A survey on machine learning based analysis of heterogeneous data in industrial automation
In many application domains data from different sources are increasingly available to thoroughly monitor and describe a system or device. Especially within the industrial automation domain, heterogeneous data and its analysis gain a lot of attention from research and industry, since it has the poten...
Saved in:
Published in | Computers in industry Vol. 149; p. 103930 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0166-3615 1872-6194 |
DOI | 10.1016/j.compind.2023.103930 |
Cover
Loading…
Abstract | In many application domains data from different sources are increasingly available to thoroughly monitor and describe a system or device. Especially within the industrial automation domain, heterogeneous data and its analysis gain a lot of attention from research and industry, since it has the potential to improve or enable tasks like diagnostics, predictive maintenance, and condition monitoring. For data analysis, machine learning based approaches are mostly used in recent literature, as these algorithms allow us to learn complex correlations within the data. To analyze even heterogeneous data and gain benefits from it in an application, data from different sources need to be integrated, stored, and managed to apply machine learning algorithms. In a setting with heterogeneous data sources, the analysis algorithms should also be able to handle data source failures or newly added data sources. In addition, existing knowledge should be used to improve the machine learning based analysis or its training process. To find existing approaches for the machine learning based analysis of heterogeneous data in the industrial automation domain, this paper presents the result of a systematic literature review. The publications were reviewed, evaluated, and discussed concerning five requirements that are derived in this paper. We identified promising solutions and approaches and outlined open research challenges, which are not yet covered sufficiently in the literature.
•Aspects of the analysis of heterogeneous data are subject of numerous ongoing research activities.•Multi-modal machine learning models constitute a proper choice for analyzing heterogeneous data.•There is a lack of adaptive and robust machine learning models.•Three groups are identified to incorporate existing knowledge into machine learning models. |
---|---|
AbstractList | In many application domains data from different sources are increasingly available to thoroughly monitor and describe a system or device. Especially within the industrial automation domain, heterogeneous data and its analysis gain a lot of attention from research and industry, since it has the potential to improve or enable tasks like diagnostics, predictive maintenance, and condition monitoring. For data analysis, machine learning based approaches are mostly used in recent literature, as these algorithms allow us to learn complex correlations within the data. To analyze even heterogeneous data and gain benefits from it in an application, data from different sources need to be integrated, stored, and managed to apply machine learning algorithms. In a setting with heterogeneous data sources, the analysis algorithms should also be able to handle data source failures or newly added data sources. In addition, existing knowledge should be used to improve the machine learning based analysis or its training process. To find existing approaches for the machine learning based analysis of heterogeneous data in the industrial automation domain, this paper presents the result of a systematic literature review. The publications were reviewed, evaluated, and discussed concerning five requirements that are derived in this paper. We identified promising solutions and approaches and outlined open research challenges, which are not yet covered sufficiently in the literature.
•Aspects of the analysis of heterogeneous data are subject of numerous ongoing research activities.•Multi-modal machine learning models constitute a proper choice for analyzing heterogeneous data.•There is a lack of adaptive and robust machine learning models.•Three groups are identified to incorporate existing knowledge into machine learning models. |
ArticleNumber | 103930 |
Author | Müller, Timo Weyrich, Michael Veekati, Sushma Sri Kamm, Simon Jazdi, Nasser |
Author_xml | – sequence: 1 givenname: Simon orcidid: 0000-0001-8459-2450 surname: Kamm fullname: Kamm, Simon email: simon.kamm@ias.uni-stuttgart.de – sequence: 2 givenname: Sushma Sri surname: Veekati fullname: Veekati, Sushma Sri – sequence: 3 givenname: Timo surname: Müller fullname: Müller, Timo – sequence: 4 givenname: Nasser surname: Jazdi fullname: Jazdi, Nasser – sequence: 5 givenname: Michael surname: Weyrich fullname: Weyrich, Michael |
BookMark | eNqFkM1qwzAMgM3oYG23Rxj4BdL5p3ESdhilbN2gsMt22cU4ttK6JHaxnULffuna0y4VAoHQJ6RvgkbOO0DokZIZJVQ87Wbad3vrzIwRxocerzi5QWNaFiwTtJqP0HiYExkXNL9Dkxh3ZIiiEGP0s8CxDwc4Yu9wp_TWOsAtqOCs2-BaRTBYOdUeo43YN3gLCYLfgAPfR2xUUti6IU0fU7CqxapPvlPJenePbhvVRni41Cn6fnv9Wr5n68_Vx3KxzjTPRcoYGAo5L3WuaVVVpWKlmmsGOdBa88qwxpS8FDVhBdOlaBg1utaE03lTm6LK-RTl5706-BgDNHIfbKfCUVIiT4LkTl4EyZMgeRY0cM__OG3T3-UpKNtepV_ONAyvHSwEGbUFp8HYADpJ4-2VDb-tXIkA |
CitedBy_id | crossref_primary_10_1016_j_jcp_2024_113697 crossref_primary_10_1016_j_jclepro_2024_142308 crossref_primary_10_3390_s24082631 crossref_primary_10_3846_jbem_2023_19775 crossref_primary_10_1016_j_hybadv_2025_100385 crossref_primary_10_3390_e25121567 crossref_primary_10_1515_auto_2024_0039 crossref_primary_10_1108_IMDS_05_2023_0277 crossref_primary_10_1515_auto_2024_0112 crossref_primary_10_1016_j_eswa_2023_121799 crossref_primary_10_1016_j_compind_2024_104173 crossref_primary_10_1016_j_measurement_2024_115264 crossref_primary_10_1016_j_compind_2023_104044 crossref_primary_10_1080_09544828_2025_2476879 crossref_primary_10_1016_j_compind_2024_104086 crossref_primary_10_1007_s11837_024_06922_7 crossref_primary_10_32604_cmes_2024_056214 crossref_primary_10_1016_j_procir_2023_09_192 crossref_primary_10_1016_j_aei_2024_102689 crossref_primary_10_1038_s41598_024_85083_8 crossref_primary_10_48175_IJARSCT_19243 crossref_primary_10_1016_j_future_2024_01_014 crossref_primary_10_1016_j_eng_2024_04_024 crossref_primary_10_1016_j_hazadv_2024_100480 crossref_primary_10_1016_j_iot_2024_101153 crossref_primary_10_1016_j_psep_2024_06_052 crossref_primary_10_1016_j_compeleceng_2024_109180 crossref_primary_10_1145_3718364 |
Cites_doi | 10.1109/TASE.2020.2989194 10.1016/j.inffus.2017.10.006 10.1109/TASE.2020.2991777 10.1109/INDIN41052.2019.8972270 10.1109/TIM.2019.2957849 10.1016/j.procir.2021.11.263 10.1177/0165551506070706 10.1177/0739456X17723971 10.1109/TASE.2019.2941230 10.1016/j.promfg.2019.06.075 10.1109/LRA.2019.2893446 10.1021/acs.iecr.9b05087 10.23919/CCC52363.2021.9549500 10.1109/JSEN.2020.3018698 10.1109/TR.2015.2459684 10.20965/jaciii.2021.p0346 10.1109/TII.2021.3126601 10.1016/j.patcog.2009.04.002 10.1109/TASE.2019.2910508 10.1093/database/bau130 10.1016/j.jcp.2018.10.045 10.1016/j.engappai.2021.104381 10.1186/s13643-021-01626-4 10.1016/j.procir.2021.11.318 10.1016/j.compind.2018.04.002 10.1109/TII.2016.2596101 10.1016/j.procir.2020.03.056 10.1016/j.procir.2023.06.061 10.1109/MIE.2020.3034884 10.5808/GI.2017.15.1.19 10.1109/TIE.2021.3070512 10.1080/17517575.2019.1633689 10.1109/TASE.2015.2447454 10.3233/DS-170007 10.1016/j.measurement.2020.107741 10.1587/transinf.2018EDP7257 10.1016/j.procir.2021.11.164 10.1109/ACCESS.2020.3015875 10.1016/j.jmsy.2021.08.002 10.1109/TKDE.2017.2720168 10.1109/TMECH.2019.2928967 10.1007/s11192-009-0146-3 10.1109/ACCESS.2017.2696365 10.1007/s10489-019-01560-y 10.1109/TOH.2016.2625787 10.1109/TPAMI.2018.2798607 |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.compind.2023.103930 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-6194 |
ExternalDocumentID | 10_1016_j_compind_2023_103930 S0166361523000805 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 6J9 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACDAQ ACGFO ACGFS ACGOD ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY7 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSV SSZ T5K TAE TAF TN5 U5U UNMZH VH1 WH7 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c356t-2ed1e538c5c19998a28a4c2e5e1bc39d2fd8386b0272c86f21dcbc0314fbd7953 |
IEDL.DBID | .~1 |
ISSN | 0166-3615 |
IngestDate | Tue Jul 01 00:52:02 EDT 2025 Thu Apr 24 23:05:02 EDT 2025 Fri Feb 23 02:34:42 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multi-modal machine learning Heterogeneous data management Adaptive machine learning Heterogeneous data integration Machine learning (Physics-) informed machine learning |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-2ed1e538c5c19998a28a4c2e5e1bc39d2fd8386b0272c86f21dcbc0314fbd7953 |
ORCID | 0000-0001-8459-2450 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0166361523000805 |
ParticipantIDs | crossref_primary_10_1016_j_compind_2023_103930 crossref_citationtrail_10_1016_j_compind_2023_103930 elsevier_sciencedirect_doi_10_1016_j_compind_2023_103930 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2023 2023-08-00 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
PublicationDecade | 2020 |
PublicationTitle | Computers in industry |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lin, Li, Alam, Ma (bib38) 2020; 50 Dai (bib9) 2020; 17 I. Goodfellow, Y. Bengio, A. Courville, and Safari, an O’Reilly Media Company, Deep Learning ‐ Grundlagen, aktuelle Verfahren und Algorithmen, neue Forschungsansätze: mitp Verlag, 2018. (Online). Zheng, Xia, Li, Li, Liu (bib74) 2021; 61 Li, Li (bib36) 2020 Liu, Lv, Zhao, Liu, Wang (bib41) 2020; 53 Liu, Gao, Guo, Qin, Cai, You (bib40) 2019; 69 Zhang, Yang, Chen, Li (bib73) 2018; 42 Kamm, Jazdi, Weyrich (bib26) 2021; 104 Wang (bib63) 2017; 3 Yan, Wang, Ali (bib70) 2021 Müller (bib46) 2022 Xiao, Watson (bib67) 2019; 39 Kebisek, Tanuska, Spendla, Kotianova, Strelec (bib29) 2020; 53 Romeo, Paolanti, Bocchini, Loncarski, Frontoni (bib53) 2018 Karpatne (bib28) 2017; 29 M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations, arXiv preprint arXiv:1711.10561 (Titel anhand dieser ArXiv-ID in Citavi-Projekt übernehmen), 2017. Yan, Xu, Wang, Di, Jiang (bib71) 2020; 59 Henkel, Wolkenhauer, Waltemath (bib17) 2015; 2015 Munappy, Bosch, Olsson, Arpteg, Brinne (bib47) 2019 Hayashi, Zheng, El Hafi, Hagiwara, Taniguchi (bib16) 2021 Sahlab, Kamm, Müller, Jazdi, Weyrich (bib55) 2021 Hildebrandt (bib18) 2020; 17 Jirkovsky, Obitko, Mavrik (bib24) 2016; 13 Ma, Ren, Zhao, Tulyakov, Wu, Peng (bib42) 2021 Maschler, Kamm, Jazdi, Weyrich (bib43) 2020; 93 Chen, Liu, Hu, Ding (bib6) 2021 Dai, Wang, Xu, Wan, Imran (bib10) 2020; 14 Damoulas, Girolami (bib11) 2009; 42 L’heureux, Grolinger, Elyamany, Capretz (bib31) 2017; 5 Li, Fan, Shi, Du (bib35) 2021; 25 B. Kitchenham , S. Charters, Guidelines for performing systematic literature reviews in software engineering, Technical Report, ver. 2.3 Ebse Technical Report, ebse, 2007. Roheda, Krim, Riggan (bib52) 2020; 21 Yan, Hu, Guo (bib69) 2019; 35 Desai (bib12) 2018 Chen, Liu, Valera-Medina, Robinson (bib7) 2021; 104 Michau, Hu, Palmé, Fink (bib45) 2020; 234 Tod, Ompusunggu, Struyf, Pipeleers, de Grave, Hostens (bib58) 2021; 104 Jayaratne, de Silva, Alahakoon (bib22) 2019; 16 Zhou, Gao, Wang, Chai (bib78) 2021; 69 Huiskes, Lew (bib21) 2008 Chunfeng, Zheng, Jun, Wei (bib8) 2018 Tang, Zhang, Yu, Zhang, Yu (bib57) 2020; 8 Raissi, Perdikaris, Karniadakis (bib51) 2019; 378 Wu, Zhou, Zhu, Hu, Shi (bib66) 2019 Hsu, Kuo, Huang (bib19) 2019 Page (bib49) 2021; 10 Liang, Zadeh, Morency (bib37) 2022; 2209 Maschler, Weyrich (bib44) 2021; 15 Case School of Engineering, Case Western Reserve University Bearing Data Center (Online). https://engineering.case.edu/bearingdatacenter. (Accessed 22 November 2022) 2022. Verma, Dixit, Sevakula, Salour (bib59) 2018 Xu, Li, Song, Jia, Liu (bib68) 2021; 70 Zhu (bib79) 2022 Faul, Jazdi, Weyrich (bib14) 2016 Zhou, Yang, He, Chen, Wen (bib77) 2021; 235 S.M. Nabritt, T. Damarla, G. Chatters, Personnel and vehicle data collection at aberdeen proving ground (apg) and its distribution for research, Army Research Lab Adelphi MD Sensors and Electron Devices Directorate, 2015. Kamm, Bickelhaupt, Sharma, Jazdi, Kallfass, Weyrich (bib25) 2022 Lee, Qu, Kang, Jang (bib33) 2021 Beyca, Rao, Kong, Bukkapatnam, Komanduri (bib4) 2015; 13 Rowley (bib54) 2007; 33 Wei, Cui, Hu, Hao, Wang, Lou (bib64) 2021; 18 Yoon, Kim, Kim (bib72) 2017; 15 Baghbanpourasl, A., Lughofer, E., Meyer-Heye, P., Zörrer, H., Eitzinger, C. , Virtual Quality control using bidirectional LSTM networks and gradient boosting. In: Proceedings of the Seventeenth International Conference on Industrial Informatics (INDIN), IEEE, 2019, 1638–1643. Zheng, Song, Wang, Teng, Xu, Ma (bib75) 2020; 158 Jirkovsky, Obitko (bib23) 2014; 1214 Hu, Li, Xia, Luo (bib20) 2018; 100 Verma, Sevakula, Dixit, Salour (bib60) 2015; 65 Baltrušaitis, Ahuja, Morency (bib3) 2018; 41 Strese, Schuwerk, Iepure, Steinbach (bib56) 2016; 10 Bai, X. , Chen, C. , Liu, W., Zhang, H., Data-driven prediction of sinter composition based on multi-source information and LSTM network. In: Proceedings of the Fortieth Chinese Control Conference (CCC), 2021, 3311–3316. Wilcke, Bloem, de Boer (bib65) 2017; 1 Lindemann, Jazdi, Weyrich (bib39) 2020 van Eck, Waltman (bib13) 2010; 84 S. Kamm, N. Sahlab, N. Jazdi, M. Weyrich, 2022b. A concept for dynamic and robust machine learning with contex modeling for heterogeneous manufacturing data, Procedia CIRP. Lee, An, Lee (bib34) 2019; 102 Zheng, Liu, Wang, Sun (bib76) 2019; 17 Wang, Fu, Zhang, Gao, Zhao (bib61) 2019; 24 Langenberg, Lüddecke, Wörgötter (bib32) 2019; 4 Wang, Guo, Wang, Yuan, Yang (bib62) 2021; 104 Jayaratne (10.1016/j.compind.2023.103930_bib22) 2019; 16 Li (10.1016/j.compind.2023.103930_bib35) 2021; 25 Maschler (10.1016/j.compind.2023.103930_bib44) 2021; 15 Jirkovsky (10.1016/j.compind.2023.103930_bib24) 2016; 13 van Eck (10.1016/j.compind.2023.103930_bib13) 2010; 84 Kebisek (10.1016/j.compind.2023.103930_bib29) 2020; 53 Wang (10.1016/j.compind.2023.103930_bib63) 2017; 3 Xiao (10.1016/j.compind.2023.103930_bib67) 2019; 39 Ma (10.1016/j.compind.2023.103930_bib42) 2021 10.1016/j.compind.2023.103930_bib48 Verma (10.1016/j.compind.2023.103930_bib60) 2015; 65 Wu (10.1016/j.compind.2023.103930_bib66) 2019 Zheng (10.1016/j.compind.2023.103930_bib74) 2021; 61 Lee (10.1016/j.compind.2023.103930_bib34) 2019; 102 Liu (10.1016/j.compind.2023.103930_bib41) 2020; 53 Karpatne (10.1016/j.compind.2023.103930_bib28) 2017; 29 Zhou (10.1016/j.compind.2023.103930_bib77) 2021; 235 Tod (10.1016/j.compind.2023.103930_bib58) 2021; 104 Hildebrandt (10.1016/j.compind.2023.103930_bib18) 2020; 17 Page (10.1016/j.compind.2023.103930_bib49) 2021; 10 Michau (10.1016/j.compind.2023.103930_bib45) 2020; 234 Liu (10.1016/j.compind.2023.103930_bib40) 2019; 69 Chunfeng (10.1016/j.compind.2023.103930_bib8) 2018 10.1016/j.compind.2023.103930_bib15 Wilcke (10.1016/j.compind.2023.103930_bib65) 2017; 1 10.1016/j.compind.2023.103930_bib50 Damoulas (10.1016/j.compind.2023.103930_bib11) 2009; 42 Roheda (10.1016/j.compind.2023.103930_bib52) 2020; 21 Tang (10.1016/j.compind.2023.103930_bib57) 2020; 8 Hayashi (10.1016/j.compind.2023.103930_bib16) 2021 Sahlab (10.1016/j.compind.2023.103930_bib55) 2021 Beyca (10.1016/j.compind.2023.103930_bib4) 2015; 13 Lee (10.1016/j.compind.2023.103930_bib33) 2021 Müller (10.1016/j.compind.2023.103930_bib46) 2022 Xu (10.1016/j.compind.2023.103930_bib68) 2021; 70 Wei (10.1016/j.compind.2023.103930_bib64) 2021; 18 Zheng (10.1016/j.compind.2023.103930_bib76) 2019; 17 Strese (10.1016/j.compind.2023.103930_bib56) 2016; 10 Yan (10.1016/j.compind.2023.103930_bib69) 2019; 35 Verma (10.1016/j.compind.2023.103930_bib59) 2018 Huiskes (10.1016/j.compind.2023.103930_bib21) 2008 Raissi (10.1016/j.compind.2023.103930_bib51) 2019; 378 Rowley (10.1016/j.compind.2023.103930_bib54) 2007; 33 Liang (10.1016/j.compind.2023.103930_bib37) 2022; 2209 Langenberg (10.1016/j.compind.2023.103930_bib32) 2019; 4 L’heureux (10.1016/j.compind.2023.103930_bib31) 2017; 5 Wang (10.1016/j.compind.2023.103930_bib61) 2019; 24 Hsu (10.1016/j.compind.2023.103930_bib19) 2019 Chen (10.1016/j.compind.2023.103930_bib6) 2021 Dai (10.1016/j.compind.2023.103930_bib10) 2020; 14 Yan (10.1016/j.compind.2023.103930_bib70) 2021 10.1016/j.compind.2023.103930_bib27 Jirkovsky (10.1016/j.compind.2023.103930_bib23) 2014; 1214 Munappy (10.1016/j.compind.2023.103930_bib47) 2019 Zhang (10.1016/j.compind.2023.103930_bib73) 2018; 42 Maschler (10.1016/j.compind.2023.103930_bib43) 2020; 93 Baltrušaitis (10.1016/j.compind.2023.103930_bib3) 2018; 41 Chen (10.1016/j.compind.2023.103930_bib7) 2021; 104 Kamm (10.1016/j.compind.2023.103930_bib26) 2021; 104 Lin (10.1016/j.compind.2023.103930_bib38) 2020; 50 10.1016/j.compind.2023.103930_bib2 10.1016/j.compind.2023.103930_bib1 10.1016/j.compind.2023.103930_bib5 Wang (10.1016/j.compind.2023.103930_bib62) 2021; 104 Faul (10.1016/j.compind.2023.103930_bib14) 2016 Hu (10.1016/j.compind.2023.103930_bib20) 2018; 100 Yoon (10.1016/j.compind.2023.103930_bib72) 2017; 15 Zhu (10.1016/j.compind.2023.103930_bib79) 2022 Dai (10.1016/j.compind.2023.103930_bib9) 2020; 17 Kamm (10.1016/j.compind.2023.103930_bib25) 2022 Li (10.1016/j.compind.2023.103930_bib36) 2020 Lindemann (10.1016/j.compind.2023.103930_bib39) 2020 10.1016/j.compind.2023.103930_bib30 Henkel (10.1016/j.compind.2023.103930_bib17) 2015; 2015 Zhou (10.1016/j.compind.2023.103930_bib78) 2021; 69 Zheng (10.1016/j.compind.2023.103930_bib75) 2020; 158 Yan (10.1016/j.compind.2023.103930_bib71) 2020; 59 Romeo (10.1016/j.compind.2023.103930_bib53) 2018 Desai (10.1016/j.compind.2023.103930_bib12) 2018 |
References_xml | – start-page: 1 year: 2021 end-page: 7 ident: bib33 article-title: Multimodal machine learning for display panel defect layer identification publication-title: In: Proceedings of the Thirty Second Annual SEMI Advanced Semiconductor Manufacturing Conference – start-page: 96 year: 2021 end-page: 101 ident: bib70 article-title: Deep Transfer Learning Based Multi-source Heterogeneous data Fusion with Application to Cross-scenario Tool Wear monitoring publication-title: In: Proceedings of the Seventh International Conference on Mechanical Engineering and Automation Science – volume: 29 start-page: 2318 year: 2017 end-page: 2331 ident: bib28 article-title: Theory-guided data science: a new paradigm for scientific discovery from data publication-title: IEEE Trans. Knowl. Data Eng. – volume: 1214 year: 2014 ident: bib23 article-title: Semantic heterogeneity reduction for big data in industrial automation publication-title: ITAT – reference: S. Kamm, N. Sahlab, N. Jazdi, M. Weyrich, 2022b. A concept for dynamic and robust machine learning with contex modeling for heterogeneous manufacturing data, Procedia CIRP. – volume: 33 start-page: 163 year: 2007 end-page: 180 ident: bib54 article-title: The wisdom hierarchy: representations of the DIKW hierarchy publication-title: J. Inf. Sci. – volume: 50 start-page: 860 year: 2020 end-page: 877 ident: bib38 article-title: Data-driven missing data imputation in cluster monitoring system based on deep neural network publication-title: Appl. Intell. – reference: Case School of Engineering, Case Western Reserve University Bearing Data Center (Online). https://engineering.case.edu/bearingdatacenter. (Accessed 22 November 2022) 2022. – start-page: 1003 year: 2020 end-page: 1010 ident: bib39 article-title: Anomaly detection and prediction in discrete manufacturing based on cooperative LSTM networks publication-title: In: Proceedings of the IEEE Sixteenth International Conference on Automation Science and Engineering – start-page: 1 year: 2022 end-page: 8 ident: bib25 article-title: Simulation-to-reality based transfer learning for the failure analysis of SiC power transistors publication-title: In: Proceedings of the IEEE Twenty Seventh International Conference on Emerging Technologies and Factory Automation – volume: 35 start-page: 1184 year: 2019 end-page: 1189 ident: bib69 article-title: Rotor unbalance fault diagnosis using DBN based on multi-source heterogeneous information fusion publication-title: Procedia Manuf. – start-page: 19 year: 2021 end-page: 24 ident: bib55 article-title: Knowledge graphs as enhancers of intelligent digital twins publication-title: In: Proceedings of the Fourth IEEE International Conference on Industrial Cyber-Physical Systems – reference: B. Kitchenham , S. Charters, Guidelines for performing systematic literature reviews in software engineering, Technical Report, ver. 2.3 Ebse Technical Report, ebse, 2007. – volume: 61 start-page: 16 year: 2021 end-page: 26 ident: bib74 article-title: Towards Self-X cognitive manufacturing network: an industrial knowledge graph-based multi-agent reinforcement learning approach publication-title: J. Manuf. Syst. – volume: 24 start-page: 2139 year: 2019 end-page: 2150 ident: bib61 article-title: Multilevel information fusion for induction motor fault diagnosis publication-title: IEEE/ASME Trans. Mechatron. – volume: 17 start-page: 697 year: 2019 end-page: 707 ident: bib76 article-title: Cross-modal material perception for novel objects: a deep adversarial learning method publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 84 start-page: 523 year: 2010 end-page: 538 ident: bib13 article-title: Software survey: VOSviewer, a computer program for bibliometric mapping publication-title: Scientometrics – volume: 18 start-page: 4406 year: 2021 end-page: 4416 ident: bib64 article-title: Multimodal unknown surface material classification and its application to physical reasoning publication-title: IEEE Trans. Ind. Inform. – volume: 15 start-page: 19 year: 2017 end-page: 27 ident: bib72 article-title: Use of graph database for the integration of heterogeneous biological data publication-title: Genom. Inform. – volume: 59 start-page: 4589 year: 2020 end-page: 4601 ident: bib71 article-title: Soft sensor modeling method based on semisupervised deep learning and its application to wastewater treatment plant publication-title: Ind. Eng. Chem. Res. – volume: 17 start-page: 2074 year: 2020 end-page: 2084 ident: bib9 article-title: Prior knowledge-based optimization method for the reconstruction model of multicamera optical tracking system publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 5 start-page: 7776 year: 2017 end-page: 7797 ident: bib31 article-title: Machine learning with big data: challenges and approaches publication-title: IEEE Access – volume: 25 start-page: 346 year: 2021 end-page: 355 ident: bib35 article-title: Class imbalanced fault diagnosis via combining K-means clustering algorithm with generative adversarial networks publication-title: J. Adv. Comput. Intell. Intell. Inform. – reference: I. Goodfellow, Y. Bengio, A. Courville, and Safari, an O’Reilly Media Company, Deep Learning ‐ Grundlagen, aktuelle Verfahren und Algorithmen, neue Forschungsansätze: mitp Verlag, 2018. (Online). – volume: 17 start-page: 1266 year: 2020 end-page: 1282 ident: bib18 article-title: Ontology building for cyber‐physical systems: application in the manufacturing domain publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 15 start-page: 65 year: 2021 end-page: 75 ident: bib44 article-title: Deep transfer learning for industrial automation: a review and discussion of new techniques for data-driven machine learning publication-title: IEEE Ind. Electron. Mag. – volume: 42 start-page: 146 year: 2018 end-page: 157 ident: bib73 article-title: A survey on deep learning for big data publication-title: Inf. Fusion – volume: 104 start-page: 1884 year: 2021 end-page: 1889 ident: bib7 article-title: Multi-sourced modelling for strip breakage using knowledge graph embeddings publication-title: Procedia CIRP – volume: 104 start-page: 975 year: 2021 end-page: 980 ident: bib26 article-title: Knowledge discovery in heterogeneous and unstructured data of industry 4.0 systems: challenges and approaches publication-title: Procedia CIRP – start-page: 737 year: 2018 end-page: 740 ident: bib12 article-title: A survey on big data applications and challenges publication-title: In: Proceedings of the Second International Conference on Inventive Communication and Computational Technologies – year: 2021 ident: bib6 article-title: Interaction-aware graph neural networks for fault diagnosis of complex industrial processes publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 100 start-page: 287 year: 2018 end-page: 296 ident: bib20 article-title: A deep Boltzmann machine and multi-grained scanning forest ensemble collaborative method and its application to industrial fault diagnosis publication-title: Comput. Ind. – volume: 2015 year: 2015 ident: bib17 article-title: Combining computational models, semantic annotations and simulation experiments in a graph database publication-title: Database – volume: 69 start-page: 3017 year: 2021 end-page: 3026 ident: bib78 article-title: Identification of abnormal conditions for fused magnesium melting process based on deep learning and multisource information fusion publication-title: IEEE Trans. Ind. Electron. – volume: 65 start-page: 291 year: 2015 end-page: 309 ident: bib60 article-title: Intelligent condition based monitoring using acoustic signals for air compressors publication-title: IEEE Trans. Reliab. – volume: 3 start-page: 8 year: 2017 end-page: 15 ident: bib63 article-title: Heterogeneous data and big data analytics publication-title: Autom. Control Inf. Sci. – start-page: 543 year: 2019 end-page: 553 ident: bib66 article-title: Multi-task Sparse Regression Metric Learning for Heterogeneous Classificationn publication-title: Int. Conf. Artif. Neural Netw. – start-page: 1 year: 2018 end-page: 6 ident: bib53 article-title: An innovative design support system for industry 4.0 based on machine learning approaches publication-title: In: Proceedings of the Fifth International Symposium on Environment-Friendly Energies and Applications – volume: 104 start-page: 1559 year: 2021 end-page: 1564 ident: bib58 article-title: Physics-informed neural networks (PINNs) for improving a thermal model in stereolithography applications publication-title: Procedia CIRP – volume: 70 start-page: 1 year: 2021 end-page: 10 ident: bib68 article-title: IFDS: an intelligent fault diagnosis system with multisource unsupervised domain adaptation for different working conditions publication-title: IEEE Trans. Instrum. Meas. – start-page: 1 year: 2022 end-page: 22 ident: bib46 article-title: Architecture and knowledge modelling for self-organized reconfiguration management of cyber-physical production systems publication-title: Int. J. Comput. Integr. Manuf. – volume: 158 year: 2020 ident: bib75 article-title: Data synthesis using dual discriminator conditional generative adversarial networks for imbalanced fault diagnosis of rolling bearings publication-title: Measurement – volume: 1 start-page: 39 year: 2017 end-page: 57 ident: bib65 article-title: The knowledge graph as the default data model for learning on heterogeneous knowledge publication-title: Data Sci. – volume: 21 start-page: 1885 year: 2020 end-page: 1896 ident: bib52 article-title: Robust multi-modal sensor fusion: an adversarial approach publication-title: IEEE Sens. J. – volume: 13 start-page: 660 year: 2016 end-page: 667 ident: bib24 article-title: Understanding data heterogeneity in the context of cyber-physical systems integration publication-title: IEEE Trans. Ind. Inform. – volume: 53 start-page: 11938 year: 2020 end-page: 11943 ident: bib41 article-title: Scheduling knowledge retrieval based on heterogeneous feature learning for byproduct gas system in steel industry publication-title: IFAC-Pap. – volume: 42 start-page: 2671 year: 2009 end-page: 2683 ident: bib11 article-title: Combining feature spaces for classification publication-title: Pattern Recognit. – start-page: 39 year: 2008 end-page: 43 ident: bib21 article-title: The mir flickr retrieval evaluation publication-title: In: Proceedings of the First ACM International Conference on Multimedia Information Retrieval – volume: 235 start-page: 1858 year: 2021 end-page: 1872 ident: bib77 article-title: Fault diagnosis based on deep learning by extracting inherent common feature of multi-source heterogeneous data publication-title: Proc. Inst. Mech. Eng., Part I J. Syst. Control Eng. – volume: 2209 start-page: 03430 year: 2022 ident: bib37 article-title: Foundations and recent trends in multimodal machine learning: principles, challenges, and open questions publication-title: arXiv Prepr. arXiv – volume: 234 start-page: 104 year: 2020 end-page: 115 ident: bib45 article-title: Feature learning for fault detection in high-dimensional condition monitoring signals publication-title: Proc. Inst. Mech. Eng., Part O J. Risk Reliab. – volume: 93 start-page: 437 year: 2020 end-page: 442 ident: bib43 article-title: Distributed cooperative deep transfer learning for industrial image recognition publication-title: Procedia CIRP – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: bib51 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – start-page: 325 year: 2021 end-page: 329 ident: bib16 article-title: Bidirectional generation of object images and positions using deep generative models for service robotics applications publication-title: In: Proceedings of the IEEE/SICE International Symposium on System Integration – reference: Bai, X. , Chen, C. , Liu, W., Zhang, H., Data-driven prediction of sinter composition based on multi-source information and LSTM network. In: Proceedings of the Fortieth Chinese Control Conference (CCC), 2021, 3311–3316. – start-page: 1 year: 2016 end-page: 4 ident: bib14 article-title: Approach to interconnect existing industrial automation systems with the Industrial Internet publication-title: In: Proceedings of the IEEE Twenty First International Conference on Emerging Technologies and Factory Automation – start-page: 54 year: 2019 end-page: 57 ident: bib19 article-title: A novel feature-spanning machine learning technology for defect inspection publication-title: In: Proceedings of the Fourteenth International Microsystems, Packaging, Assembly and Circuits Technology Conference – start-page: 1 year: 2020 end-page: 8 ident: bib36 article-title: Multimodal fusion with co-attention mechanism publication-title: In: Proceedings of the IEEE Twenty Third International Conference on Information Fusion – reference: M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations, arXiv preprint arXiv:1711.10561 (Titel anhand dieser ArXiv-ID in Citavi-Projekt übernehmen), 2017. – volume: 8 start-page: 148475 year: 2020 end-page: 148488 ident: bib57 article-title: Multisource latent feature selective ensemble modeling approach for small-sample high-dimensional process data in applications publication-title: IEEE Access – volume: 104 year: 2021 ident: bib62 article-title: Common and specific deep feature representation for multimode process monitoring using a novel variable-wise weighted parallel network publication-title: Eng. Appl. Artif. Intell. – volume: 4 start-page: 973 year: 2019 end-page: 980 ident: bib32 article-title: Deep metadata fusion for traffic light to lane assignment publication-title: IEEE Robot. Autom. Lett. – volume: 41 start-page: 423 year: 2018 end-page: 443 ident: bib3 article-title: Multimodal machine learning: a survey and taxonomy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 4277 year: 2018 end-page: 4281 ident: bib8 article-title: Heterogeneous transfer learning based on stack sparse auto-encoders for fault diagnosis publication-title: In: Proceedings of the Chinese Automation Congress (CAC) – volume: 14 start-page: 1279 year: 2020 end-page: 1303 ident: bib10 article-title: Big data analytics for manufacturing internet of things: opportunities, challenges and enabling technologies publication-title: Enterp. Inf. Syst. – volume: 16 start-page: 1653 year: 2019 end-page: 1663 ident: bib22 article-title: Unsupervised machine learning based scalable fusion for active perception publication-title: IEEE Trans. Autom. Sci. Eng. – start-page: 361 year: 2022 end-page: 381 ident: bib79 article-title: Big data oriented smart tool condition monitoring system publication-title: Smart Machining Systems – volume: 10 start-page: 226 year: 2016 end-page: 239 ident: bib56 article-title: Multimodal feature-based surface material classification publication-title: IEEE Trans. Haptics – volume: 13 start-page: 1033 year: 2015 end-page: 1044 ident: bib4 article-title: Heterogeneous sensor data fusion approach for real-time monitoring in ultraprecision machining (UPM) process using non-parametric Bayesian clustering and evidence theory publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 53 start-page: 11168 year: 2020 end-page: 11174 ident: bib29 article-title: Artificial intelligence platform proposal for paint structure quality prediction within the industry 4.0 concept publication-title: IFAC-Pap. – volume: 10 start-page: 1 year: 2021 end-page: 11 ident: bib49 article-title: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews publication-title: Syst. Rev. – reference: S.M. Nabritt, T. Damarla, G. Chatters, Personnel and vehicle data collection at aberdeen proving ground (apg) and its distribution for research, Army Research Lab Adelphi MD Sensors and Electron Devices Directorate, 2015. – volume: 69 start-page: 4681 year: 2019 end-page: 4691 ident: bib40 article-title: A data-flow oriented deep ensemble learning method for real-time surface defect inspection publication-title: IEEE Trans. Instrum. Meas. – start-page: 140 year: 2019 end-page: 147 ident: bib47 article-title: Data management challenges for deep learning publication-title: In: Proceedings of theForty Fifth Euromicro Conference on Software Engineering and Advanced Applications – volume: 102 start-page: 289 year: 2019 end-page: 298 ident: bib34 article-title: Missing-value imputation of continuous missing based on deep imputation network using correlations among multiple iot data streams in a smart space publication-title: IEICE Trans. Inf. Syst. – start-page: 353 year: 2018 end-page: 358 ident: bib59 article-title: Computational framework for machine fault diagnosis with autoencoder variants publication-title: In: Proceedings of the International Conference on Sensing, Diagnostics, Prognostics, and Control – start-page: 2302 year: 2021 end-page: 2310 ident: bib42 article-title: Smil: Multimodal learning with severely missing modality publication-title: In: Proceedings of the AAAI Conference on Artificial Intelligenc – volume: 39 start-page: 93 year: 2019 end-page: 112 ident: bib67 article-title: Guidance on conducting a systematic literature review publication-title: J. Plan. Educ. Res. – reference: Baghbanpourasl, A., Lughofer, E., Meyer-Heye, P., Zörrer, H., Eitzinger, C. , Virtual Quality control using bidirectional LSTM networks and gradient boosting. In: Proceedings of the Seventeenth International Conference on Industrial Informatics (INDIN), IEEE, 2019, 1638–1643. – volume: 17 start-page: 2074 issue: 4 year: 2020 ident: 10.1016/j.compind.2023.103930_bib9 article-title: Prior knowledge-based optimization method for the reconstruction model of multicamera optical tracking system publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2020.2989194 – volume: 42 start-page: 146 year: 2018 ident: 10.1016/j.compind.2023.103930_bib73 article-title: A survey on deep learning for big data publication-title: Inf. Fusion doi: 10.1016/j.inffus.2017.10.006 – volume: 17 start-page: 1266 issue: 3 year: 2020 ident: 10.1016/j.compind.2023.103930_bib18 article-title: Ontology building for cyber‐physical systems: application in the manufacturing domain publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2020.2991777 – ident: 10.1016/j.compind.2023.103930_bib1 doi: 10.1109/INDIN41052.2019.8972270 – volume: 69 start-page: 4681 issue: 7 year: 2019 ident: 10.1016/j.compind.2023.103930_bib40 article-title: A data-flow oriented deep ensemble learning method for real-time surface defect inspection publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2019.2957849 – volume: 234 start-page: 104 issue: 1 year: 2020 ident: 10.1016/j.compind.2023.103930_bib45 article-title: Feature learning for fault detection in high-dimensional condition monitoring signals publication-title: Proc. Inst. Mech. Eng., Part O J. Risk Reliab. – volume: 104 start-page: 1559 year: 2021 ident: 10.1016/j.compind.2023.103930_bib58 article-title: Physics-informed neural networks (PINNs) for improving a thermal model in stereolithography applications publication-title: Procedia CIRP doi: 10.1016/j.procir.2021.11.263 – start-page: 54 year: 2019 ident: 10.1016/j.compind.2023.103930_bib19 article-title: A novel feature-spanning machine learning technology for defect inspection – volume: 33 start-page: 163 issue: 2 year: 2007 ident: 10.1016/j.compind.2023.103930_bib54 article-title: The wisdom hierarchy: representations of the DIKW hierarchy publication-title: J. Inf. Sci. doi: 10.1177/0165551506070706 – volume: 39 start-page: 93 issue: 1 year: 2019 ident: 10.1016/j.compind.2023.103930_bib67 article-title: Guidance on conducting a systematic literature review publication-title: J. Plan. Educ. Res. doi: 10.1177/0739456X17723971 – start-page: 543 year: 2019 ident: 10.1016/j.compind.2023.103930_bib66 article-title: Multi-task Sparse Regression Metric Learning for Heterogeneous Classificationn publication-title: Int. Conf. Artif. Neural Netw. – volume: 1214 year: 2014 ident: 10.1016/j.compind.2023.103930_bib23 article-title: Semantic heterogeneity reduction for big data in industrial automation publication-title: ITAT – volume: 17 start-page: 697 issue: 2 year: 2019 ident: 10.1016/j.compind.2023.103930_bib76 article-title: Cross-modal material perception for novel objects: a deep adversarial learning method publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2019.2941230 – volume: 35 start-page: 1184 year: 2019 ident: 10.1016/j.compind.2023.103930_bib69 article-title: Rotor unbalance fault diagnosis using DBN based on multi-source heterogeneous information fusion publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2019.06.075 – volume: 4 start-page: 973 issue: 2 year: 2019 ident: 10.1016/j.compind.2023.103930_bib32 article-title: Deep metadata fusion for traffic light to lane assignment publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2019.2893446 – volume: 59 start-page: 4589 issue: 10 year: 2020 ident: 10.1016/j.compind.2023.103930_bib71 article-title: Soft sensor modeling method based on semisupervised deep learning and its application to wastewater treatment plant publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b05087 – ident: 10.1016/j.compind.2023.103930_bib2 doi: 10.23919/CCC52363.2021.9549500 – start-page: 737 year: 2018 ident: 10.1016/j.compind.2023.103930_bib12 article-title: A survey on big data applications and challenges – volume: 21 start-page: 1885 issue: 2 year: 2020 ident: 10.1016/j.compind.2023.103930_bib52 article-title: Robust multi-modal sensor fusion: an adversarial approach publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3018698 – volume: 65 start-page: 291 issue: 1 year: 2015 ident: 10.1016/j.compind.2023.103930_bib60 article-title: Intelligent condition based monitoring using acoustic signals for air compressors publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2015.2459684 – volume: 25 start-page: 346 issue: 3 year: 2021 ident: 10.1016/j.compind.2023.103930_bib35 article-title: Class imbalanced fault diagnosis via combining K-means clustering algorithm with generative adversarial networks publication-title: J. Adv. Comput. Intell. Intell. Inform. doi: 10.20965/jaciii.2021.p0346 – start-page: 353 year: 2018 ident: 10.1016/j.compind.2023.103930_bib59 article-title: Computational framework for machine fault diagnosis with autoencoder variants – volume: 18 start-page: 4406 issue: 7 year: 2021 ident: 10.1016/j.compind.2023.103930_bib64 article-title: Multimodal unknown surface material classification and its application to physical reasoning publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3126601 – year: 2021 ident: 10.1016/j.compind.2023.103930_bib6 article-title: Interaction-aware graph neural networks for fault diagnosis of complex industrial processes publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 42 start-page: 2671 issue: 11 year: 2009 ident: 10.1016/j.compind.2023.103930_bib11 article-title: Combining feature spaces for classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.04.002 – volume: 16 start-page: 1653 issue: 4 year: 2019 ident: 10.1016/j.compind.2023.103930_bib22 article-title: Unsupervised machine learning based scalable fusion for active perception publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2019.2910508 – volume: 2209 start-page: 03430 year: 2022 ident: 10.1016/j.compind.2023.103930_bib37 article-title: Foundations and recent trends in multimodal machine learning: principles, challenges, and open questions publication-title: arXiv Prepr. arXiv – volume: 3 start-page: 8 issue: 1 year: 2017 ident: 10.1016/j.compind.2023.103930_bib63 article-title: Heterogeneous data and big data analytics publication-title: Autom. Control Inf. Sci. – volume: 2015 year: 2015 ident: 10.1016/j.compind.2023.103930_bib17 article-title: Combining computational models, semantic annotations and simulation experiments in a graph database publication-title: Database doi: 10.1093/database/bau130 – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.compind.2023.103930_bib51 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 104 year: 2021 ident: 10.1016/j.compind.2023.103930_bib62 article-title: Common and specific deep feature representation for multimode process monitoring using a novel variable-wise weighted parallel network publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104381 – start-page: 1 year: 2020 ident: 10.1016/j.compind.2023.103930_bib36 article-title: Multimodal fusion with co-attention mechanism – volume: 10 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.compind.2023.103930_bib49 article-title: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews publication-title: Syst. Rev. doi: 10.1186/s13643-021-01626-4 – volume: 104 start-page: 1884 year: 2021 ident: 10.1016/j.compind.2023.103930_bib7 article-title: Multi-sourced modelling for strip breakage using knowledge graph embeddings publication-title: Procedia CIRP doi: 10.1016/j.procir.2021.11.318 – ident: 10.1016/j.compind.2023.103930_bib30 – volume: 100 start-page: 287 year: 2018 ident: 10.1016/j.compind.2023.103930_bib20 article-title: A deep Boltzmann machine and multi-grained scanning forest ensemble collaborative method and its application to industrial fault diagnosis publication-title: Comput. Ind. doi: 10.1016/j.compind.2018.04.002 – volume: 13 start-page: 660 issue: 2 year: 2016 ident: 10.1016/j.compind.2023.103930_bib24 article-title: Understanding data heterogeneity in the context of cyber-physical systems integration publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2016.2596101 – volume: 93 start-page: 437 year: 2020 ident: 10.1016/j.compind.2023.103930_bib43 article-title: Distributed cooperative deep transfer learning for industrial image recognition publication-title: Procedia CIRP doi: 10.1016/j.procir.2020.03.056 – start-page: 2302 year: 2021 ident: 10.1016/j.compind.2023.103930_bib42 article-title: Smil: Multimodal learning with severely missing modality – ident: 10.1016/j.compind.2023.103930_bib27 doi: 10.1016/j.procir.2023.06.061 – start-page: 140 year: 2019 ident: 10.1016/j.compind.2023.103930_bib47 article-title: Data management challenges for deep learning – start-page: 361 year: 2022 ident: 10.1016/j.compind.2023.103930_bib79 article-title: Big data oriented smart tool condition monitoring system – start-page: 1 year: 2021 ident: 10.1016/j.compind.2023.103930_bib33 article-title: Multimodal machine learning for display panel defect layer identification – ident: 10.1016/j.compind.2023.103930_bib48 – volume: 15 start-page: 65 issue: 2 year: 2021 ident: 10.1016/j.compind.2023.103930_bib44 article-title: Deep transfer learning for industrial automation: a review and discussion of new techniques for data-driven machine learning publication-title: IEEE Ind. Electron. Mag. doi: 10.1109/MIE.2020.3034884 – volume: 15 start-page: 19 issue: 1 year: 2017 ident: 10.1016/j.compind.2023.103930_bib72 article-title: Use of graph database for the integration of heterogeneous biological data publication-title: Genom. Inform. doi: 10.5808/GI.2017.15.1.19 – volume: 69 start-page: 3017 issue: 3 year: 2021 ident: 10.1016/j.compind.2023.103930_bib78 article-title: Identification of abnormal conditions for fused magnesium melting process based on deep learning and multisource information fusion publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2021.3070512 – ident: 10.1016/j.compind.2023.103930_bib50 – start-page: 19 year: 2021 ident: 10.1016/j.compind.2023.103930_bib55 article-title: Knowledge graphs as enhancers of intelligent digital twins – start-page: 325 year: 2021 ident: 10.1016/j.compind.2023.103930_bib16 article-title: Bidirectional generation of object images and positions using deep generative models for service robotics applications – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.compind.2023.103930_bib68 article-title: IFDS: an intelligent fault diagnosis system with multisource unsupervised domain adaptation for different working conditions publication-title: IEEE Trans. Instrum. Meas. – volume: 53 start-page: 11168 issue: 2 year: 2020 ident: 10.1016/j.compind.2023.103930_bib29 article-title: Artificial intelligence platform proposal for paint structure quality prediction within the industry 4.0 concept publication-title: IFAC-Pap. – volume: 14 start-page: 1279 issue: 9–10 year: 2020 ident: 10.1016/j.compind.2023.103930_bib10 article-title: Big data analytics for manufacturing internet of things: opportunities, challenges and enabling technologies publication-title: Enterp. Inf. Syst. doi: 10.1080/17517575.2019.1633689 – start-page: 1003 year: 2020 ident: 10.1016/j.compind.2023.103930_bib39 article-title: Anomaly detection and prediction in discrete manufacturing based on cooperative LSTM networks – volume: 13 start-page: 1033 issue: 2 year: 2015 ident: 10.1016/j.compind.2023.103930_bib4 article-title: Heterogeneous sensor data fusion approach for real-time monitoring in ultraprecision machining (UPM) process using non-parametric Bayesian clustering and evidence theory publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2015.2447454 – volume: 1 start-page: 39 issue: 1–2 year: 2017 ident: 10.1016/j.compind.2023.103930_bib65 article-title: The knowledge graph as the default data model for learning on heterogeneous knowledge publication-title: Data Sci. doi: 10.3233/DS-170007 – volume: 158 year: 2020 ident: 10.1016/j.compind.2023.103930_bib75 article-title: Data synthesis using dual discriminator conditional generative adversarial networks for imbalanced fault diagnosis of rolling bearings publication-title: Measurement doi: 10.1016/j.measurement.2020.107741 – start-page: 1 year: 2022 ident: 10.1016/j.compind.2023.103930_bib25 article-title: Simulation-to-reality based transfer learning for the failure analysis of SiC power transistors – start-page: 1 year: 2016 ident: 10.1016/j.compind.2023.103930_bib14 article-title: Approach to interconnect existing industrial automation systems with the Industrial Internet – volume: 102 start-page: 289 issue: 2 year: 2019 ident: 10.1016/j.compind.2023.103930_bib34 article-title: Missing-value imputation of continuous missing based on deep imputation network using correlations among multiple iot data streams in a smart space publication-title: IEICE Trans. Inf. Syst. doi: 10.1587/transinf.2018EDP7257 – start-page: 1 year: 2022 ident: 10.1016/j.compind.2023.103930_bib46 article-title: Architecture and knowledge modelling for self-organized reconfiguration management of cyber-physical production systems publication-title: Int. J. Comput. Integr. Manuf. – volume: 104 start-page: 975 year: 2021 ident: 10.1016/j.compind.2023.103930_bib26 article-title: Knowledge discovery in heterogeneous and unstructured data of industry 4.0 systems: challenges and approaches publication-title: Procedia CIRP doi: 10.1016/j.procir.2021.11.164 – start-page: 4277 year: 2018 ident: 10.1016/j.compind.2023.103930_bib8 article-title: Heterogeneous transfer learning based on stack sparse auto-encoders for fault diagnosis publication-title: In: Proceedings of the Chinese Automation Congress (CAC) – volume: 8 start-page: 148475 year: 2020 ident: 10.1016/j.compind.2023.103930_bib57 article-title: Multisource latent feature selective ensemble modeling approach for small-sample high-dimensional process data in applications publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3015875 – volume: 61 start-page: 16 year: 2021 ident: 10.1016/j.compind.2023.103930_bib74 article-title: Towards Self-X cognitive manufacturing network: an industrial knowledge graph-based multi-agent reinforcement learning approach publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2021.08.002 – volume: 29 start-page: 2318 issue: 10 year: 2017 ident: 10.1016/j.compind.2023.103930_bib28 article-title: Theory-guided data science: a new paradigm for scientific discovery from data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2017.2720168 – volume: 53 start-page: 11938 issue: 2 year: 2020 ident: 10.1016/j.compind.2023.103930_bib41 article-title: Scheduling knowledge retrieval based on heterogeneous feature learning for byproduct gas system in steel industry publication-title: IFAC-Pap. – volume: 24 start-page: 2139 issue: 5 year: 2019 ident: 10.1016/j.compind.2023.103930_bib61 article-title: Multilevel information fusion for induction motor fault diagnosis publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2019.2928967 – volume: 84 start-page: 523 issue: 2 year: 2010 ident: 10.1016/j.compind.2023.103930_bib13 article-title: Software survey: VOSviewer, a computer program for bibliometric mapping publication-title: Scientometrics doi: 10.1007/s11192-009-0146-3 – start-page: 39 year: 2008 ident: 10.1016/j.compind.2023.103930_bib21 article-title: The mir flickr retrieval evaluation – volume: 5 start-page: 7776 year: 2017 ident: 10.1016/j.compind.2023.103930_bib31 article-title: Machine learning with big data: challenges and approaches publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2696365 – volume: 50 start-page: 860 year: 2020 ident: 10.1016/j.compind.2023.103930_bib38 article-title: Data-driven missing data imputation in cluster monitoring system based on deep neural network publication-title: Appl. Intell. doi: 10.1007/s10489-019-01560-y – volume: 10 start-page: 226 issue: 2 year: 2016 ident: 10.1016/j.compind.2023.103930_bib56 article-title: Multimodal feature-based surface material classification publication-title: IEEE Trans. Haptics doi: 10.1109/TOH.2016.2625787 – ident: 10.1016/j.compind.2023.103930_bib15 – volume: 235 start-page: 1858 issue: 10 year: 2021 ident: 10.1016/j.compind.2023.103930_bib77 article-title: Fault diagnosis based on deep learning by extracting inherent common feature of multi-source heterogeneous data publication-title: Proc. Inst. Mech. Eng., Part I J. Syst. Control Eng. – start-page: 1 year: 2018 ident: 10.1016/j.compind.2023.103930_bib53 article-title: An innovative design support system for industry 4.0 based on machine learning approaches – volume: 41 start-page: 423 issue: 2 year: 2018 ident: 10.1016/j.compind.2023.103930_bib3 article-title: Multimodal machine learning: a survey and taxonomy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2798607 – start-page: 96 year: 2021 ident: 10.1016/j.compind.2023.103930_bib70 article-title: Deep Transfer Learning Based Multi-source Heterogeneous data Fusion with Application to Cross-scenario Tool Wear monitoring – ident: 10.1016/j.compind.2023.103930_bib5 |
SSID | ssj0000776 |
Score | 2.514636 |
SecondaryResourceType | review_article |
Snippet | In many application domains data from different sources are increasingly available to thoroughly monitor and describe a system or device. Especially within the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103930 |
SubjectTerms | (Physics-) informed machine learning Adaptive machine learning Heterogeneous data integration Heterogeneous data management Machine learning Multi-modal machine learning |
Title | A survey on machine learning based analysis of heterogeneous data in industrial automation |
URI | https://dx.doi.org/10.1016/j.compind.2023.103930 |
Volume | 149 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14TZvHJtkcS7HUVxG1ULyEfWqLJqWmghd_uzvNxlYQBSEQEjIhTIb5ZuCbbxA61cqggiuEoykxDYrBVIf6mjlezFziua5WGqaRrwdRf0guRuGohrrVLAzQKm3uL3P6IlvbO23rzfZ0PG7fmWIlCgwgmyIa6h4YNCckhihvfSxpHiBXU-p7Rw48vZziaU_g3VPT-rZghziMnydAhv4Jn1Ywp7eFNm2xiDvl92yjmsp20MaKhOAueujg1_nsTb3jPMMvC2akwnYVxCMGjJKYWeERnGv8BPSX3ESNMi0_Bn4oHmfmqBZ4YDYv8nKccQ8Ne2f33b5j9yU4IgijwvGV9JRJYCIUIC5AmU8ZEb4KlcdFkEhfSxrQiJtO1Bc00r4nBRegX6-5jJMw2Ef1LM_UAcIA_BFTnlSMkSROeKgoD3jCaSJjV8YNRCovpcKKicNOi-e0Yo1NUuvcFJybls5toNaX2bRU0_jLgFa_IP0WFqnJ-L-bHv7f9Aitw1XJ8ztG9WI2Vyem9ih4cxFcTbTW6d5e3cD5_LI_-ASPTNv6 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH8Ylv9-A1Nu9sjkUsrdVetCBewj61RZNSU8F_706z0QqiIOSUZEKYHeabgW--ATjTyqCCK4SjaWgaFIOpDvU1c7yEuaHnulppnEa-GcTdYXh1H9034KKehUFapc39VU6fZ2t7p2W92ZqMRq1bU6zEgQFkU0Rj3RMtwTKqU0VNWG73-t3BV0JO5jvm8H0HDb4GeVpj_PzEdL_nuEYcJ9BT5EP_BFELsNPZgHVbL5J29Uub0FD5FqwtqAhuw0ObvM6mb-qdFDl5mZMjFbHbIB4JwpQkzGqPkEKTJ2TAFCZwlOn6CVJEySg3V73Dg7BZWVQTjTsw7FzeXXQduzLBEUEUl46vpKdMDhORQH0BynzKQuGrSHlcBKn0taQBjblpRn1BY-17UnCBEvaayySNgl1o5kWu9oAg9sdMeVIxFqZJyiNFecBTTlOZuDLZh7D2UiasnjiutXjOauLYOLPOzdC5WeXcfTj_NJtUghp_GdD6CLJvkZGZpP-76cH_TU9hpXt3c51d9wb9Q1jFJxXt7wia5XSmjk0pUvITG2ofOlfdFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+on+machine+learning+based+analysis+of+heterogeneous+data+in+industrial+automation&rft.jtitle=Computers+in+industry&rft.au=Kamm%2C+Simon&rft.au=Veekati%2C+Sushma+Sri&rft.au=M%C3%BCller%2C+Timo&rft.au=Jazdi%2C+Nasser&rft.date=2023-08-01&rft.issn=0166-3615&rft.volume=149&rft.spage=103930&rft_id=info:doi/10.1016%2Fj.compind.2023.103930&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compind_2023_103930 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-3615&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-3615&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-3615&client=summon |