A survey on machine learning based analysis of heterogeneous data in industrial automation

In many application domains data from different sources are increasingly available to thoroughly monitor and describe a system or device. Especially within the industrial automation domain, heterogeneous data and its analysis gain a lot of attention from research and industry, since it has the poten...

Full description

Saved in:
Bibliographic Details
Published inComputers in industry Vol. 149; p. 103930
Main Authors Kamm, Simon, Veekati, Sushma Sri, Müller, Timo, Jazdi, Nasser, Weyrich, Michael
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2023
Subjects
Online AccessGet full text
ISSN0166-3615
1872-6194
DOI10.1016/j.compind.2023.103930

Cover

Loading…
Abstract In many application domains data from different sources are increasingly available to thoroughly monitor and describe a system or device. Especially within the industrial automation domain, heterogeneous data and its analysis gain a lot of attention from research and industry, since it has the potential to improve or enable tasks like diagnostics, predictive maintenance, and condition monitoring. For data analysis, machine learning based approaches are mostly used in recent literature, as these algorithms allow us to learn complex correlations within the data. To analyze even heterogeneous data and gain benefits from it in an application, data from different sources need to be integrated, stored, and managed to apply machine learning algorithms. In a setting with heterogeneous data sources, the analysis algorithms should also be able to handle data source failures or newly added data sources. In addition, existing knowledge should be used to improve the machine learning based analysis or its training process. To find existing approaches for the machine learning based analysis of heterogeneous data in the industrial automation domain, this paper presents the result of a systematic literature review. The publications were reviewed, evaluated, and discussed concerning five requirements that are derived in this paper. We identified promising solutions and approaches and outlined open research challenges, which are not yet covered sufficiently in the literature. •Aspects of the analysis of heterogeneous data are subject of numerous ongoing research activities.•Multi-modal machine learning models constitute a proper choice for analyzing heterogeneous data.•There is a lack of adaptive and robust machine learning models.•Three groups are identified to incorporate existing knowledge into machine learning models.
AbstractList In many application domains data from different sources are increasingly available to thoroughly monitor and describe a system or device. Especially within the industrial automation domain, heterogeneous data and its analysis gain a lot of attention from research and industry, since it has the potential to improve or enable tasks like diagnostics, predictive maintenance, and condition monitoring. For data analysis, machine learning based approaches are mostly used in recent literature, as these algorithms allow us to learn complex correlations within the data. To analyze even heterogeneous data and gain benefits from it in an application, data from different sources need to be integrated, stored, and managed to apply machine learning algorithms. In a setting with heterogeneous data sources, the analysis algorithms should also be able to handle data source failures or newly added data sources. In addition, existing knowledge should be used to improve the machine learning based analysis or its training process. To find existing approaches for the machine learning based analysis of heterogeneous data in the industrial automation domain, this paper presents the result of a systematic literature review. The publications were reviewed, evaluated, and discussed concerning five requirements that are derived in this paper. We identified promising solutions and approaches and outlined open research challenges, which are not yet covered sufficiently in the literature. •Aspects of the analysis of heterogeneous data are subject of numerous ongoing research activities.•Multi-modal machine learning models constitute a proper choice for analyzing heterogeneous data.•There is a lack of adaptive and robust machine learning models.•Three groups are identified to incorporate existing knowledge into machine learning models.
ArticleNumber 103930
Author Müller, Timo
Weyrich, Michael
Veekati, Sushma Sri
Kamm, Simon
Jazdi, Nasser
Author_xml – sequence: 1
  givenname: Simon
  orcidid: 0000-0001-8459-2450
  surname: Kamm
  fullname: Kamm, Simon
  email: simon.kamm@ias.uni-stuttgart.de
– sequence: 2
  givenname: Sushma Sri
  surname: Veekati
  fullname: Veekati, Sushma Sri
– sequence: 3
  givenname: Timo
  surname: Müller
  fullname: Müller, Timo
– sequence: 4
  givenname: Nasser
  surname: Jazdi
  fullname: Jazdi, Nasser
– sequence: 5
  givenname: Michael
  surname: Weyrich
  fullname: Weyrich, Michael
BookMark eNqFkM1qwzAMgM3oYG23Rxj4BdL5p3ESdhilbN2gsMt22cU4ttK6JHaxnULffuna0y4VAoHQJ6RvgkbOO0DokZIZJVQ87Wbad3vrzIwRxocerzi5QWNaFiwTtJqP0HiYExkXNL9Dkxh3ZIiiEGP0s8CxDwc4Yu9wp_TWOsAtqOCs2-BaRTBYOdUeo43YN3gLCYLfgAPfR2xUUti6IU0fU7CqxapPvlPJenePbhvVRni41Cn6fnv9Wr5n68_Vx3KxzjTPRcoYGAo5L3WuaVVVpWKlmmsGOdBa88qwxpS8FDVhBdOlaBg1utaE03lTm6LK-RTl5706-BgDNHIfbKfCUVIiT4LkTl4EyZMgeRY0cM__OG3T3-UpKNtepV_ONAyvHSwEGbUFp8HYADpJ4-2VDb-tXIkA
CitedBy_id crossref_primary_10_1016_j_jcp_2024_113697
crossref_primary_10_1016_j_jclepro_2024_142308
crossref_primary_10_3390_s24082631
crossref_primary_10_3846_jbem_2023_19775
crossref_primary_10_1016_j_hybadv_2025_100385
crossref_primary_10_3390_e25121567
crossref_primary_10_1515_auto_2024_0039
crossref_primary_10_1108_IMDS_05_2023_0277
crossref_primary_10_1515_auto_2024_0112
crossref_primary_10_1016_j_eswa_2023_121799
crossref_primary_10_1016_j_compind_2024_104173
crossref_primary_10_1016_j_measurement_2024_115264
crossref_primary_10_1016_j_compind_2023_104044
crossref_primary_10_1080_09544828_2025_2476879
crossref_primary_10_1016_j_compind_2024_104086
crossref_primary_10_1007_s11837_024_06922_7
crossref_primary_10_32604_cmes_2024_056214
crossref_primary_10_1016_j_procir_2023_09_192
crossref_primary_10_1016_j_aei_2024_102689
crossref_primary_10_1038_s41598_024_85083_8
crossref_primary_10_48175_IJARSCT_19243
crossref_primary_10_1016_j_future_2024_01_014
crossref_primary_10_1016_j_eng_2024_04_024
crossref_primary_10_1016_j_hazadv_2024_100480
crossref_primary_10_1016_j_iot_2024_101153
crossref_primary_10_1016_j_psep_2024_06_052
crossref_primary_10_1016_j_compeleceng_2024_109180
crossref_primary_10_1145_3718364
Cites_doi 10.1109/TASE.2020.2989194
10.1016/j.inffus.2017.10.006
10.1109/TASE.2020.2991777
10.1109/INDIN41052.2019.8972270
10.1109/TIM.2019.2957849
10.1016/j.procir.2021.11.263
10.1177/0165551506070706
10.1177/0739456X17723971
10.1109/TASE.2019.2941230
10.1016/j.promfg.2019.06.075
10.1109/LRA.2019.2893446
10.1021/acs.iecr.9b05087
10.23919/CCC52363.2021.9549500
10.1109/JSEN.2020.3018698
10.1109/TR.2015.2459684
10.20965/jaciii.2021.p0346
10.1109/TII.2021.3126601
10.1016/j.patcog.2009.04.002
10.1109/TASE.2019.2910508
10.1093/database/bau130
10.1016/j.jcp.2018.10.045
10.1016/j.engappai.2021.104381
10.1186/s13643-021-01626-4
10.1016/j.procir.2021.11.318
10.1016/j.compind.2018.04.002
10.1109/TII.2016.2596101
10.1016/j.procir.2020.03.056
10.1016/j.procir.2023.06.061
10.1109/MIE.2020.3034884
10.5808/GI.2017.15.1.19
10.1109/TIE.2021.3070512
10.1080/17517575.2019.1633689
10.1109/TASE.2015.2447454
10.3233/DS-170007
10.1016/j.measurement.2020.107741
10.1587/transinf.2018EDP7257
10.1016/j.procir.2021.11.164
10.1109/ACCESS.2020.3015875
10.1016/j.jmsy.2021.08.002
10.1109/TKDE.2017.2720168
10.1109/TMECH.2019.2928967
10.1007/s11192-009-0146-3
10.1109/ACCESS.2017.2696365
10.1007/s10489-019-01560-y
10.1109/TOH.2016.2625787
10.1109/TPAMI.2018.2798607
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.compind.2023.103930
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-6194
ExternalDocumentID 10_1016_j_compind_2023_103930
S0166361523000805
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
6J9
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACGOD
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSZ
T5K
TAE
TAF
TN5
U5U
UNMZH
VH1
WH7
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c356t-2ed1e538c5c19998a28a4c2e5e1bc39d2fd8386b0272c86f21dcbc0314fbd7953
IEDL.DBID .~1
ISSN 0166-3615
IngestDate Tue Jul 01 00:52:02 EDT 2025
Thu Apr 24 23:05:02 EDT 2025
Fri Feb 23 02:34:42 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multi-modal machine learning
Heterogeneous data management
Adaptive machine learning
Heterogeneous data integration
Machine learning
(Physics-) informed machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-2ed1e538c5c19998a28a4c2e5e1bc39d2fd8386b0272c86f21dcbc0314fbd7953
ORCID 0000-0001-8459-2450
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0166361523000805
ParticipantIDs crossref_primary_10_1016_j_compind_2023_103930
crossref_citationtrail_10_1016_j_compind_2023_103930
elsevier_sciencedirect_doi_10_1016_j_compind_2023_103930
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Computers in industry
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lin, Li, Alam, Ma (bib38) 2020; 50
Dai (bib9) 2020; 17
I. Goodfellow, Y. Bengio, A. Courville, and Safari, an O’Reilly Media Company, Deep Learning ‐ Grundlagen, aktuelle Verfahren und Algorithmen, neue Forschungsansätze: mitp Verlag, 2018. (Online).
Zheng, Xia, Li, Li, Liu (bib74) 2021; 61
Li, Li (bib36) 2020
Liu, Lv, Zhao, Liu, Wang (bib41) 2020; 53
Liu, Gao, Guo, Qin, Cai, You (bib40) 2019; 69
Zhang, Yang, Chen, Li (bib73) 2018; 42
Kamm, Jazdi, Weyrich (bib26) 2021; 104
Wang (bib63) 2017; 3
Yan, Wang, Ali (bib70) 2021
Müller (bib46) 2022
Xiao, Watson (bib67) 2019; 39
Kebisek, Tanuska, Spendla, Kotianova, Strelec (bib29) 2020; 53
Romeo, Paolanti, Bocchini, Loncarski, Frontoni (bib53) 2018
Karpatne (bib28) 2017; 29
M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations, arXiv preprint arXiv:1711.10561 (Titel anhand dieser ArXiv-ID in Citavi-Projekt übernehmen), 2017.
Yan, Xu, Wang, Di, Jiang (bib71) 2020; 59
Henkel, Wolkenhauer, Waltemath (bib17) 2015; 2015
Munappy, Bosch, Olsson, Arpteg, Brinne (bib47) 2019
Hayashi, Zheng, El Hafi, Hagiwara, Taniguchi (bib16) 2021
Sahlab, Kamm, Müller, Jazdi, Weyrich (bib55) 2021
Hildebrandt (bib18) 2020; 17
Jirkovsky, Obitko, Mavrik (bib24) 2016; 13
Ma, Ren, Zhao, Tulyakov, Wu, Peng (bib42) 2021
Maschler, Kamm, Jazdi, Weyrich (bib43) 2020; 93
Chen, Liu, Hu, Ding (bib6) 2021
Dai, Wang, Xu, Wan, Imran (bib10) 2020; 14
Damoulas, Girolami (bib11) 2009; 42
L’heureux, Grolinger, Elyamany, Capretz (bib31) 2017; 5
Li, Fan, Shi, Du (bib35) 2021; 25
B. Kitchenham , S. Charters, Guidelines for performing systematic literature reviews in software engineering, Technical Report, ver. 2.3 Ebse Technical Report, ebse, 2007.
Roheda, Krim, Riggan (bib52) 2020; 21
Yan, Hu, Guo (bib69) 2019; 35
Desai (bib12) 2018
Chen, Liu, Valera-Medina, Robinson (bib7) 2021; 104
Michau, Hu, Palmé, Fink (bib45) 2020; 234
Tod, Ompusunggu, Struyf, Pipeleers, de Grave, Hostens (bib58) 2021; 104
Jayaratne, de Silva, Alahakoon (bib22) 2019; 16
Zhou, Gao, Wang, Chai (bib78) 2021; 69
Huiskes, Lew (bib21) 2008
Chunfeng, Zheng, Jun, Wei (bib8) 2018
Tang, Zhang, Yu, Zhang, Yu (bib57) 2020; 8
Raissi, Perdikaris, Karniadakis (bib51) 2019; 378
Wu, Zhou, Zhu, Hu, Shi (bib66) 2019
Hsu, Kuo, Huang (bib19) 2019
Page (bib49) 2021; 10
Liang, Zadeh, Morency (bib37) 2022; 2209
Maschler, Weyrich (bib44) 2021; 15
Case School of Engineering, Case Western Reserve University Bearing Data Center (Online). https://engineering.case.edu/bearingdatacenter. (Accessed 22 November 2022) 2022.
Verma, Dixit, Sevakula, Salour (bib59) 2018
Xu, Li, Song, Jia, Liu (bib68) 2021; 70
Zhu (bib79) 2022
Faul, Jazdi, Weyrich (bib14) 2016
Zhou, Yang, He, Chen, Wen (bib77) 2021; 235
S.M. Nabritt, T. Damarla, G. Chatters, Personnel and vehicle data collection at aberdeen proving ground (apg) and its distribution for research, Army Research Lab Adelphi MD Sensors and Electron Devices Directorate, 2015.
Kamm, Bickelhaupt, Sharma, Jazdi, Kallfass, Weyrich (bib25) 2022
Lee, Qu, Kang, Jang (bib33) 2021
Beyca, Rao, Kong, Bukkapatnam, Komanduri (bib4) 2015; 13
Rowley (bib54) 2007; 33
Wei, Cui, Hu, Hao, Wang, Lou (bib64) 2021; 18
Yoon, Kim, Kim (bib72) 2017; 15
Baghbanpourasl, A., Lughofer, E., Meyer-Heye, P., Zörrer, H., Eitzinger, C. , Virtual Quality control using bidirectional LSTM networks and gradient boosting. In: Proceedings of the Seventeenth International Conference on Industrial Informatics (INDIN), IEEE, 2019, 1638–1643.
Zheng, Song, Wang, Teng, Xu, Ma (bib75) 2020; 158
Jirkovsky, Obitko (bib23) 2014; 1214
Hu, Li, Xia, Luo (bib20) 2018; 100
Verma, Sevakula, Dixit, Salour (bib60) 2015; 65
Baltrušaitis, Ahuja, Morency (bib3) 2018; 41
Strese, Schuwerk, Iepure, Steinbach (bib56) 2016; 10
Bai, X. , Chen, C. , Liu, W., Zhang, H., Data-driven prediction of sinter composition based on multi-source information and LSTM network. In: Proceedings of the Fortieth Chinese Control Conference (CCC), 2021, 3311–3316.
Wilcke, Bloem, de Boer (bib65) 2017; 1
Lindemann, Jazdi, Weyrich (bib39) 2020
van Eck, Waltman (bib13) 2010; 84
S. Kamm, N. Sahlab, N. Jazdi, M. Weyrich, 2022b. A concept for dynamic and robust machine learning with contex modeling for heterogeneous manufacturing data, Procedia CIRP.
Lee, An, Lee (bib34) 2019; 102
Zheng, Liu, Wang, Sun (bib76) 2019; 17
Wang, Fu, Zhang, Gao, Zhao (bib61) 2019; 24
Langenberg, Lüddecke, Wörgötter (bib32) 2019; 4
Wang, Guo, Wang, Yuan, Yang (bib62) 2021; 104
Jayaratne (10.1016/j.compind.2023.103930_bib22) 2019; 16
Li (10.1016/j.compind.2023.103930_bib35) 2021; 25
Maschler (10.1016/j.compind.2023.103930_bib44) 2021; 15
Jirkovsky (10.1016/j.compind.2023.103930_bib24) 2016; 13
van Eck (10.1016/j.compind.2023.103930_bib13) 2010; 84
Kebisek (10.1016/j.compind.2023.103930_bib29) 2020; 53
Wang (10.1016/j.compind.2023.103930_bib63) 2017; 3
Xiao (10.1016/j.compind.2023.103930_bib67) 2019; 39
Ma (10.1016/j.compind.2023.103930_bib42) 2021
10.1016/j.compind.2023.103930_bib48
Verma (10.1016/j.compind.2023.103930_bib60) 2015; 65
Wu (10.1016/j.compind.2023.103930_bib66) 2019
Zheng (10.1016/j.compind.2023.103930_bib74) 2021; 61
Lee (10.1016/j.compind.2023.103930_bib34) 2019; 102
Liu (10.1016/j.compind.2023.103930_bib41) 2020; 53
Karpatne (10.1016/j.compind.2023.103930_bib28) 2017; 29
Zhou (10.1016/j.compind.2023.103930_bib77) 2021; 235
Tod (10.1016/j.compind.2023.103930_bib58) 2021; 104
Hildebrandt (10.1016/j.compind.2023.103930_bib18) 2020; 17
Page (10.1016/j.compind.2023.103930_bib49) 2021; 10
Michau (10.1016/j.compind.2023.103930_bib45) 2020; 234
Liu (10.1016/j.compind.2023.103930_bib40) 2019; 69
Chunfeng (10.1016/j.compind.2023.103930_bib8) 2018
10.1016/j.compind.2023.103930_bib15
Wilcke (10.1016/j.compind.2023.103930_bib65) 2017; 1
10.1016/j.compind.2023.103930_bib50
Damoulas (10.1016/j.compind.2023.103930_bib11) 2009; 42
Roheda (10.1016/j.compind.2023.103930_bib52) 2020; 21
Tang (10.1016/j.compind.2023.103930_bib57) 2020; 8
Hayashi (10.1016/j.compind.2023.103930_bib16) 2021
Sahlab (10.1016/j.compind.2023.103930_bib55) 2021
Beyca (10.1016/j.compind.2023.103930_bib4) 2015; 13
Lee (10.1016/j.compind.2023.103930_bib33) 2021
Müller (10.1016/j.compind.2023.103930_bib46) 2022
Xu (10.1016/j.compind.2023.103930_bib68) 2021; 70
Wei (10.1016/j.compind.2023.103930_bib64) 2021; 18
Zheng (10.1016/j.compind.2023.103930_bib76) 2019; 17
Strese (10.1016/j.compind.2023.103930_bib56) 2016; 10
Yan (10.1016/j.compind.2023.103930_bib69) 2019; 35
Verma (10.1016/j.compind.2023.103930_bib59) 2018
Huiskes (10.1016/j.compind.2023.103930_bib21) 2008
Raissi (10.1016/j.compind.2023.103930_bib51) 2019; 378
Rowley (10.1016/j.compind.2023.103930_bib54) 2007; 33
Liang (10.1016/j.compind.2023.103930_bib37) 2022; 2209
Langenberg (10.1016/j.compind.2023.103930_bib32) 2019; 4
L’heureux (10.1016/j.compind.2023.103930_bib31) 2017; 5
Wang (10.1016/j.compind.2023.103930_bib61) 2019; 24
Hsu (10.1016/j.compind.2023.103930_bib19) 2019
Chen (10.1016/j.compind.2023.103930_bib6) 2021
Dai (10.1016/j.compind.2023.103930_bib10) 2020; 14
Yan (10.1016/j.compind.2023.103930_bib70) 2021
10.1016/j.compind.2023.103930_bib27
Jirkovsky (10.1016/j.compind.2023.103930_bib23) 2014; 1214
Munappy (10.1016/j.compind.2023.103930_bib47) 2019
Zhang (10.1016/j.compind.2023.103930_bib73) 2018; 42
Maschler (10.1016/j.compind.2023.103930_bib43) 2020; 93
Baltrušaitis (10.1016/j.compind.2023.103930_bib3) 2018; 41
Chen (10.1016/j.compind.2023.103930_bib7) 2021; 104
Kamm (10.1016/j.compind.2023.103930_bib26) 2021; 104
Lin (10.1016/j.compind.2023.103930_bib38) 2020; 50
10.1016/j.compind.2023.103930_bib2
10.1016/j.compind.2023.103930_bib1
10.1016/j.compind.2023.103930_bib5
Wang (10.1016/j.compind.2023.103930_bib62) 2021; 104
Faul (10.1016/j.compind.2023.103930_bib14) 2016
Hu (10.1016/j.compind.2023.103930_bib20) 2018; 100
Yoon (10.1016/j.compind.2023.103930_bib72) 2017; 15
Zhu (10.1016/j.compind.2023.103930_bib79) 2022
Dai (10.1016/j.compind.2023.103930_bib9) 2020; 17
Kamm (10.1016/j.compind.2023.103930_bib25) 2022
Li (10.1016/j.compind.2023.103930_bib36) 2020
Lindemann (10.1016/j.compind.2023.103930_bib39) 2020
10.1016/j.compind.2023.103930_bib30
Henkel (10.1016/j.compind.2023.103930_bib17) 2015; 2015
Zhou (10.1016/j.compind.2023.103930_bib78) 2021; 69
Zheng (10.1016/j.compind.2023.103930_bib75) 2020; 158
Yan (10.1016/j.compind.2023.103930_bib71) 2020; 59
Romeo (10.1016/j.compind.2023.103930_bib53) 2018
Desai (10.1016/j.compind.2023.103930_bib12) 2018
References_xml – start-page: 1
  year: 2021
  end-page: 7
  ident: bib33
  article-title: Multimodal machine learning for display panel defect layer identification
  publication-title: In: Proceedings of the Thirty Second Annual SEMI Advanced Semiconductor Manufacturing Conference
– start-page: 96
  year: 2021
  end-page: 101
  ident: bib70
  article-title: Deep Transfer Learning Based Multi-source Heterogeneous data Fusion with Application to Cross-scenario Tool Wear monitoring
  publication-title: In: Proceedings of the Seventh International Conference on Mechanical Engineering and Automation Science
– volume: 29
  start-page: 2318
  year: 2017
  end-page: 2331
  ident: bib28
  article-title: Theory-guided data science: a new paradigm for scientific discovery from data
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 1214
  year: 2014
  ident: bib23
  article-title: Semantic heterogeneity reduction for big data in industrial automation
  publication-title: ITAT
– reference: S. Kamm, N. Sahlab, N. Jazdi, M. Weyrich, 2022b. A concept for dynamic and robust machine learning with contex modeling for heterogeneous manufacturing data, Procedia CIRP.
– volume: 33
  start-page: 163
  year: 2007
  end-page: 180
  ident: bib54
  article-title: The wisdom hierarchy: representations of the DIKW hierarchy
  publication-title: J. Inf. Sci.
– volume: 50
  start-page: 860
  year: 2020
  end-page: 877
  ident: bib38
  article-title: Data-driven missing data imputation in cluster monitoring system based on deep neural network
  publication-title: Appl. Intell.
– reference: Case School of Engineering, Case Western Reserve University Bearing Data Center (Online). https://engineering.case.edu/bearingdatacenter. (Accessed 22 November 2022) 2022.
– start-page: 1003
  year: 2020
  end-page: 1010
  ident: bib39
  article-title: Anomaly detection and prediction in discrete manufacturing based on cooperative LSTM networks
  publication-title: In: Proceedings of the IEEE Sixteenth International Conference on Automation Science and Engineering
– start-page: 1
  year: 2022
  end-page: 8
  ident: bib25
  article-title: Simulation-to-reality based transfer learning for the failure analysis of SiC power transistors
  publication-title: In: Proceedings of the IEEE Twenty Seventh International Conference on Emerging Technologies and Factory Automation
– volume: 35
  start-page: 1184
  year: 2019
  end-page: 1189
  ident: bib69
  article-title: Rotor unbalance fault diagnosis using DBN based on multi-source heterogeneous information fusion
  publication-title: Procedia Manuf.
– start-page: 19
  year: 2021
  end-page: 24
  ident: bib55
  article-title: Knowledge graphs as enhancers of intelligent digital twins
  publication-title: In: Proceedings of the Fourth IEEE International Conference on Industrial Cyber-Physical Systems
– reference: B. Kitchenham , S. Charters, Guidelines for performing systematic literature reviews in software engineering, Technical Report, ver. 2.3 Ebse Technical Report, ebse, 2007.
– volume: 61
  start-page: 16
  year: 2021
  end-page: 26
  ident: bib74
  article-title: Towards Self-X cognitive manufacturing network: an industrial knowledge graph-based multi-agent reinforcement learning approach
  publication-title: J. Manuf. Syst.
– volume: 24
  start-page: 2139
  year: 2019
  end-page: 2150
  ident: bib61
  article-title: Multilevel information fusion for induction motor fault diagnosis
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 17
  start-page: 697
  year: 2019
  end-page: 707
  ident: bib76
  article-title: Cross-modal material perception for novel objects: a deep adversarial learning method
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 84
  start-page: 523
  year: 2010
  end-page: 538
  ident: bib13
  article-title: Software survey: VOSviewer, a computer program for bibliometric mapping
  publication-title: Scientometrics
– volume: 18
  start-page: 4406
  year: 2021
  end-page: 4416
  ident: bib64
  article-title: Multimodal unknown surface material classification and its application to physical reasoning
  publication-title: IEEE Trans. Ind. Inform.
– volume: 15
  start-page: 19
  year: 2017
  end-page: 27
  ident: bib72
  article-title: Use of graph database for the integration of heterogeneous biological data
  publication-title: Genom. Inform.
– volume: 59
  start-page: 4589
  year: 2020
  end-page: 4601
  ident: bib71
  article-title: Soft sensor modeling method based on semisupervised deep learning and its application to wastewater treatment plant
  publication-title: Ind. Eng. Chem. Res.
– volume: 17
  start-page: 2074
  year: 2020
  end-page: 2084
  ident: bib9
  article-title: Prior knowledge-based optimization method for the reconstruction model of multicamera optical tracking system
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 5
  start-page: 7776
  year: 2017
  end-page: 7797
  ident: bib31
  article-title: Machine learning with big data: challenges and approaches
  publication-title: IEEE Access
– volume: 25
  start-page: 346
  year: 2021
  end-page: 355
  ident: bib35
  article-title: Class imbalanced fault diagnosis via combining K-means clustering algorithm with generative adversarial networks
  publication-title: J. Adv. Comput. Intell. Intell. Inform.
– reference: I. Goodfellow, Y. Bengio, A. Courville, and Safari, an O’Reilly Media Company, Deep Learning ‐ Grundlagen, aktuelle Verfahren und Algorithmen, neue Forschungsansätze: mitp Verlag, 2018. (Online).
– volume: 17
  start-page: 1266
  year: 2020
  end-page: 1282
  ident: bib18
  article-title: Ontology building for cyber‐physical systems: application in the manufacturing domain
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 15
  start-page: 65
  year: 2021
  end-page: 75
  ident: bib44
  article-title: Deep transfer learning for industrial automation: a review and discussion of new techniques for data-driven machine learning
  publication-title: IEEE Ind. Electron. Mag.
– volume: 42
  start-page: 146
  year: 2018
  end-page: 157
  ident: bib73
  article-title: A survey on deep learning for big data
  publication-title: Inf. Fusion
– volume: 104
  start-page: 1884
  year: 2021
  end-page: 1889
  ident: bib7
  article-title: Multi-sourced modelling for strip breakage using knowledge graph embeddings
  publication-title: Procedia CIRP
– volume: 104
  start-page: 975
  year: 2021
  end-page: 980
  ident: bib26
  article-title: Knowledge discovery in heterogeneous and unstructured data of industry 4.0 systems: challenges and approaches
  publication-title: Procedia CIRP
– start-page: 737
  year: 2018
  end-page: 740
  ident: bib12
  article-title: A survey on big data applications and challenges
  publication-title: In: Proceedings of the Second International Conference on Inventive Communication and Computational Technologies
– year: 2021
  ident: bib6
  article-title: Interaction-aware graph neural networks for fault diagnosis of complex industrial processes
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 100
  start-page: 287
  year: 2018
  end-page: 296
  ident: bib20
  article-title: A deep Boltzmann machine and multi-grained scanning forest ensemble collaborative method and its application to industrial fault diagnosis
  publication-title: Comput. Ind.
– volume: 2015
  year: 2015
  ident: bib17
  article-title: Combining computational models, semantic annotations and simulation experiments in a graph database
  publication-title: Database
– volume: 69
  start-page: 3017
  year: 2021
  end-page: 3026
  ident: bib78
  article-title: Identification of abnormal conditions for fused magnesium melting process based on deep learning and multisource information fusion
  publication-title: IEEE Trans. Ind. Electron.
– volume: 65
  start-page: 291
  year: 2015
  end-page: 309
  ident: bib60
  article-title: Intelligent condition based monitoring using acoustic signals for air compressors
  publication-title: IEEE Trans. Reliab.
– volume: 3
  start-page: 8
  year: 2017
  end-page: 15
  ident: bib63
  article-title: Heterogeneous data and big data analytics
  publication-title: Autom. Control Inf. Sci.
– start-page: 543
  year: 2019
  end-page: 553
  ident: bib66
  article-title: Multi-task Sparse Regression Metric Learning for Heterogeneous Classificationn
  publication-title: Int. Conf. Artif. Neural Netw.
– start-page: 1
  year: 2018
  end-page: 6
  ident: bib53
  article-title: An innovative design support system for industry 4.0 based on machine learning approaches
  publication-title: In: Proceedings of the Fifth International Symposium on Environment-Friendly Energies and Applications
– volume: 104
  start-page: 1559
  year: 2021
  end-page: 1564
  ident: bib58
  article-title: Physics-informed neural networks (PINNs) for improving a thermal model in stereolithography applications
  publication-title: Procedia CIRP
– volume: 70
  start-page: 1
  year: 2021
  end-page: 10
  ident: bib68
  article-title: IFDS: an intelligent fault diagnosis system with multisource unsupervised domain adaptation for different working conditions
  publication-title: IEEE Trans. Instrum. Meas.
– start-page: 1
  year: 2022
  end-page: 22
  ident: bib46
  article-title: Architecture and knowledge modelling for self-organized reconfiguration management of cyber-physical production systems
  publication-title: Int. J. Comput. Integr. Manuf.
– volume: 158
  year: 2020
  ident: bib75
  article-title: Data synthesis using dual discriminator conditional generative adversarial networks for imbalanced fault diagnosis of rolling bearings
  publication-title: Measurement
– volume: 1
  start-page: 39
  year: 2017
  end-page: 57
  ident: bib65
  article-title: The knowledge graph as the default data model for learning on heterogeneous knowledge
  publication-title: Data Sci.
– volume: 21
  start-page: 1885
  year: 2020
  end-page: 1896
  ident: bib52
  article-title: Robust multi-modal sensor fusion: an adversarial approach
  publication-title: IEEE Sens. J.
– volume: 13
  start-page: 660
  year: 2016
  end-page: 667
  ident: bib24
  article-title: Understanding data heterogeneity in the context of cyber-physical systems integration
  publication-title: IEEE Trans. Ind. Inform.
– volume: 53
  start-page: 11938
  year: 2020
  end-page: 11943
  ident: bib41
  article-title: Scheduling knowledge retrieval based on heterogeneous feature learning for byproduct gas system in steel industry
  publication-title: IFAC-Pap.
– volume: 42
  start-page: 2671
  year: 2009
  end-page: 2683
  ident: bib11
  article-title: Combining feature spaces for classification
  publication-title: Pattern Recognit.
– start-page: 39
  year: 2008
  end-page: 43
  ident: bib21
  article-title: The mir flickr retrieval evaluation
  publication-title: In: Proceedings of the First ACM International Conference on Multimedia Information Retrieval
– volume: 235
  start-page: 1858
  year: 2021
  end-page: 1872
  ident: bib77
  article-title: Fault diagnosis based on deep learning by extracting inherent common feature of multi-source heterogeneous data
  publication-title: Proc. Inst. Mech. Eng., Part I J. Syst. Control Eng.
– volume: 2209
  start-page: 03430
  year: 2022
  ident: bib37
  article-title: Foundations and recent trends in multimodal machine learning: principles, challenges, and open questions
  publication-title: arXiv Prepr. arXiv
– volume: 234
  start-page: 104
  year: 2020
  end-page: 115
  ident: bib45
  article-title: Feature learning for fault detection in high-dimensional condition monitoring signals
  publication-title: Proc. Inst. Mech. Eng., Part O J. Risk Reliab.
– volume: 93
  start-page: 437
  year: 2020
  end-page: 442
  ident: bib43
  article-title: Distributed cooperative deep transfer learning for industrial image recognition
  publication-title: Procedia CIRP
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: bib51
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– start-page: 325
  year: 2021
  end-page: 329
  ident: bib16
  article-title: Bidirectional generation of object images and positions using deep generative models for service robotics applications
  publication-title: In: Proceedings of the IEEE/SICE International Symposium on System Integration
– reference: Bai, X. , Chen, C. , Liu, W., Zhang, H., Data-driven prediction of sinter composition based on multi-source information and LSTM network. In: Proceedings of the Fortieth Chinese Control Conference (CCC), 2021, 3311–3316.
– start-page: 1
  year: 2016
  end-page: 4
  ident: bib14
  article-title: Approach to interconnect existing industrial automation systems with the Industrial Internet
  publication-title: In: Proceedings of the IEEE Twenty First International Conference on Emerging Technologies and Factory Automation
– start-page: 54
  year: 2019
  end-page: 57
  ident: bib19
  article-title: A novel feature-spanning machine learning technology for defect inspection
  publication-title: In: Proceedings of the Fourteenth International Microsystems, Packaging, Assembly and Circuits Technology Conference
– start-page: 1
  year: 2020
  end-page: 8
  ident: bib36
  article-title: Multimodal fusion with co-attention mechanism
  publication-title: In: Proceedings of the IEEE Twenty Third International Conference on Information Fusion
– reference: M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations, arXiv preprint arXiv:1711.10561 (Titel anhand dieser ArXiv-ID in Citavi-Projekt übernehmen), 2017.
– volume: 8
  start-page: 148475
  year: 2020
  end-page: 148488
  ident: bib57
  article-title: Multisource latent feature selective ensemble modeling approach for small-sample high-dimensional process data in applications
  publication-title: IEEE Access
– volume: 104
  year: 2021
  ident: bib62
  article-title: Common and specific deep feature representation for multimode process monitoring using a novel variable-wise weighted parallel network
  publication-title: Eng. Appl. Artif. Intell.
– volume: 4
  start-page: 973
  year: 2019
  end-page: 980
  ident: bib32
  article-title: Deep metadata fusion for traffic light to lane assignment
  publication-title: IEEE Robot. Autom. Lett.
– volume: 41
  start-page: 423
  year: 2018
  end-page: 443
  ident: bib3
  article-title: Multimodal machine learning: a survey and taxonomy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 4277
  year: 2018
  end-page: 4281
  ident: bib8
  article-title: Heterogeneous transfer learning based on stack sparse auto-encoders for fault diagnosis
  publication-title: In: Proceedings of the Chinese Automation Congress (CAC)
– volume: 14
  start-page: 1279
  year: 2020
  end-page: 1303
  ident: bib10
  article-title: Big data analytics for manufacturing internet of things: opportunities, challenges and enabling technologies
  publication-title: Enterp. Inf. Syst.
– volume: 16
  start-page: 1653
  year: 2019
  end-page: 1663
  ident: bib22
  article-title: Unsupervised machine learning based scalable fusion for active perception
  publication-title: IEEE Trans. Autom. Sci. Eng.
– start-page: 361
  year: 2022
  end-page: 381
  ident: bib79
  article-title: Big data oriented smart tool condition monitoring system
  publication-title: Smart Machining Systems
– volume: 10
  start-page: 226
  year: 2016
  end-page: 239
  ident: bib56
  article-title: Multimodal feature-based surface material classification
  publication-title: IEEE Trans. Haptics
– volume: 13
  start-page: 1033
  year: 2015
  end-page: 1044
  ident: bib4
  article-title: Heterogeneous sensor data fusion approach for real-time monitoring in ultraprecision machining (UPM) process using non-parametric Bayesian clustering and evidence theory
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 53
  start-page: 11168
  year: 2020
  end-page: 11174
  ident: bib29
  article-title: Artificial intelligence platform proposal for paint structure quality prediction within the industry 4.0 concept
  publication-title: IFAC-Pap.
– volume: 10
  start-page: 1
  year: 2021
  end-page: 11
  ident: bib49
  article-title: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews
  publication-title: Syst. Rev.
– reference: S.M. Nabritt, T. Damarla, G. Chatters, Personnel and vehicle data collection at aberdeen proving ground (apg) and its distribution for research, Army Research Lab Adelphi MD Sensors and Electron Devices Directorate, 2015.
– volume: 69
  start-page: 4681
  year: 2019
  end-page: 4691
  ident: bib40
  article-title: A data-flow oriented deep ensemble learning method for real-time surface defect inspection
  publication-title: IEEE Trans. Instrum. Meas.
– start-page: 140
  year: 2019
  end-page: 147
  ident: bib47
  article-title: Data management challenges for deep learning
  publication-title: In: Proceedings of theForty Fifth Euromicro Conference on Software Engineering and Advanced Applications
– volume: 102
  start-page: 289
  year: 2019
  end-page: 298
  ident: bib34
  article-title: Missing-value imputation of continuous missing based on deep imputation network using correlations among multiple iot data streams in a smart space
  publication-title: IEICE Trans. Inf. Syst.
– start-page: 353
  year: 2018
  end-page: 358
  ident: bib59
  article-title: Computational framework for machine fault diagnosis with autoencoder variants
  publication-title: In: Proceedings of the International Conference on Sensing, Diagnostics, Prognostics, and Control
– start-page: 2302
  year: 2021
  end-page: 2310
  ident: bib42
  article-title: Smil: Multimodal learning with severely missing modality
  publication-title: In: Proceedings of the AAAI Conference on Artificial Intelligenc
– volume: 39
  start-page: 93
  year: 2019
  end-page: 112
  ident: bib67
  article-title: Guidance on conducting a systematic literature review
  publication-title: J. Plan. Educ. Res.
– reference: Baghbanpourasl, A., Lughofer, E., Meyer-Heye, P., Zörrer, H., Eitzinger, C. , Virtual Quality control using bidirectional LSTM networks and gradient boosting. In: Proceedings of the Seventeenth International Conference on Industrial Informatics (INDIN), IEEE, 2019, 1638–1643.
– volume: 17
  start-page: 2074
  issue: 4
  year: 2020
  ident: 10.1016/j.compind.2023.103930_bib9
  article-title: Prior knowledge-based optimization method for the reconstruction model of multicamera optical tracking system
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2020.2989194
– volume: 42
  start-page: 146
  year: 2018
  ident: 10.1016/j.compind.2023.103930_bib73
  article-title: A survey on deep learning for big data
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.10.006
– volume: 17
  start-page: 1266
  issue: 3
  year: 2020
  ident: 10.1016/j.compind.2023.103930_bib18
  article-title: Ontology building for cyber‐physical systems: application in the manufacturing domain
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2020.2991777
– ident: 10.1016/j.compind.2023.103930_bib1
  doi: 10.1109/INDIN41052.2019.8972270
– volume: 69
  start-page: 4681
  issue: 7
  year: 2019
  ident: 10.1016/j.compind.2023.103930_bib40
  article-title: A data-flow oriented deep ensemble learning method for real-time surface defect inspection
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2019.2957849
– volume: 234
  start-page: 104
  issue: 1
  year: 2020
  ident: 10.1016/j.compind.2023.103930_bib45
  article-title: Feature learning for fault detection in high-dimensional condition monitoring signals
  publication-title: Proc. Inst. Mech. Eng., Part O J. Risk Reliab.
– volume: 104
  start-page: 1559
  year: 2021
  ident: 10.1016/j.compind.2023.103930_bib58
  article-title: Physics-informed neural networks (PINNs) for improving a thermal model in stereolithography applications
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2021.11.263
– start-page: 54
  year: 2019
  ident: 10.1016/j.compind.2023.103930_bib19
  article-title: A novel feature-spanning machine learning technology for defect inspection
– volume: 33
  start-page: 163
  issue: 2
  year: 2007
  ident: 10.1016/j.compind.2023.103930_bib54
  article-title: The wisdom hierarchy: representations of the DIKW hierarchy
  publication-title: J. Inf. Sci.
  doi: 10.1177/0165551506070706
– volume: 39
  start-page: 93
  issue: 1
  year: 2019
  ident: 10.1016/j.compind.2023.103930_bib67
  article-title: Guidance on conducting a systematic literature review
  publication-title: J. Plan. Educ. Res.
  doi: 10.1177/0739456X17723971
– start-page: 543
  year: 2019
  ident: 10.1016/j.compind.2023.103930_bib66
  article-title: Multi-task Sparse Regression Metric Learning for Heterogeneous Classificationn
  publication-title: Int. Conf. Artif. Neural Netw.
– volume: 1214
  year: 2014
  ident: 10.1016/j.compind.2023.103930_bib23
  article-title: Semantic heterogeneity reduction for big data in industrial automation
  publication-title: ITAT
– volume: 17
  start-page: 697
  issue: 2
  year: 2019
  ident: 10.1016/j.compind.2023.103930_bib76
  article-title: Cross-modal material perception for novel objects: a deep adversarial learning method
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2019.2941230
– volume: 35
  start-page: 1184
  year: 2019
  ident: 10.1016/j.compind.2023.103930_bib69
  article-title: Rotor unbalance fault diagnosis using DBN based on multi-source heterogeneous information fusion
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2019.06.075
– volume: 4
  start-page: 973
  issue: 2
  year: 2019
  ident: 10.1016/j.compind.2023.103930_bib32
  article-title: Deep metadata fusion for traffic light to lane assignment
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2019.2893446
– volume: 59
  start-page: 4589
  issue: 10
  year: 2020
  ident: 10.1016/j.compind.2023.103930_bib71
  article-title: Soft sensor modeling method based on semisupervised deep learning and its application to wastewater treatment plant
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b05087
– ident: 10.1016/j.compind.2023.103930_bib2
  doi: 10.23919/CCC52363.2021.9549500
– start-page: 737
  year: 2018
  ident: 10.1016/j.compind.2023.103930_bib12
  article-title: A survey on big data applications and challenges
– volume: 21
  start-page: 1885
  issue: 2
  year: 2020
  ident: 10.1016/j.compind.2023.103930_bib52
  article-title: Robust multi-modal sensor fusion: an adversarial approach
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3018698
– volume: 65
  start-page: 291
  issue: 1
  year: 2015
  ident: 10.1016/j.compind.2023.103930_bib60
  article-title: Intelligent condition based monitoring using acoustic signals for air compressors
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2015.2459684
– volume: 25
  start-page: 346
  issue: 3
  year: 2021
  ident: 10.1016/j.compind.2023.103930_bib35
  article-title: Class imbalanced fault diagnosis via combining K-means clustering algorithm with generative adversarial networks
  publication-title: J. Adv. Comput. Intell. Intell. Inform.
  doi: 10.20965/jaciii.2021.p0346
– start-page: 353
  year: 2018
  ident: 10.1016/j.compind.2023.103930_bib59
  article-title: Computational framework for machine fault diagnosis with autoencoder variants
– volume: 18
  start-page: 4406
  issue: 7
  year: 2021
  ident: 10.1016/j.compind.2023.103930_bib64
  article-title: Multimodal unknown surface material classification and its application to physical reasoning
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2021.3126601
– year: 2021
  ident: 10.1016/j.compind.2023.103930_bib6
  article-title: Interaction-aware graph neural networks for fault diagnosis of complex industrial processes
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 42
  start-page: 2671
  issue: 11
  year: 2009
  ident: 10.1016/j.compind.2023.103930_bib11
  article-title: Combining feature spaces for classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.04.002
– volume: 16
  start-page: 1653
  issue: 4
  year: 2019
  ident: 10.1016/j.compind.2023.103930_bib22
  article-title: Unsupervised machine learning based scalable fusion for active perception
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2019.2910508
– volume: 2209
  start-page: 03430
  year: 2022
  ident: 10.1016/j.compind.2023.103930_bib37
  article-title: Foundations and recent trends in multimodal machine learning: principles, challenges, and open questions
  publication-title: arXiv Prepr. arXiv
– volume: 3
  start-page: 8
  issue: 1
  year: 2017
  ident: 10.1016/j.compind.2023.103930_bib63
  article-title: Heterogeneous data and big data analytics
  publication-title: Autom. Control Inf. Sci.
– volume: 2015
  year: 2015
  ident: 10.1016/j.compind.2023.103930_bib17
  article-title: Combining computational models, semantic annotations and simulation experiments in a graph database
  publication-title: Database
  doi: 10.1093/database/bau130
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.compind.2023.103930_bib51
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 104
  year: 2021
  ident: 10.1016/j.compind.2023.103930_bib62
  article-title: Common and specific deep feature representation for multimode process monitoring using a novel variable-wise weighted parallel network
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104381
– start-page: 1
  year: 2020
  ident: 10.1016/j.compind.2023.103930_bib36
  article-title: Multimodal fusion with co-attention mechanism
– volume: 10
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.compind.2023.103930_bib49
  article-title: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews
  publication-title: Syst. Rev.
  doi: 10.1186/s13643-021-01626-4
– volume: 104
  start-page: 1884
  year: 2021
  ident: 10.1016/j.compind.2023.103930_bib7
  article-title: Multi-sourced modelling for strip breakage using knowledge graph embeddings
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2021.11.318
– ident: 10.1016/j.compind.2023.103930_bib30
– volume: 100
  start-page: 287
  year: 2018
  ident: 10.1016/j.compind.2023.103930_bib20
  article-title: A deep Boltzmann machine and multi-grained scanning forest ensemble collaborative method and its application to industrial fault diagnosis
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2018.04.002
– volume: 13
  start-page: 660
  issue: 2
  year: 2016
  ident: 10.1016/j.compind.2023.103930_bib24
  article-title: Understanding data heterogeneity in the context of cyber-physical systems integration
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2016.2596101
– volume: 93
  start-page: 437
  year: 2020
  ident: 10.1016/j.compind.2023.103930_bib43
  article-title: Distributed cooperative deep transfer learning for industrial image recognition
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2020.03.056
– start-page: 2302
  year: 2021
  ident: 10.1016/j.compind.2023.103930_bib42
  article-title: Smil: Multimodal learning with severely missing modality
– ident: 10.1016/j.compind.2023.103930_bib27
  doi: 10.1016/j.procir.2023.06.061
– start-page: 140
  year: 2019
  ident: 10.1016/j.compind.2023.103930_bib47
  article-title: Data management challenges for deep learning
– start-page: 361
  year: 2022
  ident: 10.1016/j.compind.2023.103930_bib79
  article-title: Big data oriented smart tool condition monitoring system
– start-page: 1
  year: 2021
  ident: 10.1016/j.compind.2023.103930_bib33
  article-title: Multimodal machine learning for display panel defect layer identification
– ident: 10.1016/j.compind.2023.103930_bib48
– volume: 15
  start-page: 65
  issue: 2
  year: 2021
  ident: 10.1016/j.compind.2023.103930_bib44
  article-title: Deep transfer learning for industrial automation: a review and discussion of new techniques for data-driven machine learning
  publication-title: IEEE Ind. Electron. Mag.
  doi: 10.1109/MIE.2020.3034884
– volume: 15
  start-page: 19
  issue: 1
  year: 2017
  ident: 10.1016/j.compind.2023.103930_bib72
  article-title: Use of graph database for the integration of heterogeneous biological data
  publication-title: Genom. Inform.
  doi: 10.5808/GI.2017.15.1.19
– volume: 69
  start-page: 3017
  issue: 3
  year: 2021
  ident: 10.1016/j.compind.2023.103930_bib78
  article-title: Identification of abnormal conditions for fused magnesium melting process based on deep learning and multisource information fusion
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2021.3070512
– ident: 10.1016/j.compind.2023.103930_bib50
– start-page: 19
  year: 2021
  ident: 10.1016/j.compind.2023.103930_bib55
  article-title: Knowledge graphs as enhancers of intelligent digital twins
– start-page: 325
  year: 2021
  ident: 10.1016/j.compind.2023.103930_bib16
  article-title: Bidirectional generation of object images and positions using deep generative models for service robotics applications
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.compind.2023.103930_bib68
  article-title: IFDS: an intelligent fault diagnosis system with multisource unsupervised domain adaptation for different working conditions
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 53
  start-page: 11168
  issue: 2
  year: 2020
  ident: 10.1016/j.compind.2023.103930_bib29
  article-title: Artificial intelligence platform proposal for paint structure quality prediction within the industry 4.0 concept
  publication-title: IFAC-Pap.
– volume: 14
  start-page: 1279
  issue: 9–10
  year: 2020
  ident: 10.1016/j.compind.2023.103930_bib10
  article-title: Big data analytics for manufacturing internet of things: opportunities, challenges and enabling technologies
  publication-title: Enterp. Inf. Syst.
  doi: 10.1080/17517575.2019.1633689
– start-page: 1003
  year: 2020
  ident: 10.1016/j.compind.2023.103930_bib39
  article-title: Anomaly detection and prediction in discrete manufacturing based on cooperative LSTM networks
– volume: 13
  start-page: 1033
  issue: 2
  year: 2015
  ident: 10.1016/j.compind.2023.103930_bib4
  article-title: Heterogeneous sensor data fusion approach for real-time monitoring in ultraprecision machining (UPM) process using non-parametric Bayesian clustering and evidence theory
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2015.2447454
– volume: 1
  start-page: 39
  issue: 1–2
  year: 2017
  ident: 10.1016/j.compind.2023.103930_bib65
  article-title: The knowledge graph as the default data model for learning on heterogeneous knowledge
  publication-title: Data Sci.
  doi: 10.3233/DS-170007
– volume: 158
  year: 2020
  ident: 10.1016/j.compind.2023.103930_bib75
  article-title: Data synthesis using dual discriminator conditional generative adversarial networks for imbalanced fault diagnosis of rolling bearings
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107741
– start-page: 1
  year: 2022
  ident: 10.1016/j.compind.2023.103930_bib25
  article-title: Simulation-to-reality based transfer learning for the failure analysis of SiC power transistors
– start-page: 1
  year: 2016
  ident: 10.1016/j.compind.2023.103930_bib14
  article-title: Approach to interconnect existing industrial automation systems with the Industrial Internet
– volume: 102
  start-page: 289
  issue: 2
  year: 2019
  ident: 10.1016/j.compind.2023.103930_bib34
  article-title: Missing-value imputation of continuous missing based on deep imputation network using correlations among multiple iot data streams in a smart space
  publication-title: IEICE Trans. Inf. Syst.
  doi: 10.1587/transinf.2018EDP7257
– start-page: 1
  year: 2022
  ident: 10.1016/j.compind.2023.103930_bib46
  article-title: Architecture and knowledge modelling for self-organized reconfiguration management of cyber-physical production systems
  publication-title: Int. J. Comput. Integr. Manuf.
– volume: 104
  start-page: 975
  year: 2021
  ident: 10.1016/j.compind.2023.103930_bib26
  article-title: Knowledge discovery in heterogeneous and unstructured data of industry 4.0 systems: challenges and approaches
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2021.11.164
– start-page: 4277
  year: 2018
  ident: 10.1016/j.compind.2023.103930_bib8
  article-title: Heterogeneous transfer learning based on stack sparse auto-encoders for fault diagnosis
  publication-title: In: Proceedings of the Chinese Automation Congress (CAC)
– volume: 8
  start-page: 148475
  year: 2020
  ident: 10.1016/j.compind.2023.103930_bib57
  article-title: Multisource latent feature selective ensemble modeling approach for small-sample high-dimensional process data in applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3015875
– volume: 61
  start-page: 16
  year: 2021
  ident: 10.1016/j.compind.2023.103930_bib74
  article-title: Towards Self-X cognitive manufacturing network: an industrial knowledge graph-based multi-agent reinforcement learning approach
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2021.08.002
– volume: 29
  start-page: 2318
  issue: 10
  year: 2017
  ident: 10.1016/j.compind.2023.103930_bib28
  article-title: Theory-guided data science: a new paradigm for scientific discovery from data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2720168
– volume: 53
  start-page: 11938
  issue: 2
  year: 2020
  ident: 10.1016/j.compind.2023.103930_bib41
  article-title: Scheduling knowledge retrieval based on heterogeneous feature learning for byproduct gas system in steel industry
  publication-title: IFAC-Pap.
– volume: 24
  start-page: 2139
  issue: 5
  year: 2019
  ident: 10.1016/j.compind.2023.103930_bib61
  article-title: Multilevel information fusion for induction motor fault diagnosis
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2019.2928967
– volume: 84
  start-page: 523
  issue: 2
  year: 2010
  ident: 10.1016/j.compind.2023.103930_bib13
  article-title: Software survey: VOSviewer, a computer program for bibliometric mapping
  publication-title: Scientometrics
  doi: 10.1007/s11192-009-0146-3
– start-page: 39
  year: 2008
  ident: 10.1016/j.compind.2023.103930_bib21
  article-title: The mir flickr retrieval evaluation
– volume: 5
  start-page: 7776
  year: 2017
  ident: 10.1016/j.compind.2023.103930_bib31
  article-title: Machine learning with big data: challenges and approaches
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2696365
– volume: 50
  start-page: 860
  year: 2020
  ident: 10.1016/j.compind.2023.103930_bib38
  article-title: Data-driven missing data imputation in cluster monitoring system based on deep neural network
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-019-01560-y
– volume: 10
  start-page: 226
  issue: 2
  year: 2016
  ident: 10.1016/j.compind.2023.103930_bib56
  article-title: Multimodal feature-based surface material classification
  publication-title: IEEE Trans. Haptics
  doi: 10.1109/TOH.2016.2625787
– ident: 10.1016/j.compind.2023.103930_bib15
– volume: 235
  start-page: 1858
  issue: 10
  year: 2021
  ident: 10.1016/j.compind.2023.103930_bib77
  article-title: Fault diagnosis based on deep learning by extracting inherent common feature of multi-source heterogeneous data
  publication-title: Proc. Inst. Mech. Eng., Part I J. Syst. Control Eng.
– start-page: 1
  year: 2018
  ident: 10.1016/j.compind.2023.103930_bib53
  article-title: An innovative design support system for industry 4.0 based on machine learning approaches
– volume: 41
  start-page: 423
  issue: 2
  year: 2018
  ident: 10.1016/j.compind.2023.103930_bib3
  article-title: Multimodal machine learning: a survey and taxonomy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2798607
– start-page: 96
  year: 2021
  ident: 10.1016/j.compind.2023.103930_bib70
  article-title: Deep Transfer Learning Based Multi-source Heterogeneous data Fusion with Application to Cross-scenario Tool Wear monitoring
– ident: 10.1016/j.compind.2023.103930_bib5
SSID ssj0000776
Score 2.514636
SecondaryResourceType review_article
Snippet In many application domains data from different sources are increasingly available to thoroughly monitor and describe a system or device. Especially within the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103930
SubjectTerms (Physics-) informed machine learning
Adaptive machine learning
Heterogeneous data integration
Heterogeneous data management
Machine learning
Multi-modal machine learning
Title A survey on machine learning based analysis of heterogeneous data in industrial automation
URI https://dx.doi.org/10.1016/j.compind.2023.103930
Volume 149
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14TZvHJtkcS7HUVxG1ULyEfWqLJqWmghd_uzvNxlYQBSEQEjIhTIb5ZuCbbxA61cqggiuEoykxDYrBVIf6mjlezFziua5WGqaRrwdRf0guRuGohrrVLAzQKm3uL3P6IlvbO23rzfZ0PG7fmWIlCgwgmyIa6h4YNCckhihvfSxpHiBXU-p7Rw48vZziaU_g3VPT-rZghziMnydAhv4Jn1Ywp7eFNm2xiDvl92yjmsp20MaKhOAueujg1_nsTb3jPMMvC2akwnYVxCMGjJKYWeERnGv8BPSX3ESNMi0_Bn4oHmfmqBZ4YDYv8nKccQ8Ne2f33b5j9yU4IgijwvGV9JRJYCIUIC5AmU8ZEb4KlcdFkEhfSxrQiJtO1Bc00r4nBRegX6-5jJMw2Ef1LM_UAcIA_BFTnlSMkSROeKgoD3jCaSJjV8YNRCovpcKKicNOi-e0Yo1NUuvcFJybls5toNaX2bRU0_jLgFa_IP0WFqnJ-L-bHv7f9Aitw1XJ8ztG9WI2Vyem9ih4cxFcTbTW6d5e3cD5_LI_-ASPTNv6
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH8Ylv9-A1Nu9sjkUsrdVetCBewj61RZNSU8F_706z0QqiIOSUZEKYHeabgW--ATjTyqCCK4SjaWgaFIOpDvU1c7yEuaHnulppnEa-GcTdYXh1H9034KKehUFapc39VU6fZ2t7p2W92ZqMRq1bU6zEgQFkU0Rj3RMtwTKqU0VNWG73-t3BV0JO5jvm8H0HDb4GeVpj_PzEdL_nuEYcJ9BT5EP_BFELsNPZgHVbL5J29Uub0FD5FqwtqAhuw0ObvM6mb-qdFDl5mZMjFbHbIB4JwpQkzGqPkEKTJ2TAFCZwlOn6CVJEySg3V73Dg7BZWVQTjTsw7FzeXXQduzLBEUEUl46vpKdMDhORQH0BynzKQuGrSHlcBKn0taQBjblpRn1BY-17UnCBEvaayySNgl1o5kWu9oAg9sdMeVIxFqZJyiNFecBTTlOZuDLZh7D2UiasnjiutXjOauLYOLPOzdC5WeXcfTj_NJtUghp_GdD6CLJvkZGZpP-76cH_TU9hpXt3c51d9wb9Q1jFJxXt7wia5XSmjk0pUvITG2ofOlfdFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+on+machine+learning+based+analysis+of+heterogeneous+data+in+industrial+automation&rft.jtitle=Computers+in+industry&rft.au=Kamm%2C+Simon&rft.au=Veekati%2C+Sushma+Sri&rft.au=M%C3%BCller%2C+Timo&rft.au=Jazdi%2C+Nasser&rft.date=2023-08-01&rft.issn=0166-3615&rft.volume=149&rft.spage=103930&rft_id=info:doi/10.1016%2Fj.compind.2023.103930&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compind_2023_103930
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-3615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-3615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-3615&client=summon