A beyond Born–Oppenheimer treatment of C6H6+ radical cation for diabatic surfaces: Photoelectron spectra of its neutral analog using time-dependent discrete variable representation

We employ theoretically “exact” and numerically “accurate” Beyond Born–Oppenheimer (BBO) treatment to construct diabatic potential energy surfaces (PESs) of the benzene radical cation (C6H6+) for the first time and explore the workability of the time-dependent discrete variable representation (TDDVR...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 154; no. 9; pp. 094306 - 94326
Main Authors Mukherjee, Soumya, Ravi, Satyam, Naskar, Koushik, Sardar, Subhankar, Adhikari, Satrajit
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 07.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We employ theoretically “exact” and numerically “accurate” Beyond Born–Oppenheimer (BBO) treatment to construct diabatic potential energy surfaces (PESs) of the benzene radical cation (C6H6+) for the first time and explore the workability of the time-dependent discrete variable representation (TDDVR) method for carrying out dynamical calculations to evaluate the photoelectron (PE) spectra of its neutral analog. Ab initio adiabatic PESs and nonadiabatic coupling terms are computed over a series of pairwise normal modes, which exhibit rich nonadiabatic interactions starting from Jahn–Teller interactions and accidental conical intersections/seams to pseudo Jahn–Teller couplings. Once the electronic structure calculation is completed on the low-lying five doublet electronic states (X̃2E1g, B̃2E2g, and C̃2A2u) of the cationic species, diabatization is carried out employing the adiabatic-to-diabatic transformation (ADT) equations for the five-state sub-Hilbert space to compute highly accurate ADT angles, and thereby, single-valued, smooth, symmetric, and continuous diabatic PESs and couplings are constructed. Subsequently, such surface matrices are used to perform multi-state multi-mode nuclear dynamics for simulating PE spectra of benzene. Our theoretical findings clearly depict that the spectra for X̃2E1g and B̃2E2g−C̃2A2u states obtained from BBO treatment and TDDVR dynamics exhibit reasonably good agreement with the experimental results as well as with the findings of other theoretical approaches.
AbstractList We employ theoretically “exact” and numerically “accurate” Beyond Born–Oppenheimer (BBO) treatment to construct diabatic potential energy surfaces (PESs) of the benzene radical cation (C6H6+) for the first time and explore the workability of the time-dependent discrete variable representation (TDDVR) method for carrying out dynamical calculations to evaluate the photoelectron (PE) spectra of its neutral analog. Ab initio adiabatic PESs and nonadiabatic coupling terms are computed over a series of pairwise normal modes, which exhibit rich nonadiabatic interactions starting from Jahn–Teller interactions and accidental conical intersections/seams to pseudo Jahn–Teller couplings. Once the electronic structure calculation is completed on the low-lying five doublet electronic states (X̃2E1g, B̃2E2g, and C̃2A2u) of the cationic species, diabatization is carried out employing the adiabatic-to-diabatic transformation (ADT) equations for the five-state sub-Hilbert space to compute highly accurate ADT angles, and thereby, single-valued, smooth, symmetric, and continuous diabatic PESs and couplings are constructed. Subsequently, such surface matrices are used to perform multi-state multi-mode nuclear dynamics for simulating PE spectra of benzene. Our theoretical findings clearly depict that the spectra for X̃2E1g and B̃2E2g−C̃2A2u states obtained from BBO treatment and TDDVR dynamics exhibit reasonably good agreement with the experimental results as well as with the findings of other theoretical approaches.
We employ theoretically "exact" and numerically "accurate" Beyond Born-Oppenheimer (BBO) treatment to construct diabatic potential energy surfaces (PESs) of the benzene radical cation (C6H6 +) for the first time and explore the workability of the time-dependent discrete variable representation (TDDVR) method for carrying out dynamical calculations to evaluate the photoelectron (PE) spectra of its neutral analog. Ab initio adiabatic PESs and nonadiabatic coupling terms are computed over a series of pairwise normal modes, which exhibit rich nonadiabatic interactions starting from Jahn-Teller interactions and accidental conical intersections/seams to pseudo Jahn-Teller couplings. Once the electronic structure calculation is completed on the low-lying five doublet electronic states (X̃2E1g, B̃2E2g, and C̃2A2u) of the cationic species, diabatization is carried out employing the adiabatic-to-diabatic transformation (ADT) equations for the five-state sub-Hilbert space to compute highly accurate ADT angles, and thereby, single-valued, smooth, symmetric, and continuous diabatic PESs and couplings are constructed. Subsequently, such surface matrices are used to perform multi-state multi-mode nuclear dynamics for simulating PE spectra of benzene. Our theoretical findings clearly depict that the spectra for X̃2E1g and B̃2E2g-C̃2A2u states obtained from BBO treatment and TDDVR dynamics exhibit reasonably good agreement with the experimental results as well as with the findings of other theoretical approaches.We employ theoretically "exact" and numerically "accurate" Beyond Born-Oppenheimer (BBO) treatment to construct diabatic potential energy surfaces (PESs) of the benzene radical cation (C6H6 +) for the first time and explore the workability of the time-dependent discrete variable representation (TDDVR) method for carrying out dynamical calculations to evaluate the photoelectron (PE) spectra of its neutral analog. Ab initio adiabatic PESs and nonadiabatic coupling terms are computed over a series of pairwise normal modes, which exhibit rich nonadiabatic interactions starting from Jahn-Teller interactions and accidental conical intersections/seams to pseudo Jahn-Teller couplings. Once the electronic structure calculation is completed on the low-lying five doublet electronic states (X̃2E1g, B̃2E2g, and C̃2A2u) of the cationic species, diabatization is carried out employing the adiabatic-to-diabatic transformation (ADT) equations for the five-state sub-Hilbert space to compute highly accurate ADT angles, and thereby, single-valued, smooth, symmetric, and continuous diabatic PESs and couplings are constructed. Subsequently, such surface matrices are used to perform multi-state multi-mode nuclear dynamics for simulating PE spectra of benzene. Our theoretical findings clearly depict that the spectra for X̃2E1g and B̃2E2g-C̃2A2u states obtained from BBO treatment and TDDVR dynamics exhibit reasonably good agreement with the experimental results as well as with the findings of other theoretical approaches.
Author Ravi, Satyam
Naskar, Koushik
Mukherjee, Soumya
Adhikari, Satrajit
Sardar, Subhankar
Author_xml – sequence: 1
  givenname: Soumya
  surname: Mukherjee
  fullname: Mukherjee, Soumya
  organization: School of Chemical Sciences, Indian Association for the Cultivation of Science
– sequence: 2
  givenname: Satyam
  surname: Ravi
  fullname: Ravi, Satyam
  organization: School of Chemical Sciences, Indian Association for the Cultivation of Science
– sequence: 3
  givenname: Koushik
  surname: Naskar
  fullname: Naskar, Koushik
  organization: School of Chemical Sciences, Indian Association for the Cultivation of Science
– sequence: 4
  givenname: Subhankar
  surname: Sardar
  fullname: Sardar, Subhankar
  organization: Department of Chemistry, Bhatter College
– sequence: 5
  givenname: Satrajit
  surname: Adhikari
  fullname: Adhikari, Satrajit
  organization: School of Chemical Sciences, Indian Association for the Cultivation of Science
BookMark eNqdkU9u1TAQxi1UJF4LC25giQ1_lNZ-TpyYXXkCilSpXcA6cpxx68rPDmOnUne9Q-_CgTgJTl8RUsWqq5mRf_N9M559shdiAEJec3bImRRHzSFjNROSPyMrzjpVtVKxPbJibM0rJZl8QfZTumKM8XZdr8ivYzrATQwj_RQx_L69O5smCJfgtoA0I-i8hZBptHQjT-QHinp0RntqdHYxUBuRjk4PpTI0zWi1gfSRnl_GHMGDyVigNC2JXkRcTjTAXCpPddA-XtA5uXBBczGsRije4-I3umQQMtBrjUXeA0WYEFJ5uzd-SZ5b7RO8eogH5MeXz983J9Xp2ddvm-PTyohG5kp0dt0qI0Rjre24kbXRtR6MkaMCPiiuhhY6aRowrZagJLdWDG0tGShhdSsOyNud7oTx5wwp99syGXivA8Q59etaKdE1vFvQN4_Qqzhj2fGeaiRra8EKdbSjDMaUEGxv3G6l8ifO95z1yx37pn-4Y-l496hjQrfVePNf9v2OTX9VnwZfR_wH9tNoxR-Wdb_J
CODEN JCPSA6
CitedBy_id crossref_primary_10_1088_1742_6596_2769_1_012012
crossref_primary_10_1002_cphc_202400130
crossref_primary_10_1063_5_0177186
crossref_primary_10_1002_qua_27212
crossref_primary_10_1021_acs_jpca_1c08912
crossref_primary_10_1021_acs_jctc_1c00419
crossref_primary_10_1021_acs_jpca_2c09088
crossref_primary_10_1002_cphc_202200482
crossref_primary_10_1016_j_chemphys_2022_111588
crossref_primary_10_1039_D1CP04733G
crossref_primary_10_1063_5_0066234
crossref_primary_10_1063_5_0067660
crossref_primary_10_1039_D1CP01843D
crossref_primary_10_1021_acs_jpca_1c10583
Cites_doi 10.1063/1.1646371
10.1063/1.1491398
10.1039/c1cp20525k
10.1063/1.1491397
10.1103/physrevlett.105.123002
10.1016/s0009-2614(00)00358-4
10.1063/1.2050647
10.1021/jp311597c
10.1016/j.jms.2004.06.003
10.1063/1.3660686
10.1098/rspa.1958.0022
10.1021/jp507459m
10.1016/s0301-0104(97)00244-9
10.1063/1.478252
10.1021/jp992742o
10.1080/00268976.2017.1340680
10.1063/1.3108488
10.1103/physreva.62.032507
10.1080/0144235x.2015.1051354
10.1017/s0305004100016108
10.1063/1.1540622
10.1063/1.4901986
10.1016/j.chemphys.2007.10.006
10.1063/1.2170089
10.1039/b913342a
10.1063/1.452463
10.1063/1.5064519
10.1016/j.chemphys.2004.01.006
10.1016/j.cplett.2010.07.038
10.1063/1.4998406
10.1021/jp953105a
10.1063/1.478902
10.1039/df9633500077
10.1063/1.3622766
10.1063/1.463754
10.1063/1.3103930
10.1063/1.472748
10.1002/qua.22578
10.1039/b805990j
10.1016/j.comptc.2019.03.011
10.1039/c8cp01394b
10.1063/1.2996349
10.1098/rspa.1937.0142
10.1063/1.1519006
10.1063/1.434032
10.1021/acs.jpca.7b04592
10.1063/1.2393228
10.1007/bf03046050
10.1098/rspa.1984.0023
10.1039/d0cp04052e
10.1021/jp907111u
10.1080/00268976700100011
10.1063/1.1592512
10.1080/0026897021000054916
10.1002/qua.20095
10.1080/00268979200100231
10.1063/1.455100
10.1016/s0009-2614(02)01920-6
10.1016/0009-2614(75)85599-0
10.1016/s0065-3276(03)44013-6
10.1063/1.4704789
10.1063/1.480823
10.1002/jcc.540141112
10.1002/qua.20666
10.1063/1.479574
10.1080/0144235x.2019.1672987
10.1063/1.479360
10.1063/1.481959
10.1002/andp.19273892002
10.1016/s0370-1573(01)00052-7
10.1021/acs.jctc.9b00948
10.1142/s0219633613500429
10.1080/00268970903362326
10.1063/1.4938526
10.1016/j.chemphys.2018.09.017
10.1063/1.478467
10.1002/9780470142813.ch2
10.1002/anie.199306031
10.1103/physrev.56.340
10.1007/s12039-010-0084-x
10.1016/0009-2614(91)85042-u
10.1063/1.474498
10.1063/1.1599275
10.1063/1.1750327
10.1063/5.0021885
10.1016/j.chemphys.2005.11.027
10.1021/jp8029709
10.1080/00268970802172503
10.1063/1.1553977
10.1007/s12039-011-0195-z
10.1021/acsomega.8b01648
10.1016/0009-2614(70)85060-6
10.1063/1.3236839
10.1063/1.1519007
10.1063/1.476142
10.1021/cr200096s
10.1080/0144235X.2018.1548103
10.1016/s0370-1573(99)00047-2
10.1098/rspa.1957.0010
10.1063/1.1758700
ContentType Journal Article
Copyright Author(s)
2021 Author(s). Published under license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2021 Author(s). Published under license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
7X8
DOI 10.1063/5.0040361
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 10_1063_5_0040361
jcp
GrantInformation_xml – fundername: Science and Engineering Research Board
  grantid: CRG/2019/000793
  funderid: https://doi.org/10.13039/501100001843
– fundername: Council of Scientific and Industrial Research, India
  grantid: SPM-07/080(0250)/2016-EMR-I; 09/080(1068)/2018-EMR-I
  funderid: https://doi.org/10.13039/501100001412
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c356t-38f279c335fff81c64ca4abcc6d9e1b919b7e86c5ec7a6e961ff3b7460e93fa73
ISSN 0021-9606
1089-7690
IngestDate Thu Jul 10 23:13:47 EDT 2025
Mon Jun 30 04:13:33 EDT 2025
Thu Apr 24 23:07:11 EDT 2025
Tue Jul 01 00:27:49 EDT 2025
Thu Jun 23 13:45:01 EDT 2022
Fri Jun 21 00:13:53 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License 0021-9606/2021/154(9)/094306/21/$30.00
Published under license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c356t-38f279c335fff81c64ca4abcc6d9e1b919b7e86c5ec7a6e961ff3b7460e93fa73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1546-0301
0000-0002-2462-4892
PQID 2495607430
PQPubID 2050685
PageCount 21
ParticipantIDs proquest_journals_2495607430
crossref_primary_10_1063_5_0040361
crossref_citationtrail_10_1063_5_0040361
scitation_primary_10_1063_5_0040361
proquest_miscellaneous_2499385187
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-07
PublicationDateYYYYMMDD 2021-03-07
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-07
  day: 07
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle The Journal of chemical physics
PublicationYear 2021
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Pancharatnam (c97) 1956; 44
Thiel, Köppel (c31) 1999; 110
Meyer (c71) 2012; 2
Born, Oppenheimer (c18) 1927; 389
Baer (c42) 2002; 358
Barkakaty, Adhikari (c67) 2003; 118
Puzari, Deshpande, Adhikari (c74) 2004; 300
Krause, Neusser (c11) 1992; 97
Mukherjee, Mukherjee, Sardar, Shamasundar, Adhikari (c54) 2018; 515
Dirac (c91) 1930; 26
Johnson (c6) 2002; 117
Sardar, Paul, Adhikari (c79) 2010; 122
Puzari, Sarkar, Adhikari (c77) 2005; 105
Mukherjee, Naskar, Mukherjee, Ravi, Shamasundar, Mukhopadhyay, Adhikari (c57) 2020; 153
Köppel, Cederbaum, Domcke (c1) 1988; 89
Mahapatra, Köppel, Cederbaum (c105) 1999; 110
Mukherjee, Naskar, Mukherjee, Ghosh, Sahoo, Adhikari (c49) 2019; 38
Sardar, Adhikari (c17) 2012; 124
Alijah, Baer (c45) 2000; 104
Sardar, Paul, Sharma, Adhikari (c15) 2009; 130
Richings, Polyak, Spinlove, Worth, Burghardt, Lasorne (c33) 2015; 34
Kwon, Kim, Kim (c14) 2003; 119
Varandas, Xu (c23) 2000; 112
Zhu, Yarkony (c37) 2012; 136
Ford, Lindner, Dethlefs (c12) 2003; 101
Köppel, Bâldea, Szalay (c4) 2003; 44
Puzari, Adhikari (c75) 2004; 98
Burghardt, Giri, Worth (c60) 2008; 129
Paul, Sardar, Sarkar, Adhikari (c27) 2009; 131
Mukherjee, Bandyopadhyay, Paul, Adhikari (c46) 2013; 117
Yang, Coe, Kaduk, Martínez (c65) 2009; 130
Nakamura, Truhlar (c35) 2003; 118
Sadygov, Yarkony (c38) 1999; 110
Varandas, Brown, Mead, Truhlar, Blais (c34) 1987; 86
Sardar, Puzari, Adhikari (c85) 2011; 13
Worth, Robb, Lasorne (c62) 2008; 106
Yonehara, Hanasaki, Takatsuka (c39) 2012; 112
Adhikari, Billing (c22) 1999; 111
Feynman (c29) 1939; 56
Longuet-Higgins, Öpik, Pryce, Sack (c103) 1958; 244
Top, Baer (c41) 1977; 66
Ghosh, Mukherjee, Mukherjee, Mandal, Sharma, Chaudhury, Adhikari (c56) 2017; 147
Puzari, Sarkar, Adhikari (c78) 2006; 324
Mukherjee, Mukherjee, Dutta, Sardar, Adhikari (c100) 2018; 3
Baer, Charutz, Kosloff, Baer (c21) 1996; 105
Martínez, Ben-Nun, Levine (c63) 1996; 100
Puzari, Swathi, Sarkar, Adhikari (c80) 2005; 123
Berry (c98) 1984; 392
Puzari, Sarkar, Adhikari (c81) 2006; 125
Jahn, Teller (c101) 1937; 161
Johnson (c7) 2002; 117
Burghardt, Meyer, Cederbaum (c58) 1999; 111
Vleck (c102) 1939; 7
Baba, Kowaka, Nagashima, Ishimoto, Goto, Nakayama (c94) 2011; 135
Dutta, Mukherjee, Naskar, Ghosh, Mukherjee, Ravi, Adhikari (c50) 2020; 22
Sarkar, Adhikari (c25) 2006; 124
Naskar, Mukherjee, Mukherjee, Ravi, Mukherjee, Sardar, Adhikari (c51) 2020; 16
Mukherjee, Mukhopadhyay, Adhikari (c55) 2014; 141
Hickman, Lang, Zeng (c109) 2018; 20
Eiding, Schneider, Domcke, Köppel, von Niessen (c5) 1991; 177
Baer (c40) 1975; 35
Baer, Englman (c44) 1992; 75
Sardar, Paul, Mondal, Sarkar, Adhikari (c82) 2008; 10
Sardar, Puzari, Adhikari (c84) 2010; 496
Viel, Eisfeld (c107) 2004; 120
Last, Gilibert, Baer (c20) 1997; 107
Köppel, Döscher, Bâldea, Meyer, Szalay (c3) 2002; 117
Sarkar, Adhikari (c26) 2008; 112
Beck, Jäckle, Worth, Meyer (c70) 2000; 324
Herzberg, Longuet-Higgins (c96) 1963; 35
Mandal, Ghosh, Sardar, Adhikari (c69) 2018; 37
Mukherjee, Mukherjee, Sardar, Adhikari (c52) 2015; 143
Levine, Martińez (c72) 2009; 113
Mukherjee, Mukherjee, Sardar, Shamasundar, Adhikari (c53) 2017; 115
Mukherjee, Mukherjee, Sardar, Adhikari (c99) 2019; 1154
Baltzer, Karlsson, Wannberg, Öhrwall, Holland, MacDonald, Hayes, von Niessen (c9) 1997; 224
Doi, Baba, Kasahara, Katô (c92) 2004; 227
Adhikari, Billing, Alijah, Lin, Baer (c24) 2000; 62
Åsbrink, Lindholm, Edqvist (c8) 1970; 5
Khan, Sardar, Sarkar, Adhikari (c68) 2014; 118
Billing, Adhikari (c73) 2000; 321
Schmidt, Baldridge, Boatz, Elbert, Gordon, Jensen, Koseki, Matsunaga, Nguyen, Su, Windus, Dupuis, Montgomery (c89) 1993; 14
Köppel, Domcke, Cederbaum (c30) 1984; 57
Döscher, Köppel, Szalay (c2) 2002; 117
Faraji, Köppel, Eisfeld, Mahapatra (c108) 2008; 347
Mukherjee, Mukherjee, Adhikari (c47) 2017; 121
Ishitani, Nagakura (c10) 2006; 12
Abedi, Maitra, Gross (c32) 2010; 105
Puzari, Sarkar, Adhikari (c76) 2004; 121
Lindner, Sekiya, Beyl, Müller-Dethlefs (c13) 1993; 32
Khan, Sardar, Sahoo, Sarkar, Adhikari (c86) 2013; 12
Mondal, Mahapatra (c106) 2009; 11
Worth, Burghardt (c61) 2003; 368
Sardar, Paul, Adhikari (c83) 2009; 107
Evenhuis, Martínez (c36) 2011; 135
Öpik, Pryce (c104) 1957; 238
Sardar, Paul, Sharma, Adhikari (c16) 2011; 111
Ben-Nun, Mart, nez (c64) 1998; 108
Adhikari, Billing (c66) 2000; 113
Mukherjee, Dutta, Mukherjee, Sardar, Adhikari (c48) 2019; 150
Burghardt, Nest, Worth (c59) 2003; 119
(2023070119194526000_c33) 2015; 34
(2023070119194526000_c34) 1987; 86
(2023070119194526000_c54) 2018; 515
(2023070119194526000_c68) 2014; 118
(2023070119194526000_c91) 1930; 26
(2023070119194526000_c103) 1958; 244
(2023070119194526000_c60) 2008; 129
(2023070119194526000_c48) 2019; 150
(2023070119194526000_c16) 2011; 111
(2023070119194526000_c39) 2012; 112
(2023070119194526000_c79) 2010; 122
(2023070119194526000_c98) 1984; 392
(2023070119194526000_c28) 1937
(2023070119194526000_c7) 2002; 117
(2023070119194526000_c89) 1993; 14
(2023070119194526000_c97) 1956; 44
(2023070119194526000_c71) 2012; 2
(2023070119194526000_c30) 1984; 57
(2023070119194526000_c47) 2017; 121
(2023070119194526000_c37) 2012; 136
(2023070119194526000_c51) 2020; 16
(2023070119194526000_c26) 2008; 112
(2023070119194526000_c67) 2003; 118
(2023070119194526000_c107) 2004; 120
(2023070119194526000_c85) 2011; 13
(2023070119194526000_c80) 2005; 123
(2023070119194526000_c42) 2002; 358
(2023070119194526000_c106) 2009; 11
(2023070119194526000_c18) 1927; 389
(2023070119194526000_c46) 2013; 117
(2023070119194526000_c9) 1997; 224
(2023070119194526000_c73) 2000; 321
(2023070119194526000_c27) 2009; 131
(2023070119194526000_c53) 2017; 115
(2023070119194526000_c64) 1998; 108
(2023070119194526000_c31) 1999; 110
(2023070119194526000_c3) 2002; 117
(2023070119194526000_c62) 2008; 106
(2023070119194526000_c95) 1961
(2023070119194526000_c1) 1988; 89
(2023070119194526000_c75) 2004; 98
(2023070119194526000_c70) 2000; 324
(2023070119194526000_c21) 1996; 105
(2023070119194526000_c2) 2002; 117
(2023070119194526000_c84) 2010; 496
(2023070119194526000_c100) 2018; 3
(2023070119194526000_c101) 1937; 161
(2023070119194526000_c57) 2020; 153
(2023070119194526000_c99) 2019; 1154
(2023070119194526000_c92) 2004; 227
(2023070119194526000_c69) 2018; 37
(2023070119194526000_c22) 1999; 111
(2023070119194526000_c96) 1963; 35
(2023070119194526000_c102) 1939; 7
(2023070119194526000_c58) 1999; 111
(2023070119194526000_c76) 2004; 121
(2023070119194526000_c109) 2018; 20
(2023070119194526000_c59) 2003; 119
2023070119194526000_c88
(2023070119194526000_c25) 2006; 124
(2023070119194526000_c90) 2016
(2023070119194526000_c104) 1957; 238
(2023070119194526000_c12) 2003; 101
(2023070119194526000_c65) 2009; 130
(2023070119194526000_c63) 1996; 100
(2023070119194526000_c66) 2000; 113
(2023070119194526000_c49) 2019; 38
(2023070119194526000_c29) 1939; 56
(2023070119194526000_c74) 2004; 300
(2023070119194526000_c50) 2020; 22
(2023070119194526000_c15) 2009; 130
(2023070119194526000_c6) 2002; 117
(2023070119194526000_c43) 2006
(2023070119194526000_c19) 1954
(2023070119194526000_c35) 2003; 118
(2023070119194526000_c13) 1993; 32
(2023070119194526000_c77) 2005; 105
(2023070119194526000_c20) 1997; 107
(2023070119194526000_c94) 2011; 135
(2023070119194526000_c52) 2015; 143
(2023070119194526000_c93) 1967
(2023070119194526000_c32) 2010; 105
(2023070119194526000_c40) 1975; 35
(2023070119194526000_c108) 2008; 347
(2023070119194526000_c83) 2009; 107
(2023070119194526000_c72) 2009; 113
(2023070119194526000_c17) 2012; 124
(2023070119194526000_c44) 1992; 75
(2023070119194526000_c82) 2008; 10
(2023070119194526000_c36) 2011; 135
(2023070119194526000_c61) 2003; 368
(2023070119194526000_c4) 2003; 44
(2023070119194526000_c23) 2000; 112
(2023070119194526000_c10) 2006; 12
(2023070119194526000_c45) 2000; 104
(2023070119194526000_c24) 2000; 62
(2023070119194526000_c38) 1999; 110
(2023070119194526000_c8) 1970; 5
(2023070119194526000_c55) 2014; 141
(2023070119194526000_c78) 2006; 324
(2023070119194526000_c5) 1991; 177
(2023070119194526000_c87) 2010
(2023070119194526000_c41) 1977; 66
(2023070119194526000_c11) 1992; 97
(2023070119194526000_c14) 2003; 119
(2023070119194526000_c81) 2006; 125
(2023070119194526000_c86) 2013; 12
(2023070119194526000_c105) 1999; 110
(2023070119194526000_c56) 2017; 147
References_xml – volume: 115
  start-page: 2833
  year: 2017
  ident: c53
  publication-title: Mol. Phys.
– volume: 62
  start-page: 32507
  year: 2000
  ident: c24
  publication-title: Phys. Rev. A
– volume: 100
  start-page: 7884
  year: 1996
  ident: c63
  publication-title: J. Phys. Chem.
– volume: 44
  start-page: 247
  year: 1956
  ident: c97
  publication-title: Proc. Indian. Acad. Sci. A
– volume: 136
  start-page: 174110
  year: 2012
  ident: c37
  publication-title: J. Chem. Phys.
– volume: 113
  start-page: 12815
  year: 2009
  ident: c72
  publication-title: J. Phys. Chem. A
– volume: 44
  start-page: 199
  year: 2003
  ident: c4
  publication-title: Adv. Quantum Chem.
– volume: 135
  start-page: 054305-1
  year: 2011
  ident: c94
  publication-title: J. Chem. Phys.
– volume: 119
  start-page: 5364
  year: 2003
  ident: c59
  publication-title: J. Chem. Phys.
– volume: 57
  start-page: 59
  year: 1984
  ident: c30
  publication-title: Adv. Chem. Phys.
– volume: 107
  start-page: 1451
  year: 1997
  ident: c20
  publication-title: J. Chem. Phys.
– volume: 177
  start-page: 345
  year: 1991
  ident: c5
  publication-title: Chem. Phys. Lett.
– volume: 105
  start-page: 209
  year: 2005
  ident: c77
  publication-title: Int. J. Quantum Chem.
– volume: 112
  start-page: 9868
  year: 2008
  ident: c26
  publication-title: J. Phys. Chem. A
– volume: 347
  start-page: 110
  year: 2008
  ident: c108
  publication-title: Chem. Phys.
– volume: 389
  start-page: 457
  year: 1927
  ident: c18
  publication-title: Ann. Phys. (Leipzig)
– volume: 124
  start-page: 51
  year: 2012
  ident: c17
  publication-title: J. Chem. Sci.
– volume: 89
  start-page: 2023
  year: 1988
  ident: c1
  publication-title: J. Chem. Phys.
– volume: 118
  start-page: 5302
  year: 2003
  ident: c67
  publication-title: J. Chem. Phys.
– volume: 130
  start-page: 144302
  year: 2009
  ident: c15
  publication-title: J. Chem. Phys.
– volume: 26
  start-page: 376
  year: 1930
  ident: c91
  publication-title: Proc. Cambridge Philos. Soc.
– volume: 20
  start-page: 12312
  year: 2018
  ident: c109
  publication-title: Phys. Chem. Chem. Phys.
– volume: 37
  start-page: 607
  year: 2018
  ident: c69
  publication-title: Int. Rev. Phys. Chem.
– volume: 244
  start-page: 1
  year: 1958
  ident: c103
  publication-title: Proc. R. Soc. London, Ser. A
– volume: 1154
  start-page: 57
  year: 2019
  ident: c99
  publication-title: Comput. Theor. Chem.
– volume: 496
  start-page: 341
  year: 2010
  ident: c84
  publication-title: Chem. Phys. Lett.
– volume: 105
  start-page: 123002
  year: 2010
  ident: c32
  publication-title: Phys. Rev. Lett.
– volume: 358
  start-page: 75
  year: 2002
  ident: c42
  publication-title: Phys. Rep.
– volume: 153
  start-page: 174301
  year: 2020
  ident: c57
  publication-title: J. Chem. Phys.
– volume: 113
  start-page: 1409
  year: 2000
  ident: c66
  publication-title: J. Chem. Phys.
– volume: 3
  start-page: 12465
  year: 2018
  ident: c100
  publication-title: ACS Omega
– volume: 118
  start-page: 11451
  year: 2014
  ident: c68
  publication-title: J. Phys. Chem. A
– volume: 56
  start-page: 340
  year: 1939
  ident: c29
  publication-title: Phys. Rev.
– volume: 108
  start-page: 7244
  year: 1998
  ident: c64
  publication-title: J. Chem. Phys.
– volume: 14
  start-page: 1347
  year: 1993
  ident: c89
  publication-title: J. Comput. Chem.
– volume: 119
  start-page: 4305
  year: 2003
  ident: c14
  publication-title: J. Chem. Phys.
– volume: 32
  start-page: 603
  year: 1993
  ident: c13
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 106
  start-page: 2077
  year: 2008
  ident: c62
  publication-title: Mol. Phys.
– volume: 147
  start-page: 074105-1
  year: 2017
  ident: c56
  publication-title: J. Chem. Phys.
– volume: 111
  start-page: 2741
  year: 2011
  ident: c16
  publication-title: Int. J. Quantum Chem.
– volume: 13
  start-page: 15960
  year: 2011
  ident: c85
  publication-title: Phys. Chem. Chem. Phys.
– volume: 121
  start-page: 6314
  year: 2017
  ident: c47
  publication-title: J. Phys. Chem. A
– volume: 125
  start-page: 194316
  year: 2006
  ident: c81
  publication-title: J. Chem. Phys.
– volume: 107
  start-page: 2467
  year: 2009
  ident: c83
  publication-title: Mol. Phys.
– volume: 117
  start-page: 2657
  year: 2002
  ident: c3
  publication-title: J. Chem. Phys.
– volume: 104
  start-page: 389
  year: 2000
  ident: c45
  publication-title: J. Phys. Chem. A
– volume: 324
  start-page: 497
  year: 2006
  ident: c78
  publication-title: Chem. Phys.
– volume: 118
  start-page: 6816
  year: 2003
  ident: c35
  publication-title: J. Chem. Phys.
– volume: 112
  start-page: 2121
  year: 2000
  ident: c23
  publication-title: J. Chem. Phys.
– volume: 11
  start-page: 10867
  year: 2009
  ident: c106
  publication-title: Phys. Chem. Chem. Phys.
– volume: 121
  start-page: 707
  year: 2004
  ident: c76
  publication-title: J. Chem. Phys.
– volume: 110
  start-page: 3639
  year: 1999
  ident: c38
  publication-title: J. Chem. Phys.
– volume: 392
  start-page: 45
  year: 1984
  ident: c98
  publication-title: Proc. R. Soc. London, Ser. A
– volume: 5
  start-page: 609
  year: 1970
  ident: c8
  publication-title: Chem. Phys. Lett.
– volume: 38
  start-page: 287
  year: 2019
  ident: c49
  publication-title: Int. Rev. Phys. Chem.
– volume: 10
  start-page: 6388
  year: 2008
  ident: c82
  publication-title: Phys. Chem. Chem. Phys.
– volume: 124
  start-page: 074101
  year: 2006
  ident: c25
  publication-title: J. Chem. Phys.
– volume: 7
  start-page: 72
  year: 1939
  ident: c102
  publication-title: J. Chem. Phys.
– volume: 515
  start-page: 350
  year: 2018
  ident: c54
  publication-title: Chem. Phys.
– volume: 12
  start-page: 1
  year: 2006
  ident: c10
  publication-title: Mol. Phys.
– volume: 120
  start-page: 4603
  year: 2004
  ident: c107
  publication-title: J. Chem. Phys.
– volume: 110
  start-page: 5691
  year: 1999
  ident: c105
  publication-title: J. Chem. Phys.
– volume: 101
  start-page: 705
  year: 2003
  ident: c12
  publication-title: Mol. Phys.
– volume: 16
  start-page: 1666
  year: 2020
  ident: c51
  publication-title: J. Chem. Theory Comput.
– volume: 238
  start-page: 425
  year: 1957
  ident: c104
  publication-title: Proc. R. Soc. London, Ser. A
– volume: 141
  start-page: 204306
  year: 2014
  ident: c55
  publication-title: J. Chem. Phys.
– volume: 111
  start-page: 40
  year: 1999
  ident: c22
  publication-title: J. Chem. Phys.
– volume: 150
  start-page: 064308
  year: 2019
  ident: c48
  publication-title: J. Chem. Phys.
– volume: 2
  start-page: 351
  year: 2012
  ident: c71
  publication-title: Adv. Rev.
– volume: 368
  start-page: 502
  year: 2003
  ident: c61
  publication-title: Chem. Phys. Lett.
– volume: 86
  start-page: 6258
  year: 1987
  ident: c34
  publication-title: J. Chem. Phys.
– volume: 224
  start-page: 95
  year: 1997
  ident: c9
  publication-title: Chem. Phys.
– volume: 300
  start-page: 305
  year: 2004
  ident: c74
  publication-title: Chem. Phys.
– volume: 111
  start-page: 2927
  year: 1999
  ident: c58
  publication-title: J. Chem. Phys.
– volume: 143
  start-page: 244307
  year: 2015
  ident: c52
  publication-title: J. Chem. Phys.
– volume: 122
  start-page: 491
  year: 2010
  ident: c79
  publication-title: J. Chem. Soc.
– volume: 105
  start-page: 9141
  year: 1996
  ident: c21
  publication-title: J. Chem. Phys.
– volume: 227
  start-page: 180
  year: 2004
  ident: c92
  publication-title: J. Mol. Spectrosc.
– volume: 130
  start-page: 134113
  year: 2009
  ident: c65
  publication-title: J. Chem. Phys.
– volume: 135
  start-page: 224110
  year: 2011
  ident: c36
  publication-title: J. Chem. Phys.
– volume: 321
  start-page: 197
  year: 2000
  ident: c73
  publication-title: Chem. Phys. Lett.
– volume: 117
  start-page: 3475
  year: 2013
  ident: c46
  publication-title: J. Phys. Chem. A
– volume: 131
  start-page: 124312
  year: 2009
  ident: c27
  publication-title: J. Chem. Phys.
– volume: 35
  start-page: 77
  year: 1963
  ident: c96
  publication-title: Discuss. Faraday Soc.
– volume: 117
  start-page: 9991
  year: 2002
  ident: c6
  publication-title: J. Chem. Phys.
– volume: 22
  start-page: 27496
  year: 2020
  ident: c50
  publication-title: Phys. Chem. Chem. Phys.
– volume: 129
  start-page: 174104
  year: 2008
  ident: c60
  publication-title: J. Chem. Phys.
– volume: 97
  start-page: 5923
  year: 1992
  ident: c11
  publication-title: J. Chem. Phys.
– volume: 110
  start-page: 9371
  year: 1999
  ident: c31
  publication-title: J. Chem. Phys.
– volume: 66
  start-page: 1363
  year: 1977
  ident: c41
  publication-title: J. Chem. Phys.
– volume: 324
  start-page: 1
  year: 2000
  ident: c70
  publication-title: Phys. Rep.
– volume: 12
  start-page: 1350042
  year: 2013
  ident: c86
  publication-title: J. Theor. Comput. Chem.
– volume: 112
  start-page: 499
  year: 2012
  ident: c39
  publication-title: Chem. Rev.
– volume: 123
  start-page: 134317
  year: 2005
  ident: c80
  publication-title: J. Chem. Phys.
– volume: 34
  start-page: 269
  year: 2015
  ident: c33
  publication-title: Int. Rev. Phys. Chem.
– volume: 75
  start-page: 293
  year: 1992
  ident: c44
  publication-title: Mol. Phys.
– volume: 35
  start-page: 112
  year: 1975
  ident: c40
  publication-title: Chem. Phys. Lett.
– volume: 117
  start-page: 2645
  year: 2002
  ident: c2
  publication-title: J. Chem. Phys.
– volume: 161
  start-page: 220
  year: 1937
  ident: c101
  publication-title: Proc. R. Soc. London, Ser. A
– volume: 117
  start-page: 10001
  year: 2002
  ident: c7
  publication-title: J. Chem. Phys.
– volume: 98
  start-page: 434
  year: 2004
  ident: c75
  publication-title: Int. J. Quantum Chem.
– volume: 120
  start-page: 4603
  year: 2004
  ident: 2023070119194526000_c107
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1646371
– volume: 117
  start-page: 2657
  year: 2002
  ident: 2023070119194526000_c3
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1491398
– volume: 13
  start-page: 15960
  year: 2011
  ident: 2023070119194526000_c85
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp20525k
– volume: 117
  start-page: 2645
  year: 2002
  ident: 2023070119194526000_c2
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1491397
– volume: 105
  start-page: 123002
  year: 2010
  ident: 2023070119194526000_c32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.105.123002
– volume: 321
  start-page: 197
  year: 2000
  ident: 2023070119194526000_c73
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/s0009-2614(00)00358-4
– volume: 123
  start-page: 134317
  year: 2005
  ident: 2023070119194526000_c80
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2050647
– volume: 117
  start-page: 3475
  year: 2013
  ident: 2023070119194526000_c46
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp311597c
– volume: 227
  start-page: 180
  year: 2004
  ident: 2023070119194526000_c92
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2004.06.003
– volume: 135
  start-page: 224110
  year: 2011
  ident: 2023070119194526000_c36
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3660686
– volume: 244
  start-page: 1
  year: 1958
  ident: 2023070119194526000_c103
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1958.0022
– volume: 118
  start-page: 11451
  issue: 49
  year: 2014
  ident: 2023070119194526000_c68
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp507459m
– volume: 224
  start-page: 95
  year: 1997
  ident: 2023070119194526000_c9
  publication-title: Chem. Phys.
  doi: 10.1016/s0301-0104(97)00244-9
– volume: 110
  start-page: 3639
  year: 1999
  ident: 2023070119194526000_c38
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478252
– volume: 104
  start-page: 389
  year: 2000
  ident: 2023070119194526000_c45
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp992742o
– volume: 115
  start-page: 2833
  year: 2017
  ident: 2023070119194526000_c53
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2017.1340680
– volume: 130
  start-page: 144302
  year: 2009
  ident: 2023070119194526000_c15
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3108488
– volume: 62
  start-page: 32507
  year: 2000
  ident: 2023070119194526000_c24
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.62.032507
– volume: 34
  start-page: 269
  year: 2015
  ident: 2023070119194526000_c33
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/0144235x.2015.1051354
– volume: 26
  start-page: 376
  year: 1930
  ident: 2023070119194526000_c91
  publication-title: Proc. Cambridge Philos. Soc.
  doi: 10.1017/s0305004100016108
– volume: 118
  start-page: 6816
  year: 2003
  ident: 2023070119194526000_c35
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1540622
– volume: 141
  start-page: 204306
  year: 2014
  ident: 2023070119194526000_c55
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4901986
– volume: 347
  start-page: 110
  year: 2008
  ident: 2023070119194526000_c108
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2007.10.006
– volume: 124
  start-page: 074101
  year: 2006
  ident: 2023070119194526000_c25
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2170089
– volume: 11
  start-page: 10867
  year: 2009
  ident: 2023070119194526000_c106
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b913342a
– volume: 86
  start-page: 6258
  year: 1987
  ident: 2023070119194526000_c34
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.452463
– volume: 150
  start-page: 064308
  year: 2019
  ident: 2023070119194526000_c48
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5064519
– volume: 2
  start-page: 351
  year: 2012
  ident: 2023070119194526000_c71
  publication-title: Adv. Rev.
– volume: 300
  start-page: 305
  year: 2004
  ident: 2023070119194526000_c74
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2004.01.006
– volume-title: Dynamical Theory of Crystal Lattices
  year: 1954
  ident: 2023070119194526000_c19
– year: 2016
  ident: 2023070119194526000_c90
  article-title: Gaussian 16, revision C.01
– volume: 496
  start-page: 341
  year: 2010
  ident: 2023070119194526000_c84
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2010.07.038
– volume: 147
  start-page: 074105-1
  year: 2017
  ident: 2023070119194526000_c56
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4998406
– volume: 100
  start-page: 7884
  year: 1996
  ident: 2023070119194526000_c63
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp953105a
– volume: 110
  start-page: 9371
  year: 1999
  ident: 2023070119194526000_c31
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478902
– volume: 35
  start-page: 77
  year: 1963
  ident: 2023070119194526000_c96
  publication-title: Discuss. Faraday Soc.
  doi: 10.1039/df9633500077
– volume: 135
  start-page: 054305-1
  year: 2011
  ident: 2023070119194526000_c94
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3622766
– volume: 97
  start-page: 5923
  year: 1992
  ident: 2023070119194526000_c11
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.463754
– volume-title: Einfuring in die Quantenchemie
  year: 1937
  ident: 2023070119194526000_c28
– volume: 130
  start-page: 134113
  year: 2009
  ident: 2023070119194526000_c65
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3103930
– volume: 105
  start-page: 9141
  year: 1996
  ident: 2023070119194526000_c21
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.472748
– volume: 111
  start-page: 2741
  year: 2011
  ident: 2023070119194526000_c16
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.22578
– volume: 10
  start-page: 6388
  year: 2008
  ident: 2023070119194526000_c82
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b805990j
– volume: 1154
  start-page: 57
  year: 2019
  ident: 2023070119194526000_c99
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2019.03.011
– volume: 20
  start-page: 12312
  year: 2018
  ident: 2023070119194526000_c109
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c8cp01394b
– volume: 129
  start-page: 174104
  year: 2008
  ident: 2023070119194526000_c60
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2996349
– volume: 161
  start-page: 220
  year: 1937
  ident: 2023070119194526000_c101
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1937.0142
– volume: 117
  start-page: 9991
  year: 2002
  ident: 2023070119194526000_c6
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1519006
– volume: 66
  start-page: 1363
  year: 1977
  ident: 2023070119194526000_c41
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.434032
– volume: 121
  start-page: 6314
  year: 2017
  ident: 2023070119194526000_c47
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.7b04592
– volume: 125
  start-page: 194316
  year: 2006
  ident: 2023070119194526000_c81
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2393228
– volume: 44
  start-page: 247
  year: 1956
  ident: 2023070119194526000_c97
  publication-title: Proc. Indian. Acad. Sci. A
  doi: 10.1007/bf03046050
– volume: 392
  start-page: 45
  year: 1984
  ident: 2023070119194526000_c98
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1984.0023
– volume: 22
  start-page: 27496
  year: 2020
  ident: 2023070119194526000_c50
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/d0cp04052e
– volume: 113
  start-page: 12815
  year: 2009
  ident: 2023070119194526000_c72
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp907111u
– volume: 12
  start-page: 1
  year: 2006
  ident: 2023070119194526000_c10
  publication-title: Mol. Phys.
  doi: 10.1080/00268976700100011
– volume: 119
  start-page: 4305
  year: 2003
  ident: 2023070119194526000_c14
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1592512
– volume: 101
  start-page: 705
  year: 2003
  ident: 2023070119194526000_c12
  publication-title: Mol. Phys.
  doi: 10.1080/0026897021000054916
– volume: 98
  start-page: 434
  year: 2004
  ident: 2023070119194526000_c75
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.20095
– volume: 75
  start-page: 293
  year: 1992
  ident: 2023070119194526000_c44
  publication-title: Mol. Phys.
  doi: 10.1080/00268979200100231
– ident: 2023070119194526000_c88
– volume: 89
  start-page: 2023
  year: 1988
  ident: 2023070119194526000_c1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.455100
– volume: 368
  start-page: 502
  year: 2003
  ident: 2023070119194526000_c61
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/s0009-2614(02)01920-6
– volume-title: Beyond Born–Oppenheimer: Conical Intersections and Electronic Nonadiabatic Coupling Terms
  year: 2006
  ident: 2023070119194526000_c43
– volume: 35
  start-page: 112
  year: 1975
  ident: 2023070119194526000_c40
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(75)85599-0
– volume: 44
  start-page: 199
  year: 2003
  ident: 2023070119194526000_c4
  publication-title: Adv. Quantum Chem.
  doi: 10.1016/s0065-3276(03)44013-6
– volume: 136
  start-page: 174110
  year: 2012
  ident: 2023070119194526000_c37
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4704789
– volume: 112
  start-page: 2121
  year: 2000
  ident: 2023070119194526000_c23
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.480823
– year: 2010
  ident: 2023070119194526000_c87
  article-title: Molpro, version 2010.1, a package of ab initio programs
– volume: 14
  start-page: 1347
  year: 1993
  ident: 2023070119194526000_c89
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540141112
– volume: 105
  start-page: 209
  year: 2005
  ident: 2023070119194526000_c77
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.20666
– volume: 111
  start-page: 2927
  year: 1999
  ident: 2023070119194526000_c58
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.479574
– volume: 38
  start-page: 287
  year: 2019
  ident: 2023070119194526000_c49
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/0144235x.2019.1672987
– volume: 111
  start-page: 40
  year: 1999
  ident: 2023070119194526000_c22
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.479360
– volume: 113
  start-page: 1409
  year: 2000
  ident: 2023070119194526000_c66
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.481959
– volume: 389
  start-page: 457
  year: 1927
  ident: 2023070119194526000_c18
  publication-title: Ann. Phys. (Leipzig)
  doi: 10.1002/andp.19273892002
– volume: 358
  start-page: 75
  year: 2002
  ident: 2023070119194526000_c42
  publication-title: Phys. Rep.
  doi: 10.1016/s0370-1573(01)00052-7
– volume: 16
  start-page: 1666
  year: 2020
  ident: 2023070119194526000_c51
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.9b00948
– volume: 12
  start-page: 1350042
  year: 2013
  ident: 2023070119194526000_c86
  publication-title: J. Theor. Comput. Chem.
  doi: 10.1142/s0219633613500429
– volume: 107
  start-page: 2467
  year: 2009
  ident: 2023070119194526000_c83
  publication-title: Mol. Phys.
  doi: 10.1080/00268970903362326
– volume: 143
  start-page: 244307
  year: 2015
  ident: 2023070119194526000_c52
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4938526
– volume: 515
  start-page: 350
  year: 2018
  ident: 2023070119194526000_c54
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2018.09.017
– volume: 110
  start-page: 5691
  year: 1999
  ident: 2023070119194526000_c105
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478467
– volume: 57
  start-page: 59
  year: 1984
  ident: 2023070119194526000_c30
  publication-title: Adv. Chem. Phys.
  doi: 10.1002/9780470142813.ch2
– volume: 32
  start-page: 603
  year: 1993
  ident: 2023070119194526000_c13
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.199306031
– volume: 56
  start-page: 340
  year: 1939
  ident: 2023070119194526000_c29
  publication-title: Phys. Rev.
  doi: 10.1103/physrev.56.340
– volume: 122
  start-page: 491
  year: 2010
  ident: 2023070119194526000_c79
  publication-title: J. Chem. Soc.
  doi: 10.1007/s12039-010-0084-x
– volume: 177
  start-page: 345
  year: 1991
  ident: 2023070119194526000_c5
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(91)85042-u
– volume: 107
  start-page: 1451
  year: 1997
  ident: 2023070119194526000_c20
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.474498
– volume: 119
  start-page: 5364
  year: 2003
  ident: 2023070119194526000_c59
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1599275
– volume: 7
  start-page: 72
  year: 1939
  ident: 2023070119194526000_c102
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1750327
– volume: 153
  start-page: 174301
  year: 2020
  ident: 2023070119194526000_c57
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0021885
– volume: 324
  start-page: 497
  year: 2006
  ident: 2023070119194526000_c78
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2005.11.027
– volume: 112
  start-page: 9868
  year: 2008
  ident: 2023070119194526000_c26
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp8029709
– volume: 106
  start-page: 2077
  year: 2008
  ident: 2023070119194526000_c62
  publication-title: Mol. Phys.
  doi: 10.1080/00268970802172503
– volume: 118
  start-page: 5302
  year: 2003
  ident: 2023070119194526000_c67
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1553977
– volume: 124
  start-page: 51
  year: 2012
  ident: 2023070119194526000_c17
  publication-title: J. Chem. Sci.
  doi: 10.1007/s12039-011-0195-z
– volume-title: Tables of Molecular Vibrational Frequencies
  year: 1967
  ident: 2023070119194526000_c93
– volume: 3
  start-page: 12465
  year: 2018
  ident: 2023070119194526000_c100
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b01648
– volume: 5
  start-page: 609
  year: 1970
  ident: 2023070119194526000_c8
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(70)85060-6
– volume-title: Advances in Spectroscopy
  year: 1961
  ident: 2023070119194526000_c95
  article-title: Some recent developments in the theory of molecular energy levels
– volume: 131
  start-page: 124312
  year: 2009
  ident: 2023070119194526000_c27
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3236839
– volume: 117
  start-page: 10001
  year: 2002
  ident: 2023070119194526000_c7
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1519007
– volume: 108
  start-page: 7244
  year: 1998
  ident: 2023070119194526000_c64
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.476142
– volume: 112
  start-page: 499
  year: 2012
  ident: 2023070119194526000_c39
  publication-title: Chem. Rev.
  doi: 10.1021/cr200096s
– volume: 37
  start-page: 607
  year: 2018
  ident: 2023070119194526000_c69
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/0144235X.2018.1548103
– volume: 324
  start-page: 1
  year: 2000
  ident: 2023070119194526000_c70
  publication-title: Phys. Rep.
  doi: 10.1016/s0370-1573(99)00047-2
– volume: 238
  start-page: 425
  year: 1957
  ident: 2023070119194526000_c104
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1957.0010
– volume: 121
  start-page: 707
  year: 2004
  ident: 2023070119194526000_c76
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1758700
SSID ssj0001724
Score 2.4284594
Snippet We employ theoretically “exact” and numerically “accurate” Beyond Born–Oppenheimer (BBO) treatment to construct diabatic potential energy surfaces (PESs) of...
We employ theoretically "exact" and numerically "accurate" Beyond Born-Oppenheimer (BBO) treatment to construct diabatic potential energy surfaces (PESs) of...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 094306
SubjectTerms Adiabatic flow
Benzene
Cations
Couplings
Electron states
Electronic structure
Hilbert space
Hydrocarbons
Intersections
Jahn-Teller effect
Mathematical analysis
Photoelectrons
Potential energy
Representations
Spectra
Time dependence
Workability
Title A beyond Born–Oppenheimer treatment of C6H6+ radical cation for diabatic surfaces: Photoelectron spectra of its neutral analog using time-dependent discrete variable representation
URI http://dx.doi.org/10.1063/5.0040361
https://www.proquest.com/docview/2495607430
https://www.proquest.com/docview/2499385187
Volume 154
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtMwGLZKJzRuEAwQhYHM4QIpymgOdRLuurGpgu4g1km7ixzHVktpUqVJpfFePABvxu84TlKo0OAmihLLifR9tj___g8Ive3HzOeRL0zuBr7pxjJY2YfhLmKXOjaPmUPlie7pGRlduZ-uB9edzs-W11KRRwfs-9a4kv9BFZ4BrjJK9h-QrTuFB3AP-MIVEIbrrTAeGpEKQDlMs8Q8Xy55MuWzBc9a_uPS3YKMCEB8aGRUncqwxsNQ2l7LpK2rIhPSPUuaCC6maZ7qAjlGGYyZUZWbdmUkvJDWEYMm0u5jFKWxQZaoN3VB3Vwe-4Aazbmxhq14GZxVJs_UgU5JWxI3wWmlLGY6g4GyuawaRsyBXl-rvP5psbipF5QvdD1T1u38hi5q8zZdzZX3-Oe0WE1ndUjSJQwK9QJmzSlN5jRr2z5s5fzltabrvh-YHlEFRw_4lmd6jleZqisyB60ZW3pWljkP_lxMQL0BA6TNzYV13mpWTO0lcHYenlyNx-Hk-HpyB-3YsFOxu2hn-PF0fFnLAVCIroryUL-l01sR533d9aYoanY6uyCDFC4t0TN5gO5XsOChot5D1OHJHto90kUC99DdC4XSI_RjiBUZ8e9kxDUZcSqwJCM2cEVFrKiIgYpYUxFrKn7AG0TEFRFlL0BEXBERKyLikoh4k4hYExFrIuJNIj5GVyfHk6ORWdUEMZkzILnp-ML2AuY4AyGEbzHiMurSiDESB9yKAiuIPO4TNuDMo4QHxBLCiTyX9HngCOo5T1A3SRP-FGFYXongIFkHsCmwbRHYlhX3Xdhxx7EFGqCH3mlQQg2DrNvyLSwdN4gTDsIKvx56XTddqiwx2xrta2TDahJZhXZpoAAZ3--hV_VrAFGe29GEwwCRbQL4S8v3euhNzYi_fWhLq3WaNS3CZSye3eJ7z9G9Ztjto26eFfwFiPA8elnR_BfMfOXr
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+beyond+Born-Oppenheimer+treatment+of+C6H6+%2B+radical+cation+for+diabatic+surfaces%3A+Photoelectron+spectra+of+its+neutral+analog+using+time-dependent+discrete+variable+representation&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Mukherjee%2C+Soumya&rft.au=Ravi%2C+Satyam&rft.au=Naskar%2C+Koushik&rft.au=Sardar%2C+Subhankar&rft.date=2021-03-07&rft.issn=1089-7690&rft.eissn=1089-7690&rft.volume=154&rft.issue=9&rft.spage=094306&rft_id=info:doi/10.1063%2F5.0040361&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon