Spectroscopic, Structural, Thermal, and Mechanical Properties of B2O3-CeO2-PbO2 Glasses

The melt-quenching method has been used to fabricate a PbO 2 –B 2 O 3 –CeO 2 glass system. The XRD diffractometer procedure was used to check the status of these samples. It can be concluded, from the X-ray diffraction curves, that the tested samples have high levels of glassiness. As the CeO 2 conc...

Full description

Saved in:
Bibliographic Details
Published inJournal of inorganic and organometallic polymers and materials Vol. 31; no. 4; pp. 1774 - 1786
Main Authors El-Rehim, A. F. Abd, Ali, Atif Mossad, Zahran, H. Y., Yahia, I. S., Shaaban, Kh. S.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1574-1443
1574-1451
DOI10.1007/s10904-020-01799-w

Cover

Abstract The melt-quenching method has been used to fabricate a PbO 2 –B 2 O 3 –CeO 2 glass system. The XRD diffractometer procedure was used to check the status of these samples. It can be concluded, from the X-ray diffraction curves, that the tested samples have high levels of glassiness. As the CeO 2 concentration increased most of the [BO 4 ] are converted into [BO 3 ] structural units with the formation of non-bridging oxygen ions in the borate matrix. It can be cross verified with the decrease of the N 4 fraction from 0.654 to 0.239. This decrease may be attributed to the formation of [CeO 7 ] structural units that needs more oxygen atoms. The ultrasonic velocities of the prepared glasses are decreased with the increase of CeO 2 content. Different types of elastic modules were evaluated (experimental and theoretical) for the prepared glasses are increases with the increase of CeO 2 content. Glass transition temperature (T g ), crystallization temperature (T c ), the peak of crystallization temperature (T p ) and thermal stability values decreases with the increase of CeO 2 content. The refractive index of these samples is increasing with the increase in the reflection and the density.
AbstractList The melt-quenching method has been used to fabricate a PbO 2 –B 2 O 3 –CeO 2 glass system. The XRD diffractometer procedure was used to check the status of these samples. It can be concluded, from the X-ray diffraction curves, that the tested samples have high levels of glassiness. As the CeO 2 concentration increased most of the [BO 4 ] are converted into [BO 3 ] structural units with the formation of non-bridging oxygen ions in the borate matrix. It can be cross verified with the decrease of the N 4 fraction from 0.654 to 0.239. This decrease may be attributed to the formation of [CeO 7 ] structural units that needs more oxygen atoms. The ultrasonic velocities of the prepared glasses are decreased with the increase of CeO 2 content. Different types of elastic modules were evaluated (experimental and theoretical) for the prepared glasses are increases with the increase of CeO 2 content. Glass transition temperature (T g ), crystallization temperature (T c ), the peak of crystallization temperature (T p ) and thermal stability values decreases with the increase of CeO 2 content. The refractive index of these samples is increasing with the increase in the reflection and the density.
The melt-quenching method has been used to fabricate a PbO2–B2O3–CeO2 glass system. The XRD diffractometer procedure was used to check the status of these samples. It can be concluded, from the X-ray diffraction curves, that the tested samples have high levels of glassiness. As the CeO2 concentration increased most of the [BO4] are converted into [BO3] structural units with the formation of non-bridging oxygen ions in the borate matrix. It can be cross verified with the decrease of the N4 fraction from 0.654 to 0.239. This decrease may be attributed to the formation of [CeO7] structural units that needs more oxygen atoms. The ultrasonic velocities of the prepared glasses are decreased with the increase of CeO2 content. Different types of elastic modules were evaluated (experimental and theoretical) for the prepared glasses are increases with the increase of CeO2 content. Glass transition temperature (Tg), crystallization temperature (Tc), the peak of crystallization temperature (Tp) and thermal stability values decreases with the increase of CeO2 content. The refractive index of these samples is increasing with the increase in the reflection and the density.
Author Zahran, H. Y.
Shaaban, Kh. S.
Yahia, I. S.
El-Rehim, A. F. Abd
Ali, Atif Mossad
Author_xml – sequence: 1
  givenname: A. F. Abd
  surname: El-Rehim
  fullname: El-Rehim, A. F. Abd
  organization: Physics Department, Faculty of Science, King Khalid University, Physics Department, Faculty of Education, Ain Shams University
– sequence: 2
  givenname: Atif Mossad
  surname: Ali
  fullname: Ali, Atif Mossad
  email: atifalimossad@gmail.com
  organization: Physics Department, Faculty of Science, King Khalid University, Physics Department, Faculty of Science, Assiut University
– sequence: 3
  givenname: H. Y.
  surname: Zahran
  fullname: Zahran, H. Y.
  organization: Physics Department, Faculty of Science, King Khalid University, Physics Department, Faculty of Education, Ain Shams University
– sequence: 4
  givenname: I. S.
  surname: Yahia
  fullname: Yahia, I. S.
  organization: Physics Department, Faculty of Science, King Khalid University, Physics Department, Faculty of Education, Ain Shams University
– sequence: 5
  givenname: Kh. S.
  surname: Shaaban
  fullname: Shaaban, Kh. S.
  email: khamies1078@yahoo.com
  organization: Chemistry Department, Faculty of Science, Al-Azhar University
BookMark eNp9kMtKAzEUhoMo2FZfwNWA20ZPbnNZatEqVFpoxWVI0oydMp0ZkwzFt3fqiIKLrs5Z_N-5fEN0WtWVReiKwA0BSG49gQw4BgoYSJJleH-CBkQkHBMuyOlvz9k5Gnq_BWApCDJAb8vGmuBqb-qmMONoGVxrQutUOY5WG-t2h0ZV6-jFmo2qCqPKaOHqxrpQWB_VeXRP5wxP7JzihZ7TaFoq762_QGe5Kr29_Kkj9Pr4sJo84dl8-jy5m2HDRBwwtaCT1OZZDMQQDTwnMckYWL3WXGea8pzGmhlugapMMM4EgVQppVOe8XzNRui6n9u4-qO1Psht3bqqWympAEopxEJ0qbRPme5T72wuTRFUKOoqOFWUkoA8aJS9RtlplN8a5b5D6T-0ccVOuc_jEOsh34Wrd-v-rjpCfQHrfoYG
CitedBy_id crossref_primary_10_1007_s12633_022_01702_x
crossref_primary_10_15251_DJNB_2023_182_713
crossref_primary_10_1016_j_ceramint_2023_11_295
crossref_primary_10_1016_j_radphyschem_2023_111402
crossref_primary_10_1007_s12633_022_01783_8
crossref_primary_10_1007_s12633_022_02029_3
crossref_primary_10_1007_s10854_023_11534_z
crossref_primary_10_1016_j_apradiso_2023_111086
crossref_primary_10_1007_s10904_022_02345_6
crossref_primary_10_1016_j_jre_2022_05_009
crossref_primary_10_1007_s00339_022_05348_9
crossref_primary_10_1016_j_mtcomm_2023_107325
crossref_primary_10_1016_j_net_2024_03_034
crossref_primary_10_1016_j_optmat_2024_115512
crossref_primary_10_1007_s40735_024_00869_7
crossref_primary_10_1016_j_heliyon_2023_e14435
crossref_primary_10_1007_s10854_020_05204_7
crossref_primary_10_1007_s12633_022_01801_9
crossref_primary_10_1016_j_inoche_2024_112655
crossref_primary_10_1016_j_optmat_2024_115559
crossref_primary_10_1016_j_ceramint_2024_05_176
crossref_primary_10_1016_j_mseb_2021_115519
crossref_primary_10_1016_j_jmrt_2022_03_090
crossref_primary_10_1016_j_optmat_2022_112898
crossref_primary_10_1007_s10854_021_07158_w
crossref_primary_10_1016_j_radphyschem_2022_109995
crossref_primary_10_1007_s12633_023_02537_w
crossref_primary_10_1016_j_radphyschem_2022_110289
crossref_primary_10_1007_s12633_023_02433_3
crossref_primary_10_1007_s11664_023_10347_4
crossref_primary_10_1007_s12633_021_01441_5
crossref_primary_10_1140_epjp_s13360_021_01798_x
crossref_primary_10_1140_epjp_s13360_021_01125_4
crossref_primary_10_1007_s10854_021_07530_w
crossref_primary_10_1007_s10904_022_02446_2
crossref_primary_10_1007_s12633_023_02699_7
crossref_primary_10_1007_s10854_021_05885_8
crossref_primary_10_1007_s12633_022_02124_5
crossref_primary_10_1016_j_jallcom_2021_160625
crossref_primary_10_1016_j_heliyon_2023_e19935
crossref_primary_10_1016_j_radphyschem_2023_111086
crossref_primary_10_1007_s12633_022_01703_w
crossref_primary_10_1016_j_jmrt_2023_11_195
crossref_primary_10_1515_ract_2023_0140
crossref_primary_10_1007_s11664_021_08921_9
crossref_primary_10_1007_s12633_022_01784_7
crossref_primary_10_1016_j_ceramint_2025_01_073
crossref_primary_10_1016_j_jmrt_2023_01_062
crossref_primary_10_1007_s12633_021_01125_0
crossref_primary_10_1007_s10904_022_02321_0
crossref_primary_10_1007_s12633_021_01481_x
crossref_primary_10_1016_j_radphyschem_2021_109956
crossref_primary_10_1039_D2RA00171C
crossref_primary_10_1016_j_ijleo_2021_168259
crossref_primary_10_15251_CL_2024_218_583
crossref_primary_10_1007_s12633_021_01440_6
crossref_primary_10_1007_s00339_025_08258_8
crossref_primary_10_1016_j_ijleo_2024_171689
crossref_primary_10_1007_s00339_022_05474_4
crossref_primary_10_1007_s12633_023_02351_4
Cites_doi 10.1016/0022-3093(75)90047-2
10.1007/s12633-017-9558-5
10.1016/j.commatsci.2007.05.023
10.1088/2053-1591/aaaee8
10.1016/0022-3093(90)91023-K
10.1007/s00339-019-2574-0
10.1007/s10904-020-01650-2
10.1016/S0022-3093(99)00409-3
10.1007/s11082-020-02575-3
10.1007/s10904-020-01640-4
10.1002/pssb.2221000240
10.1007/s00339-020-03982-9
10.1103/PhysRev.92.1324
10.1016/S0921-4526(00)00593-7
10.1007/s00339-019-3166-8
10.1039/c7cp01690e
10.1021/jp063846j
10.1007/s10853-017-1023-8
10.1016/0020-0891(81)90033-6
10.1016/j.physb.2006.06.132
10.1016/j.physb.2012.07.015
10.1016/j.solmat.2016.05.010
10.1016/0921-5107(89)90026-3
10.1007/s11664-019-07889-x
10.1007/s40145-014-0107-z
10.1007/s10904-020-01641-3
10.1016/0022-3093(73)90053-7
10.1016/j.jnoncrysol.2018.01.045
10.1016/j.saa.2020.118774
10.1007/s10904-019-01130-2
10.1007/s00339-017-1052-9
10.1016/j.jallcom.2012.08.105
10.1016/j.jnoncrysol.2017.05.001
10.1002/pssb.2221310202
10.1007/s11665-020-04969-6
10.1007/s12633-016-9519-4
10.1007/s12633-018-0004-0
10.1016/j.ijleo.2019.163976
10.1016/j.optlastec.2012.12.011
10.1016/1350-4495(94)90026-4
10.1016/j.jnoncrysol.2019.119754
10.1007/s10904-020-01708-1
10.1063/1.360963
10.1016/j.jre.2018.06.006
10.1007/s10904-020-01574-x
10.1016/j.nimb.2004.05.016
10.1016/j.ceramint.2017.11.175
10.1007/s11082-020-2191-3
10.1016/j.jlumin.2013.06.050
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
DOI 10.1007/s10904-020-01799-w
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1574-1451
EndPage 1786
ExternalDocumentID 10_1007_s10904_020_01799_w
GroupedDBID -58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
2.D
203
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
P9N
PF0
PT4
PT5
QOR
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WK8
YLTOR
Z45
Z7V
Z7X
Z7Y
Z86
Z8P
Z8S
ZE2
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c356t-2e0b78ef9601c1b04f161930ebdb4b9b24f26b3c4e02a953435108aaab8494fd3
IEDL.DBID AGYKE
ISSN 1574-1443
IngestDate Sat Sep 13 14:31:17 EDT 2025
Tue Jul 01 01:45:33 EDT 2025
Thu Apr 24 22:58:29 EDT 2025
Fri Feb 21 02:50:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Polarizability
CeO
Optical
Mechanical
Thermal
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-2e0b78ef9601c1b04f161930ebdb4b9b24f26b3c4e02a953435108aaab8494fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2502220655
PQPubID 2044289
PageCount 13
ParticipantIDs proquest_journals_2502220655
crossref_citationtrail_10_1007_s10904_020_01799_w
crossref_primary_10_1007_s10904_020_01799_w
springer_journals_10_1007_s10904_020_01799_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of inorganic and organometallic polymers and materials
PublicationTitleAbbrev J Inorg Organomet Polym
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Shaaban, Yousef, Abdel Wahab (CR16) 2020
El-Damrawi, El-Egili (CR22) 2001; 299
Shaaban, Koubisy, Zahran (CR25) 2020
Shaaban, Zahran, Yahia (CR31) 2020; 126
Singh, Singh, Singh, Singh (CR2) 2004; 225
El-Sharkawy, Shaaban, Elsaman, Allam, El-Taher, Mahmoud (CR7) 2020; 528
Singh, Pal Singh (CR37) 2013; 546
Shaaban, Yousef, Mahmoud (CR24) 2020
El-Maaref, Badr, Shaaban, Wahab, El Okr (CR49) 2019; 37
Duffy (CR38) 2006; 110
Shaaban, Abo-Naf, Hassouna (CR18) 2019; 11
Makishima, Mackenzie (CR42) 1973; 12
Shaaban, Wahab, Shaaban (CR32) 2020; 52
Azooz, Saddeek, Aly (CR11) 2019; 29
Somaily, Shaaban, Makhlouf (CR17) 2020
Fayad, Shaaban, Abd-Allah (CR9) 2020
Wahab, Shaaban (CR23) 2018; 5
Julien, Massot, Balkanski, Krol, Nazarewicz (CR27) 1989; 3
Kaur, Singh (CR4) 2013; 172
Makishima, Mackenzie (CR43) 1975; 17
Efimov (CR20) 1999; 253
Shaaban, Saddeek (CR1) 2017; 9
Kamitsos (CR28) 2003; 44
Gaafar, Marzouk (CR41) 2007; 338
Shaaban, Abdel Wahab, El-Maaref (CR47) 2020; 31
El-Rehim, Shaaban, Zahran (CR36) 2020
Shaaban, Wahab, Shaaban (CR5) 2020; 49
Hervé, Vandamme (CR57) 1994; 35
Shaaban, Saddeek, Aly (CR44) 2018; 44
Kumar, Singh (CR56) 2010; 48
Abdel Wahab, Shaaban, Elsaman, Yousef (CR8) 2019; 125
Ravindra (CR53) 1981; 21
Moss (CR52) 1985; 131
Shaaban, Ali, Saddeek (CR3) 2019; 11
Said Mahraz, Sahar, Ghoshal, Reza Dousti (CR51) 2013; 144
Urbach (CR50) 1953; 92
Shaaban, Abo-naf, Abd Elnaeim, Hassouna (CR19) 2017; 123
Veit, Rüssel (CR45) 2017; 52
El-Maaref, Wahab, Shaaban, Abdelawwad, Koubisy, Börcsök, Yousef (CR29) 2020; 242
Gaddam, Fernandes, Doumert, Montagne, Ferreira (CR33) 2017; 19
Singh, Kaur, Kaur, Singh (CR15) 2012; 407
Saudi, Abd-Allah, Shaaban (CR10) 2020; 31
Kamitsos, Patsis, Karakassides, Chryssikos (CR26) 1990; 126
Marzouk, Ali, ElBatal (CR12) 2018; 485
Wong, Angell (CR21) 1976
Shaaban, Yousef (CR35) 2020; 203
Tasheva, Dimitrov (CR40) 2017; 49
Anani, Mathieu, Lebid, Amar, Chama, Abid (CR55) 2008; 41
Chen, Qiao, Wang, Chen (CR14) 2017; 470
Gupta, Ravindra (CR54) 1980; 100
Ibrahim, Gomaa, Darwish (CR34) 2014; 3
AbdelWahab, Shaaban, Yousef (CR30) 2020; 52
Yadav, Yadav, Singh, Dwivedi, Ryu, Kang (CR48) 2013; 49
Gómez-Salces, Barreda-Argüeso, Valiente, Rodríguez (CR13) 2016; 157
Taha, Abouhaswa (CR46) 2018; 29
Abd-Allah, Saudi, Shaaban (CR6) 2019; 125
Dimitrov, Sakka (CR39) 1996; 79
S Ibrahim (1799_CR34) 2014; 3
KS Shaaban (1799_CR24) 2020
NM Ravindra (1799_CR53) 1981; 21
AA El-Maaref (1799_CR49) 2019; 37
KS Shaaban (1799_CR3) 2019; 11
KS Shaaban (1799_CR5) 2020; 49
S Gómez-Salces (1799_CR13) 2016; 157
EI Kamitsos (1799_CR26) 1990; 126
N Singh (1799_CR2) 2004; 225
ZA Said Mahraz (1799_CR51) 2013; 144
C Julien (1799_CR27) 1989; 3
TR Tasheva (1799_CR40) 2017; 49
EI Kamitsos (1799_CR28) 2003; 44
EA Abdel Wahab (1799_CR8) 2019; 125
TA Taha (1799_CR46) 2018; 29
P Hervé (1799_CR57) 1994; 35
KS Shaaban (1799_CR32) 2020; 52
TS Moss (1799_CR52) 1985; 131
M Gaafar (1799_CR41) 2007; 338
HH Somaily (1799_CR17) 2020
Q Chen (1799_CR14) 2017; 470
HA Saudi (1799_CR10) 2020; 31
KS Shaaban (1799_CR18) 2019; 11
K Shaaban (1799_CR47) 2020; 31
A Makishima (1799_CR43) 1975; 17
V Dimitrov (1799_CR39) 1996; 79
JA Duffy (1799_CR38) 2006; 110
MA Marzouk (1799_CR12) 2018; 485
KS Shaaban (1799_CR19) 2017; 123
S Kaur (1799_CR4) 2013; 172
U Veit (1799_CR45) 2017; 52
KS Shaaban (1799_CR16) 2020
DP Singh (1799_CR37) 2013; 546
J Wong (1799_CR21) 1976
RM El-Sharkawy (1799_CR7) 2020; 528
AA El-Maaref (1799_CR29) 2020; 242
M Anani (1799_CR55) 2008; 41
V Kumar (1799_CR56) 2010; 48
WM Abd-Allah (1799_CR6) 2019; 125
EA AbdelWahab (1799_CR30) 2020; 52
KS Shaaban (1799_CR35) 2020; 203
KS Shaaban (1799_CR1) 2017; 9
KS Shaaban (1799_CR31) 2020; 126
KHS Shaaban (1799_CR44) 2018; 44
GP Singh (1799_CR15) 2012; 407
AM Efimov (1799_CR20) 1999; 253
VP Gupta (1799_CR54) 1980; 100
KS Shaaban (1799_CR25) 2020
A Makishima (1799_CR42) 1973; 12
G El-Damrawi (1799_CR22) 2001; 299
AM Fayad (1799_CR9) 2020
A Gaddam (1799_CR33) 2017; 19
AFA El-Rehim (1799_CR36) 2020
F Urbach (1799_CR50) 1953; 92
MA Azooz (1799_CR11) 2019; 29
BC Yadav (1799_CR48) 2013; 49
EAA Wahab (1799_CR23) 2018; 5
References_xml – volume: 17
  start-page: 147
  issue: 2
  year: 1975
  end-page: 157
  ident: CR43
  article-title: Calculation of bulk modulus, shear modulus and Poisson's ratio of glass
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(75)90047-2
– volume: 9
  start-page: 785
  issue: 5
  year: 2017
  end-page: 793
  ident: CR1
  article-title: Effect of MoO content on structural, thermal, mechanical and optical properties of (B O -SiO -Bi O -Na O-Fe O ) glass system
  publication-title: Silicon
  doi: 10.1007/s12633-017-9558-5
– volume: 41
  start-page: 570
  year: 2008
  end-page: 757
  ident: CR55
  article-title: Model for calculating the refractive index of a III-V semiconductor
  publication-title: Comput. Mater. Sci
  doi: 10.1016/j.commatsci.2007.05.023
– volume: 5
  start-page: 025207
  issue: 2
  year: 2018
  ident: CR23
  article-title: Effects of SnO on spectroscopic properties of borosilicate glasses before and after plasma treatment and its mechanical properties
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aaaee8
– volume: 126
  start-page: 52
  issue: 1–2
  year: 1990
  end-page: 67
  ident: CR26
  article-title: Infrared reflectance spectra of lithium borate glasses
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(90)91023-K
– volume: 125
  start-page: 275
  year: 2019
  ident: CR6
  article-title: Investigation of structural and radiation shielding properties of 40B O –30PbO–(30– ) BaO- ZnO glass system
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-2574-0
– year: 2020
  ident: CR17
  article-title: Comparative studies on polarizability, optical basicity and optical properties of lead borosilicate modified with titania
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-020-01650-2
– volume: 48
  start-page: 571
  year: 2010
  end-page: 574
  ident: CR56
  article-title: Model for calculating the refractive index of different materials
  publication-title: Ind. J. Pure Appl. Phys.
– volume: 253
  start-page: 95
  issue: 1–3
  year: 1999
  end-page: 118
  ident: CR20
  article-title: Vibrational spectra, related properties, and structure of inorganic glasses
  publication-title: J. Non-Crystalline Solids
  doi: 10.1016/S0022-3093(99)00409-3
– volume: 52
  start-page: 458
  year: 2020
  ident: CR30
  article-title: Enhancement of optical and mechanical properties of sodium silicate glasses using zirconia
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-020-02575-3
– volume: 31
  start-page: 4986
  year: 2020
  end-page: 4996
  ident: CR47
  article-title: Judd-Ofelt analysis and physical properties of erbium modified cadmium lithium gadolinium silicate glasses
  publication-title: J Mater Sci
– year: 2020
  ident: CR25
  article-title: Spectroscopic Properties, Electronic Polarizability, and Optical Basicity of Titanium-Cadmium Tellurite Glasses Doped with Different Amounts of Lanthanum
  publication-title: J Inorg Organomet Polym
  doi: 10.1007/s10904-020-01640-4
– volume: 100
  start-page: 715
  issue: 2
  year: 1980
  end-page: 719
  ident: CR54
  article-title: Comments on the moss formula
  publication-title: Physica Status Solidi (b)
  doi: 10.1002/pssb.2221000240
– volume: 126
  start-page: 804
  year: 2020
  ident: CR31
  article-title: Mechanical and radiation-shielding properties of B O –P O –Li O–MoO glasses
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-020-03982-9
– volume: 92
  start-page: 1324
  issue: 5
  year: 1953
  end-page: 1324
  ident: CR50
  article-title: The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.92.1324
– volume: 31
  start-page: 6963
  year: 2020
  end-page: 6976
  ident: CR10
  article-title: Investigation of gamma and neutron shielding parameters for borosilicate glasses doped europium oxide for the immobilization of radioactive waste
  publication-title: J. Mater. Sci.
– volume: 299
  start-page: 180
  issue: 1–2
  year: 2001
  end-page: 186
  ident: CR22
  article-title: Characterization of novel CeO –B O glasses, structure, and properties
  publication-title: Phys. B
  doi: 10.1016/S0921-4526(00)00593-7
– volume: 125
  start-page: 869
  issue: 12
  year: 2019
  ident: CR8
  article-title: Radiation shielding, and physical properties of lead borate glass doped ZrO nanoparticles
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-3166-8
– volume: 19
  start-page: 26034
  issue: 38
  year: 2017
  end-page: 26046
  ident: CR33
  article-title: Structure and thermal relaxation of network units and crystallization of lithium silicate-based glasses doped with oxides of Al and B
  publication-title: Phys. Chem. Chem. Phys
  doi: 10.1039/c7cp01690e
– volume: 110
  start-page: 13245
  issue: 49
  year: 2006
  end-page: 13248
  ident: CR38
  article-title: Ionic−covalent character of metal and nonmetal oxides
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp063846j
– volume: 52
  start-page: 8159
  year: 2017
  end-page: 8175
  ident: CR45
  article-title: Elastic properties of quaternary glasses in the MgO–CaO–Al O –SiO system: modelling versus measurement
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-017-1023-8
– volume: 21
  start-page: 283
  issue: 5
  year: 1981
  end-page: 285
  ident: CR53
  article-title: Energy gap-refractive index relation—some observations
  publication-title: Infrared Phys.
  doi: 10.1016/0020-0891(81)90033-6
– volume: 338
  start-page: 294
  year: 2007
  end-page: 302
  ident: CR41
  article-title: Mechanical and structural studies on sodium borosilicate glasses doped with Er O using ultrasonic velocity and FTIR spectroscopy
  publication-title: Phys. B
  doi: 10.1016/j.physb.2006.06.132
– volume: 407
  start-page: 4269
  year: 2012
  end-page: 4273
  ident: CR15
  article-title: Conversion of covalent to ionic character of V O –CeO –PbO–B O glasses for solid state ionic devices
  publication-title: Phys. B
  doi: 10.1016/j.physb.2012.07.015
– volume: 157
  start-page: 42
  year: 2016
  end-page: 47
  ident: CR13
  article-title: Solarization-induced redox reactions in doubly Ce /Mn —highly doped transmission glasses studied by optical absorption and photoluminescence
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2016.05.010
– volume: 3
  start-page: 307
  issue: 3
  year: 1989
  end-page: 312
  ident: CR27
  article-title: Infrared studies of the structure of borate glasses
  publication-title: Mater. Sci. Eng., B
  doi: 10.1016/0921-5107(89)90026-3
– volume: 49
  start-page: 2040
  year: 2020
  end-page: 2049
  ident: CR5
  article-title: Electronic polarizability, optical basicity, thermal, mechanical and optical investigations of (65B O –30Li O–5Al O ) glasses doped with titanate
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-019-07889-x
– volume: 172
  start-page: 2278
  year: 2013
  end-page: 3075
  ident: CR4
  article-title: Comparative study of lead borate and lead silicate glass systems doped with aluminum oxide as gamma-ray shielding materials
  publication-title: Int. J. Innov. Technol. Explor. Eng.
– volume: 3
  start-page: 155
  issue: 2
  year: 2014
  end-page: 164
  ident: CR34
  article-title: Influence of Fe O on the physical, structural and electrical properties of sodium lead borate glasses
  publication-title: J. Adv. Ceramics
  doi: 10.1007/s40145-014-0107-z
– year: 2020
  ident: CR9
  article-title: Structural and optical study of CoO doping in borophosphate host glass and effect of gamma irradiation
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-020-01641-3
– volume: 12
  start-page: 35
  issue: 1
  year: 1973
  end-page: 45
  ident: CR42
  article-title: Direct calculation of young's moidulus of glass
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(73)90053-7
– volume: 485
  start-page: 14
  year: 2018
  end-page: 23
  ident: CR12
  article-title: Optical, FT infrared and photoluminescence spectra of CeO —doped Na O–ZnO–B O host glass and effects of gamma irradiation
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2018.01.045
– volume: 242
  start-page: 118774
  year: 2020
  ident: CR29
  article-title: Visible and mid-infrared spectral emissions and radiative rates calculations of Tm doped BBLC glass
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2020.118774
– volume: 29
  start-page: 1680
  year: 2019
  end-page: 1687
  ident: CR11
  article-title: Optical, infrared spectral and mechanical investigations of CeO -doped borosilicate glasses containing Bi O and TeO
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-019-01130-2
– volume: 49
  start-page: 76
  issue: Special Issue F
  year: 2017
  end-page: 83
  ident: CR40
  article-title: Electronic polarizability, optical basicity and chemical bonding of zinc oxide-barium oxide-vanadium oxide glasses
  publication-title: Bulg. Chem. Commun
– volume: 123
  start-page: 457
  issue: 6
  year: 2017
  end-page: 466
  ident: CR19
  article-title: Studying effect of MoO3 on elastic and crystallization behavior of lithium diborate glasses
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-017-1052-9
– volume: 546
  start-page: 224
  year: 2013
  end-page: 228
  ident: CR37
  article-title: Conversion of covalent to ionic behavior of Fe O –CeO –PbO–B O glasses for ionic and photonic application
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2012.08.105
– volume: 470
  start-page: 70
  year: 2017
  end-page: 77
  ident: CR14
  article-title: Spectra and magneto optical behavior of CeO doped heavy metal diamagnetic glass
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2017.05.001
– volume: 131
  start-page: 415
  issue: 2
  year: 1985
  end-page: 427
  ident: CR52
  article-title: Relations between the refractive index and energy gap of semiconductors
  publication-title: Physica Status Solidi (b)
  doi: 10.1002/pssb.2221310202
– year: 2020
  ident: CR16
  article-title: Investigation of crystallization and mechanical characteristics of glass and glass-ceramic with the compositions Fe O -35SiO -35B O -10Al O -(20– ) Na O
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-020-04969-6
– volume: 44
  start-page: 79
  issue: 2
  year: 2003
  end-page: 87
  ident: CR28
  article-title: Infrared studies of borate glasses
  publication-title: Phys. Chem. Glasses Eur. J. Glass Sci. Technol. Part B
– volume: 11
  start-page: 2421
  year: 2019
  end-page: 2428
  ident: CR18
  article-title: Physical and structural properties of lithium borate glasses containing MoO
  publication-title: Silicon
  doi: 10.1007/s12633-016-9519-4
– volume: 11
  start-page: 1853
  year: 2019
  end-page: 1861
  ident: CR3
  article-title: Synthesis, mechanical and optical features of Dy O doped lead alkali borosilicate glasses
  publication-title: Silicon
  doi: 10.1007/s12633-018-0004-0
– volume: 203
  start-page: 163976
  year: 2020
  ident: CR35
  article-title: Optical properties of Bi O doped boro tellurite glasses and glass ceramics
  publication-title: Optik Int. J. Light Electron. Opt.
  doi: 10.1016/j.ijleo.2019.163976
– volume: 49
  start-page: 68
  year: 2013
  end-page: 74
  ident: CR48
  article-title: Nanostructured cobalt oxide and cobalt titanate thin films as optical humidity sensor: a new approach
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2012.12.011
– volume: 35
  start-page: 609
  issue: 4
  year: 1994
  end-page: 615
  ident: CR57
  article-title: General relation between refractive index and energy gap in semiconductors
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/1350-4495(94)90026-4
– volume: 528
  start-page: 119754
  year: 2020
  ident: CR7
  article-title: Investigation of mechanical and radiation shielding characteristics of novel glass systems with the composition xNiO-20ZnO-60B O -(20–x) CdO based on nano metal oxides
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2019.119754
– year: 2020
  ident: CR36
  article-title: Structural and mechanical properties of lithium bismuth borate glasses containing molybdenum (LBBM) together with their glass-ceramics
  publication-title: J Inorg Organomet Polym
  doi: 10.1007/s10904-020-01708-1
– volume: 79
  start-page: 1741
  issue: 3
  year: 1996
  end-page: 1745
  ident: CR39
  article-title: Linear and nonlinear optical properties of simple oxides II
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.360963
– volume: 37
  start-page: 253
  year: 2019
  end-page: 259
  ident: CR49
  article-title: Optical properties and radiative rates of Nd doped zinc-sodium phosphate glasses
  publication-title: J. Rare Earths
  doi: 10.1016/j.jre.2018.06.006
– year: 2020
  ident: CR24
  article-title: Mechanical, structural and crystallization properties in titanate doped phosphate glasses
  publication-title: J Inorg Organomet Polym
  doi: 10.1007/s10904-020-01574-x
– volume: 225
  start-page: 305
  year: 2004
  end-page: 309
  ident: CR2
  article-title: Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B
  doi: 10.1016/j.nimb.2004.05.016
– volume: 29
  start-page: 8100
  issue: 10
  year: 2018
  ident: CR46
  article-title: Preparation and optical properties of borate glass doped with MnO
  publication-title: J. Mater. Sci.
– volume: 44
  start-page: 3862
  year: 2018
  end-page: 3867
  ident: CR44
  article-title: Physical properties of pseudo quaternary Na B O –SiO –MoO –Dy O glasses
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.11.175
– year: 1976
  ident: CR21
  publication-title: Glass Structure by Spectroscopy
– volume: 52
  start-page: 125
  year: 2020
  ident: CR32
  article-title: Electronic polarizability, optical basicity, and mechanical properties of aluminum lead phosphate glasses
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-020-2191-3
– volume: 144
  start-page: 139
  year: 2013
  end-page: 145
  ident: CR51
  article-title: Concentration dependent luminescence quenching of Er -doped zinc boro-tellurite glass
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2013.06.050
– volume: 528
  start-page: 119754
  year: 2020
  ident: 1799_CR7
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2019.119754
– volume: 110
  start-page: 13245
  issue: 49
  year: 2006
  ident: 1799_CR38
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp063846j
– volume: 125
  start-page: 275
  year: 2019
  ident: 1799_CR6
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-2574-0
– volume: 48
  start-page: 571
  year: 2010
  ident: 1799_CR56
  publication-title: Ind. J. Pure Appl. Phys.
– volume: 157
  start-page: 42
  year: 2016
  ident: 1799_CR13
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2016.05.010
– year: 2020
  ident: 1799_CR17
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-020-01650-2
– volume: 12
  start-page: 35
  issue: 1
  year: 1973
  ident: 1799_CR42
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(73)90053-7
– volume: 123
  start-page: 457
  issue: 6
  year: 2017
  ident: 1799_CR19
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-017-1052-9
– volume: 19
  start-page: 26034
  issue: 38
  year: 2017
  ident: 1799_CR33
  publication-title: Phys. Chem. Chem. Phys
  doi: 10.1039/c7cp01690e
– volume: 253
  start-page: 95
  issue: 1–3
  year: 1999
  ident: 1799_CR20
  publication-title: J. Non-Crystalline Solids
  doi: 10.1016/S0022-3093(99)00409-3
– volume: 485
  start-page: 14
  year: 2018
  ident: 1799_CR12
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2018.01.045
– volume: 52
  start-page: 8159
  year: 2017
  ident: 1799_CR45
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-017-1023-8
– volume: 546
  start-page: 224
  year: 2013
  ident: 1799_CR37
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2012.08.105
– volume: 44
  start-page: 3862
  year: 2018
  ident: 1799_CR44
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.11.175
– volume: 3
  start-page: 155
  issue: 2
  year: 2014
  ident: 1799_CR34
  publication-title: J. Adv. Ceramics
  doi: 10.1007/s40145-014-0107-z
– volume: 41
  start-page: 570
  year: 2008
  ident: 1799_CR55
  publication-title: Comput. Mater. Sci
  doi: 10.1016/j.commatsci.2007.05.023
– volume-title: Glass Structure by Spectroscopy
  year: 1976
  ident: 1799_CR21
– volume: 49
  start-page: 2040
  year: 2020
  ident: 1799_CR5
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-019-07889-x
– volume: 3
  start-page: 307
  issue: 3
  year: 1989
  ident: 1799_CR27
  publication-title: Mater. Sci. Eng., B
  doi: 10.1016/0921-5107(89)90026-3
– volume: 52
  start-page: 125
  year: 2020
  ident: 1799_CR32
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-020-2191-3
– volume: 29
  start-page: 8100
  issue: 10
  year: 2018
  ident: 1799_CR46
  publication-title: J. Mater. Sci.
– volume: 29
  start-page: 1680
  year: 2019
  ident: 1799_CR11
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-019-01130-2
– volume: 407
  start-page: 4269
  year: 2012
  ident: 1799_CR15
  publication-title: Phys. B
  doi: 10.1016/j.physb.2012.07.015
– volume: 52
  start-page: 458
  year: 2020
  ident: 1799_CR30
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-020-02575-3
– volume: 92
  start-page: 1324
  issue: 5
  year: 1953
  ident: 1799_CR50
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.92.1324
– volume: 131
  start-page: 415
  issue: 2
  year: 1985
  ident: 1799_CR52
  publication-title: Physica Status Solidi (b)
  doi: 10.1002/pssb.2221310202
– volume: 126
  start-page: 804
  year: 2020
  ident: 1799_CR31
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-020-03982-9
– volume: 31
  start-page: 4986
  year: 2020
  ident: 1799_CR47
  publication-title: J Mater Sci
– volume: 126
  start-page: 52
  issue: 1–2
  year: 1990
  ident: 1799_CR26
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(90)91023-K
– volume: 299
  start-page: 180
  issue: 1–2
  year: 2001
  ident: 1799_CR22
  publication-title: Phys. B
  doi: 10.1016/S0921-4526(00)00593-7
– volume: 44
  start-page: 79
  issue: 2
  year: 2003
  ident: 1799_CR28
  publication-title: Phys. Chem. Glasses Eur. J. Glass Sci. Technol. Part B
– volume: 338
  start-page: 294
  year: 2007
  ident: 1799_CR41
  publication-title: Phys. B
  doi: 10.1016/j.physb.2006.06.132
– volume: 9
  start-page: 785
  issue: 5
  year: 2017
  ident: 1799_CR1
  publication-title: Silicon
  doi: 10.1007/s12633-017-9558-5
– year: 2020
  ident: 1799_CR25
  publication-title: J Inorg Organomet Polym
  doi: 10.1007/s10904-020-01640-4
– volume: 470
  start-page: 70
  year: 2017
  ident: 1799_CR14
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2017.05.001
– volume: 144
  start-page: 139
  year: 2013
  ident: 1799_CR51
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2013.06.050
– volume: 49
  start-page: 76
  issue: Special Issue F
  year: 2017
  ident: 1799_CR40
  publication-title: Bulg. Chem. Commun
– year: 2020
  ident: 1799_CR24
  publication-title: J Inorg Organomet Polym
  doi: 10.1007/s10904-020-01574-x
– volume: 11
  start-page: 2421
  year: 2019
  ident: 1799_CR18
  publication-title: Silicon
  doi: 10.1007/s12633-016-9519-4
– year: 2020
  ident: 1799_CR36
  publication-title: J Inorg Organomet Polym
  doi: 10.1007/s10904-020-01708-1
– volume: 11
  start-page: 1853
  year: 2019
  ident: 1799_CR3
  publication-title: Silicon
  doi: 10.1007/s12633-018-0004-0
– volume: 79
  start-page: 1741
  issue: 3
  year: 1996
  ident: 1799_CR39
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.360963
– volume: 125
  start-page: 869
  issue: 12
  year: 2019
  ident: 1799_CR8
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-019-3166-8
– volume: 203
  start-page: 163976
  year: 2020
  ident: 1799_CR35
  publication-title: Optik Int. J. Light Electron. Opt.
  doi: 10.1016/j.ijleo.2019.163976
– volume: 35
  start-page: 609
  issue: 4
  year: 1994
  ident: 1799_CR57
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/1350-4495(94)90026-4
– volume: 225
  start-page: 305
  year: 2004
  ident: 1799_CR2
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B
  doi: 10.1016/j.nimb.2004.05.016
– year: 2020
  ident: 1799_CR9
  publication-title: J. Inorg. Organomet. Polym.
  doi: 10.1007/s10904-020-01641-3
– year: 2020
  ident: 1799_CR16
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-020-04969-6
– volume: 5
  start-page: 025207
  issue: 2
  year: 2018
  ident: 1799_CR23
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aaaee8
– volume: 49
  start-page: 68
  year: 2013
  ident: 1799_CR48
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2012.12.011
– volume: 100
  start-page: 715
  issue: 2
  year: 1980
  ident: 1799_CR54
  publication-title: Physica Status Solidi (b)
  doi: 10.1002/pssb.2221000240
– volume: 242
  start-page: 118774
  year: 2020
  ident: 1799_CR29
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2020.118774
– volume: 21
  start-page: 283
  issue: 5
  year: 1981
  ident: 1799_CR53
  publication-title: Infrared Phys.
  doi: 10.1016/0020-0891(81)90033-6
– volume: 172
  start-page: 2278
  year: 2013
  ident: 1799_CR4
  publication-title: Int. J. Innov. Technol. Explor. Eng.
– volume: 37
  start-page: 253
  year: 2019
  ident: 1799_CR49
  publication-title: J. Rare Earths
  doi: 10.1016/j.jre.2018.06.006
– volume: 31
  start-page: 6963
  year: 2020
  ident: 1799_CR10
  publication-title: J. Mater. Sci.
– volume: 17
  start-page: 147
  issue: 2
  year: 1975
  ident: 1799_CR43
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(75)90047-2
SSID ssj0038051
Score 2.466029
Snippet The melt-quenching method has been used to fabricate a PbO 2 –B 2 O 3 –CeO 2 glass system. The XRD diffractometer procedure was used to check the status of...
The melt-quenching method has been used to fabricate a PbO2–B2O3–CeO2 glass system. The XRD diffractometer procedure was used to check the status of these...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1774
SubjectTerms Boron oxides
Cerium oxides
Chemistry
Chemistry and Materials Science
Crystallization
Glass transition temperature
Inorganic Chemistry
Lead oxides
Mechanical properties
Organic Chemistry
Oxygen atoms
Oxygen ions
Polymer Sciences
Refractivity
Thermal stability
Title Spectroscopic, Structural, Thermal, and Mechanical Properties of B2O3-CeO2-PbO2 Glasses
URI https://link.springer.com/article/10.1007/s10904-020-01799-w
https://www.proquest.com/docview/2502220655
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90PuiL3-J0jjz45iJteunH4zacQ9EJOpxPpUlTEGUbbjLwr_fStU5FBd8KTY_27pL8rrn7HcCxZSDUIkg4xdPIUbs0pQLUPFUZonEtiVWeIHvtd_t4MZCDoihsUma7l0eS-Ur9qdjNirPhjvWiiM-WYUW6YRRWYKV5_nB5Vq7AXujIOU9qgJwCBq8olvlZytcNaYEyvx2M5vtNZwP65ZvO00yeTl-n6lS_fSNx_O-nbMJ6AUBZc-4xW7Bkhtuw2i77vu3AvW1JP7Ukl6Pxo26w25xh1rJzNBg5FS3kdJEMU3ZlbNWwNTK7sb_0Xyw3KxtlrCV6Hm-bnuA3qifYuQXoZrIL_c7ZXbvLi_YLXHvSn3JhHBWEJqMYx9WucjAjdBh5jlGpQhUpgZnwlafROCKJpEfAy3XCJElUiBFmqbcHleFoaPaB-QH6WihHYxKgTCJlUswiiW5gKNyRQRXc0gaxLrjJbYuM53jBqmxVFpPK4lxl8awKJx_PjOfMHH-OrpWmjYtZOokJ_hE8IhAmq9AoLbW4_bu0g_8NP4Q1YVNh8oSfGlTIbuaIsMxU1cl1O63Wdb1w4Tos90XzHccL6QU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgO8CFN2IwIAduLKhN3XY9wrQHbDAkNgGnqklTCYG2iQ0h8etxupbBBEi7VWpqtbaTfG7szwAnhoFQCT_iFE8jR2XTlPJR8VgmiNo2JFZpguyN1-rj1YP7kBWFjfNs9_xIMl2pvxW7GXEm3DFeFPD3ZSgixeBWAYrnzcd2PV-BnarlTnlSfeQUMDhZsczvUn5uSDOUOXcwmu43jXXo5286TTN5PnubyDP1MUfiuOinbMBaBkDZ-dRjNmFJD7ZgpZb3fduGe9OSfmJILoejJ1VhdynDrGHnqDByKlrI6SIaxOxam6phY2R2a37pvxpuVjZM2IXoOrymu4Lfyq5gTQPQ9XgH-o16r9biWfsFrhzXm3ChLelXdUIxjq1saWFC6DBwLC1jiTKQAhPhSUehtkQUuA4BL9uqRlEkqxhgEju7UBgMB3oPmOejp4S0FEY-ulEgdYxJ4KLtawp3XL8Edm6DUGXc5KZFxks4Y1U2KgtJZWGqsvC9BKdfz4ymzBz_ji7npg2zWToOCf4RPCIQ5pagkltqdvtvafuLDT-GlVbvuhN2Lm_aB7AqTFpMmvxThgLZUB8SrpnIo8yNPwHlYel9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSMAF8RSDATlwY9Ha1G3X4xiM8domwcRuVZOmEhLqJlZpfx-7a9lAgMStUlMfbMf53NifGTsnBkIt_UhgPg0CtI1bygctYpUAGJtIrPIC2Z7XHcLdyB0tdfHn1e7lleS8p4FYmtKsMYmTxlLjG4mm1Ic8KhCzVbaG4dgmTx_KVhmLnablzhlTfRCYOjhF28zPMr4eTQu8-e2KND95Ottsq4CMvDW38Q5bMeku22iXk9r22AsNkc-IlnI8edV1_pRzwhKfRp2jG2DoxYcojfmjoT5fMgsf0E_4d2JT5eOEX8q-I9qmL8VA9SW_IUhtpvts2Ll-bndFMTBBaMf1MiGNpfymSTArsbWtLEgQzwWOZVSsQAVKQiI95WgwlowC10GoZFvNKIpUEwJIYueAVdJxag4Z93zwtFSWhsgHNwqUiSEJXLB9gwmK61eZXeoq1AWbOA21eAsXPMik3xD1G-b6DWdVdvH5zWTOpfHn6lppgrDYV9MQARsCGoRNbpXVS7MsXv8u7eh_y8_Y-uCqEz7c9u6P2aakOpa8WqfGKmhCc4JAJFOnua99AKXV0IA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectroscopic%2C+Structural%2C+Thermal%2C+and+Mechanical+Properties+of+B2O3-CeO2-PbO2+Glasses&rft.jtitle=Journal+of+inorganic+and+organometallic+polymers+and+materials&rft.au=El-Rehim%2C+A.+F.+Abd&rft.au=Ali%2C+Atif+Mossad&rft.au=Zahran%2C+H.+Y.&rft.au=Yahia%2C+I.+S.&rft.date=2021-04-01&rft.pub=Springer+US&rft.issn=1574-1443&rft.eissn=1574-1451&rft.volume=31&rft.issue=4&rft.spage=1774&rft.epage=1786&rft_id=info:doi/10.1007%2Fs10904-020-01799-w&rft.externalDocID=10_1007_s10904_020_01799_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-1443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-1443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-1443&client=summon