A beyond Born–Oppenheimer treatment of C6H6+ radical cation for diabatic surfaces: Photoelectron spectra of its neutral analog using time-dependent discrete variable representation
We employ theoretically “exact” and numerically “accurate” Beyond Born–Oppenheimer (BBO) treatment to construct diabatic potential energy surfaces (PESs) of the benzene radical cation (C6H6+) for the first time and explore the workability of the time-dependent discrete variable representation (TDDVR...
Saved in:
Published in | The Journal of chemical physics Vol. 154; no. 9; pp. 094306 - 94326 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
07.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We employ theoretically “exact” and numerically “accurate” Beyond Born–Oppenheimer (BBO) treatment to construct diabatic potential energy surfaces (PESs) of the benzene radical cation (C6H6+) for the first time and explore the workability of the time-dependent discrete variable representation (TDDVR) method for carrying out dynamical calculations to evaluate the photoelectron (PE) spectra of its neutral analog. Ab initio adiabatic PESs and nonadiabatic coupling terms are computed over a series of pairwise normal modes, which exhibit rich nonadiabatic interactions starting from Jahn–Teller interactions and accidental conical intersections/seams to pseudo Jahn–Teller couplings. Once the electronic structure calculation is completed on the low-lying five doublet electronic states (X̃2E1g, B̃2E2g, and C̃2A2u) of the cationic species, diabatization is carried out employing the adiabatic-to-diabatic transformation (ADT) equations for the five-state sub-Hilbert space to compute highly accurate ADT angles, and thereby, single-valued, smooth, symmetric, and continuous diabatic PESs and couplings are constructed. Subsequently, such surface matrices are used to perform multi-state multi-mode nuclear dynamics for simulating PE spectra of benzene. Our theoretical findings clearly depict that the spectra for X̃2E1g and B̃2E2g−C̃2A2u states obtained from BBO treatment and TDDVR dynamics exhibit reasonably good agreement with the experimental results as well as with the findings of other theoretical approaches. |
---|---|
AbstractList | We employ theoretically “exact” and numerically “accurate” Beyond Born–Oppenheimer (BBO) treatment to construct diabatic potential energy surfaces (PESs) of the benzene radical cation (C6H6+) for the first time and explore the workability of the time-dependent discrete variable representation (TDDVR) method for carrying out dynamical calculations to evaluate the photoelectron (PE) spectra of its neutral analog. Ab initio adiabatic PESs and nonadiabatic coupling terms are computed over a series of pairwise normal modes, which exhibit rich nonadiabatic interactions starting from Jahn–Teller interactions and accidental conical intersections/seams to pseudo Jahn–Teller couplings. Once the electronic structure calculation is completed on the low-lying five doublet electronic states (X̃2E1g, B̃2E2g, and C̃2A2u) of the cationic species, diabatization is carried out employing the adiabatic-to-diabatic transformation (ADT) equations for the five-state sub-Hilbert space to compute highly accurate ADT angles, and thereby, single-valued, smooth, symmetric, and continuous diabatic PESs and couplings are constructed. Subsequently, such surface matrices are used to perform multi-state multi-mode nuclear dynamics for simulating PE spectra of benzene. Our theoretical findings clearly depict that the spectra for X̃2E1g and B̃2E2g−C̃2A2u states obtained from BBO treatment and TDDVR dynamics exhibit reasonably good agreement with the experimental results as well as with the findings of other theoretical approaches. We employ theoretically "exact" and numerically "accurate" Beyond Born-Oppenheimer (BBO) treatment to construct diabatic potential energy surfaces (PESs) of the benzene radical cation (C6H6 +) for the first time and explore the workability of the time-dependent discrete variable representation (TDDVR) method for carrying out dynamical calculations to evaluate the photoelectron (PE) spectra of its neutral analog. Ab initio adiabatic PESs and nonadiabatic coupling terms are computed over a series of pairwise normal modes, which exhibit rich nonadiabatic interactions starting from Jahn-Teller interactions and accidental conical intersections/seams to pseudo Jahn-Teller couplings. Once the electronic structure calculation is completed on the low-lying five doublet electronic states (X̃2E1g, B̃2E2g, and C̃2A2u) of the cationic species, diabatization is carried out employing the adiabatic-to-diabatic transformation (ADT) equations for the five-state sub-Hilbert space to compute highly accurate ADT angles, and thereby, single-valued, smooth, symmetric, and continuous diabatic PESs and couplings are constructed. Subsequently, such surface matrices are used to perform multi-state multi-mode nuclear dynamics for simulating PE spectra of benzene. Our theoretical findings clearly depict that the spectra for X̃2E1g and B̃2E2g-C̃2A2u states obtained from BBO treatment and TDDVR dynamics exhibit reasonably good agreement with the experimental results as well as with the findings of other theoretical approaches.We employ theoretically "exact" and numerically "accurate" Beyond Born-Oppenheimer (BBO) treatment to construct diabatic potential energy surfaces (PESs) of the benzene radical cation (C6H6 +) for the first time and explore the workability of the time-dependent discrete variable representation (TDDVR) method for carrying out dynamical calculations to evaluate the photoelectron (PE) spectra of its neutral analog. Ab initio adiabatic PESs and nonadiabatic coupling terms are computed over a series of pairwise normal modes, which exhibit rich nonadiabatic interactions starting from Jahn-Teller interactions and accidental conical intersections/seams to pseudo Jahn-Teller couplings. Once the electronic structure calculation is completed on the low-lying five doublet electronic states (X̃2E1g, B̃2E2g, and C̃2A2u) of the cationic species, diabatization is carried out employing the adiabatic-to-diabatic transformation (ADT) equations for the five-state sub-Hilbert space to compute highly accurate ADT angles, and thereby, single-valued, smooth, symmetric, and continuous diabatic PESs and couplings are constructed. Subsequently, such surface matrices are used to perform multi-state multi-mode nuclear dynamics for simulating PE spectra of benzene. Our theoretical findings clearly depict that the spectra for X̃2E1g and B̃2E2g-C̃2A2u states obtained from BBO treatment and TDDVR dynamics exhibit reasonably good agreement with the experimental results as well as with the findings of other theoretical approaches. |
Author | Ravi, Satyam Naskar, Koushik Mukherjee, Soumya Adhikari, Satrajit Sardar, Subhankar |
Author_xml | – sequence: 1 givenname: Soumya surname: Mukherjee fullname: Mukherjee, Soumya organization: School of Chemical Sciences, Indian Association for the Cultivation of Science – sequence: 2 givenname: Satyam surname: Ravi fullname: Ravi, Satyam organization: School of Chemical Sciences, Indian Association for the Cultivation of Science – sequence: 3 givenname: Koushik surname: Naskar fullname: Naskar, Koushik organization: School of Chemical Sciences, Indian Association for the Cultivation of Science – sequence: 4 givenname: Subhankar surname: Sardar fullname: Sardar, Subhankar organization: Department of Chemistry, Bhatter College – sequence: 5 givenname: Satrajit surname: Adhikari fullname: Adhikari, Satrajit organization: School of Chemical Sciences, Indian Association for the Cultivation of Science |
BookMark | eNqdkU9u1TAQxi1UJF4LC25giQ1_lNZ-TpyYXXkCilSpXcA6cpxx68rPDmOnUne9Q-_CgTgJTl8RUsWqq5mRf_N9M559shdiAEJec3bImRRHzSFjNROSPyMrzjpVtVKxPbJibM0rJZl8QfZTumKM8XZdr8ivYzrATQwj_RQx_L69O5smCJfgtoA0I-i8hZBptHQjT-QHinp0RntqdHYxUBuRjk4PpTI0zWi1gfSRnl_GHMGDyVigNC2JXkRcTjTAXCpPddA-XtA5uXBBczGsRije4-I3umQQMtBrjUXeA0WYEFJ5uzd-SZ5b7RO8eogH5MeXz983J9Xp2ddvm-PTyohG5kp0dt0qI0Rjre24kbXRtR6MkaMCPiiuhhY6aRowrZagJLdWDG0tGShhdSsOyNud7oTx5wwp99syGXivA8Q59etaKdE1vFvQN4_Qqzhj2fGeaiRra8EKdbSjDMaUEGxv3G6l8ifO95z1yx37pn-4Y-l496hjQrfVePNf9v2OTX9VnwZfR_wH9tNoxR-Wdb_J |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1088_1742_6596_2769_1_012012 crossref_primary_10_1002_cphc_202400130 crossref_primary_10_1063_5_0177186 crossref_primary_10_1002_qua_27212 crossref_primary_10_1021_acs_jpca_1c08912 crossref_primary_10_1021_acs_jctc_1c00419 crossref_primary_10_1021_acs_jpca_2c09088 crossref_primary_10_1002_cphc_202200482 crossref_primary_10_1016_j_chemphys_2022_111588 crossref_primary_10_1039_D1CP04733G crossref_primary_10_1063_5_0066234 crossref_primary_10_1063_5_0067660 crossref_primary_10_1039_D1CP01843D crossref_primary_10_1021_acs_jpca_1c10583 |
Cites_doi | 10.1063/1.1646371 10.1063/1.1491398 10.1039/c1cp20525k 10.1063/1.1491397 10.1103/physrevlett.105.123002 10.1016/s0009-2614(00)00358-4 10.1063/1.2050647 10.1021/jp311597c 10.1016/j.jms.2004.06.003 10.1063/1.3660686 10.1098/rspa.1958.0022 10.1021/jp507459m 10.1016/s0301-0104(97)00244-9 10.1063/1.478252 10.1021/jp992742o 10.1080/00268976.2017.1340680 10.1063/1.3108488 10.1103/physreva.62.032507 10.1080/0144235x.2015.1051354 10.1017/s0305004100016108 10.1063/1.1540622 10.1063/1.4901986 10.1016/j.chemphys.2007.10.006 10.1063/1.2170089 10.1039/b913342a 10.1063/1.452463 10.1063/1.5064519 10.1016/j.chemphys.2004.01.006 10.1016/j.cplett.2010.07.038 10.1063/1.4998406 10.1021/jp953105a 10.1063/1.478902 10.1039/df9633500077 10.1063/1.3622766 10.1063/1.463754 10.1063/1.3103930 10.1063/1.472748 10.1002/qua.22578 10.1039/b805990j 10.1016/j.comptc.2019.03.011 10.1039/c8cp01394b 10.1063/1.2996349 10.1098/rspa.1937.0142 10.1063/1.1519006 10.1063/1.434032 10.1021/acs.jpca.7b04592 10.1063/1.2393228 10.1007/bf03046050 10.1098/rspa.1984.0023 10.1039/d0cp04052e 10.1021/jp907111u 10.1080/00268976700100011 10.1063/1.1592512 10.1080/0026897021000054916 10.1002/qua.20095 10.1080/00268979200100231 10.1063/1.455100 10.1016/s0009-2614(02)01920-6 10.1016/0009-2614(75)85599-0 10.1016/s0065-3276(03)44013-6 10.1063/1.4704789 10.1063/1.480823 10.1002/jcc.540141112 10.1002/qua.20666 10.1063/1.479574 10.1080/0144235x.2019.1672987 10.1063/1.479360 10.1063/1.481959 10.1002/andp.19273892002 10.1016/s0370-1573(01)00052-7 10.1021/acs.jctc.9b00948 10.1142/s0219633613500429 10.1080/00268970903362326 10.1063/1.4938526 10.1016/j.chemphys.2018.09.017 10.1063/1.478467 10.1002/9780470142813.ch2 10.1002/anie.199306031 10.1103/physrev.56.340 10.1007/s12039-010-0084-x 10.1016/0009-2614(91)85042-u 10.1063/1.474498 10.1063/1.1599275 10.1063/1.1750327 10.1063/5.0021885 10.1016/j.chemphys.2005.11.027 10.1021/jp8029709 10.1080/00268970802172503 10.1063/1.1553977 10.1007/s12039-011-0195-z 10.1021/acsomega.8b01648 10.1016/0009-2614(70)85060-6 10.1063/1.3236839 10.1063/1.1519007 10.1063/1.476142 10.1021/cr200096s 10.1080/0144235X.2018.1548103 10.1016/s0370-1573(99)00047-2 10.1098/rspa.1957.0010 10.1063/1.1758700 |
ContentType | Journal Article |
Copyright | Author(s) 2021 Author(s). Published under license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2021 Author(s). Published under license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M 7X8 |
DOI | 10.1063/5.0040361 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 10_1063_5_0040361 jcp |
GrantInformation_xml | – fundername: Science and Engineering Research Board grantid: CRG/2019/000793 funderid: https://doi.org/10.13039/501100001843 – fundername: Council of Scientific and Industrial Research, India grantid: SPM-07/080(0250)/2016-EMR-I; 09/080(1068)/2018-EMR-I funderid: https://doi.org/10.13039/501100001412 |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M 7X8 |
ID | FETCH-LOGICAL-c356t-38f279c335fff81c64ca4abcc6d9e1b919b7e86c5ec7a6e961ff3b7460e93fa73 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Thu Jul 10 23:13:47 EDT 2025 Mon Jun 30 04:13:33 EDT 2025 Thu Apr 24 23:07:11 EDT 2025 Tue Jul 01 00:27:49 EDT 2025 Thu Jun 23 13:45:01 EDT 2022 Fri Jun 21 00:13:53 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | 0021-9606/2021/154(9)/094306/21/$30.00 Published under license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c356t-38f279c335fff81c64ca4abcc6d9e1b919b7e86c5ec7a6e961ff3b7460e93fa73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1546-0301 0000-0002-2462-4892 |
PQID | 2495607430 |
PQPubID | 2050685 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2495607430 crossref_primary_10_1063_5_0040361 crossref_citationtrail_10_1063_5_0040361 scitation_primary_10_1063_5_0040361 proquest_miscellaneous_2499385187 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-07 |
PublicationDateYYYYMMDD | 2021-03-07 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationYear | 2021 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Pancharatnam (c97) 1956; 44 Thiel, Köppel (c31) 1999; 110 Meyer (c71) 2012; 2 Born, Oppenheimer (c18) 1927; 389 Baer (c42) 2002; 358 Barkakaty, Adhikari (c67) 2003; 118 Puzari, Deshpande, Adhikari (c74) 2004; 300 Krause, Neusser (c11) 1992; 97 Mukherjee, Mukherjee, Sardar, Shamasundar, Adhikari (c54) 2018; 515 Dirac (c91) 1930; 26 Johnson (c6) 2002; 117 Sardar, Paul, Adhikari (c79) 2010; 122 Puzari, Sarkar, Adhikari (c77) 2005; 105 Mukherjee, Naskar, Mukherjee, Ravi, Shamasundar, Mukhopadhyay, Adhikari (c57) 2020; 153 Köppel, Cederbaum, Domcke (c1) 1988; 89 Mahapatra, Köppel, Cederbaum (c105) 1999; 110 Mukherjee, Naskar, Mukherjee, Ghosh, Sahoo, Adhikari (c49) 2019; 38 Sardar, Adhikari (c17) 2012; 124 Alijah, Baer (c45) 2000; 104 Sardar, Paul, Sharma, Adhikari (c15) 2009; 130 Richings, Polyak, Spinlove, Worth, Burghardt, Lasorne (c33) 2015; 34 Kwon, Kim, Kim (c14) 2003; 119 Varandas, Xu (c23) 2000; 112 Zhu, Yarkony (c37) 2012; 136 Ford, Lindner, Dethlefs (c12) 2003; 101 Köppel, Bâldea, Szalay (c4) 2003; 44 Puzari, Adhikari (c75) 2004; 98 Burghardt, Giri, Worth (c60) 2008; 129 Paul, Sardar, Sarkar, Adhikari (c27) 2009; 131 Mukherjee, Bandyopadhyay, Paul, Adhikari (c46) 2013; 117 Yang, Coe, Kaduk, Martínez (c65) 2009; 130 Nakamura, Truhlar (c35) 2003; 118 Sadygov, Yarkony (c38) 1999; 110 Varandas, Brown, Mead, Truhlar, Blais (c34) 1987; 86 Sardar, Puzari, Adhikari (c85) 2011; 13 Worth, Robb, Lasorne (c62) 2008; 106 Yonehara, Hanasaki, Takatsuka (c39) 2012; 112 Adhikari, Billing (c22) 1999; 111 Feynman (c29) 1939; 56 Longuet-Higgins, Öpik, Pryce, Sack (c103) 1958; 244 Top, Baer (c41) 1977; 66 Ghosh, Mukherjee, Mukherjee, Mandal, Sharma, Chaudhury, Adhikari (c56) 2017; 147 Puzari, Sarkar, Adhikari (c78) 2006; 324 Mukherjee, Mukherjee, Dutta, Sardar, Adhikari (c100) 2018; 3 Baer, Charutz, Kosloff, Baer (c21) 1996; 105 Martínez, Ben-Nun, Levine (c63) 1996; 100 Puzari, Swathi, Sarkar, Adhikari (c80) 2005; 123 Berry (c98) 1984; 392 Puzari, Sarkar, Adhikari (c81) 2006; 125 Jahn, Teller (c101) 1937; 161 Johnson (c7) 2002; 117 Burghardt, Meyer, Cederbaum (c58) 1999; 111 Vleck (c102) 1939; 7 Baba, Kowaka, Nagashima, Ishimoto, Goto, Nakayama (c94) 2011; 135 Dutta, Mukherjee, Naskar, Ghosh, Mukherjee, Ravi, Adhikari (c50) 2020; 22 Sarkar, Adhikari (c25) 2006; 124 Naskar, Mukherjee, Mukherjee, Ravi, Mukherjee, Sardar, Adhikari (c51) 2020; 16 Mukherjee, Mukhopadhyay, Adhikari (c55) 2014; 141 Hickman, Lang, Zeng (c109) 2018; 20 Eiding, Schneider, Domcke, Köppel, von Niessen (c5) 1991; 177 Baer (c40) 1975; 35 Baer, Englman (c44) 1992; 75 Sardar, Paul, Mondal, Sarkar, Adhikari (c82) 2008; 10 Sardar, Puzari, Adhikari (c84) 2010; 496 Viel, Eisfeld (c107) 2004; 120 Last, Gilibert, Baer (c20) 1997; 107 Köppel, Döscher, Bâldea, Meyer, Szalay (c3) 2002; 117 Sarkar, Adhikari (c26) 2008; 112 Beck, Jäckle, Worth, Meyer (c70) 2000; 324 Herzberg, Longuet-Higgins (c96) 1963; 35 Mandal, Ghosh, Sardar, Adhikari (c69) 2018; 37 Mukherjee, Mukherjee, Sardar, Adhikari (c52) 2015; 143 Levine, Martińez (c72) 2009; 113 Mukherjee, Mukherjee, Sardar, Shamasundar, Adhikari (c53) 2017; 115 Mukherjee, Mukherjee, Sardar, Adhikari (c99) 2019; 1154 Baltzer, Karlsson, Wannberg, Öhrwall, Holland, MacDonald, Hayes, von Niessen (c9) 1997; 224 Doi, Baba, Kasahara, Katô (c92) 2004; 227 Adhikari, Billing, Alijah, Lin, Baer (c24) 2000; 62 Åsbrink, Lindholm, Edqvist (c8) 1970; 5 Khan, Sardar, Sarkar, Adhikari (c68) 2014; 118 Billing, Adhikari (c73) 2000; 321 Schmidt, Baldridge, Boatz, Elbert, Gordon, Jensen, Koseki, Matsunaga, Nguyen, Su, Windus, Dupuis, Montgomery (c89) 1993; 14 Köppel, Domcke, Cederbaum (c30) 1984; 57 Döscher, Köppel, Szalay (c2) 2002; 117 Faraji, Köppel, Eisfeld, Mahapatra (c108) 2008; 347 Mukherjee, Mukherjee, Adhikari (c47) 2017; 121 Ishitani, Nagakura (c10) 2006; 12 Abedi, Maitra, Gross (c32) 2010; 105 Puzari, Sarkar, Adhikari (c76) 2004; 121 Lindner, Sekiya, Beyl, Müller-Dethlefs (c13) 1993; 32 Khan, Sardar, Sahoo, Sarkar, Adhikari (c86) 2013; 12 Mondal, Mahapatra (c106) 2009; 11 Worth, Burghardt (c61) 2003; 368 Sardar, Paul, Adhikari (c83) 2009; 107 Evenhuis, Martínez (c36) 2011; 135 Öpik, Pryce (c104) 1957; 238 Sardar, Paul, Sharma, Adhikari (c16) 2011; 111 Ben-Nun, Mart, nez (c64) 1998; 108 Adhikari, Billing (c66) 2000; 113 Mukherjee, Dutta, Mukherjee, Sardar, Adhikari (c48) 2019; 150 Burghardt, Nest, Worth (c59) 2003; 119 (2023070119194526000_c33) 2015; 34 (2023070119194526000_c34) 1987; 86 (2023070119194526000_c54) 2018; 515 (2023070119194526000_c68) 2014; 118 (2023070119194526000_c91) 1930; 26 (2023070119194526000_c103) 1958; 244 (2023070119194526000_c60) 2008; 129 (2023070119194526000_c48) 2019; 150 (2023070119194526000_c16) 2011; 111 (2023070119194526000_c39) 2012; 112 (2023070119194526000_c79) 2010; 122 (2023070119194526000_c98) 1984; 392 (2023070119194526000_c28) 1937 (2023070119194526000_c7) 2002; 117 (2023070119194526000_c89) 1993; 14 (2023070119194526000_c97) 1956; 44 (2023070119194526000_c71) 2012; 2 (2023070119194526000_c30) 1984; 57 (2023070119194526000_c47) 2017; 121 (2023070119194526000_c37) 2012; 136 (2023070119194526000_c51) 2020; 16 (2023070119194526000_c26) 2008; 112 (2023070119194526000_c67) 2003; 118 (2023070119194526000_c107) 2004; 120 (2023070119194526000_c85) 2011; 13 (2023070119194526000_c80) 2005; 123 (2023070119194526000_c42) 2002; 358 (2023070119194526000_c106) 2009; 11 (2023070119194526000_c18) 1927; 389 (2023070119194526000_c46) 2013; 117 (2023070119194526000_c9) 1997; 224 (2023070119194526000_c73) 2000; 321 (2023070119194526000_c27) 2009; 131 (2023070119194526000_c53) 2017; 115 (2023070119194526000_c64) 1998; 108 (2023070119194526000_c31) 1999; 110 (2023070119194526000_c3) 2002; 117 (2023070119194526000_c62) 2008; 106 (2023070119194526000_c95) 1961 (2023070119194526000_c1) 1988; 89 (2023070119194526000_c75) 2004; 98 (2023070119194526000_c70) 2000; 324 (2023070119194526000_c21) 1996; 105 (2023070119194526000_c2) 2002; 117 (2023070119194526000_c84) 2010; 496 (2023070119194526000_c100) 2018; 3 (2023070119194526000_c101) 1937; 161 (2023070119194526000_c57) 2020; 153 (2023070119194526000_c99) 2019; 1154 (2023070119194526000_c92) 2004; 227 (2023070119194526000_c69) 2018; 37 (2023070119194526000_c22) 1999; 111 (2023070119194526000_c96) 1963; 35 (2023070119194526000_c102) 1939; 7 (2023070119194526000_c58) 1999; 111 (2023070119194526000_c76) 2004; 121 (2023070119194526000_c109) 2018; 20 (2023070119194526000_c59) 2003; 119 2023070119194526000_c88 (2023070119194526000_c25) 2006; 124 (2023070119194526000_c90) 2016 (2023070119194526000_c104) 1957; 238 (2023070119194526000_c12) 2003; 101 (2023070119194526000_c65) 2009; 130 (2023070119194526000_c63) 1996; 100 (2023070119194526000_c66) 2000; 113 (2023070119194526000_c49) 2019; 38 (2023070119194526000_c29) 1939; 56 (2023070119194526000_c74) 2004; 300 (2023070119194526000_c50) 2020; 22 (2023070119194526000_c15) 2009; 130 (2023070119194526000_c6) 2002; 117 (2023070119194526000_c43) 2006 (2023070119194526000_c19) 1954 (2023070119194526000_c35) 2003; 118 (2023070119194526000_c13) 1993; 32 (2023070119194526000_c77) 2005; 105 (2023070119194526000_c20) 1997; 107 (2023070119194526000_c94) 2011; 135 (2023070119194526000_c52) 2015; 143 (2023070119194526000_c93) 1967 (2023070119194526000_c32) 2010; 105 (2023070119194526000_c40) 1975; 35 (2023070119194526000_c108) 2008; 347 (2023070119194526000_c83) 2009; 107 (2023070119194526000_c72) 2009; 113 (2023070119194526000_c17) 2012; 124 (2023070119194526000_c44) 1992; 75 (2023070119194526000_c82) 2008; 10 (2023070119194526000_c36) 2011; 135 (2023070119194526000_c61) 2003; 368 (2023070119194526000_c4) 2003; 44 (2023070119194526000_c23) 2000; 112 (2023070119194526000_c10) 2006; 12 (2023070119194526000_c45) 2000; 104 (2023070119194526000_c24) 2000; 62 (2023070119194526000_c38) 1999; 110 (2023070119194526000_c8) 1970; 5 (2023070119194526000_c55) 2014; 141 (2023070119194526000_c78) 2006; 324 (2023070119194526000_c5) 1991; 177 (2023070119194526000_c87) 2010 (2023070119194526000_c41) 1977; 66 (2023070119194526000_c11) 1992; 97 (2023070119194526000_c14) 2003; 119 (2023070119194526000_c81) 2006; 125 (2023070119194526000_c86) 2013; 12 (2023070119194526000_c105) 1999; 110 (2023070119194526000_c56) 2017; 147 |
References_xml | – volume: 115 start-page: 2833 year: 2017 ident: c53 publication-title: Mol. Phys. – volume: 62 start-page: 32507 year: 2000 ident: c24 publication-title: Phys. Rev. A – volume: 100 start-page: 7884 year: 1996 ident: c63 publication-title: J. Phys. Chem. – volume: 44 start-page: 247 year: 1956 ident: c97 publication-title: Proc. Indian. Acad. Sci. A – volume: 136 start-page: 174110 year: 2012 ident: c37 publication-title: J. Chem. Phys. – volume: 113 start-page: 12815 year: 2009 ident: c72 publication-title: J. Phys. Chem. A – volume: 44 start-page: 199 year: 2003 ident: c4 publication-title: Adv. Quantum Chem. – volume: 135 start-page: 054305-1 year: 2011 ident: c94 publication-title: J. Chem. Phys. – volume: 119 start-page: 5364 year: 2003 ident: c59 publication-title: J. Chem. Phys. – volume: 57 start-page: 59 year: 1984 ident: c30 publication-title: Adv. Chem. Phys. – volume: 107 start-page: 1451 year: 1997 ident: c20 publication-title: J. Chem. Phys. – volume: 177 start-page: 345 year: 1991 ident: c5 publication-title: Chem. Phys. Lett. – volume: 105 start-page: 209 year: 2005 ident: c77 publication-title: Int. J. Quantum Chem. – volume: 112 start-page: 9868 year: 2008 ident: c26 publication-title: J. Phys. Chem. A – volume: 347 start-page: 110 year: 2008 ident: c108 publication-title: Chem. Phys. – volume: 389 start-page: 457 year: 1927 ident: c18 publication-title: Ann. Phys. (Leipzig) – volume: 124 start-page: 51 year: 2012 ident: c17 publication-title: J. Chem. Sci. – volume: 89 start-page: 2023 year: 1988 ident: c1 publication-title: J. Chem. Phys. – volume: 118 start-page: 5302 year: 2003 ident: c67 publication-title: J. Chem. Phys. – volume: 130 start-page: 144302 year: 2009 ident: c15 publication-title: J. Chem. Phys. – volume: 26 start-page: 376 year: 1930 ident: c91 publication-title: Proc. Cambridge Philos. Soc. – volume: 20 start-page: 12312 year: 2018 ident: c109 publication-title: Phys. Chem. Chem. Phys. – volume: 37 start-page: 607 year: 2018 ident: c69 publication-title: Int. Rev. Phys. Chem. – volume: 244 start-page: 1 year: 1958 ident: c103 publication-title: Proc. R. Soc. London, Ser. A – volume: 1154 start-page: 57 year: 2019 ident: c99 publication-title: Comput. Theor. Chem. – volume: 496 start-page: 341 year: 2010 ident: c84 publication-title: Chem. Phys. Lett. – volume: 105 start-page: 123002 year: 2010 ident: c32 publication-title: Phys. Rev. Lett. – volume: 358 start-page: 75 year: 2002 ident: c42 publication-title: Phys. Rep. – volume: 153 start-page: 174301 year: 2020 ident: c57 publication-title: J. Chem. Phys. – volume: 113 start-page: 1409 year: 2000 ident: c66 publication-title: J. Chem. Phys. – volume: 3 start-page: 12465 year: 2018 ident: c100 publication-title: ACS Omega – volume: 118 start-page: 11451 year: 2014 ident: c68 publication-title: J. Phys. Chem. A – volume: 56 start-page: 340 year: 1939 ident: c29 publication-title: Phys. Rev. – volume: 108 start-page: 7244 year: 1998 ident: c64 publication-title: J. Chem. Phys. – volume: 14 start-page: 1347 year: 1993 ident: c89 publication-title: J. Comput. Chem. – volume: 119 start-page: 4305 year: 2003 ident: c14 publication-title: J. Chem. Phys. – volume: 32 start-page: 603 year: 1993 ident: c13 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 106 start-page: 2077 year: 2008 ident: c62 publication-title: Mol. Phys. – volume: 147 start-page: 074105-1 year: 2017 ident: c56 publication-title: J. Chem. Phys. – volume: 111 start-page: 2741 year: 2011 ident: c16 publication-title: Int. J. Quantum Chem. – volume: 13 start-page: 15960 year: 2011 ident: c85 publication-title: Phys. Chem. Chem. Phys. – volume: 121 start-page: 6314 year: 2017 ident: c47 publication-title: J. Phys. Chem. A – volume: 125 start-page: 194316 year: 2006 ident: c81 publication-title: J. Chem. Phys. – volume: 107 start-page: 2467 year: 2009 ident: c83 publication-title: Mol. Phys. – volume: 117 start-page: 2657 year: 2002 ident: c3 publication-title: J. Chem. Phys. – volume: 104 start-page: 389 year: 2000 ident: c45 publication-title: J. Phys. Chem. A – volume: 324 start-page: 497 year: 2006 ident: c78 publication-title: Chem. Phys. – volume: 118 start-page: 6816 year: 2003 ident: c35 publication-title: J. Chem. Phys. – volume: 112 start-page: 2121 year: 2000 ident: c23 publication-title: J. Chem. Phys. – volume: 11 start-page: 10867 year: 2009 ident: c106 publication-title: Phys. Chem. Chem. Phys. – volume: 121 start-page: 707 year: 2004 ident: c76 publication-title: J. Chem. Phys. – volume: 110 start-page: 3639 year: 1999 ident: c38 publication-title: J. Chem. Phys. – volume: 392 start-page: 45 year: 1984 ident: c98 publication-title: Proc. R. Soc. London, Ser. A – volume: 5 start-page: 609 year: 1970 ident: c8 publication-title: Chem. Phys. Lett. – volume: 38 start-page: 287 year: 2019 ident: c49 publication-title: Int. Rev. Phys. Chem. – volume: 10 start-page: 6388 year: 2008 ident: c82 publication-title: Phys. Chem. Chem. Phys. – volume: 124 start-page: 074101 year: 2006 ident: c25 publication-title: J. Chem. Phys. – volume: 7 start-page: 72 year: 1939 ident: c102 publication-title: J. Chem. Phys. – volume: 515 start-page: 350 year: 2018 ident: c54 publication-title: Chem. Phys. – volume: 12 start-page: 1 year: 2006 ident: c10 publication-title: Mol. Phys. – volume: 120 start-page: 4603 year: 2004 ident: c107 publication-title: J. Chem. Phys. – volume: 110 start-page: 5691 year: 1999 ident: c105 publication-title: J. Chem. Phys. – volume: 101 start-page: 705 year: 2003 ident: c12 publication-title: Mol. Phys. – volume: 16 start-page: 1666 year: 2020 ident: c51 publication-title: J. Chem. Theory Comput. – volume: 238 start-page: 425 year: 1957 ident: c104 publication-title: Proc. R. Soc. London, Ser. A – volume: 141 start-page: 204306 year: 2014 ident: c55 publication-title: J. Chem. Phys. – volume: 111 start-page: 40 year: 1999 ident: c22 publication-title: J. Chem. Phys. – volume: 150 start-page: 064308 year: 2019 ident: c48 publication-title: J. Chem. Phys. – volume: 2 start-page: 351 year: 2012 ident: c71 publication-title: Adv. Rev. – volume: 368 start-page: 502 year: 2003 ident: c61 publication-title: Chem. Phys. Lett. – volume: 86 start-page: 6258 year: 1987 ident: c34 publication-title: J. Chem. Phys. – volume: 224 start-page: 95 year: 1997 ident: c9 publication-title: Chem. Phys. – volume: 300 start-page: 305 year: 2004 ident: c74 publication-title: Chem. Phys. – volume: 111 start-page: 2927 year: 1999 ident: c58 publication-title: J. Chem. Phys. – volume: 143 start-page: 244307 year: 2015 ident: c52 publication-title: J. Chem. Phys. – volume: 122 start-page: 491 year: 2010 ident: c79 publication-title: J. Chem. Soc. – volume: 105 start-page: 9141 year: 1996 ident: c21 publication-title: J. Chem. Phys. – volume: 227 start-page: 180 year: 2004 ident: c92 publication-title: J. Mol. Spectrosc. – volume: 130 start-page: 134113 year: 2009 ident: c65 publication-title: J. Chem. Phys. – volume: 135 start-page: 224110 year: 2011 ident: c36 publication-title: J. Chem. Phys. – volume: 321 start-page: 197 year: 2000 ident: c73 publication-title: Chem. Phys. Lett. – volume: 117 start-page: 3475 year: 2013 ident: c46 publication-title: J. Phys. Chem. A – volume: 131 start-page: 124312 year: 2009 ident: c27 publication-title: J. Chem. Phys. – volume: 35 start-page: 77 year: 1963 ident: c96 publication-title: Discuss. Faraday Soc. – volume: 117 start-page: 9991 year: 2002 ident: c6 publication-title: J. Chem. Phys. – volume: 22 start-page: 27496 year: 2020 ident: c50 publication-title: Phys. Chem. Chem. Phys. – volume: 129 start-page: 174104 year: 2008 ident: c60 publication-title: J. Chem. Phys. – volume: 97 start-page: 5923 year: 1992 ident: c11 publication-title: J. Chem. Phys. – volume: 110 start-page: 9371 year: 1999 ident: c31 publication-title: J. Chem. Phys. – volume: 66 start-page: 1363 year: 1977 ident: c41 publication-title: J. Chem. Phys. – volume: 324 start-page: 1 year: 2000 ident: c70 publication-title: Phys. Rep. – volume: 12 start-page: 1350042 year: 2013 ident: c86 publication-title: J. Theor. Comput. Chem. – volume: 112 start-page: 499 year: 2012 ident: c39 publication-title: Chem. Rev. – volume: 123 start-page: 134317 year: 2005 ident: c80 publication-title: J. Chem. Phys. – volume: 34 start-page: 269 year: 2015 ident: c33 publication-title: Int. Rev. Phys. Chem. – volume: 75 start-page: 293 year: 1992 ident: c44 publication-title: Mol. Phys. – volume: 35 start-page: 112 year: 1975 ident: c40 publication-title: Chem. Phys. Lett. – volume: 117 start-page: 2645 year: 2002 ident: c2 publication-title: J. Chem. Phys. – volume: 161 start-page: 220 year: 1937 ident: c101 publication-title: Proc. R. Soc. London, Ser. A – volume: 117 start-page: 10001 year: 2002 ident: c7 publication-title: J. Chem. Phys. – volume: 98 start-page: 434 year: 2004 ident: c75 publication-title: Int. J. Quantum Chem. – volume: 120 start-page: 4603 year: 2004 ident: 2023070119194526000_c107 publication-title: J. Chem. Phys. doi: 10.1063/1.1646371 – volume: 117 start-page: 2657 year: 2002 ident: 2023070119194526000_c3 publication-title: J. Chem. Phys. doi: 10.1063/1.1491398 – volume: 13 start-page: 15960 year: 2011 ident: 2023070119194526000_c85 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp20525k – volume: 117 start-page: 2645 year: 2002 ident: 2023070119194526000_c2 publication-title: J. Chem. Phys. doi: 10.1063/1.1491397 – volume: 105 start-page: 123002 year: 2010 ident: 2023070119194526000_c32 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.105.123002 – volume: 321 start-page: 197 year: 2000 ident: 2023070119194526000_c73 publication-title: Chem. Phys. Lett. doi: 10.1016/s0009-2614(00)00358-4 – volume: 123 start-page: 134317 year: 2005 ident: 2023070119194526000_c80 publication-title: J. Chem. Phys. doi: 10.1063/1.2050647 – volume: 117 start-page: 3475 year: 2013 ident: 2023070119194526000_c46 publication-title: J. Phys. Chem. A doi: 10.1021/jp311597c – volume: 227 start-page: 180 year: 2004 ident: 2023070119194526000_c92 publication-title: J. Mol. Spectrosc. doi: 10.1016/j.jms.2004.06.003 – volume: 135 start-page: 224110 year: 2011 ident: 2023070119194526000_c36 publication-title: J. Chem. Phys. doi: 10.1063/1.3660686 – volume: 244 start-page: 1 year: 1958 ident: 2023070119194526000_c103 publication-title: Proc. R. Soc. London, Ser. A doi: 10.1098/rspa.1958.0022 – volume: 118 start-page: 11451 issue: 49 year: 2014 ident: 2023070119194526000_c68 publication-title: J. Phys. Chem. A doi: 10.1021/jp507459m – volume: 224 start-page: 95 year: 1997 ident: 2023070119194526000_c9 publication-title: Chem. Phys. doi: 10.1016/s0301-0104(97)00244-9 – volume: 110 start-page: 3639 year: 1999 ident: 2023070119194526000_c38 publication-title: J. Chem. Phys. doi: 10.1063/1.478252 – volume: 104 start-page: 389 year: 2000 ident: 2023070119194526000_c45 publication-title: J. Phys. Chem. A doi: 10.1021/jp992742o – volume: 115 start-page: 2833 year: 2017 ident: 2023070119194526000_c53 publication-title: Mol. Phys. doi: 10.1080/00268976.2017.1340680 – volume: 130 start-page: 144302 year: 2009 ident: 2023070119194526000_c15 publication-title: J. Chem. Phys. doi: 10.1063/1.3108488 – volume: 62 start-page: 32507 year: 2000 ident: 2023070119194526000_c24 publication-title: Phys. Rev. A doi: 10.1103/physreva.62.032507 – volume: 34 start-page: 269 year: 2015 ident: 2023070119194526000_c33 publication-title: Int. Rev. Phys. Chem. doi: 10.1080/0144235x.2015.1051354 – volume: 26 start-page: 376 year: 1930 ident: 2023070119194526000_c91 publication-title: Proc. Cambridge Philos. Soc. doi: 10.1017/s0305004100016108 – volume: 118 start-page: 6816 year: 2003 ident: 2023070119194526000_c35 publication-title: J. Chem. Phys. doi: 10.1063/1.1540622 – volume: 141 start-page: 204306 year: 2014 ident: 2023070119194526000_c55 publication-title: J. Chem. Phys. doi: 10.1063/1.4901986 – volume: 347 start-page: 110 year: 2008 ident: 2023070119194526000_c108 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2007.10.006 – volume: 124 start-page: 074101 year: 2006 ident: 2023070119194526000_c25 publication-title: J. Chem. Phys. doi: 10.1063/1.2170089 – volume: 11 start-page: 10867 year: 2009 ident: 2023070119194526000_c106 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b913342a – volume: 86 start-page: 6258 year: 1987 ident: 2023070119194526000_c34 publication-title: J. Chem. Phys. doi: 10.1063/1.452463 – volume: 150 start-page: 064308 year: 2019 ident: 2023070119194526000_c48 publication-title: J. Chem. Phys. doi: 10.1063/1.5064519 – volume: 2 start-page: 351 year: 2012 ident: 2023070119194526000_c71 publication-title: Adv. Rev. – volume: 300 start-page: 305 year: 2004 ident: 2023070119194526000_c74 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2004.01.006 – volume-title: Dynamical Theory of Crystal Lattices year: 1954 ident: 2023070119194526000_c19 – year: 2016 ident: 2023070119194526000_c90 article-title: Gaussian 16, revision C.01 – volume: 496 start-page: 341 year: 2010 ident: 2023070119194526000_c84 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2010.07.038 – volume: 147 start-page: 074105-1 year: 2017 ident: 2023070119194526000_c56 publication-title: J. Chem. Phys. doi: 10.1063/1.4998406 – volume: 100 start-page: 7884 year: 1996 ident: 2023070119194526000_c63 publication-title: J. Phys. Chem. doi: 10.1021/jp953105a – volume: 110 start-page: 9371 year: 1999 ident: 2023070119194526000_c31 publication-title: J. Chem. Phys. doi: 10.1063/1.478902 – volume: 35 start-page: 77 year: 1963 ident: 2023070119194526000_c96 publication-title: Discuss. Faraday Soc. doi: 10.1039/df9633500077 – volume: 135 start-page: 054305-1 year: 2011 ident: 2023070119194526000_c94 publication-title: J. Chem. Phys. doi: 10.1063/1.3622766 – volume: 97 start-page: 5923 year: 1992 ident: 2023070119194526000_c11 publication-title: J. Chem. Phys. doi: 10.1063/1.463754 – volume-title: Einfuring in die Quantenchemie year: 1937 ident: 2023070119194526000_c28 – volume: 130 start-page: 134113 year: 2009 ident: 2023070119194526000_c65 publication-title: J. Chem. Phys. doi: 10.1063/1.3103930 – volume: 105 start-page: 9141 year: 1996 ident: 2023070119194526000_c21 publication-title: J. Chem. Phys. doi: 10.1063/1.472748 – volume: 111 start-page: 2741 year: 2011 ident: 2023070119194526000_c16 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.22578 – volume: 10 start-page: 6388 year: 2008 ident: 2023070119194526000_c82 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b805990j – volume: 1154 start-page: 57 year: 2019 ident: 2023070119194526000_c99 publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2019.03.011 – volume: 20 start-page: 12312 year: 2018 ident: 2023070119194526000_c109 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c8cp01394b – volume: 129 start-page: 174104 year: 2008 ident: 2023070119194526000_c60 publication-title: J. Chem. Phys. doi: 10.1063/1.2996349 – volume: 161 start-page: 220 year: 1937 ident: 2023070119194526000_c101 publication-title: Proc. R. Soc. London, Ser. A doi: 10.1098/rspa.1937.0142 – volume: 117 start-page: 9991 year: 2002 ident: 2023070119194526000_c6 publication-title: J. Chem. Phys. doi: 10.1063/1.1519006 – volume: 66 start-page: 1363 year: 1977 ident: 2023070119194526000_c41 publication-title: J. Chem. Phys. doi: 10.1063/1.434032 – volume: 121 start-page: 6314 year: 2017 ident: 2023070119194526000_c47 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.7b04592 – volume: 125 start-page: 194316 year: 2006 ident: 2023070119194526000_c81 publication-title: J. Chem. Phys. doi: 10.1063/1.2393228 – volume: 44 start-page: 247 year: 1956 ident: 2023070119194526000_c97 publication-title: Proc. Indian. Acad. Sci. A doi: 10.1007/bf03046050 – volume: 392 start-page: 45 year: 1984 ident: 2023070119194526000_c98 publication-title: Proc. R. Soc. London, Ser. A doi: 10.1098/rspa.1984.0023 – volume: 22 start-page: 27496 year: 2020 ident: 2023070119194526000_c50 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/d0cp04052e – volume: 113 start-page: 12815 year: 2009 ident: 2023070119194526000_c72 publication-title: J. Phys. Chem. A doi: 10.1021/jp907111u – volume: 12 start-page: 1 year: 2006 ident: 2023070119194526000_c10 publication-title: Mol. Phys. doi: 10.1080/00268976700100011 – volume: 119 start-page: 4305 year: 2003 ident: 2023070119194526000_c14 publication-title: J. Chem. Phys. doi: 10.1063/1.1592512 – volume: 101 start-page: 705 year: 2003 ident: 2023070119194526000_c12 publication-title: Mol. Phys. doi: 10.1080/0026897021000054916 – volume: 98 start-page: 434 year: 2004 ident: 2023070119194526000_c75 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.20095 – volume: 75 start-page: 293 year: 1992 ident: 2023070119194526000_c44 publication-title: Mol. Phys. doi: 10.1080/00268979200100231 – ident: 2023070119194526000_c88 – volume: 89 start-page: 2023 year: 1988 ident: 2023070119194526000_c1 publication-title: J. Chem. Phys. doi: 10.1063/1.455100 – volume: 368 start-page: 502 year: 2003 ident: 2023070119194526000_c61 publication-title: Chem. Phys. Lett. doi: 10.1016/s0009-2614(02)01920-6 – volume-title: Beyond Born–Oppenheimer: Conical Intersections and Electronic Nonadiabatic Coupling Terms year: 2006 ident: 2023070119194526000_c43 – volume: 35 start-page: 112 year: 1975 ident: 2023070119194526000_c40 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(75)85599-0 – volume: 44 start-page: 199 year: 2003 ident: 2023070119194526000_c4 publication-title: Adv. Quantum Chem. doi: 10.1016/s0065-3276(03)44013-6 – volume: 136 start-page: 174110 year: 2012 ident: 2023070119194526000_c37 publication-title: J. Chem. Phys. doi: 10.1063/1.4704789 – volume: 112 start-page: 2121 year: 2000 ident: 2023070119194526000_c23 publication-title: J. Chem. Phys. doi: 10.1063/1.480823 – year: 2010 ident: 2023070119194526000_c87 article-title: Molpro, version 2010.1, a package of ab initio programs – volume: 14 start-page: 1347 year: 1993 ident: 2023070119194526000_c89 publication-title: J. Comput. Chem. doi: 10.1002/jcc.540141112 – volume: 105 start-page: 209 year: 2005 ident: 2023070119194526000_c77 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.20666 – volume: 111 start-page: 2927 year: 1999 ident: 2023070119194526000_c58 publication-title: J. Chem. Phys. doi: 10.1063/1.479574 – volume: 38 start-page: 287 year: 2019 ident: 2023070119194526000_c49 publication-title: Int. Rev. Phys. Chem. doi: 10.1080/0144235x.2019.1672987 – volume: 111 start-page: 40 year: 1999 ident: 2023070119194526000_c22 publication-title: J. Chem. Phys. doi: 10.1063/1.479360 – volume: 113 start-page: 1409 year: 2000 ident: 2023070119194526000_c66 publication-title: J. Chem. Phys. doi: 10.1063/1.481959 – volume: 389 start-page: 457 year: 1927 ident: 2023070119194526000_c18 publication-title: Ann. Phys. (Leipzig) doi: 10.1002/andp.19273892002 – volume: 358 start-page: 75 year: 2002 ident: 2023070119194526000_c42 publication-title: Phys. Rep. doi: 10.1016/s0370-1573(01)00052-7 – volume: 16 start-page: 1666 year: 2020 ident: 2023070119194526000_c51 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b00948 – volume: 12 start-page: 1350042 year: 2013 ident: 2023070119194526000_c86 publication-title: J. Theor. Comput. Chem. doi: 10.1142/s0219633613500429 – volume: 107 start-page: 2467 year: 2009 ident: 2023070119194526000_c83 publication-title: Mol. Phys. doi: 10.1080/00268970903362326 – volume: 143 start-page: 244307 year: 2015 ident: 2023070119194526000_c52 publication-title: J. Chem. Phys. doi: 10.1063/1.4938526 – volume: 515 start-page: 350 year: 2018 ident: 2023070119194526000_c54 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2018.09.017 – volume: 110 start-page: 5691 year: 1999 ident: 2023070119194526000_c105 publication-title: J. Chem. Phys. doi: 10.1063/1.478467 – volume: 57 start-page: 59 year: 1984 ident: 2023070119194526000_c30 publication-title: Adv. Chem. Phys. doi: 10.1002/9780470142813.ch2 – volume: 32 start-page: 603 year: 1993 ident: 2023070119194526000_c13 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199306031 – volume: 56 start-page: 340 year: 1939 ident: 2023070119194526000_c29 publication-title: Phys. Rev. doi: 10.1103/physrev.56.340 – volume: 122 start-page: 491 year: 2010 ident: 2023070119194526000_c79 publication-title: J. Chem. Soc. doi: 10.1007/s12039-010-0084-x – volume: 177 start-page: 345 year: 1991 ident: 2023070119194526000_c5 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(91)85042-u – volume: 107 start-page: 1451 year: 1997 ident: 2023070119194526000_c20 publication-title: J. Chem. Phys. doi: 10.1063/1.474498 – volume: 119 start-page: 5364 year: 2003 ident: 2023070119194526000_c59 publication-title: J. Chem. Phys. doi: 10.1063/1.1599275 – volume: 7 start-page: 72 year: 1939 ident: 2023070119194526000_c102 publication-title: J. Chem. Phys. doi: 10.1063/1.1750327 – volume: 153 start-page: 174301 year: 2020 ident: 2023070119194526000_c57 publication-title: J. Chem. Phys. doi: 10.1063/5.0021885 – volume: 324 start-page: 497 year: 2006 ident: 2023070119194526000_c78 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2005.11.027 – volume: 112 start-page: 9868 year: 2008 ident: 2023070119194526000_c26 publication-title: J. Phys. Chem. A doi: 10.1021/jp8029709 – volume: 106 start-page: 2077 year: 2008 ident: 2023070119194526000_c62 publication-title: Mol. Phys. doi: 10.1080/00268970802172503 – volume: 118 start-page: 5302 year: 2003 ident: 2023070119194526000_c67 publication-title: J. Chem. Phys. doi: 10.1063/1.1553977 – volume: 124 start-page: 51 year: 2012 ident: 2023070119194526000_c17 publication-title: J. Chem. Sci. doi: 10.1007/s12039-011-0195-z – volume-title: Tables of Molecular Vibrational Frequencies year: 1967 ident: 2023070119194526000_c93 – volume: 3 start-page: 12465 year: 2018 ident: 2023070119194526000_c100 publication-title: ACS Omega doi: 10.1021/acsomega.8b01648 – volume: 5 start-page: 609 year: 1970 ident: 2023070119194526000_c8 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(70)85060-6 – volume-title: Advances in Spectroscopy year: 1961 ident: 2023070119194526000_c95 article-title: Some recent developments in the theory of molecular energy levels – volume: 131 start-page: 124312 year: 2009 ident: 2023070119194526000_c27 publication-title: J. Chem. Phys. doi: 10.1063/1.3236839 – volume: 117 start-page: 10001 year: 2002 ident: 2023070119194526000_c7 publication-title: J. Chem. Phys. doi: 10.1063/1.1519007 – volume: 108 start-page: 7244 year: 1998 ident: 2023070119194526000_c64 publication-title: J. Chem. Phys. doi: 10.1063/1.476142 – volume: 112 start-page: 499 year: 2012 ident: 2023070119194526000_c39 publication-title: Chem. Rev. doi: 10.1021/cr200096s – volume: 37 start-page: 607 year: 2018 ident: 2023070119194526000_c69 publication-title: Int. Rev. Phys. Chem. doi: 10.1080/0144235X.2018.1548103 – volume: 324 start-page: 1 year: 2000 ident: 2023070119194526000_c70 publication-title: Phys. Rep. doi: 10.1016/s0370-1573(99)00047-2 – volume: 238 start-page: 425 year: 1957 ident: 2023070119194526000_c104 publication-title: Proc. R. Soc. London, Ser. A doi: 10.1098/rspa.1957.0010 – volume: 121 start-page: 707 year: 2004 ident: 2023070119194526000_c76 publication-title: J. Chem. Phys. doi: 10.1063/1.1758700 |
SSID | ssj0001724 |
Score | 2.4284594 |
Snippet | We employ theoretically “exact” and numerically “accurate” Beyond Born–Oppenheimer (BBO) treatment to construct diabatic potential energy surfaces (PESs) of... We employ theoretically "exact" and numerically "accurate" Beyond Born-Oppenheimer (BBO) treatment to construct diabatic potential energy surfaces (PESs) of... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 094306 |
SubjectTerms | Adiabatic flow Benzene Cations Couplings Electron states Electronic structure Hilbert space Hydrocarbons Intersections Jahn-Teller effect Mathematical analysis Photoelectrons Potential energy Representations Spectra Time dependence Workability |
Title | A beyond Born–Oppenheimer treatment of C6H6+ radical cation for diabatic surfaces: Photoelectron spectra of its neutral analog using time-dependent discrete variable representation |
URI | http://dx.doi.org/10.1063/5.0040361 https://www.proquest.com/docview/2495607430 https://www.proquest.com/docview/2499385187 |
Volume | 154 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtMwGLZKJzRuEAwQhYHM4QIpymgOdRLuurGpgu4g1km7ixzHVktpUqVJpfFePABvxu84TlKo0OAmihLLifR9tj___g8Ive3HzOeRL0zuBr7pxjJY2YfhLmKXOjaPmUPlie7pGRlduZ-uB9edzs-W11KRRwfs-9a4kv9BFZ4BrjJK9h-QrTuFB3AP-MIVEIbrrTAeGpEKQDlMs8Q8Xy55MuWzBc9a_uPS3YKMCEB8aGRUncqwxsNQ2l7LpK2rIhPSPUuaCC6maZ7qAjlGGYyZUZWbdmUkvJDWEYMm0u5jFKWxQZaoN3VB3Vwe-4Aazbmxhq14GZxVJs_UgU5JWxI3wWmlLGY6g4GyuawaRsyBXl-rvP5psbipF5QvdD1T1u38hi5q8zZdzZX3-Oe0WE1ndUjSJQwK9QJmzSlN5jRr2z5s5fzltabrvh-YHlEFRw_4lmd6jleZqisyB60ZW3pWljkP_lxMQL0BA6TNzYV13mpWTO0lcHYenlyNx-Hk-HpyB-3YsFOxu2hn-PF0fFnLAVCIroryUL-l01sR533d9aYoanY6uyCDFC4t0TN5gO5XsOChot5D1OHJHto90kUC99DdC4XSI_RjiBUZ8e9kxDUZcSqwJCM2cEVFrKiIgYpYUxFrKn7AG0TEFRFlL0BEXBERKyLikoh4k4hYExFrIuJNIj5GVyfHk6ORWdUEMZkzILnp-ML2AuY4AyGEbzHiMurSiDESB9yKAiuIPO4TNuDMo4QHxBLCiTyX9HngCOo5T1A3SRP-FGFYXongIFkHsCmwbRHYlhX3Xdhxx7EFGqCH3mlQQg2DrNvyLSwdN4gTDsIKvx56XTddqiwx2xrta2TDahJZhXZpoAAZ3--hV_VrAFGe29GEwwCRbQL4S8v3euhNzYi_fWhLq3WaNS3CZSye3eJ7z9G9Ztjto26eFfwFiPA8elnR_BfMfOXr |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+beyond+Born-Oppenheimer+treatment+of+C6H6+%2B+radical+cation+for+diabatic+surfaces%3A+Photoelectron+spectra+of+its+neutral+analog+using+time-dependent+discrete+variable+representation&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Mukherjee%2C+Soumya&rft.au=Ravi%2C+Satyam&rft.au=Naskar%2C+Koushik&rft.au=Sardar%2C+Subhankar&rft.date=2021-03-07&rft.issn=1089-7690&rft.eissn=1089-7690&rft.volume=154&rft.issue=9&rft.spage=094306&rft_id=info:doi/10.1063%2F5.0040361&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |