Connecting image inpainting with denoising in the homogeneous diffusion setting
While local methods for image denoising and inpainting may use similar concepts, their connections have hardly been investigated so far. The goal of this work is to establish links between the two by focusing on the most foundational scenario on both sides – the homogeneous diffusion setting. To thi...
Saved in:
Published in | Advances in continuous and discrete models Vol. 2025; no. 1; p. 74 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
28.03.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2731-4235 1687-1839 2731-4235 1687-1847 |
DOI | 10.1186/s13662-025-03935-7 |
Cover
Loading…
Abstract | While local methods for image denoising and inpainting may use similar concepts, their connections have hardly been investigated so far. The goal of this work is to establish links between the two by focusing on the most foundational scenario on both sides – the homogeneous diffusion setting. To this end, we study a denoising by inpainting (DbI) framework. It averages multiple inpainting results from different noisy subsets. We derive equivalence results between DbI on shifted regular grids and homogeneous diffusion filtering in 1D via an explicit relation between the density and the diffusion time. We also provide an empirical extension to the 2D case. We present experiments that confirm our theory and suggest that it can also be generalized to diffusions with nonhomogeneous data or nonhomogeneous diffusivities. More generally, our work demonstrates that the hardly explored idea of data adaptivity deserves more attention – it can be as powerful as some popular models with operator adaptivity. |
---|---|
AbstractList | While local methods for image denoising and inpainting may use similar concepts, their connections have hardly been investigated so far. The goal of this work is to establish links between the two by focusing on the most foundational scenario on both sides – the homogeneous diffusion setting. To this end, we study a denoising by inpainting (DbI) framework. It averages multiple inpainting results from different noisy subsets. We derive equivalence results between DbI on shifted regular grids and homogeneous diffusion filtering in 1D via an explicit relation between the density and the diffusion time. We also provide an empirical extension to the 2D case. We present experiments that confirm our theory and suggest that it can also be generalized to diffusions with nonhomogeneous data or nonhomogeneous diffusivities. More generally, our work demonstrates that the hardly explored idea of data adaptivity deserves more attention – it can be as powerful as some popular models with operator adaptivity. While local methods for image denoising and inpainting may use similar concepts, their connections have hardly been investigated so far. The goal of this work is to establish links between the two by focusing on the most foundational scenario on both sides - the homogeneous diffusion setting. To this end, we study a denoising by inpainting (DbI) framework. It averages multiple inpainting results from different noisy subsets. We derive equivalence results between DbI on shifted regular grids and homogeneous diffusion filtering in 1D via an explicit relation between the density and the diffusion time. We also provide an empirical extension to the 2D case. We present experiments that confirm our theory and suggest that it can also be generalized to diffusions with nonhomogeneous data or nonhomogeneous diffusivities. More generally, our work demonstrates that the hardly explored idea of data adaptivity deserves more attention - it can be as powerful as some popular models with operator adaptivity.While local methods for image denoising and inpainting may use similar concepts, their connections have hardly been investigated so far. The goal of this work is to establish links between the two by focusing on the most foundational scenario on both sides - the homogeneous diffusion setting. To this end, we study a denoising by inpainting (DbI) framework. It averages multiple inpainting results from different noisy subsets. We derive equivalence results between DbI on shifted regular grids and homogeneous diffusion filtering in 1D via an explicit relation between the density and the diffusion time. We also provide an empirical extension to the 2D case. We present experiments that confirm our theory and suggest that it can also be generalized to diffusions with nonhomogeneous data or nonhomogeneous diffusivities. More generally, our work demonstrates that the hardly explored idea of data adaptivity deserves more attention - it can be as powerful as some popular models with operator adaptivity. |
ArticleNumber | 74 |
Author | Adam, Robin Dirk Chizhov, Vassillen Peter, Pascal Gaa, Daniel Weickert, Joachim |
Author_xml | – sequence: 1 givenname: Daniel orcidid: 0009-0009-8102-0487 surname: Gaa fullname: Gaa, Daniel email: gaa@mia.uni-saarland.de organization: Mathematical Image Analysis Group, Faculty of Mathematics and Computer Science, Saarland University – sequence: 2 givenname: Vassillen surname: Chizhov fullname: Chizhov, Vassillen organization: Mathematical Image Analysis Group, Faculty of Mathematics and Computer Science, Saarland University – sequence: 3 givenname: Pascal surname: Peter fullname: Peter, Pascal organization: Mathematical Image Analysis Group, Faculty of Mathematics and Computer Science, Saarland University – sequence: 4 givenname: Joachim surname: Weickert fullname: Weickert, Joachim organization: Mathematical Image Analysis Group, Faculty of Mathematics and Computer Science, Saarland University – sequence: 5 givenname: Robin Dirk surname: Adam fullname: Adam, Robin Dirk organization: Mathematical Image Analysis Group, Faculty of Mathematics and Computer Science, Saarland University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40162338$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9P3DAQxa0KVP6UL9BDFYlLLykeT2zHpwqtKCAhcYGz5U0mWaNde4mTVv32eHeBQg-cbHl-b-aN3xHbCzEQY1-B_wCo1VkCVEqUXMiSo0FZ6k_sUGiEshIo997cD9hJSg-cc2EEal5_ZgcVByUQ60N2O4shUDP60Bd-5XoqfFg7H7YPf_y4KFoK0adtPRTjgopFXMWeAsUpFa3vuin5GIpE40bzhe13bpno5Pk8Zve_Lu5mV-XN7eX17PymbFCqsUSoRdU2hirX1ZXq5p1qjZLQkZCOHGpQYJwk2XDhlHZUa4nCOIEt1nrO8Zj93PVdT_MVtQ2FcXBLux7yEsNfG5237yvBL2wff1sAIxEE5A7fnzsM8XGiNNqVTw0tl267ms0WK6mMhiqjp_-hD3EaQt5vQwlpdAUbS9_eWnr18vLZGRA7oBliSgN1rwhwuwnV7kK1OVS7DdXqLMKdKGU49DT8m_2B6glVxaRX |
Cites_doi | 10.1016/0004-3702(81)90024-2 10.1017/CBO9780511734304 10.1023/A:1008344608808 10.1007/978-3-030-89131-2_40 10.1007/978-1-4757-6465-9 10.1023/A:1008344623873 10.1109/TPAMI.1986.4767833 10.1006/jvci.2001.0487 10.1007/978-3-642-38267-3_27 10.1109/TCSVT.2012.2221191 10.1109/PCS.2012.6213291 10.1023/A:1008282127190 10.1109/34.56205 10.1109/T-C.1974.223784 10.1109/TIP.2004.833105 10.1007/s10044-022-01074-3 10.1023/A:1013614317973 10.1109/MSP.2002.1028351 10.1137/040616024 10.1007/3-540-47778-0_23 10.1109/DCC.2002.999938 10.1007/978-3-030-56215-1_5 10.1007/s11263-014-0702-z 10.1137/15M1037457 10.1109/TIP.2003.815261 10.1007/978-3-319-14612-6_13 10.1007/978-3-642-24785-9_3 10.1137/100803730 10.1137/21M1406349 10.1007/BF01404567 10.1137/16M1102884 10.1007/978-3-319-18461-6_13 10.1137/080728548 10.1007/s10851-019-00903-1 10.1007/978-3-319-58771-4_10 10.1109/78.258082 10.1137/080743883 10.1007/1-4020-3858-8_15 10.1007/978-3-642-40395-8_12 10.1007/3-540-31272-2_19 10.1109/TIP.2005.852196 10.1007/978-3-642-03641-5_25 10.1117/12.131071 10.1088/1361-6420/aa5bfd 10.1137/23M1545859 10.1016/j.patcog.2010.08.004 10.1006/jcta.2000.3094 10.1137/080716396 10.1007/s10851-022-01106-x 10.1137/20M1382179 10.1016/0165-1684(88)90028-X 10.1017/S0962492912000062 10.1007/s10044-023-01162-y 10.1093/biomet/81.3.425 10.1109/MSP.2013.2273004 10.1007/s10851-020-00973-6 10.1007/s10851-008-0087-0 10.1137/S1064827596304010 10.2307/1416707 10.1109/83.650852 10.1109/TPAMI.1984.4767596 10.1109/83.551699 10.1109/TCI.2017.2704439 10.1145/1531326.1531330 10.1023/B:VISI.0000029664.99615.94 10.1007/978-1-4419-7011-4 10.1007/978-3-030-75549-2_34 10.1016/0041-5553(64)90006-0 10.1109/TSP.2006.887109 10.1109/TIP.2007.901238 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 The Author(s) 2025. Copyright Springer Nature B.V. Dec 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. – notice: Copyright Springer Nature B.V. Dec 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 5PM |
DOI | 10.1186/s13662-025-03935-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Engineering |
EISSN | 2731-4235 1687-1847 |
ExternalDocumentID | PMC11953121 40162338 10_1186_s13662_025_03935_7 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Universität des Saarlandes (1036) – fundername: H2020 European Research Council grantid: 741215 funderid: http://dx.doi.org/10.13039/100010663 |
GroupedDBID | 0R~ AAJSJ AAKKN AASML ABDBF ABEEZ ACACY ACULB AFGXO ALMA_UNASSIGNED_HOLDINGS C24 C6C EBLON EBS ESX SOJ TUS ~8M AAYXX CITATION ACUHS NPM 23M 2WC 3V. 4.4 40G 5GY 5VS 6J9 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK 8R4 8R5 AAFWJ ABJCF ABUWG ACGFO ACGFS ACIPV ACIWK ADBBV AEGXH AENEX AFKRA AFPKN AHBYD AHYZX AIAGR AMKLP AMTXH ARAPS AZQEC BAPOH BCNDV BENPR BGLVJ BPHCQ CCPQU CS3 DWQXO FR3 GNUQQ GROUPED_DOAJ HCIFZ J9A JQ2 K6V K7- KQ8 KR7 L6V L7M L~C L~D M0N M7S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC PTHSS Q2X Q9U REM RHU RNS SMT U2A UPT 7X8 5PM |
ID | FETCH-LOGICAL-c356t-31824dc9e4af846fbf6d9651fe25aea371619a5e5c02a67ae875329a23d387b03 |
IEDL.DBID | BENPR |
ISSN | 2731-4235 1687-1839 |
IngestDate | Thu Aug 21 18:35:51 EDT 2025 Wed Apr 02 00:01:27 EDT 2025 Fri Jul 25 12:27:51 EDT 2025 Mon Jul 21 05:54:21 EDT 2025 Tue Jul 01 05:15:27 EDT 2025 Sat Mar 29 01:22:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 68U10 Inpainting Partial differential equations 94A08 Diffusion Sampling 65D18 Denoising |
Language | English |
License | The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-31824dc9e4af846fbf6d9651fe25aea371619a5e5c02a67ae875329a23d387b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0009-8102-0487 |
OpenAccessLink | https://www.proquest.com/docview/3182597410?pq-origsite=%requestingapplication% |
PMID | 40162338 |
PQID | 3182597410 |
PQPubID | 237355 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11953121 proquest_miscellaneous_3184569714 proquest_journals_3182597410 pubmed_primary_40162338 crossref_primary_10_1186_s13662_025_03935_7 springer_journals_10_1186_s13662_025_03935_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-28 |
PublicationDateYYYYMMDD | 2025-03-28 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Switzerland – name: New York |
PublicationSubtitle | Theory and Modern Applications |
PublicationTitle | Advances in continuous and discrete models |
PublicationTitleAbbrev | Adv Cont Discr Mod |
PublicationTitleAlternate | Adv Contin Discret Model |
PublicationYear | 2025 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | P. Perona (3935_CR56) 1990; 12 I. Jumakulyyev (3935_CR48) 2021 M. Lebrun (3935_CR80) 2012; 21 R.D. Adam (3935_CR10) 2017 C. Aguerrebere (3935_CR57) 2017; 3 F. Chung (3935_CR75) 2000; 91 3935_CR93 G. Facciolo (3935_CR61) 2009 S.G. Mallat (3935_CR71) 1993; 41 T.F. Chan (3935_CR89) 2001; 12 M. Katsurada (3935_CR76) 1999; 37 S. Mallat (3935_CR67) 1999 J. Weickert (3935_CR87) 1999; 10 P. Peter (3935_CR63) 2015 I. Galić (3935_CR18) 2008; 31 J. Weickert (3935_CR24) 2006 V. Chizhov (3935_CR30) 2021 E.G. Larsson (3935_CR82) 2007; 55 S.S. Chen (3935_CR69) 1998; 20 S. Hoffmann (3935_CR31) 2015 K. Dabov (3935_CR65) 2007; 16 F. Jost (3935_CR97) 2023 M. Nielsen (3935_CR22) 1997; 7 M. Breuß (3935_CR35) 2021; 63 J. Weickert (3935_CR47) 2006 H. Werner (3935_CR94) 1935; 47 E.J. King (3935_CR73) 2013 M. Bertalmío (3935_CR1) 2000 T. Alt (3935_CR27) 2023; 65 Y. Chen (3935_CR36) 2014 S. Hoffmann (3935_CR42) 2013 N. Kämper (3935_CR21) 2022 J. Weickert (3935_CR86) 1998 T. Iijima (3935_CR14) 1962; 26 L. Kuipers (3935_CR91) 2005 A. Buades (3935_CR64) 2005; 4 J.M. Berger (3935_CR74) 1958; 2 A.A. Efros (3935_CR2) 1999 D.L. Donoho (3935_CR70) 1994; 81 M. Burger (3935_CR52) 2009; 2 S. Carlsson (3935_CR28) 1988; 15 Y. Romano (3935_CR12) 2017; 10 J.-F. Aujol (3935_CR58) 2010; 42 M. Mainberger (3935_CR39) 2011 V.D. Kupradze (3935_CR77) 1964; 4 T. Lindeberg (3935_CR15) 1994 A.B. Hamza (3935_CR79) 2002; 19 B. Horn (3935_CR6) 1981; 17 L. Ruthotto (3935_CR26) 2020; 62 M. Mainberger (3935_CR19) 2012 R.W. Floyd (3935_CR92) 1976; 17 V. Daropoulos (3935_CR95) 2021; 14 R.H. Chan (3935_CR85) 2005; 14 P. Charbonnier (3935_CR88) 1997; 6 S.V. Venkatakrishnan (3935_CR13) 2013 J. Weickert (3935_CR8) 2001; 45 Y. Li (3935_CR45) 2012 D.S. Fritsch (3935_CR55) 1992 B. Dong (3935_CR25) 2017; 15 A. Criminisi (3935_CR60) 2004; 13 (3935_CR16) 1997 E.M. Kalmoun (3935_CR32) 2022; 25 M. Elad (3935_CR66) 2010 Z. Belhachmi (3935_CR20) 2009; 70 C.-B. Schönlieb (3935_CR5) 2015 W.B. Pennebaker (3935_CR50) 1992 J. Gautier (3935_CR41) 2012 X.-C. Tai (3935_CR53) 2011; 4 O. Scherzer (3935_CR23) 2000; 12 C. Schmaltz (3935_CR49) 2014; 108 L. Hoeltgen (3935_CR37) 2013 R. Laumont (3935_CR11) 2022; 15 M. Mainberger (3935_CR33) 2011; 44 G.J. Sullivan (3935_CR46) 2012; 22 D.L. Lowe (3935_CR17) 2004; 60 H.-H. Nagel (3935_CR7) 1986; 8 S. Andris (3935_CR29) 2021 P. Peter (3935_CR54) 2019 3935_CR38 C. Guillemot (3935_CR3) 2014; 31 O.G. Guleryuz (3935_CR72) 2002 M. Bertalmío (3935_CR62) 2003; 12 F. Jost (3935_CR43) 2020 P. Peter (3935_CR96) 2023; 26 C. Barnes (3935_CR59) 2009; 28 S. Masnou (3935_CR4) 1998 M. Elad (3935_CR78) 2023; 16 N. Weyrich (3935_CR84) 1998; 7 (3935_CR51) 2002 N. Ahmed (3935_CR68) 1974; C–23 P. Craven (3935_CR83) 1978; 31 S. Geman (3935_CR81) 1984; 6 A. Bruhn (3935_CR9) 2006 P. Ochs (3935_CR40) 2014; 7 S. Bonettini (3935_CR34) 2017; 33 F. Jost (3935_CR44) 2021 E. Dam (3935_CR90) 2001 |
References_xml | – volume: 17 start-page: 185 year: 1981 ident: 3935_CR6 publication-title: Artif. Intell. doi: 10.1016/0004-3702(81)90024-2 – volume-title: Partial Differential Equation Methods for Image Inpainting year: 2015 ident: 3935_CR5 doi: 10.1017/CBO9780511734304 – volume: 12 start-page: 43 issue: 1 year: 2000 ident: 3935_CR23 publication-title: J. Math. Imaging Vis. doi: 10.1023/A:1008344608808 – start-page: 432 volume-title: Computer Analysis of Images and Patterns year: 2021 ident: 3935_CR30 doi: 10.1007/978-3-030-89131-2_40 – volume-title: JPEG 2000: Image Compression Fundamentals, Standards and Practice year: 2002 ident: 3935_CR51 – volume-title: Scale-Space Theory in Computer Vision year: 1994 ident: 3935_CR15 doi: 10.1007/978-1-4757-6465-9 – volume-title: Wavelets and Sparsity XV year: 2013 ident: 3935_CR73 – volume: 10 start-page: 237 issue: 3 year: 1999 ident: 3935_CR87 publication-title: J. Math. Imaging Vis. doi: 10.1023/A:1008344623873 – volume: 8 start-page: 565 year: 1986 ident: 3935_CR7 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1986.4767833 – volume: 12 start-page: 436 issue: 4 year: 2001 ident: 3935_CR89 publication-title: J. Vis. Commun. Image Represent. doi: 10.1006/jvci.2001.0487 – start-page: 511 volume-title: Proc. 2020 European Signal Processing Conference year: 2021 ident: 3935_CR44 – start-page: 1680 volume-title: Proc. 2022 IEEE International Conference on Acoustics, Speech and Signal Processing year: 2022 ident: 3935_CR21 – start-page: 3 volume-title: Handbook of Mathematical Models in Computer Vision year: 2006 ident: 3935_CR24 – start-page: 319 volume-title: Scale-Space and Variational Methods in Computer Vision year: 2013 ident: 3935_CR42 doi: 10.1007/978-3-642-38267-3_27 – volume: 22 start-page: 1649 issue: 12 year: 2012 ident: 3935_CR46 publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2012.2221191 – volume-title: Gaussian Scale-Space Theory year: 1997 ident: 3935_CR16 – start-page: 81 volume-title: Proc. 2012 Picture Coding Symposium year: 2012 ident: 3935_CR41 doi: 10.1109/PCS.2012.6213291 – volume: 7 start-page: 291 year: 1997 ident: 3935_CR22 publication-title: J. Math. Imaging Vis. doi: 10.1023/A:1008282127190 – volume: 12 start-page: 629 year: 1990 ident: 3935_CR56 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.56205 – volume: C–23 start-page: 90 issue: 1 year: 1974 ident: 3935_CR68 publication-title: IEEE Trans. Comput. doi: 10.1109/T-C.1974.223784 – volume: 13 start-page: 1200 issue: 9 year: 2004 ident: 3935_CR60 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2004.833105 – volume: 25 start-page: 795 issue: 4 year: 2022 ident: 3935_CR32 publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-022-01074-3 – volume: 45 start-page: 245 issue: 3 year: 2001 ident: 3935_CR8 publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1013614317973 – volume: 19 start-page: 37 issue: 5 year: 2002 ident: 3935_CR79 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2002.1028351 – volume: 4 start-page: 490 issue: 2 year: 2005 ident: 3935_CR64 publication-title: Multiscale Model. Simul. doi: 10.1137/040616024 – start-page: 264 volume-title: Scale-Space and Morphology in Computer Vision year: 2001 ident: 3935_CR90 doi: 10.1007/3-540-47778-0_23 – start-page: 3 volume-title: Proc. 2002 Data Compression Conference year: 2002 ident: 3935_CR72 doi: 10.1109/DCC.2002.999938 – start-page: 99 volume-title: Anisotropy Across Fields and Scales year: 2021 ident: 3935_CR48 doi: 10.1007/978-3-030-56215-1_5 – volume: 108 start-page: 222 issue: 3 year: 2014 ident: 3935_CR49 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-014-0702-z – volume: 15 start-page: 606 issue: 1 year: 2017 ident: 3935_CR25 publication-title: Multiscale Model. Simul. doi: 10.1137/15M1037457 – volume: 12 start-page: 882 issue: 8 year: 2003 ident: 3935_CR62 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.815261 – start-page: 169 volume-title: Energy Minimization Methods in Computer Vision and Pattern Recognition year: 2015 ident: 3935_CR31 doi: 10.1007/978-3-319-14612-6_13 – start-page: 26 volume-title: Scale Space and Variational Methods in Computer Vision year: 2012 ident: 3935_CR19 doi: 10.1007/978-3-642-24785-9_3 – volume: 4 start-page: 313 issue: 1 year: 2011 ident: 3935_CR53 publication-title: SIAM J. Imaging Sci. doi: 10.1137/100803730 – volume: 15 start-page: 701 issue: 2 year: 2022 ident: 3935_CR11 publication-title: SIAM J. Imaging Sci. doi: 10.1137/21M1406349 – volume-title: A Wavelet Tour of Signal Processing year: 1999 ident: 3935_CR67 – volume: 31 start-page: 377 issue: 4 year: 1978 ident: 3935_CR83 publication-title: Numer. Math. doi: 10.1007/BF01404567 – volume: 10 start-page: 1804 issue: 4 year: 2017 ident: 3935_CR12 publication-title: SIAM J. Imaging Sci. doi: 10.1137/16M1102884 – start-page: 19 volume-title: Proc. 19th Computer Vision Winter Workshop year: 2014 ident: 3935_CR36 – start-page: 154 volume-title: Scale-Space and Variational Methods in Computer Vision year: 2015 ident: 3935_CR63 doi: 10.1007/978-3-319-18461-6_13 – start-page: 259 volume-title: Proc. 1998 IEEE International Conference on Image Processing year: 1998 ident: 3935_CR4 – volume: 2 start-page: 1129 issue: 4 year: 2009 ident: 3935_CR52 publication-title: SIAM J. Imaging Sci. doi: 10.1137/080728548 – volume-title: JPEG: Still Image Data Compression Standard year: 1992 ident: 3935_CR50 – volume: 62 start-page: 352 year: 2020 ident: 3935_CR26 publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-019-00903-1 – start-page: 121 volume-title: Scale Space and Variational Methods in Computer Vision year: 2017 ident: 3935_CR10 doi: 10.1007/978-3-319-58771-4_10 – start-page: 945 volume-title: Proc. 2013 IEEE Global Conference on Signal and Information Processing year: 2013 ident: 3935_CR13 – start-page: 2198 volume-title: Proc. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing year: 2020 ident: 3935_CR43 – volume: 41 start-page: 3397 issue: 12 year: 1993 ident: 3935_CR71 publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.258082 – volume: 42 start-page: 1246 issue: 3 year: 2010 ident: 3935_CR58 publication-title: SIAM J. Math. Anal. doi: 10.1137/080743883 – start-page: 283 volume-title: Geometric Properties from Incomplete Data year: 2006 ident: 3935_CR9 doi: 10.1007/1-4020-3858-8_15 – start-page: 151 volume-title: Energy Minimization Methods in Computer Vision and Pattern Recognition year: 2013 ident: 3935_CR37 doi: 10.1007/978-3-642-40395-8_12 – start-page: 315 volume-title: Visualization and Processing of Tensor Fields year: 2006 ident: 3935_CR47 doi: 10.1007/3-540-31272-2_19 – volume: 14 start-page: 1479 issue: 10 year: 2005 ident: 3935_CR85 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.852196 – ident: 3935_CR93 – start-page: 331 volume-title: Energy Minimization Methods in Computer Vision and Pattern Recognition year: 2009 ident: 3935_CR61 doi: 10.1007/978-3-642-03641-5_25 – start-page: 105 volume-title: Visualization in Biomedical Computing ’92 year: 1992 ident: 3935_CR55 doi: 10.1117/12.131071 – volume: 33 issue: 5 year: 2017 ident: 3935_CR34 publication-title: Inverse Probl. doi: 10.1088/1361-6420/aa5bfd – volume: 16 start-page: 1594 issue: 3 year: 2023 ident: 3935_CR78 publication-title: SIAM J. Imaging Sci. doi: 10.1137/23M1545859 – volume: 44 start-page: 1859 issue: 9 year: 2011 ident: 3935_CR33 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2010.08.004 – ident: 3935_CR38 – volume-title: Proc. 2023 IEEE International Conference on Acoustics, Speech and Signal Processing year: 2023 ident: 3935_CR97 – volume: 91 start-page: 191 issue: 1 year: 2000 ident: 3935_CR75 publication-title: J. Comb. Theory, Ser. A doi: 10.1006/jcta.2000.3094 – start-page: 1033 volume-title: Proc. Seventh IEEE International Conference on Computer Vision year: 1999 ident: 3935_CR2 – volume: 7 start-page: 1388 issue: 2 year: 2014 ident: 3935_CR40 publication-title: SIAM J. Appl. Math. – start-page: 26 volume-title: Scale Space and Variational Methods in Computer Vision year: 2011 ident: 3935_CR39 doi: 10.1007/978-3-642-24785-9_3 – start-page: 1 volume-title: Proc. 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video year: 2012 ident: 3935_CR45 – volume: 70 start-page: 333 issue: 1 year: 2009 ident: 3935_CR20 publication-title: SIAM J. Appl. Math. doi: 10.1137/080716396 – volume: 65 start-page: 185 year: 2023 ident: 3935_CR27 publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-022-01106-x – volume: 2 start-page: 593 issue: 4A year: 1958 ident: 3935_CR74 publication-title: Ill. J. Math. – volume: 14 start-page: 1669 issue: 4 year: 2021 ident: 3935_CR95 publication-title: SIAM J. Imaging Sci. doi: 10.1137/20M1382179 – start-page: 417 volume-title: Proc. SIGGRAPH 2000 year: 2000 ident: 3935_CR1 – volume: 15 start-page: 57 issue: 1 year: 1988 ident: 3935_CR28 publication-title: Signal Process. doi: 10.1016/0165-1684(88)90028-X – volume: 21 start-page: 475 issue: 1 year: 2012 ident: 3935_CR80 publication-title: Acta Numer. doi: 10.1017/S0962492912000062 – volume: 26 start-page: 1585 issue: 4 year: 2023 ident: 3935_CR96 publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-023-01162-y – volume: 81 start-page: 425 issue: 3 year: 1994 ident: 3935_CR70 publication-title: Biometrica doi: 10.1093/biomet/81.3.425 – volume: 26 start-page: 368 year: 1962 ident: 3935_CR14 publication-title: Bull. Electrotechn. Lab. – volume-title: Uniform Distribution of Sequences year: 2005 ident: 3935_CR91 – volume: 31 start-page: 127 issue: 1 year: 2014 ident: 3935_CR3 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2013.2273004 – volume: 63 start-page: 144 issue: 2 year: 2021 ident: 3935_CR35 publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-020-00973-6 – volume: 31 start-page: 255 issue: 2–3 year: 2008 ident: 3935_CR18 publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-008-0087-0 – volume: 20 start-page: 33 issue: 1 year: 1998 ident: 3935_CR69 publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827596304010 – volume: 47 start-page: 40 issue: 1 year: 1935 ident: 3935_CR94 publication-title: Am. J. Psychol. doi: 10.2307/1416707 – volume: 17 start-page: 75 year: 1976 ident: 3935_CR92 publication-title: Proc. Soc. Inf. Disp. – volume: 7 start-page: 82 issue: 1 year: 1998 ident: 3935_CR84 publication-title: IEEE Trans. Image Process. doi: 10.1109/83.650852 – volume: 6 start-page: 721 issue: 6 year: 1984 ident: 3935_CR81 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1984.4767596 – volume: 6 start-page: 298 issue: 2 year: 1997 ident: 3935_CR88 publication-title: IEEE Trans. Image Process. doi: 10.1109/83.551699 – start-page: 3557 volume-title: Proc. 2019 IEEE International Conference on Image Processing year: 2019 ident: 3935_CR54 – volume: 3 start-page: 633 issue: 4 year: 2017 ident: 3935_CR57 publication-title: IEEE Trans. Comput. Imaging doi: 10.1109/TCI.2017.2704439 – volume: 28 start-page: 1 issue: 3 year: 2009 ident: 3935_CR59 publication-title: ACM Trans. Graph. doi: 10.1145/1531326.1531330 – volume: 60 start-page: 91 issue: 2 year: 2004 ident: 3935_CR17 publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 – volume-title: Anisotropic Diffusion in Image Processing year: 1998 ident: 3935_CR86 – volume-title: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing year: 2010 ident: 3935_CR66 doi: 10.1007/978-1-4419-7011-4 – start-page: 425 volume-title: Scale Space and Variational Methods in Computer Vision year: 2021 ident: 3935_CR29 doi: 10.1007/978-3-030-75549-2_34 – volume: 4 start-page: 82 issue: 4 year: 1964 ident: 3935_CR77 publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(64)90006-0 – volume: 55 start-page: 451 issue: 2 year: 2007 ident: 3935_CR82 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2006.887109 – volume: 16 start-page: 2080 issue: 8 year: 2007 ident: 3935_CR65 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.901238 – volume: 37 start-page: 195 year: 1999 ident: 3935_CR76 publication-title: Mem. Instit. Sci. Technol., Meiji Univ. |
SSID | ssj0002923708 ssj0029488 |
Score | 2.3474922 |
Snippet | While local methods for image denoising and inpainting may use similar concepts, their connections have hardly been investigated so far. The goal of this work... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 74 |
SubjectTerms | Analysis Difference and Functional Equations Diffusion Functional Analysis Mathematics Mathematics and Statistics Noise reduction Ordinary Differential Equations Partial Differential Equations |
SummonAdditionalLinks | – databaseName: SpringerOpen dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8QgEJ74uOjB-La-gok3bSwUKBzNRmNM1Iub7K2hLcQ9bHdj1__vQNs16-PgtUAKM8MwH_MA4JJy50rKi9g5hwDFKo1bSvBYO251xYQpXKj2-SwfhvxxJEZdUljTR7v3LsmgqcO2VvKmoamULPbPr4Z80jhbhXWB2N1XzB90OQ5e_zK0WbJE9Rkyvw5dPoV-mJY_IyS_uUnD6XO_DVud2UhuWz7vwIqtd2HzaVFztdmDlxCzUvowZjKeoJog43qGuD988NetBFXMdNyE9prgSPI2nUxRgCyif-JfSvnwV2eksSEWeh-G93evg4e4ey4hLlMh5z4PmvGq1JYbh1aFQypXWgrqLJLcmhSREdVGWFEmzMjMWA9VmDYsrVKVFUl6AGv1tLZHQLIC1U4iS8Ery5VzmtPK4hBhpDNOiAiuevLls7YqRh7QhJJ5S-wciZ0HYudZBKc9hfNuhzS5n60HMzSJ4GLRjLLtHRYmrNz3QftOZ5RHcNgyZPE7xIVouaUqArXEqkUHXzd7uaUev4X62b7KXUoZjeC65-rXvP5exvH_up_ABmslLmbqFNbm7x_2DA2YeXEe5PUTsnnqkw priority: 102 providerName: Springer Nature |
Title | Connecting image inpainting with denoising in the homogeneous diffusion setting |
URI | https://link.springer.com/article/10.1186/s13662-025-03935-7 https://www.ncbi.nlm.nih.gov/pubmed/40162338 https://www.proquest.com/docview/3182597410 https://www.proquest.com/docview/3184569714 https://pubmed.ncbi.nlm.nih.gov/PMC11953121 |
Volume | 2025 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDCbW5NIdiu7RzW0XaEBvm9FIlmTpNGRBsyKHrthWoDdDtiXUh9pZnfz_UrKdLiu2iw-WBFskRX2kKBLgjHLnCsrz2DmHBopVGpeU4LF23OqSCZO7kO3zSl7e8OWtuO0dbm0fVjnoxKCoy6bwPvJzlD3mwS-dfln9jn3VKH-62pfQ2IMxqmAlRjD-enF1_WNrcmkeKk9SiUvJY4Hh2oyS5y1NpGSxL-ca7qfG6e7W9AxvPg-b_OvsNGxJi0M46LEkmXXMfwUvbP0aXv6RYfANfA-BLIWPbSbVPeoOUtUrU4XyEMT7YAnqnaZqQ3tNEA2Su-a-QamyzaYlvnzKxvvTSGtDgPRbuFlc_Jpfxn0NhbhIhFz7y9GMl4W23DiEGg5JX2opqLPIB2sSNJeoNsKKYsqMTI319gvThiVlotJ8mhzBqG5q-x5ImqMumspC8NJy5ZzmtLQ4RBjpjBMigk8D-bJVlyojCyaGkllH7AyJnQViZ2kEpwOFs37ZtNkTkyP4uG1GgfenGCbM3PdB0KdTyiN41zFk-zk0FhHOJSoCtcOqbQefTHu3pa7uQlJtn_ouoYxG8Hng6tN__Xsax_-fxgnss07CYqZOYbR-2NgPiGLW-QT21OLbBMaz2fLnctILLr6dM-6fcv4InLj0kw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxQxFH9BOKgH4ycMopYETzph22k704MxKpBFcDUGEm6lM9OGOTCzMrsx_lP8jbx2dhZXgjfOnY_2ffX32vcBsEW5cwXleeycQwfFZgpVSvBYOW5VyYTJXaj2OZLDY_71RJwswWWfC-PDKnubGAx12RT-jHwbZY958EsHH8e_Yt81yt-u9i00OrE4sH9-o8vWftjfQf6-ZWxv9-jLMJ51FYiLRMiJTxdmvCyU5cbh5utwMqWSgjqLM7MmQQeCKiOsKAbMyNRYj-iZMiwpkyzNBwl-9x6sIMxQqEUrn3dHP37OXTzFQ6dLKlF1Pfbo03Qyud3SREoW-_axIR82The3whv49maY5j93tWEL3HsMj2bYlXzqhO0JLNn6KTz8q6LhM_geAmcKH0tNqnO0VaSqx6YK7SiIP_MlaOeaqg3jNUH0Sc6a8wal2DbTlvh2LVN_fkdaGwKyn8PxnVD3BSzXTW3XgKQ52r6BLAQvLc-cU5yWFl8RRjrjhIjgXU8-Pe5Kc-jg0mRSd8TWSGwdiK3TCDZ6CuuZmrb6Wqgi2JwPo4L5WxMTVu6fQZCpUsojWO0YMv8dOqcIH5MsgmyBVfMHfPHuxZG6OgtFvH2pvYQyGsH7nqvX87p9Gev_X8YbuD88-naoD_dHBy_hAeukLWbZBixPLqb2FSKoSf56JrYETu9aU64AXD0s9A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggMo7UMBIcIJo147txIeqAtpVS9FSISr1ZpzEVnNospBdIf4av65jJ9myVHDr2XnY8_zGHs8AvKLcuYLyPHbOYYBiM4UqJXisHLeqZMLkLlT7nMmDE_7xVJxuwO_hLoxPqxxsYjDUZVP4PfIxyh7z4JdOxq5Pizjem-7Ov8e-g5Q_aR3aaXQicmR__cTwrd053ENev2Zsuv_1w0HcdxiIi0TIhb86zHhZKMuNQ0fscGKlkoI6i7O0JsFggiojrCgmzMjUWI_umTIsKZMszScJfvcGbKboFbMRbL7fnx1_WYV7ioeul1SiGnscMlzZyeS4pYmULPatZMPd2Dhdd4tXsO7VlM2_zm2DO5xuwZ0ex5J3neDdhQ1b34Pbf1Q3vA-fQxJN4fOqSXWOdotU9dxUoTUF8fu_BG1eU7VhvCaIRMlZc96gRNtm2RLfumXp9_JIa0Ny9gM4uRbqPoRR3dT2MZA0Rzs4kYXgpeWZc4rT0uIrwkhnnBARvBnIp-ddmQ4dwptM6o7YGomtA7F1GsH2QGHdq2yrLwUsgperYVQ2f4Jiwsr9Mwg4VUp5BI86hqx-h4EqQskkiyBbY9XqAV_Ie32krs5CQW9fdi-hjEbwduDq5bz-vYwn_1_GC7iJGqI_Hc6OnsIt1glbzLJtGC1-LO0zBFOL_HkvtQS-XbeiXAA6VTEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Connecting+image+inpainting+with+denoising+in+the+homogeneous+diffusion+setting&rft.jtitle=Advances+in+difference+equations&rft.date=2025-03-28&rft.pub=Springer+Nature+B.V&rft.issn=1687-1839&rft.eissn=1687-1847&rft.volume=2025&rft.issue=1&rft.spage=74&rft_id=info:doi/10.1186%2Fs13662-025-03935-7&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2731-4235&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2731-4235&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2731-4235&client=summon |