Interfacial double-coordination effect reconstructing anode/electrolyte interface for long-term and highly reversible Zn metal anodes
Thiamine hydrochloride (TH) acts as a highly efficient additive to traditional ZnSO4 electrolyte, which combines zincophilic groups and polar groups, in situ reconfiguring the anode/electrolyte interface based on interfacial coordination chemistry, thus enhancing the electroplating/stripping reversi...
Saved in:
Published in | Journal of colloid and interface science Vol. 678; no. Pt B; pp. 772 - 782 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9797 1095-7103 1095-7103 |
DOI | 10.1016/j.jcis.2024.09.051 |
Cover
Abstract | Thiamine hydrochloride (TH) acts as a highly efficient additive to traditional ZnSO4 electrolyte, which combines zincophilic groups and polar groups, in situ reconfiguring the anode/electrolyte interface based on interfacial coordination chemistry, thus enhancing the electroplating/stripping reversibility of Zn metal anodes.
[Display omitted]
The highly reversible electrochemical deposition and dissolution of zinc metal anode is a critical feature for the practical application of aqueous zinc-ion batteries (ZIBs). Nevertheless, this process is seriously hindered by the uncontrollable electrodeposition and interfacial side reactions caused by thermodynamically unstable anode/electrolyte interface (AEI). Guided by the electrode/electrolyte interface chemistry, thiamine hydrochloride (TH) as a novel additive is added into traditional ZnSO4 (ZS) electrolyte to induce sustained reversible Zn deposition/stripping. Spectroscopic characterizations and electrochemical tests reveal that TH can adsorbed on the anode surface owning to the strong double-coordination effect between N, S atoms and Zn atoms via Zn-N and Zn-S chemical bonds. In addition, there are polar hydroxyl groups in the TH molecular structure which can form hydrogen bonds with water molecules. Thus, the adsorbed TH layer can not only guide the diffusion of Zn2+ ions and achieve dendrite-free electrodeposition process, but also prevent intimate contact between water and anode to suppress the occurrence of interface side reactions. Based on these benefits, the TH additive achieves an ultra-long stable cycle lifespan to 2045 h at 1 mA cm−2 and 1 mAh cm−2. Even at a higher current density of 5 mA cm−2, prolonged cycling performance about 773 h is demonstrated. Besides, the assembled Zn//NVO full cells reveal excellent capacity retention and rate performance under practical conditions, highlighting the efficient and reliable coordination effect of TH additive at the AEI. |
---|---|
AbstractList | Thiamine hydrochloride (TH) acts as a highly efficient additive to traditional ZnSO4 electrolyte, which combines zincophilic groups and polar groups, in situ reconfiguring the anode/electrolyte interface based on interfacial coordination chemistry, thus enhancing the electroplating/stripping reversibility of Zn metal anodes.
[Display omitted]
The highly reversible electrochemical deposition and dissolution of zinc metal anode is a critical feature for the practical application of aqueous zinc-ion batteries (ZIBs). Nevertheless, this process is seriously hindered by the uncontrollable electrodeposition and interfacial side reactions caused by thermodynamically unstable anode/electrolyte interface (AEI). Guided by the electrode/electrolyte interface chemistry, thiamine hydrochloride (TH) as a novel additive is added into traditional ZnSO4 (ZS) electrolyte to induce sustained reversible Zn deposition/stripping. Spectroscopic characterizations and electrochemical tests reveal that TH can adsorbed on the anode surface owning to the strong double-coordination effect between N, S atoms and Zn atoms via Zn-N and Zn-S chemical bonds. In addition, there are polar hydroxyl groups in the TH molecular structure which can form hydrogen bonds with water molecules. Thus, the adsorbed TH layer can not only guide the diffusion of Zn2+ ions and achieve dendrite-free electrodeposition process, but also prevent intimate contact between water and anode to suppress the occurrence of interface side reactions. Based on these benefits, the TH additive achieves an ultra-long stable cycle lifespan to 2045 h at 1 mA cm−2 and 1 mAh cm−2. Even at a higher current density of 5 mA cm−2, prolonged cycling performance about 773 h is demonstrated. Besides, the assembled Zn//NVO full cells reveal excellent capacity retention and rate performance under practical conditions, highlighting the efficient and reliable coordination effect of TH additive at the AEI. The highly reversible electrochemical deposition and dissolution of zinc metal anode is a critical feature for the practical application of aqueous zinc-ion batteries (ZIBs). Nevertheless, this process is seriously hindered by the uncontrollable electrodeposition and interfacial side reactions caused by thermodynamically unstable anode/electrolyte interface (AEI). Guided by the electrode/electrolyte interface chemistry, thiamine hydrochloride (TH) as a novel additive is added into traditional ZnSO (ZS) electrolyte to induce sustained reversible Zn deposition/stripping. Spectroscopic characterizations and electrochemical tests reveal that TH can adsorbed on the anode surface owning to the strong double-coordination effect between N, S atoms and Zn atoms via Zn-N and Zn-S chemical bonds. In addition, there are polar hydroxyl groups in the TH molecular structure which can form hydrogen bonds with water molecules. Thus, the adsorbed TH layer can not only guide the diffusion of Zn ions and achieve dendrite-free electrodeposition process, but also prevent intimate contact between water and anode to suppress the occurrence of interface side reactions. Based on these benefits, the TH additive achieves an ultra-long stable cycle lifespan to 2045 h at 1 mA cm and 1 mAh cm . Even at a higher current density of 5 mA cm , prolonged cycling performance about 773 h is demonstrated. Besides, the assembled Zn//NVO full cells reveal excellent capacity retention and rate performance under practical conditions, highlighting the efficient and reliable coordination effect of TH additive at the AEI. The highly reversible electrochemical deposition and dissolution of zinc metal anode is a critical feature for the practical application of aqueous zinc-ion batteries (ZIBs). Nevertheless, this process is seriously hindered by the uncontrollable electrodeposition and interfacial side reactions caused by thermodynamically unstable anode/electrolyte interface (AEI). Guided by the electrode/electrolyte interface chemistry, thiamine hydrochloride (TH) as a novel additive is added into traditional ZnSO4 (ZS) electrolyte to induce sustained reversible Zn deposition/stripping. Spectroscopic characterizations and electrochemical tests reveal that TH can adsorbed on the anode surface owning to the strong double-coordination effect between N, S atoms and Zn atoms via Zn-N and Zn-S chemical bonds. In addition, there are polar hydroxyl groups in the TH molecular structure which can form hydrogen bonds with water molecules. Thus, the adsorbed TH layer can not only guide the diffusion of Zn2+ ions and achieve dendrite-free electrodeposition process, but also prevent intimate contact between water and anode to suppress the occurrence of interface side reactions. Based on these benefits, the TH additive achieves an ultra-long stable cycle lifespan to 2045 h at 1 mA cm-2 and 1 mAh cm-2. Even at a higher current density of 5 mA cm-2, prolonged cycling performance about 773 h is demonstrated. Besides, the assembled Zn//NVO full cells reveal excellent capacity retention and rate performance under practical conditions, highlighting the efficient and reliable coordination effect of TH additive at the AEI.The highly reversible electrochemical deposition and dissolution of zinc metal anode is a critical feature for the practical application of aqueous zinc-ion batteries (ZIBs). Nevertheless, this process is seriously hindered by the uncontrollable electrodeposition and interfacial side reactions caused by thermodynamically unstable anode/electrolyte interface (AEI). Guided by the electrode/electrolyte interface chemistry, thiamine hydrochloride (TH) as a novel additive is added into traditional ZnSO4 (ZS) electrolyte to induce sustained reversible Zn deposition/stripping. Spectroscopic characterizations and electrochemical tests reveal that TH can adsorbed on the anode surface owning to the strong double-coordination effect between N, S atoms and Zn atoms via Zn-N and Zn-S chemical bonds. In addition, there are polar hydroxyl groups in the TH molecular structure which can form hydrogen bonds with water molecules. Thus, the adsorbed TH layer can not only guide the diffusion of Zn2+ ions and achieve dendrite-free electrodeposition process, but also prevent intimate contact between water and anode to suppress the occurrence of interface side reactions. Based on these benefits, the TH additive achieves an ultra-long stable cycle lifespan to 2045 h at 1 mA cm-2 and 1 mAh cm-2. Even at a higher current density of 5 mA cm-2, prolonged cycling performance about 773 h is demonstrated. Besides, the assembled Zn//NVO full cells reveal excellent capacity retention and rate performance under practical conditions, highlighting the efficient and reliable coordination effect of TH additive at the AEI. |
Author | Zhou, Jie Qing, Piao Yu, Huaming Jin, Youliang Huang, Shaozhen Xie, Zeqiang He, Hanwei Chen, Yuejiao Chen, Dongping Zhou, Gang |
Author_xml | – sequence: 1 givenname: Jie surname: Zhou fullname: Zhou, Jie organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China – sequence: 2 givenname: Huaming surname: Yu fullname: Yu, Huaming email: hmYu147@outlook.com, hmYu147@stu.hit.edu.cn organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China – sequence: 3 givenname: Piao surname: Qing fullname: Qing, Piao organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China – sequence: 4 givenname: Dongping surname: Chen fullname: Chen, Dongping organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China – sequence: 5 givenname: Shaozhen surname: Huang fullname: Huang, Shaozhen organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China – sequence: 6 givenname: Youliang surname: Jin fullname: Jin, Youliang organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China – sequence: 7 givenname: Hanwei surname: He fullname: He, Hanwei organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China – sequence: 8 givenname: Gang surname: Zhou fullname: Zhou, Gang organization: School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, PR China – sequence: 9 givenname: Zeqiang surname: Xie fullname: Xie, Zeqiang organization: School of Advanced Interdisciplinary Studies, Hunan University of Technology and Business, Changsha 410205, PR China – sequence: 10 givenname: Yuejiao surname: Chen fullname: Chen, Yuejiao organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39265347$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1qHDEQhEVwiNdOXiCHoGMuM26N5hdyCSY_BoMvySUXoZFaay0ayZE0hn2AvHe03vXFB58auquqob4LcuaDR0I-MqgZsP5qV--UTXUDTVvDVEPH3pANg6mrBgb8jGwAGlZNwzSck4uUdgCMdd30jpzzqek73g4b8u_GZ4xGKisd1WGdHVYqhKitl9kGT9EYVJlGVMGnHFeVrd9S6YPGK3TlFIPbZ6T2lIPUhEhd8NuqLJai1PTebu_dvmQ8Yky2vKB_PF0wl5dPQek9eWukS_jhNC_J7-_ffl3_rG7vftxcf72tFO_6XPGpnaE3iG3fjYCqkWY03dS0IwfUspuGjmk2yJEPvWxbPcw4N5Jr3bMR5tnwS_L5mPsQw98VUxaLTQqdkx7DmgRn0AIfB4Ai_XSSrvOCWjxEu8i4F8_VFcF4FKgYUopohLL5qbMcpXWCgThQEjtxoCQOlARMolAq1uaF9Tn9VdOXowlLQY8Wo0jKoleobYGThQ72Nft_fN2ujw |
CitedBy_id | crossref_primary_10_1002_anie_202422539 crossref_primary_10_1002_ange_202422539 crossref_primary_10_1016_j_apmate_2025_100276 crossref_primary_10_1016_j_jallcom_2024_178193 crossref_primary_10_1016_j_est_2025_116214 crossref_primary_10_1016_S1003_6326_24_66598_2 crossref_primary_10_1016_j_ensm_2025_104012 crossref_primary_10_20517_microstructures_2024_114 crossref_primary_10_1002_anie_202424288 crossref_primary_10_1002_adsu_202401048 crossref_primary_10_1002_ange_202424288 crossref_primary_10_1016_j_cclet_2024_110557 crossref_primary_10_1016_j_cclet_2025_111078 crossref_primary_10_1016_j_jallcom_2025_178521 crossref_primary_10_1016_j_jcis_2024_11_215 crossref_primary_10_1016_j_cclet_2025_110893 crossref_primary_10_1002_adfm_202425680 |
Cites_doi | 10.1002/chem.202400567 10.20517/microstructures.2022.10 10.1002/cey2.330 10.1016/j.cej.2024.152622 10.1002/adma.202400370 10.1039/D3EE02945J 10.1002/ange.202406906 10.1002/adfm.202302293 10.1021/acsnano.3c11115 10.1021/jacs.3c14019 10.1007/s40820-023-01310-3 10.1038/s41467-024-47101-1 10.1002/adma.202308577 10.1002/aenm.202001852 10.1016/j.cej.2022.137742 10.1002/aenm.202204388 10.1002/aenm.202202182 10.1016/j.jcis.2024.03.085 10.1002/adfm.202308762 10.1002/adfm.202310995 10.20517/microstructures.2023.30 10.1002/smtd.202300823 10.1002/adma.202308086 10.1016/j.cej.2023.142711 10.1016/j.joule.2023.10.010 10.1002/anie.202016531 10.1002/adma.202404140 10.1002/anie.202401996 10.1002/adfm.202206695 10.1002/ece2.22 10.1002/aenm.202300550 10.1002/adfm.202307390 10.1364/OL.486417 10.1021/acs.nanolett.2c03919 10.1016/j.jechem.2024.02.011 10.1002/anie.202319091 10.1016/j.est.2024.112360 10.1088/2752-5724/acef41 10.1002/aenm.202302770 10.1016/j.jechem.2022.08.040 10.1002/smtd.202300758 10.1002/adfm.202311773 10.1002/aenm.202304003 10.1002/anie.202319051 10.1021/acs.nanolett.4c01078 10.1016/j.jcis.2024.04.234 10.1002/adma.202304426 10.1038/s41467-022-35630-6 10.1002/adfm.202313358 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Inc. Copyright © 2024 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier Inc. – notice: Copyright © 2024 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.jcis.2024.09.051 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 782 |
ExternalDocumentID | 39265347 10_1016_j_jcis_2024_09_051 S002197972402112X |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEZYN AFJKZ AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 53G 6TJ AAQXK AATTM AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEUPX AFFNX AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- RIG SCB SCE SSH VH1 WUQ ZGI ZXP EFKBS NPM 7X8 EFLBG |
ID | FETCH-LOGICAL-c356t-394b06fee46580ec2af8f5924830eda59751d17a8376a44d7beb2a3dd6180bbf3 |
IEDL.DBID | AIKHN |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Sep 05 11:11:05 EDT 2025 Mon Jul 21 06:03:33 EDT 2025 Tue Jul 01 04:19:36 EDT 2025 Thu Apr 24 23:03:47 EDT 2025 Sat Feb 01 16:04:38 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt B |
Keywords | Electric double layer Double-coordination effect Aqueous zinc-ion batteries Zinc metal anodes Electrolyte additives |
Language | English |
License | Copyright © 2024 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-394b06fee46580ec2af8f5924830eda59751d17a8376a44d7beb2a3dd6180bbf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 39265347 |
PQID | 3104038700 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3104038700 pubmed_primary_39265347 crossref_citationtrail_10_1016_j_jcis_2024_09_051 crossref_primary_10_1016_j_jcis_2024_09_051 elsevier_sciencedirect_doi_10_1016_j_jcis_2024_09_051 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-15 |
PublicationDateYYYYMMDD | 2025-01-15 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Tang, Hu, Ma, Weng, Huang, Zhu, Yang, Chen, Yin, Xu, He (b0045) 2024; 2402484 Deng, Xu, Zhao, Kan, Liu (b0275) 2024; 63 Zhu, Sun, Qiao, Wang, Cui, Zhang, Liu (b0220) 2024; 36 Deng, Wu, Feng, Zhao, Liu, Bai, Wang, Zheng, Jiang, Zhuang, Xiong, Wang, Lei (b0145) 2024; 34 He, Yu, Chen, Ni, Yan, Lv, Chen (b0190) 2024; 30 Li, Lou, Zhou, Chen, Zhao, Azizi, Lin, Fu, Han, Pan (b0180) 2024; 136 Yu, Lv, Yan, Yu (b0115) 2023; 8 Zhang, Liu, Cai, Zhou, Zhong, Xiao, Luo, Zhao, An (b0270) 2023; 464 Hu, Lv, Chen, Tang, Zhang, Qin, Huang, Zhu, Chen, Xu, He (b0110) 2024; 34 Wang, Yang, Zhang, Yang, Song, Tang, Sang, Wan, Sun, Chen (b0010) 2024; 94 Wang, Yang, Xu, Cheng, Zhao, Huang, Yang (b0025) 2023; 1 Qiu, Ma, Wang, Liu, Zhang, Li, Qu, Yuan, Nie, Zhang (b0205) 2024; 34 Zheng, Liu, Sun, Luo, Xu, Si, Kang, Yuan, Liu, Ahmad, Jiang, Chen, Wang, Xu, Chuai, Zhu, Peng, Meng, Zhang, Wang, Chen (b0245) 2023; 14 Liang, Chen, Zhai, Yu, Yu, Wang, Meng, Peng, Yin (b0185) 2024; 493 Gao, Mei, Xu, Ren, Zhao, Zhang, Wang, Wu, Liu, Zhang (b0035) 2022; 448 Wang, Zhang, Zhao, Liu, Luo, Zhao, Wu, Ding, Fang, Cheng (b0235) 2023; 5 Huang, Tang, Liu, Zhang, Tang, Wen, Ye, Yang, Li (b0200) 2024; 17 Wang, Zhang, Zhou, Zhao, Liu, Zhao, Sun, Li, Wang, Zhang, Jin, Li, Elzatahry, Hassan, Fan, Zhao, Chao (b0060) 2024; 146 Wu, Huang, Zhang, Yang, Li, Luo, You, Li, Xie, Chen (b0065) 2024; 63 Yu, Chen, Li, Yan, Jiang, Zhou, Wei, Ma, Ji, Chen, Chen (b0265) 2023; 13 Ren, Li, Wang, Liu, Sun, Yuan, Lai, Jiao, Wang (b0165) 2024; 16 Sun, Sun, Yang, Jiang, Tang, Wang (b0095) 2023; 1 Hao, Yuan, Ye, Chao, Davey, Guo, Qiao (b0170) 2021; 60 Xie, Li, Dong (b0070) 2023; 76 Qin, Kuang, Hu, Zhong, Huang, Shen, Wei, Huang, Xu, He (b0080) 2022; 32 Ge, Kong, Wang, Zhao, Ma, Chen, Wan (b0175) 2023; 48 Liu, Liu, Xiao, Zheng, Zhong, Fu, Wang, Zhou (b0230) 2024; 36 Zhang, Zhang, Deng, Xue, Yang, Ma, Wang (b0155) 2024; 34 Ma, Yu, Yan, Chen, Wang, Chen, Chen, Lv (b0135) 2024; 664 Liu, Yao, Ji, Zhang, Gan, Cai, Li, Zhao, Zhao, Zou, Qin, Wang, Liu, Liu, Yang, Miller, Pan, Yang (b0255) 2023; 23 Wang, Tang, Wang, Wu, Bai, Xiong, Yang, Wang, Tan, Liu, Xiong, Lei (b0015) 2023; 33 Cheng, Wang, Fu, Mo, Lu, Gao, Ho, Li, Hu (b0250) 2024; 14 Jiang, Du, Shi, Yang, Liang (b0105) 2023; 8 Liu, Li, Xi, Huang, Li, Jin, Ding, Zhang, Zhang, Guo (b0225) 2024; 63 Guo, Cao, Lu, Zheng, Deng (b0090) 2023; 3 Zheng, Deng, Zheng, Chen, Bai, Liu, Jiang, Zheng, Wang, Wang, Yang, Xiong, Xiong, Lei (b0125) 2024; 24 Ling, Nie, Wu, Zeng, Mo, Ma, Lu, Luo, Huang (b0280) 2024; 18 Yu, He, Chen, Liu, He, Jiang, Chen, Chen (b0130) 2024; 100107 Cao, Sun, Zhang, Luo, Zhang, Chanajaree, Qin, Yang, Lu (b0150) 2023; 14 Zhong, Cao, Zhao, Tadé, Shao (b0020) 2024; 2 Li, Han, Gu, Chou, Wang, Liu, Dou (b0285) 2020; 10 Wang, Wang, Lv, Peng, Song, Yang, Qian (b0210) 2023; 13 Ni, Zhou, Ji, Chen, Yu, Zheng, Qian, Wang, Chen, Yan (b0260) 2023; 33 Zhang, Yang, Wang, Yu, Li, Chen, Chen, Wang (b0140) 2024; 65 Sun, Nian, Ren, Tao (b0055) 2023; 7 Chen, Tan, Guo, Zhang, He, Kuang, Weng, Du, Huang, Huang, Xu, He (b0120) 2024; 669 Qu, Wei, Zhao, Yang, Zhang, Chen, Liu, Li, Han (b0050) 2024; 36 He, Yu, Fu, Li, Li, Li, Zhang, Chen, Chen (b0040) 2024; 70 Cui, Zhang, Yang, Liu, Chen (b0085) 2024; 3 Li, Pan, Peng, Zhao, Zhang, Zhu, Dai, Wang, He (b0160) 2024; 93 Zhang, Weng, Miu, Chen, Hu, Kuang, Huang, Du, Zhu, Chen, Xu, He (b0030) 2024; 482 Chen, Xu (b0075) 2022; 2 Cai, Wang, Ning, He, Chen, Li, Li, Zhou, Wang, Jiang (b0100) 2022; 12 Han, Guo, Ning, Liu, Yi, Luo, Qu, Yue, Lu, Li (b0195) 2024; 36 Chen, Qing, Tang, Yu, He, Huang, Wu, Sun, Wei, Ji, Chen (b0005) 2023; 33 Zhu, Yang, Hu, Yao, Chen, Niu (b0215) 2024; 36 Zhang, Li, Liu, Lu, Liang, Zhou (b0240) 2024; 15 Zhang (10.1016/j.jcis.2024.09.051_b0155) 2024; 34 Deng (10.1016/j.jcis.2024.09.051_b0275) 2024; 63 Wang (10.1016/j.jcis.2024.09.051_b0015) 2023; 33 Zhong (10.1016/j.jcis.2024.09.051_b0020) 2024; 2 Wang (10.1016/j.jcis.2024.09.051_b0060) 2024; 146 Cao (10.1016/j.jcis.2024.09.051_b0150) 2023; 14 Wang (10.1016/j.jcis.2024.09.051_b0210) 2023; 13 Qin (10.1016/j.jcis.2024.09.051_b0080) 2022; 32 Chen (10.1016/j.jcis.2024.09.051_b0075) 2022; 2 Ling (10.1016/j.jcis.2024.09.051_b0280) 2024; 18 Zhu (10.1016/j.jcis.2024.09.051_b0215) 2024; 36 Chen (10.1016/j.jcis.2024.09.051_b0005) 2023; 33 Yu (10.1016/j.jcis.2024.09.051_b0115) 2023; 8 Zheng (10.1016/j.jcis.2024.09.051_b0125) 2024; 24 Ni (10.1016/j.jcis.2024.09.051_b0260) 2023; 33 Wang (10.1016/j.jcis.2024.09.051_b0010) 2024; 94 Yu (10.1016/j.jcis.2024.09.051_b0265) 2023; 13 Zhang (10.1016/j.jcis.2024.09.051_b0030) 2024; 482 Deng (10.1016/j.jcis.2024.09.051_b0145) 2024; 34 Liu (10.1016/j.jcis.2024.09.051_b0255) 2023; 23 Wang (10.1016/j.jcis.2024.09.051_b0235) 2023; 5 Li (10.1016/j.jcis.2024.09.051_b0160) 2024; 93 Qiu (10.1016/j.jcis.2024.09.051_b0205) 2024; 34 Wang (10.1016/j.jcis.2024.09.051_b0025) 2023; 1 Liu (10.1016/j.jcis.2024.09.051_b0225) 2024; 63 Guo (10.1016/j.jcis.2024.09.051_b0090) 2023; 3 Huang (10.1016/j.jcis.2024.09.051_b0200) 2024; 17 Liu (10.1016/j.jcis.2024.09.051_b0230) 2024; 36 Zhang (10.1016/j.jcis.2024.09.051_b0240) 2024; 15 Zhang (10.1016/j.jcis.2024.09.051_b0270) 2023; 464 Liang (10.1016/j.jcis.2024.09.051_b0185) 2024; 493 Hu (10.1016/j.jcis.2024.09.051_b0110) 2024; 34 Zheng (10.1016/j.jcis.2024.09.051_b0245) 2023; 14 Han (10.1016/j.jcis.2024.09.051_b0195) 2024; 36 Sun (10.1016/j.jcis.2024.09.051_b0095) 2023; 1 He (10.1016/j.jcis.2024.09.051_b0190) 2024; 30 Zhu (10.1016/j.jcis.2024.09.051_b0220) 2024; 36 Tang (10.1016/j.jcis.2024.09.051_b0045) 2024; 2402484 Wu (10.1016/j.jcis.2024.09.051_b0065) 2024; 63 Ren (10.1016/j.jcis.2024.09.051_b0165) 2024; 16 Li (10.1016/j.jcis.2024.09.051_b0180) 2024; 136 Xie (10.1016/j.jcis.2024.09.051_b0070) 2023; 76 Cai (10.1016/j.jcis.2024.09.051_b0100) 2022; 12 Sun (10.1016/j.jcis.2024.09.051_b0055) 2023; 7 Chen (10.1016/j.jcis.2024.09.051_b0120) 2024; 669 Gao (10.1016/j.jcis.2024.09.051_b0035) 2022; 448 Jiang (10.1016/j.jcis.2024.09.051_b0105) 2023; 8 Hao (10.1016/j.jcis.2024.09.051_b0170) 2021; 60 Li (10.1016/j.jcis.2024.09.051_b0285) 2020; 10 Zhang (10.1016/j.jcis.2024.09.051_b0140) 2024; 65 Ge (10.1016/j.jcis.2024.09.051_b0175) 2023; 48 Ma (10.1016/j.jcis.2024.09.051_b0135) 2024; 664 He (10.1016/j.jcis.2024.09.051_b0040) 2024; 70 Yu (10.1016/j.jcis.2024.09.051_b0130) 2024; 100107 Qu (10.1016/j.jcis.2024.09.051_b0050) 2024; 36 Cui (10.1016/j.jcis.2024.09.051_b0085) 2024; 3 Cheng (10.1016/j.jcis.2024.09.051_b0250) 2024; 14 |
References_xml | – volume: 100107 year: 2024 ident: b0130 article-title: Zwitterionic materials for aqueous Zn-based energy storage devices: current developments and perspective publication-title: Energy Rev. – volume: 34 start-page: 2313358 year: 2024 ident: b0205 article-title: Highly Compact Zinc Metal Anode and Wide-Temperature Aqueous Electrolyte Enabled by Acetamide Additives for Deep Cycling Zn Batteries publication-title: Adv. Funct. Mater. – volume: 32 start-page: 2206695 year: 2022 ident: b0080 article-title: Building Metal-Molecule Interface towards Stable and Reversible Zn Metal Anodes for Aqueous Rechargeable Zinc Batteries publication-title: Adv. Funct. Mater. – volume: 48 start-page: 2186 year: 2023 end-page: 2189 ident: b0175 article-title: Simple technique of coupling a diode laser into a linear power buildup cavity for Raman gas sensing publication-title: Opt. Lett. – volume: 3 start-page: 2023038 year: 2023 ident: b0090 article-title: The concept, structure, and progress of seawater metal-air batteries publication-title: Microstructures – volume: 34 start-page: 2308762 year: 2024 ident: b0145 article-title: Highly Reversible Zinc-Air Batteries at -40 °C Enabled by Anion-Mediated Biomimetic Fat publication-title: Adv. Funct. Mater. – volume: 30 start-page: e202400567 year: 2024 ident: b0190 article-title: Achieving Dendrite-Free Zinc Metal Anodes via Molecule Anchoring and lon-Transport pumping publication-title: Chem.-Eur. J. – volume: 36 start-page: 2304426 year: 2024 ident: b0215 article-title: The Construction of Binary Phase Electrolyte Interface for Highly Stable Zinc Anodes publication-title: Adv. Mater. – volume: 13 start-page: 2204388 year: 2023 ident: b0210 article-title: Interface Engineering by Hydrophilic and Zincophilic Aluminum Hydroxide Fluoride for Anode-Free Zinc Metal Batteries at Low Temperature publication-title: Adv. Energy Mater. – volume: 36 start-page: 2400370 year: 2024 ident: b0050 article-title: A Temperature Self-Adaptive Electrolyte for Wide-Temperature Aqueous Zinc-Ion Batteries publication-title: Adv. Mater. – volume: 14 start-page: 76 year: 2023 ident: b0245 article-title: Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities publication-title: Nat. Commun. – volume: 669 start-page: 104 year: 2024 end-page: 116 ident: b0120 article-title: Biomass-derived polymer as a flexible “zincophilic–hydrophobic” solid electrolyte interphase layer to enable practical Zn metal anodes publication-title: J. Colloid Interface Sci. – volume: 7 start-page: 2700 year: 2023 end-page: 2731 ident: b0055 article-title: Hydrogen-bond chemistry in rechargeable batteries publication-title: Joule – volume: 63 start-page: e202319091 year: 2024 ident: b0225 article-title: Interfacial Engineering of Zn Metal via a Localized Conjugated Layer for Highly Reversible Aqueous Zinc Ion Battery publication-title: Angew. Chem.-Int. Edit. – volume: 18 start-page: 5003 year: 2024 end-page: 5016 ident: b0280 article-title: Ion Sieve Interface Assisted Zinc Anode with High Zinc Utilization and Ultralong Cycle Life for 61 Wh/kg Mild Aqueous Pouch Battery publication-title: ACS Nano – volume: 8 start-page: 2300758 year: 2023 ident: b0115 article-title: Interface Engineering for Aqueous Aluminum Metal Batteries: Current Progresses and Future Prospects publication-title: Small Methods – volume: 63 start-page: e202401996 year: 2024 ident: b0275 article-title: Unlocking Double Redox Reaction of Metal-Organic Framework for Aqueous Zinc-Ion Battery publication-title: Angew. Chem.-Int. Edit. – volume: 12 start-page: 2202182 year: 2022 ident: b0100 article-title: Advanced In Situ Induced Dual-Mechanism Heterointerface Towards Ultrastable Aqueous Rocking-Chair Zinc-Ion Batteries publication-title: Adv. Energy Mater. – volume: 36 start-page: 2404140 year: 2024 ident: b0230 article-title: Unraveling Paradoxical Effects of Large Current Density on Zn Deposition publication-title: Adv. Mater. – volume: 482 year: 2024 ident: b0030 article-title: Atomic-scale inorganic carbon additive with rich surface polarity and low lattice mismatch for zinc to boost Zn metal anode reversibility publication-title: Chem. Eng. J. – volume: 70 year: 2024 ident: b0040 article-title: Competitive solvation with regulated ion-coordination chemistry toward dendrite-free and long-life Zn metal anodes publication-title: Energy Storage Mater. – volume: 65 year: 2024 ident: b0140 article-title: A solubility-limited, non-protonic polar small molecule co-solvent reveals additive selection in inorganic zinc salts publication-title: Energy Storage Mater. – volume: 76 start-page: 32 year: 2023 end-page: 40 ident: b0070 article-title: Stable anode-free zinc-ion batteries enabled by alloy network- modulated zinc deposition interface publication-title: J. Energy Chem. – volume: 8 start-page: 2300823 year: 2023 ident: b0105 article-title: Stabilizing Zinc Anodes by a Uniform Nucleation Process with Cysteine Additive publication-title: Small Methods – volume: 3 year: 2024 ident: b0085 article-title: Research progress on the design of electrolyte additives and their functions for zinc-ion batteries publication-title: Mater. Futures – volume: 17 start-page: 591 year: 2024 end-page: 601 ident: b0200 article-title: Ion-dipole interaction motivated Zn2+ pump and anion repulsion interface enable ultrahigh-rate Zn metal anodes publication-title: Energy Environ. Sci. – volume: 24 start-page: 4672 year: 2024 end-page: 4681 ident: b0125 article-title: Highly Reversible Zn-Air Batteries Enabled by Tuned Valence Electron and Steric Hindrance on Atomic Fe-N4-C Sites publication-title: Nano Lett. – volume: 448 year: 2022 ident: b0035 article-title: Rational design of ZnMn2O4 nanoparticles on carbon nanotubes for high-rate and durable aqueous zinc-ion batteries publication-title: Chem. Eng. J. – volume: 33 start-page: 2302293 year: 2023 ident: b0260 article-title: Excluding the Trouble from Interfacial Water by Covalent Organic Polymer to Realize Extremely Reversible Zn Anode publication-title: Adv. Funct. Mater. – volume: 2 start-page: 94 year: 2024 end-page: 100 ident: b0020 article-title: Optimization of two-dimensional solid-state electrolyte–anode interface by integrating zinc into composite anode with dual-conductive phases, Green publication-title: Carbon – volume: 34 start-page: 2310995 year: 2024 ident: b0155 article-title: In Situ Electrochemically-Bonded Self-Adapting Polymeric Interface for Durable Aqueous Zinc Ion Batteries publication-title: Adv. Funct. Mater. – volume: 13 start-page: 2300550 year: 2023 ident: b0265 article-title: In Situ Construction of Anode-Molecule Interface via Lone-Pair Electrons in Trace Organic Molecules Additives to Achieve Stable Zinc Metal Anodes publication-title: Adv. Energy Mater. – volume: 1 start-page: 193 year: 2023 end-page: 209 ident: b0025 article-title: Advances in reactive co-precipitation technology for preparing high-performance cathodes, Green publication-title: Carbon – volume: 464 year: 2023 ident: b0270 article-title: Engineering d-p orbital hybridization through regulation of interband energy separation for durable aqueous Zn//VO2(B) batteries publication-title: Chem. Eng. J. – volume: 493 year: 2024 ident: b0185 article-title: Synergistic modulation of hydrogen bond network reconstruction and pH buffering of electrolyte enables highly reversible Zn anode publication-title: Chem. Eng. J. – volume: 36 start-page: 2308086 year: 2024 ident: b0195 article-title: Lotus Effect Inspired Hydrophobic Strategy for Stable Zn Metal Anodes publication-title: Adv. Mater. – volume: 14 start-page: 2304003 year: 2024 ident: b0250 article-title: Texture Exposure of Unconventional (101)Zn Facet: Enabling Dendrite-Free Zn Deposition on Metallic Zinc Anodes publication-title: Adv. Energy Mater. – volume: 146 start-page: 6199 year: 2024 end-page: 6208 ident: b0060 article-title: Tandem Chemistry with Janus Mesopores Accelerator for Efficient Aqueous Batteries publication-title: J. Am. Chem. Soc. – volume: 664 start-page: 539 year: 2024 end-page: 548 ident: b0135 article-title: Nitroxyl radical triggered the construction of a molecular protective layer for achieving durable Zn metal anodes publication-title: J. Colloid Interface Sci. – volume: 63 start-page: e202319051 year: 2024 ident: b0065 article-title: Multifunctional Cellulose Nanocrystals Electrolyte Additive Enable Ultrahigh-Rate and Dendrite-Free Zn Anodes for Rechargeable Aqueous Zinc Batteries publication-title: Angew. Chem.-Int. Edit. – volume: 2 start-page: 2022012 year: 2022 ident: b0075 article-title: Design and manufacture of high-performance microbatteries: lithium and beyond publication-title: Microstructures – volume: 15 start-page: 2735 year: 2024 ident: b0240 article-title: Single 0001 -oriented zinc metal anode enables sustainable zinc batteries publication-title: Nat. Commun. – volume: 93 start-page: 213 year: 2024 end-page: 220 ident: b0160 article-title: Regulating interfacial behavior of zinc metal anode via metal-organic framework functionalized separator publication-title: J. Energy Chem. – volume: 36 start-page: 2308577 year: 2024 ident: b0220 article-title: Selective Shielding of the (002) Plane Enabling Vertically Oriented Zinc Plating for Dendrite-Free Zinc Anode publication-title: Adv. Mater. – volume: 16 start-page: 117 year: 2024 ident: b0165 article-title: Thioacetamide Additive Homogenizing Zn Deposition Revealed by In Situ Digital Holography for Advanced Zn Ion Batteries publication-title: Nano-Micro Lett. – volume: 14 start-page: 2302770 year: 2023 ident: b0150 article-title: Interfacial Double-Coordination Effect Guiding Uniform Electrodeposition for Reversible Zinc Metal Anode publication-title: Adv. Energy Mater. – volume: 1 start-page: 375 year: 2023 end-page: 404 ident: b0095 article-title: Advances in boron nitride-based materials for electrochemical energy storage and conversion publication-title: EcoEnergy – volume: 33 year: 2023 ident: b0005 article-title: A self-supported hierarchic 3D double skeleton host for highly stable lithium metal batteries publication-title: Mater. Today Energy – volume: 94 year: 2024 ident: b0010 article-title: The impact of surface functional groups on MXene anode protective layer in aqueous zinc-ion batteries: Understanding the mechanism publication-title: Journal of Energy Storage – volume: 2402484 year: 2024 ident: b0045 article-title: Interfacial Dual-Modulation via Cationic Electrostatic Shielding and Anionic Preferential Adsorption toward Planar and Reversible Zinc Electrodeposition publication-title: Adv. Funct. Mater. – volume: 33 start-page: 2307390 year: 2023 ident: b0015 article-title: Electrolyte Tuned Robust Interface toward Fast-Charging Zn-Air Battery with Atomic Mo Site Catalyst publication-title: Adv. Funct. Mater. – volume: 34 start-page: 2311773 year: 2024 ident: b0110 article-title: A Double-Charged Organic Molecule Additive to Customize Electric Double Layer for Super-Stable and Deep-Rechargeable Zn Metal Pouch Batteries publication-title: Adv. Funct. Mater. – volume: 136 start-page: e202406906 year: 2024 ident: b0180 article-title: Intrinsically Decoupled Coordination Chemistries Enable Quasi-Eutectic Electrolytes with Fast Kinetics toward Enhanced Zinc-Ion Capacitors publication-title: Angew. Chem.-Int. Edit. – volume: 23 start-page: 541 year: 2023 end-page: 549 ident: b0255 article-title: Nanoscale Ultrafine Zinc Metal Anodes for High Stability Aqueous Zinc Ion Batteries publication-title: Nano Lett. – volume: 10 start-page: 2001852 year: 2020 ident: b0285 article-title: Electron Delocalization and Dissolution-Restraint in Vanadium Oxide Superlattices to Boost Electrochemical Performance of Aqueous Zinc-Ion Batteries publication-title: Adv. Energy Mater. – volume: 5 start-page: e330 year: 2023 ident: b0235 article-title: Designing interstitial boron-doped tunnel-type vanadium dioxide cathode for enhancing zinc ion storage capability publication-title: Carbon Energy – volume: 60 start-page: 7366 year: 2021 end-page: 7375 ident: b0170 article-title: Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low-Cost Antisolvents publication-title: Angew. Chem.-Int. Edit. – volume: 30 start-page: e202400567 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0190 article-title: Achieving Dendrite-Free Zinc Metal Anodes via Molecule Anchoring and lon-Transport pumping publication-title: Chem.-Eur. J. doi: 10.1002/chem.202400567 – volume: 2 start-page: 2022012 year: 2022 ident: 10.1016/j.jcis.2024.09.051_b0075 article-title: Design and manufacture of high-performance microbatteries: lithium and beyond publication-title: Microstructures doi: 10.20517/microstructures.2022.10 – volume: 5 start-page: e330 year: 2023 ident: 10.1016/j.jcis.2024.09.051_b0235 article-title: Designing interstitial boron-doped tunnel-type vanadium dioxide cathode for enhancing zinc ion storage capability publication-title: Carbon Energy doi: 10.1002/cey2.330 – volume: 493 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0185 article-title: Synergistic modulation of hydrogen bond network reconstruction and pH buffering of electrolyte enables highly reversible Zn anode publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.152622 – volume: 36 start-page: 2400370 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0050 article-title: A Temperature Self-Adaptive Electrolyte for Wide-Temperature Aqueous Zinc-Ion Batteries publication-title: Adv. Mater. doi: 10.1002/adma.202400370 – volume: 17 start-page: 591 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0200 article-title: Ion-dipole interaction motivated Zn2+ pump and anion repulsion interface enable ultrahigh-rate Zn metal anodes publication-title: Energy Environ. Sci. doi: 10.1039/D3EE02945J – volume: 1 start-page: 193 year: 2023 ident: 10.1016/j.jcis.2024.09.051_b0025 article-title: Advances in reactive co-precipitation technology for preparing high-performance cathodes, Green publication-title: Carbon – volume: 136 start-page: e202406906 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0180 article-title: Intrinsically Decoupled Coordination Chemistries Enable Quasi-Eutectic Electrolytes with Fast Kinetics toward Enhanced Zinc-Ion Capacitors publication-title: Angew. Chem.-Int. Edit. doi: 10.1002/ange.202406906 – volume: 33 start-page: 2302293 year: 2023 ident: 10.1016/j.jcis.2024.09.051_b0260 article-title: Excluding the Trouble from Interfacial Water by Covalent Organic Polymer to Realize Extremely Reversible Zn Anode publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202302293 – volume: 18 start-page: 5003 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0280 article-title: Ion Sieve Interface Assisted Zinc Anode with High Zinc Utilization and Ultralong Cycle Life for 61 Wh/kg Mild Aqueous Pouch Battery publication-title: ACS Nano doi: 10.1021/acsnano.3c11115 – volume: 146 start-page: 6199 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0060 article-title: Tandem Chemistry with Janus Mesopores Accelerator for Efficient Aqueous Batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c14019 – volume: 16 start-page: 117 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0165 article-title: Thioacetamide Additive Homogenizing Zn Deposition Revealed by In Situ Digital Holography for Advanced Zn Ion Batteries publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01310-3 – volume: 15 start-page: 2735 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0240 article-title: Single 0001 -oriented zinc metal anode enables sustainable zinc batteries publication-title: Nat. Commun. doi: 10.1038/s41467-024-47101-1 – volume: 33 year: 2023 ident: 10.1016/j.jcis.2024.09.051_b0005 article-title: A self-supported hierarchic 3D double skeleton host for highly stable lithium metal batteries publication-title: Mater. Today Energy – volume: 36 start-page: 2308577 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0220 article-title: Selective Shielding of the (002) Plane Enabling Vertically Oriented Zinc Plating for Dendrite-Free Zinc Anode publication-title: Adv. Mater. doi: 10.1002/adma.202308577 – volume: 10 start-page: 2001852 year: 2020 ident: 10.1016/j.jcis.2024.09.051_b0285 article-title: Electron Delocalization and Dissolution-Restraint in Vanadium Oxide Superlattices to Boost Electrochemical Performance of Aqueous Zinc-Ion Batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001852 – volume: 448 year: 2022 ident: 10.1016/j.jcis.2024.09.051_b0035 article-title: Rational design of ZnMn2O4 nanoparticles on carbon nanotubes for high-rate and durable aqueous zinc-ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137742 – volume: 13 start-page: 2204388 year: 2023 ident: 10.1016/j.jcis.2024.09.051_b0210 article-title: Interface Engineering by Hydrophilic and Zincophilic Aluminum Hydroxide Fluoride for Anode-Free Zinc Metal Batteries at Low Temperature publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202204388 – volume: 12 start-page: 2202182 year: 2022 ident: 10.1016/j.jcis.2024.09.051_b0100 article-title: Advanced In Situ Induced Dual-Mechanism Heterointerface Towards Ultrastable Aqueous Rocking-Chair Zinc-Ion Batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202202182 – volume: 664 start-page: 539 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0135 article-title: Nitroxyl radical triggered the construction of a molecular protective layer for achieving durable Zn metal anodes publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2024.03.085 – volume: 65 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0140 article-title: A solubility-limited, non-protonic polar small molecule co-solvent reveals additive selection in inorganic zinc salts publication-title: Energy Storage Mater. – volume: 34 start-page: 2308762 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0145 article-title: Highly Reversible Zinc-Air Batteries at -40 °C Enabled by Anion-Mediated Biomimetic Fat publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202308762 – volume: 34 start-page: 2310995 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0155 article-title: In Situ Electrochemically-Bonded Self-Adapting Polymeric Interface for Durable Aqueous Zinc Ion Batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202310995 – volume: 3 start-page: 2023038 year: 2023 ident: 10.1016/j.jcis.2024.09.051_b0090 article-title: The concept, structure, and progress of seawater metal-air batteries publication-title: Microstructures doi: 10.20517/microstructures.2023.30 – volume: 8 start-page: 2300823 year: 2023 ident: 10.1016/j.jcis.2024.09.051_b0105 article-title: Stabilizing Zinc Anodes by a Uniform Nucleation Process with Cysteine Additive publication-title: Small Methods doi: 10.1002/smtd.202300823 – volume: 36 start-page: 2308086 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0195 article-title: Lotus Effect Inspired Hydrophobic Strategy for Stable Zn Metal Anodes publication-title: Adv. Mater. doi: 10.1002/adma.202308086 – volume: 464 year: 2023 ident: 10.1016/j.jcis.2024.09.051_b0270 article-title: Engineering d-p orbital hybridization through regulation of interband energy separation for durable aqueous Zn//VO2(B) batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.142711 – volume: 7 start-page: 2700 year: 2023 ident: 10.1016/j.jcis.2024.09.051_b0055 article-title: Hydrogen-bond chemistry in rechargeable batteries publication-title: Joule doi: 10.1016/j.joule.2023.10.010 – volume: 70 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0040 article-title: Competitive solvation with regulated ion-coordination chemistry toward dendrite-free and long-life Zn metal anodes publication-title: Energy Storage Mater. – volume: 60 start-page: 7366 year: 2021 ident: 10.1016/j.jcis.2024.09.051_b0170 article-title: Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low-Cost Antisolvents publication-title: Angew. Chem.-Int. Edit. doi: 10.1002/anie.202016531 – volume: 36 start-page: 2404140 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0230 article-title: Unraveling Paradoxical Effects of Large Current Density on Zn Deposition publication-title: Adv. Mater. doi: 10.1002/adma.202404140 – volume: 63 start-page: e202401996 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0275 article-title: Unlocking Double Redox Reaction of Metal-Organic Framework for Aqueous Zinc-Ion Battery publication-title: Angew. Chem.-Int. Edit. doi: 10.1002/anie.202401996 – volume: 32 start-page: 2206695 year: 2022 ident: 10.1016/j.jcis.2024.09.051_b0080 article-title: Building Metal-Molecule Interface towards Stable and Reversible Zn Metal Anodes for Aqueous Rechargeable Zinc Batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202206695 – volume: 1 start-page: 375 year: 2023 ident: 10.1016/j.jcis.2024.09.051_b0095 article-title: Advances in boron nitride-based materials for electrochemical energy storage and conversion publication-title: EcoEnergy doi: 10.1002/ece2.22 – volume: 13 start-page: 2300550 year: 2023 ident: 10.1016/j.jcis.2024.09.051_b0265 article-title: In Situ Construction of Anode-Molecule Interface via Lone-Pair Electrons in Trace Organic Molecules Additives to Achieve Stable Zinc Metal Anodes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202300550 – volume: 33 start-page: 2307390 year: 2023 ident: 10.1016/j.jcis.2024.09.051_b0015 article-title: Electrolyte Tuned Robust Interface toward Fast-Charging Zn-Air Battery with Atomic Mo Site Catalyst publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202307390 – volume: 48 start-page: 2186 year: 2023 ident: 10.1016/j.jcis.2024.09.051_b0175 article-title: Simple technique of coupling a diode laser into a linear power buildup cavity for Raman gas sensing publication-title: Opt. Lett. doi: 10.1364/OL.486417 – volume: 23 start-page: 541 year: 2023 ident: 10.1016/j.jcis.2024.09.051_b0255 article-title: Nanoscale Ultrafine Zinc Metal Anodes for High Stability Aqueous Zinc Ion Batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c03919 – volume: 93 start-page: 213 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0160 article-title: Regulating interfacial behavior of zinc metal anode via metal-organic framework functionalized separator publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2024.02.011 – volume: 63 start-page: e202319091 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0225 article-title: Interfacial Engineering of Zn Metal via a Localized Conjugated Layer for Highly Reversible Aqueous Zinc Ion Battery publication-title: Angew. Chem.-Int. Edit. doi: 10.1002/anie.202319091 – volume: 94 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0010 article-title: The impact of surface functional groups on MXene anode protective layer in aqueous zinc-ion batteries: Understanding the mechanism publication-title: Journal of Energy Storage doi: 10.1016/j.est.2024.112360 – volume: 100107 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0130 article-title: Zwitterionic materials for aqueous Zn-based energy storage devices: current developments and perspective publication-title: Energy Rev. – volume: 3 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0085 article-title: Research progress on the design of electrolyte additives and their functions for zinc-ion batteries publication-title: Mater. Futures doi: 10.1088/2752-5724/acef41 – volume: 14 start-page: 2302770 year: 2023 ident: 10.1016/j.jcis.2024.09.051_b0150 article-title: Interfacial Double-Coordination Effect Guiding Uniform Electrodeposition for Reversible Zinc Metal Anode publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202302770 – volume: 76 start-page: 32 year: 2023 ident: 10.1016/j.jcis.2024.09.051_b0070 article-title: Stable anode-free zinc-ion batteries enabled by alloy network- modulated zinc deposition interface publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2022.08.040 – volume: 8 start-page: 2300758 year: 2023 ident: 10.1016/j.jcis.2024.09.051_b0115 article-title: Interface Engineering for Aqueous Aluminum Metal Batteries: Current Progresses and Future Prospects publication-title: Small Methods doi: 10.1002/smtd.202300758 – volume: 34 start-page: 2311773 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0110 article-title: A Double-Charged Organic Molecule Additive to Customize Electric Double Layer for Super-Stable and Deep-Rechargeable Zn Metal Pouch Batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202311773 – volume: 14 start-page: 2304003 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0250 article-title: Texture Exposure of Unconventional (101)Zn Facet: Enabling Dendrite-Free Zn Deposition on Metallic Zinc Anodes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202304003 – volume: 2 start-page: 94 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0020 article-title: Optimization of two-dimensional solid-state electrolyte–anode interface by integrating zinc into composite anode with dual-conductive phases, Green publication-title: Carbon – volume: 63 start-page: e202319051 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0065 article-title: Multifunctional Cellulose Nanocrystals Electrolyte Additive Enable Ultrahigh-Rate and Dendrite-Free Zn Anodes for Rechargeable Aqueous Zinc Batteries publication-title: Angew. Chem.-Int. Edit. doi: 10.1002/anie.202319051 – volume: 24 start-page: 4672 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0125 article-title: Highly Reversible Zn-Air Batteries Enabled by Tuned Valence Electron and Steric Hindrance on Atomic Fe-N4-C Sites publication-title: Nano Lett. doi: 10.1021/acs.nanolett.4c01078 – volume: 669 start-page: 104 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0120 article-title: Biomass-derived polymer as a flexible “zincophilic–hydrophobic” solid electrolyte interphase layer to enable practical Zn metal anodes publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2024.04.234 – volume: 36 start-page: 2304426 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0215 article-title: The Construction of Binary Phase Electrolyte Interface for Highly Stable Zinc Anodes publication-title: Adv. Mater. doi: 10.1002/adma.202304426 – volume: 14 start-page: 76 year: 2023 ident: 10.1016/j.jcis.2024.09.051_b0245 article-title: Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities publication-title: Nat. Commun. doi: 10.1038/s41467-022-35630-6 – volume: 482 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0030 article-title: Atomic-scale inorganic carbon additive with rich surface polarity and low lattice mismatch for zinc to boost Zn metal anode reversibility publication-title: Chem. Eng. J. – volume: 34 start-page: 2313358 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0205 article-title: Highly Compact Zinc Metal Anode and Wide-Temperature Aqueous Electrolyte Enabled by Acetamide Additives for Deep Cycling Zn Batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202313358 – volume: 2402484 year: 2024 ident: 10.1016/j.jcis.2024.09.051_b0045 article-title: Interfacial Dual-Modulation via Cationic Electrostatic Shielding and Anionic Preferential Adsorption toward Planar and Reversible Zinc Electrodeposition publication-title: Adv. Funct. Mater. |
SSID | ssj0011559 |
Score | 2.5611002 |
Snippet | Thiamine hydrochloride (TH) acts as a highly efficient additive to traditional ZnSO4 electrolyte, which combines zincophilic groups and polar groups, in situ... The highly reversible electrochemical deposition and dissolution of zinc metal anode is a critical feature for the practical application of aqueous zinc-ion... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 772 |
SubjectTerms | Aqueous zinc-ion batteries Double-coordination effect Electric double layer Electrolyte additives Zinc metal anodes |
Title | Interfacial double-coordination effect reconstructing anode/electrolyte interface for long-term and highly reversible Zn metal anodes |
URI | https://dx.doi.org/10.1016/j.jcis.2024.09.051 https://www.ncbi.nlm.nih.gov/pubmed/39265347 https://www.proquest.com/docview/3104038700 |
Volume | 678 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB612wNwQFBey6MyEjdk1l7beRyrFdUCoicqrbhYTjypUoWkottDL9z434xjZwWH9sA1sh0r48x845n5BuBdQWY5K7HmMs9rrhttuCsx5LrK0jlV-2Kscv16mq3P9OeN2ezBaqqFCWmVSfdHnT5q6_Rkkb7m4rJtQ40vrZeXeYgPEGrY7MPBUpWZmcHB8acv69NdMCFE3mKmh-RhQqqdiWleF3UbWLuXke7UyNvs0234c7RDJ4_gYQKQ7Dju8THsYX8I91ZT37ZDePAXxeAT-D1e-TUu3IwzP1xXHfJ6II-zjdeALCZ0sNExTmSy_Tlz_eBxkXrkdDdbZG1aBxnBXNYN_TkPWp1GehY4j7sbFtigftIv1iH73rMfSLg-LnT1FM5OPn5brXlqvcBrZbItV6WuRNYgakIoAuula4rGkK9WKIHekRdipJe5I_c2c1r7vCIP3SnvM1mIqmrUM5j1Q48vgHmVOwJpXhmB2hTS1S5gPoGi0QXNmYOcPritEy95aI_R2SkB7cIGIdkgJCtKS0Kaw_vdnMvIynHnaDPJ0f5ztiyZjTvnvZ2EbkmGIZLiehyuryxhYh3i_kLM4Xk8Dbt9EODMjNL5y_986yu4vww9hoXk0ryGGUke3xDw2VZHsP_hlzxKx_sP9gwDsg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKORQOCMpreRqJGzJrr-04OaIV1QJtT6204mI5tlOlCklFt4deuPG_mYmdFRzaA9fIdqzMZPyN55sZQt6XcCwXVfRMGOOZapRmrorIdRWVc9KHcsxyPTouVqfq61qvd8hyyoVBWmW2_cmmj9Y6P5nnrzm_aFvM8YX1TGUwPgCoYX2H3FVaGuT1ffy15XkIjLslnodgODxnziSS17lvsWb3IhU71eKm0-km9DmeQgcPyYMMH-mntMNHZCf2-2RvOXVt2yf3_yow-Jj8Hi_8Gof34jQMV3UXmR_A32zTJSBNdA46usW5lGx_Rl0_hDjPHXK6602kbV4nUgC5tBv6M4Y2HUYGihWPu2uKtaB-wg_WRfq9pz8ioPq00OUTcnrw-WS5YrnxAvNSFxsmK1XzoolRAT7h0S9cUzYaPLVS8hgc-CBaBGEcOLeFUyqYGvxzJ0MoRMnrupFPyW4_9PE5oUEaBxAtSM2j0qVw3iHi45E3qoQ5MyKmD259rkqOzTE6O9HPzi0KyaKQLK8sCGlGPmznXKSaHLeO1pMc7T-aZeHQuHXeu0noFmSIcRTXx-Hq0gIiVhj153xGniVt2O4D4GahpTIv_vOtb8ne6uTo0B5-Of72ktxbYLdhLpjQr8guaEF8DRBoU78ZVfwPLQEEfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+double-coordination+effect+reconstructing+anode%2Felectrolyte+interface+for+long-term+and+highly+reversible+Zn+metal+anodes&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Zhou%2C+Jie&rft.au=Yu%2C+Huaming&rft.au=Qing%2C+Piao&rft.au=Chen%2C+Dongping&rft.date=2025-01-15&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=678&rft.issue=Pt+B&rft.spage=772&rft_id=info:doi/10.1016%2Fj.jcis.2024.09.051&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |