
  article-title: Advanced In Situ Induced Dual-Mechanism Heterointerface Towards Ultrastable Aqueous Rocking-Chair Zinc-Ion Batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202202182
– volume: 664
  start-page: 539
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0135
  article-title: Nitroxyl radical triggered the construction of a molecular protective layer for achieving durable Zn metal anodes
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2024.03.085
– volume: 65
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0140
  article-title: A solubility-limited, non-protonic polar small molecule co-solvent reveals additive selection in inorganic zinc salts
  publication-title: Energy Storage Mater.
– volume: 34
  start-page: 2308762
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0145
  article-title: Highly Reversible Zinc-Air Batteries at -40 °C Enabled by Anion-Mediated Biomimetic Fat
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202308762
– volume: 34
  start-page: 2310995
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0155
  article-title: In Situ Electrochemically-Bonded Self-Adapting Polymeric Interface for Durable Aqueous Zinc Ion Batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202310995
– volume: 3
  start-page: 2023038
  year: 2023
  ident: 10.1016/j.jcis.2024.09.051_b0090
  article-title: The concept, structure, and progress of seawater metal-air batteries
  publication-title: Microstructures
  doi: 10.20517/microstructures.2023.30
– volume: 8
  start-page: 2300823
  year: 2023
  ident: 10.1016/j.jcis.2024.09.051_b0105
  article-title: Stabilizing Zinc Anodes by a Uniform Nucleation Process with Cysteine Additive
  publication-title: Small Methods
  doi: 10.1002/smtd.202300823
– volume: 36
  start-page: 2308086
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0195
  article-title: Lotus Effect Inspired Hydrophobic Strategy for Stable Zn Metal Anodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202308086
– volume: 464
  year: 2023
  ident: 10.1016/j.jcis.2024.09.051_b0270
  article-title: Engineering d-p orbital hybridization through regulation of interband energy separation for durable aqueous Zn//VO2(B) batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.142711
– volume: 7
  start-page: 2700
  year: 2023
  ident: 10.1016/j.jcis.2024.09.051_b0055
  article-title: Hydrogen-bond chemistry in rechargeable batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2023.10.010
– volume: 70
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0040
  article-title: Competitive solvation with regulated ion-coordination chemistry toward dendrite-free and long-life Zn metal anodes
  publication-title: Energy Storage Mater.
– volume: 60
  start-page: 7366
  year: 2021
  ident: 10.1016/j.jcis.2024.09.051_b0170
  article-title: Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low-Cost Antisolvents
  publication-title: Angew. Chem.-Int. Edit.
  doi: 10.1002/anie.202016531
– volume: 36
  start-page: 2404140
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0230
  article-title: Unraveling Paradoxical Effects of Large Current Density on Zn Deposition
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202404140
– volume: 63
  start-page: e202401996
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0275
  article-title: Unlocking Double Redox Reaction of Metal-Organic Framework for Aqueous Zinc-Ion Battery
  publication-title: Angew. Chem.-Int. Edit.
  doi: 10.1002/anie.202401996
– volume: 32
  start-page: 2206695
  year: 2022
  ident: 10.1016/j.jcis.2024.09.051_b0080
  article-title: Building Metal-Molecule Interface towards Stable and Reversible Zn Metal Anodes for Aqueous Rechargeable Zinc Batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202206695
– volume: 1
  start-page: 375
  year: 2023
  ident: 10.1016/j.jcis.2024.09.051_b0095
  article-title: Advances in boron nitride-based materials for electrochemical energy storage and conversion
  publication-title: EcoEnergy
  doi: 10.1002/ece2.22
– volume: 13
  start-page: 2300550
  year: 2023
  ident: 10.1016/j.jcis.2024.09.051_b0265
  article-title: In Situ Construction of Anode-Molecule Interface via Lone-Pair Electrons in Trace Organic Molecules Additives to Achieve Stable Zinc Metal Anodes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202300550
– volume: 33
  start-page: 2307390
  year: 2023
  ident: 10.1016/j.jcis.2024.09.051_b0015
  article-title: Electrolyte Tuned Robust Interface toward Fast-Charging Zn-Air Battery with Atomic Mo Site Catalyst
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202307390
– volume: 48
  start-page: 2186
  year: 2023
  ident: 10.1016/j.jcis.2024.09.051_b0175
  article-title: Simple technique of coupling a diode laser into a linear power buildup cavity for Raman gas sensing
  publication-title: Opt. Lett.
  doi: 10.1364/OL.486417
– volume: 23
  start-page: 541
  year: 2023
  ident: 10.1016/j.jcis.2024.09.051_b0255
  article-title: Nanoscale Ultrafine Zinc Metal Anodes for High Stability Aqueous Zinc Ion Batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c03919
– volume: 93
  start-page: 213
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0160
  article-title: Regulating interfacial behavior of zinc metal anode via metal-organic framework functionalized separator
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2024.02.011
– volume: 63
  start-page: e202319091
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0225
  article-title: Interfacial Engineering of Zn Metal via a Localized Conjugated Layer for Highly Reversible Aqueous Zinc Ion Battery
  publication-title: Angew. Chem.-Int. Edit.
  doi: 10.1002/anie.202319091
– volume: 94
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0010
  article-title: The impact of surface functional groups on MXene anode protective layer in aqueous zinc-ion batteries: Understanding the mechanism
  publication-title: Journal of Energy Storage
  doi: 10.1016/j.est.2024.112360
– volume: 100107
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0130
  article-title: Zwitterionic materials for aqueous Zn-based energy storage devices: current developments and perspective
  publication-title: Energy Rev.
– volume: 3
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0085
  article-title: Research progress on the design of electrolyte additives and their functions for zinc-ion batteries
  publication-title: Mater. Futures
  doi: 10.1088/2752-5724/acef41
– volume: 14
  start-page: 2302770
  year: 2023
  ident: 10.1016/j.jcis.2024.09.051_b0150
  article-title: Interfacial Double-Coordination Effect Guiding Uniform Electrodeposition for Reversible Zinc Metal Anode
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202302770
– volume: 76
  start-page: 32
  year: 2023
  ident: 10.1016/j.jcis.2024.09.051_b0070
  article-title: Stable anode-free zinc-ion batteries enabled by alloy network- modulated zinc deposition interface
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2022.08.040
– volume: 8
  start-page: 2300758
  year: 2023
  ident: 10.1016/j.jcis.2024.09.051_b0115
  article-title: Interface Engineering for Aqueous Aluminum Metal Batteries: Current Progresses and Future Prospects
  publication-title: Small Methods
  doi: 10.1002/smtd.202300758
– volume: 34
  start-page: 2311773
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0110
  article-title: A Double-Charged Organic Molecule Additive to Customize Electric Double Layer for Super-Stable and Deep-Rechargeable Zn Metal Pouch Batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202311773
– volume: 14
  start-page: 2304003
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0250
  article-title: Texture Exposure of Unconventional (101)Zn Facet: Enabling Dendrite-Free Zn Deposition on Metallic Zinc Anodes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202304003
– volume: 2
  start-page: 94
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0020
  article-title: Optimization of two-dimensional solid-state electrolyte–anode interface by integrating zinc into composite anode with dual-conductive phases, Green
  publication-title: Carbon
– volume: 63
  start-page: e202319051
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0065
  article-title: Multifunctional Cellulose Nanocrystals Electrolyte Additive Enable Ultrahigh-Rate and Dendrite-Free Zn Anodes for Rechargeable Aqueous Zinc Batteries
  publication-title: Angew. Chem.-Int. Edit.
  doi: 10.1002/anie.202319051
– volume: 24
  start-page: 4672
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0125
  article-title: Highly Reversible Zn-Air Batteries Enabled by Tuned Valence Electron and Steric Hindrance on Atomic Fe-N4-C Sites
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.4c01078
– volume: 669
  start-page: 104
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0120
  article-title: Biomass-derived polymer as a flexible “zincophilic–hydrophobic” solid electrolyte interphase layer to enable practical Zn metal anodes
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2024.04.234
– volume: 36
  start-page: 2304426
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0215
  article-title: The Construction of Binary Phase Electrolyte Interface for Highly Stable Zinc Anodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202304426
– volume: 14
  start-page: 76
  year: 2023
  ident: 10.1016/j.jcis.2024.09.051_b0245
  article-title: Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-35630-6
– volume: 482
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0030
  article-title: Atomic-scale inorganic carbon additive with rich surface polarity and low lattice mismatch for zinc to boost Zn metal anode reversibility
  publication-title: Chem. Eng. J.
– volume: 34
  start-page: 2313358
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0205
  article-title: Highly Compact Zinc Metal Anode and Wide-Temperature Aqueous Electrolyte Enabled by Acetamide Additives for Deep Cycling Zn Batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202313358
– volume: 2402484
  year: 2024
  ident: 10.1016/j.jcis.2024.09.051_b0045
  article-title: Interfacial Dual-Modulation via Cationic Electrostatic Shielding and Anionic Preferential Adsorption toward Planar and Reversible Zinc Electrodeposition
  publication-title: Adv. Funct. Mater.
SSID ssj0011559
Score 2.5611002
Snippet Thiamine hydrochloride (TH) acts as a highly efficient additive to traditional ZnSO4 electrolyte, which combines zincophilic groups and polar groups, in situ...
The highly reversible electrochemical deposition and dissolution of zinc metal anode is a critical feature for the practical application of aqueous zinc-ion...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 772
SubjectTerms Aqueous zinc-ion batteries
Double-coordination effect
Electric double layer
Electrolyte additives
Zinc metal anodes
Title Interfacial double-coordination effect reconstructing anode/electrolyte interface for long-term and highly reversible Zn metal anodes
URI https://dx.doi.org/10.1016/j.jcis.2024.09.051
https://www.ncbi.nlm.nih.gov/pubmed/39265347
https://www.proquest.com/docview/3104038700
Volume 678
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB612wNwQFBey6MyEjdk1l7beRyrFdUCoicqrbhYTjypUoWkottDL9z434xjZwWH9sA1sh0r48x845n5BuBdQWY5K7HmMs9rrhttuCsx5LrK0jlV-2Kscv16mq3P9OeN2ezBaqqFCWmVSfdHnT5q6_Rkkb7m4rJtQ40vrZeXeYgPEGrY7MPBUpWZmcHB8acv69NdMCFE3mKmh-RhQqqdiWleF3UbWLuXke7UyNvs0234c7RDJ4_gYQKQ7Dju8THsYX8I91ZT37ZDePAXxeAT-D1e-TUu3IwzP1xXHfJ6II-zjdeALCZ0sNExTmSy_Tlz_eBxkXrkdDdbZG1aBxnBXNYN_TkPWp1GehY4j7sbFtigftIv1iH73rMfSLg-LnT1FM5OPn5brXlqvcBrZbItV6WuRNYgakIoAuula4rGkK9WKIHekRdipJe5I_c2c1r7vCIP3SnvM1mIqmrUM5j1Q48vgHmVOwJpXhmB2hTS1S5gPoGi0QXNmYOcPritEy95aI_R2SkB7cIGIdkgJCtKS0Kaw_vdnMvIynHnaDPJ0f5ztiyZjTvnvZ2EbkmGIZLiehyuryxhYh3i_kLM4Xk8Dbt9EODMjNL5y_986yu4vww9hoXk0ryGGUke3xDw2VZHsP_hlzxKx_sP9gwDsg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKORQOCMpreRqJGzJrr-04OaIV1QJtT6204mI5tlOlCklFt4deuPG_mYmdFRzaA9fIdqzMZPyN55sZQt6XcCwXVfRMGOOZapRmrorIdRWVc9KHcsxyPTouVqfq61qvd8hyyoVBWmW2_cmmj9Y6P5nnrzm_aFvM8YX1TGUwPgCoYX2H3FVaGuT1ffy15XkIjLslnodgODxnziSS17lvsWb3IhU71eKm0-km9DmeQgcPyYMMH-mntMNHZCf2-2RvOXVt2yf3_yow-Jj8Hi_8Gof34jQMV3UXmR_A32zTJSBNdA46usW5lGx_Rl0_hDjPHXK6602kbV4nUgC5tBv6M4Y2HUYGihWPu2uKtaB-wg_WRfq9pz8ioPq00OUTcnrw-WS5YrnxAvNSFxsmK1XzoolRAT7h0S9cUzYaPLVS8hgc-CBaBGEcOLeFUyqYGvxzJ0MoRMnrupFPyW4_9PE5oUEaBxAtSM2j0qVw3iHi45E3qoQ5MyKmD259rkqOzTE6O9HPzi0KyaKQLK8sCGlGPmznXKSaHLeO1pMc7T-aZeHQuHXeu0noFmSIcRTXx-Hq0gIiVhj153xGniVt2O4D4GahpTIv_vOtb8ne6uTo0B5-Of72ktxbYLdhLpjQr8guaEF8DRBoU78ZVfwPLQEEfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+double-coordination+effect+reconstructing+anode%2Felectrolyte+interface+for+long-term+and+highly+reversible+Zn+metal+anodes&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Zhou%2C+Jie&rft.au=Yu%2C+Huaming&rft.au=Qing%2C+Piao&rft.au=Chen%2C+Dongping&rft.date=2025-01-15&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=678&rft.issue=Pt+B&rft.spage=772&rft_id=info:doi/10.1016%2Fj.jcis.2024.09.051&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon