Spectroscopic, Structural, Thermal, and Mechanical Properties of B2O3-CeO2-PbO2 Glasses
The melt-quenching method has been used to fabricate a PbO 2 –B 2 O 3 –CeO 2 glass system. The XRD diffractometer procedure was used to check the status of these samples. It can be concluded, from the X-ray diffraction curves, that the tested samples have high levels of glassiness. As the CeO 2 conc...
Saved in:
Published in | Journal of inorganic and organometallic polymers and materials Vol. 31; no. 4; pp. 1774 - 1786 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1574-1443 1574-1451 |
DOI | 10.1007/s10904-020-01799-w |
Cover
Abstract | The melt-quenching method has been used to fabricate a PbO
2
–B
2
O
3
–CeO
2
glass system. The XRD diffractometer procedure was used to check the status of these samples. It can be concluded, from the X-ray diffraction curves, that the tested samples have high levels of glassiness. As the CeO
2
concentration increased most of the [BO
4
] are converted into [BO
3
] structural units with the formation of non-bridging oxygen ions in the borate matrix. It can be cross verified with the decrease of the
N
4
fraction from 0.654 to 0.239. This decrease may be attributed to the formation of [CeO
7
] structural units that needs more oxygen atoms. The ultrasonic velocities of the prepared glasses are decreased with the increase of CeO
2
content. Different types of elastic modules were evaluated (experimental and theoretical) for the prepared glasses are increases with the increase of CeO
2
content. Glass transition temperature (T
g
), crystallization temperature (T
c
), the peak of crystallization temperature (T
p
) and thermal stability values decreases with the increase of CeO
2
content. The refractive index of these samples is increasing with the increase in the reflection and the density. |
---|---|
AbstractList | The melt-quenching method has been used to fabricate a PbO
2
–B
2
O
3
–CeO
2
glass system. The XRD diffractometer procedure was used to check the status of these samples. It can be concluded, from the X-ray diffraction curves, that the tested samples have high levels of glassiness. As the CeO
2
concentration increased most of the [BO
4
] are converted into [BO
3
] structural units with the formation of non-bridging oxygen ions in the borate matrix. It can be cross verified with the decrease of the
N
4
fraction from 0.654 to 0.239. This decrease may be attributed to the formation of [CeO
7
] structural units that needs more oxygen atoms. The ultrasonic velocities of the prepared glasses are decreased with the increase of CeO
2
content. Different types of elastic modules were evaluated (experimental and theoretical) for the prepared glasses are increases with the increase of CeO
2
content. Glass transition temperature (T
g
), crystallization temperature (T
c
), the peak of crystallization temperature (T
p
) and thermal stability values decreases with the increase of CeO
2
content. The refractive index of these samples is increasing with the increase in the reflection and the density. The melt-quenching method has been used to fabricate a PbO2–B2O3–CeO2 glass system. The XRD diffractometer procedure was used to check the status of these samples. It can be concluded, from the X-ray diffraction curves, that the tested samples have high levels of glassiness. As the CeO2 concentration increased most of the [BO4] are converted into [BO3] structural units with the formation of non-bridging oxygen ions in the borate matrix. It can be cross verified with the decrease of the N4 fraction from 0.654 to 0.239. This decrease may be attributed to the formation of [CeO7] structural units that needs more oxygen atoms. The ultrasonic velocities of the prepared glasses are decreased with the increase of CeO2 content. Different types of elastic modules were evaluated (experimental and theoretical) for the prepared glasses are increases with the increase of CeO2 content. Glass transition temperature (Tg), crystallization temperature (Tc), the peak of crystallization temperature (Tp) and thermal stability values decreases with the increase of CeO2 content. The refractive index of these samples is increasing with the increase in the reflection and the density. |
Author | Zahran, H. Y. Shaaban, Kh. S. Yahia, I. S. El-Rehim, A. F. Abd Ali, Atif Mossad |
Author_xml | – sequence: 1 givenname: A. F. Abd surname: El-Rehim fullname: El-Rehim, A. F. Abd organization: Physics Department, Faculty of Science, King Khalid University, Physics Department, Faculty of Education, Ain Shams University – sequence: 2 givenname: Atif Mossad surname: Ali fullname: Ali, Atif Mossad email: atifalimossad@gmail.com organization: Physics Department, Faculty of Science, King Khalid University, Physics Department, Faculty of Science, Assiut University – sequence: 3 givenname: H. Y. surname: Zahran fullname: Zahran, H. Y. organization: Physics Department, Faculty of Science, King Khalid University, Physics Department, Faculty of Education, Ain Shams University – sequence: 4 givenname: I. S. surname: Yahia fullname: Yahia, I. S. organization: Physics Department, Faculty of Science, King Khalid University, Physics Department, Faculty of Education, Ain Shams University – sequence: 5 givenname: Kh. S. surname: Shaaban fullname: Shaaban, Kh. S. email: khamies1078@yahoo.com organization: Chemistry Department, Faculty of Science, Al-Azhar University |
BookMark | eNp9kMtKAzEUhoMo2FZfwNWA20ZPbnNZatEqVFpoxWVI0oydMp0ZkwzFt3fqiIKLrs5Z_N-5fEN0WtWVReiKwA0BSG49gQw4BgoYSJJleH-CBkQkHBMuyOlvz9k5Gnq_BWApCDJAb8vGmuBqb-qmMONoGVxrQutUOY5WG-t2h0ZV6-jFmo2qCqPKaOHqxrpQWB_VeXRP5wxP7JzihZ7TaFoq762_QGe5Kr29_Kkj9Pr4sJo84dl8-jy5m2HDRBwwtaCT1OZZDMQQDTwnMckYWL3WXGea8pzGmhlugapMMM4EgVQppVOe8XzNRui6n9u4-qO1Psht3bqqWympAEopxEJ0qbRPme5T72wuTRFUKOoqOFWUkoA8aJS9RtlplN8a5b5D6T-0ccVOuc_jEOsh34Wrd-v-rjpCfQHrfoYG |
CitedBy_id | crossref_primary_10_1007_s12633_022_01702_x crossref_primary_10_15251_DJNB_2023_182_713 crossref_primary_10_1016_j_ceramint_2023_11_295 crossref_primary_10_1016_j_radphyschem_2023_111402 crossref_primary_10_1007_s12633_022_01783_8 crossref_primary_10_1007_s12633_022_02029_3 crossref_primary_10_1007_s10854_023_11534_z crossref_primary_10_1016_j_apradiso_2023_111086 crossref_primary_10_1007_s10904_022_02345_6 crossref_primary_10_1016_j_jre_2022_05_009 crossref_primary_10_1007_s00339_022_05348_9 crossref_primary_10_1016_j_mtcomm_2023_107325 crossref_primary_10_1016_j_net_2024_03_034 crossref_primary_10_1016_j_optmat_2024_115512 crossref_primary_10_1007_s40735_024_00869_7 crossref_primary_10_1016_j_heliyon_2023_e14435 crossref_primary_10_1007_s10854_020_05204_7 crossref_primary_10_1007_s12633_022_01801_9 crossref_primary_10_1016_j_inoche_2024_112655 crossref_primary_10_1016_j_optmat_2024_115559 crossref_primary_10_1016_j_ceramint_2024_05_176 crossref_primary_10_1016_j_mseb_2021_115519 crossref_primary_10_1016_j_jmrt_2022_03_090 crossref_primary_10_1016_j_optmat_2022_112898 crossref_primary_10_1007_s10854_021_07158_w crossref_primary_10_1016_j_radphyschem_2022_109995 crossref_primary_10_1007_s12633_023_02537_w crossref_primary_10_1016_j_radphyschem_2022_110289 crossref_primary_10_1007_s12633_023_02433_3 crossref_primary_10_1007_s11664_023_10347_4 crossref_primary_10_1007_s12633_021_01441_5 crossref_primary_10_1140_epjp_s13360_021_01798_x crossref_primary_10_1140_epjp_s13360_021_01125_4 crossref_primary_10_1007_s10854_021_07530_w crossref_primary_10_1007_s10904_022_02446_2 crossref_primary_10_1007_s12633_023_02699_7 crossref_primary_10_1007_s10854_021_05885_8 crossref_primary_10_1007_s12633_022_02124_5 crossref_primary_10_1016_j_jallcom_2021_160625 crossref_primary_10_1016_j_heliyon_2023_e19935 crossref_primary_10_1016_j_radphyschem_2023_111086 crossref_primary_10_1007_s12633_022_01703_w crossref_primary_10_1016_j_jmrt_2023_11_195 crossref_primary_10_1515_ract_2023_0140 crossref_primary_10_1007_s11664_021_08921_9 crossref_primary_10_1007_s12633_022_01784_7 crossref_primary_10_1016_j_ceramint_2025_01_073 crossref_primary_10_1016_j_jmrt_2023_01_062 crossref_primary_10_1007_s12633_021_01125_0 crossref_primary_10_1007_s10904_022_02321_0 crossref_primary_10_1007_s12633_021_01481_x crossref_primary_10_1016_j_radphyschem_2021_109956 crossref_primary_10_1039_D2RA00171C crossref_primary_10_1016_j_ijleo_2021_168259 crossref_primary_10_15251_CL_2024_218_583 crossref_primary_10_1007_s12633_021_01440_6 crossref_primary_10_1007_s00339_025_08258_8 crossref_primary_10_1016_j_ijleo_2024_171689 crossref_primary_10_1007_s00339_022_05474_4 crossref_primary_10_1007_s12633_023_02351_4 |
Cites_doi | 10.1016/0022-3093(75)90047-2 10.1007/s12633-017-9558-5 10.1016/j.commatsci.2007.05.023 10.1088/2053-1591/aaaee8 10.1016/0022-3093(90)91023-K 10.1007/s00339-019-2574-0 10.1007/s10904-020-01650-2 10.1016/S0022-3093(99)00409-3 10.1007/s11082-020-02575-3 10.1007/s10904-020-01640-4 10.1002/pssb.2221000240 10.1007/s00339-020-03982-9 10.1103/PhysRev.92.1324 10.1016/S0921-4526(00)00593-7 10.1007/s00339-019-3166-8 10.1039/c7cp01690e 10.1021/jp063846j 10.1007/s10853-017-1023-8 10.1016/0020-0891(81)90033-6 10.1016/j.physb.2006.06.132 10.1016/j.physb.2012.07.015 10.1016/j.solmat.2016.05.010 10.1016/0921-5107(89)90026-3 10.1007/s11664-019-07889-x 10.1007/s40145-014-0107-z 10.1007/s10904-020-01641-3 10.1016/0022-3093(73)90053-7 10.1016/j.jnoncrysol.2018.01.045 10.1016/j.saa.2020.118774 10.1007/s10904-019-01130-2 10.1007/s00339-017-1052-9 10.1016/j.jallcom.2012.08.105 10.1016/j.jnoncrysol.2017.05.001 10.1002/pssb.2221310202 10.1007/s11665-020-04969-6 10.1007/s12633-016-9519-4 10.1007/s12633-018-0004-0 10.1016/j.ijleo.2019.163976 10.1016/j.optlastec.2012.12.011 10.1016/1350-4495(94)90026-4 10.1016/j.jnoncrysol.2019.119754 10.1007/s10904-020-01708-1 10.1063/1.360963 10.1016/j.jre.2018.06.006 10.1007/s10904-020-01574-x 10.1016/j.nimb.2004.05.016 10.1016/j.ceramint.2017.11.175 10.1007/s11082-020-2191-3 10.1016/j.jlumin.2013.06.050 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10904-020-01799-w |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1574-1451 |
EndPage | 1786 |
ExternalDocumentID | 10_1007_s10904_020_01799_w |
GroupedDBID | -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 2.D 203 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I09 IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM P9N PF0 PT4 PT5 QOR QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WK8 YLTOR Z45 Z7V Z7X Z7Y Z86 Z8P Z8S ZE2 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c356t-2e0b78ef9601c1b04f161930ebdb4b9b24f26b3c4e02a953435108aaab8494fd3 |
IEDL.DBID | AGYKE |
ISSN | 1574-1443 |
IngestDate | Sat Sep 13 14:31:17 EDT 2025 Tue Jul 01 01:45:33 EDT 2025 Thu Apr 24 22:58:29 EDT 2025 Fri Feb 21 02:50:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Polarizability CeO Optical Mechanical Thermal |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-2e0b78ef9601c1b04f161930ebdb4b9b24f26b3c4e02a953435108aaab8494fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2502220655 |
PQPubID | 2044289 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2502220655 crossref_citationtrail_10_1007_s10904_020_01799_w crossref_primary_10_1007_s10904_020_01799_w springer_journals_10_1007_s10904_020_01799_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of inorganic and organometallic polymers and materials |
PublicationTitleAbbrev | J Inorg Organomet Polym |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Shaaban, Yousef, Abdel Wahab (CR16) 2020 El-Damrawi, El-Egili (CR22) 2001; 299 Shaaban, Koubisy, Zahran (CR25) 2020 Shaaban, Zahran, Yahia (CR31) 2020; 126 Singh, Singh, Singh, Singh (CR2) 2004; 225 El-Sharkawy, Shaaban, Elsaman, Allam, El-Taher, Mahmoud (CR7) 2020; 528 Singh, Pal Singh (CR37) 2013; 546 Shaaban, Yousef, Mahmoud (CR24) 2020 El-Maaref, Badr, Shaaban, Wahab, El Okr (CR49) 2019; 37 Duffy (CR38) 2006; 110 Shaaban, Abo-Naf, Hassouna (CR18) 2019; 11 Makishima, Mackenzie (CR42) 1973; 12 Shaaban, Wahab, Shaaban (CR32) 2020; 52 Azooz, Saddeek, Aly (CR11) 2019; 29 Somaily, Shaaban, Makhlouf (CR17) 2020 Fayad, Shaaban, Abd-Allah (CR9) 2020 Wahab, Shaaban (CR23) 2018; 5 Julien, Massot, Balkanski, Krol, Nazarewicz (CR27) 1989; 3 Kaur, Singh (CR4) 2013; 172 Makishima, Mackenzie (CR43) 1975; 17 Efimov (CR20) 1999; 253 Shaaban, Saddeek (CR1) 2017; 9 Kamitsos (CR28) 2003; 44 Gaafar, Marzouk (CR41) 2007; 338 Shaaban, Abdel Wahab, El-Maaref (CR47) 2020; 31 El-Rehim, Shaaban, Zahran (CR36) 2020 Shaaban, Wahab, Shaaban (CR5) 2020; 49 Hervé, Vandamme (CR57) 1994; 35 Shaaban, Saddeek, Aly (CR44) 2018; 44 Kumar, Singh (CR56) 2010; 48 Abdel Wahab, Shaaban, Elsaman, Yousef (CR8) 2019; 125 Ravindra (CR53) 1981; 21 Moss (CR52) 1985; 131 Shaaban, Ali, Saddeek (CR3) 2019; 11 Said Mahraz, Sahar, Ghoshal, Reza Dousti (CR51) 2013; 144 Urbach (CR50) 1953; 92 Shaaban, Abo-naf, Abd Elnaeim, Hassouna (CR19) 2017; 123 Veit, Rüssel (CR45) 2017; 52 El-Maaref, Wahab, Shaaban, Abdelawwad, Koubisy, Börcsök, Yousef (CR29) 2020; 242 Gaddam, Fernandes, Doumert, Montagne, Ferreira (CR33) 2017; 19 Singh, Kaur, Kaur, Singh (CR15) 2012; 407 Saudi, Abd-Allah, Shaaban (CR10) 2020; 31 Kamitsos, Patsis, Karakassides, Chryssikos (CR26) 1990; 126 Marzouk, Ali, ElBatal (CR12) 2018; 485 Wong, Angell (CR21) 1976 Shaaban, Yousef (CR35) 2020; 203 Tasheva, Dimitrov (CR40) 2017; 49 Anani, Mathieu, Lebid, Amar, Chama, Abid (CR55) 2008; 41 Chen, Qiao, Wang, Chen (CR14) 2017; 470 Gupta, Ravindra (CR54) 1980; 100 Ibrahim, Gomaa, Darwish (CR34) 2014; 3 AbdelWahab, Shaaban, Yousef (CR30) 2020; 52 Yadav, Yadav, Singh, Dwivedi, Ryu, Kang (CR48) 2013; 49 Gómez-Salces, Barreda-Argüeso, Valiente, Rodríguez (CR13) 2016; 157 Taha, Abouhaswa (CR46) 2018; 29 Abd-Allah, Saudi, Shaaban (CR6) 2019; 125 Dimitrov, Sakka (CR39) 1996; 79 S Ibrahim (1799_CR34) 2014; 3 KS Shaaban (1799_CR24) 2020 NM Ravindra (1799_CR53) 1981; 21 AA El-Maaref (1799_CR49) 2019; 37 KS Shaaban (1799_CR3) 2019; 11 KS Shaaban (1799_CR5) 2020; 49 S Gómez-Salces (1799_CR13) 2016; 157 EI Kamitsos (1799_CR26) 1990; 126 N Singh (1799_CR2) 2004; 225 ZA Said Mahraz (1799_CR51) 2013; 144 C Julien (1799_CR27) 1989; 3 TR Tasheva (1799_CR40) 2017; 49 EI Kamitsos (1799_CR28) 2003; 44 EA Abdel Wahab (1799_CR8) 2019; 125 TA Taha (1799_CR46) 2018; 29 P Hervé (1799_CR57) 1994; 35 KS Shaaban (1799_CR32) 2020; 52 TS Moss (1799_CR52) 1985; 131 M Gaafar (1799_CR41) 2007; 338 HH Somaily (1799_CR17) 2020 Q Chen (1799_CR14) 2017; 470 HA Saudi (1799_CR10) 2020; 31 KS Shaaban (1799_CR18) 2019; 11 K Shaaban (1799_CR47) 2020; 31 A Makishima (1799_CR43) 1975; 17 V Dimitrov (1799_CR39) 1996; 79 JA Duffy (1799_CR38) 2006; 110 MA Marzouk (1799_CR12) 2018; 485 KS Shaaban (1799_CR19) 2017; 123 S Kaur (1799_CR4) 2013; 172 U Veit (1799_CR45) 2017; 52 KS Shaaban (1799_CR16) 2020 DP Singh (1799_CR37) 2013; 546 J Wong (1799_CR21) 1976 RM El-Sharkawy (1799_CR7) 2020; 528 AA El-Maaref (1799_CR29) 2020; 242 M Anani (1799_CR55) 2008; 41 V Kumar (1799_CR56) 2010; 48 WM Abd-Allah (1799_CR6) 2019; 125 EA AbdelWahab (1799_CR30) 2020; 52 KS Shaaban (1799_CR35) 2020; 203 KS Shaaban (1799_CR1) 2017; 9 KS Shaaban (1799_CR31) 2020; 126 KHS Shaaban (1799_CR44) 2018; 44 GP Singh (1799_CR15) 2012; 407 AM Efimov (1799_CR20) 1999; 253 VP Gupta (1799_CR54) 1980; 100 KS Shaaban (1799_CR25) 2020 A Makishima (1799_CR42) 1973; 12 G El-Damrawi (1799_CR22) 2001; 299 AM Fayad (1799_CR9) 2020 A Gaddam (1799_CR33) 2017; 19 AFA El-Rehim (1799_CR36) 2020 F Urbach (1799_CR50) 1953; 92 MA Azooz (1799_CR11) 2019; 29 BC Yadav (1799_CR48) 2013; 49 EAA Wahab (1799_CR23) 2018; 5 |
References_xml | – volume: 17 start-page: 147 issue: 2 year: 1975 end-page: 157 ident: CR43 article-title: Calculation of bulk modulus, shear modulus and Poisson's ratio of glass publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(75)90047-2 – volume: 9 start-page: 785 issue: 5 year: 2017 end-page: 793 ident: CR1 article-title: Effect of MoO content on structural, thermal, mechanical and optical properties of (B O -SiO -Bi O -Na O-Fe O ) glass system publication-title: Silicon doi: 10.1007/s12633-017-9558-5 – volume: 41 start-page: 570 year: 2008 end-page: 757 ident: CR55 article-title: Model for calculating the refractive index of a III-V semiconductor publication-title: Comput. Mater. Sci doi: 10.1016/j.commatsci.2007.05.023 – volume: 5 start-page: 025207 issue: 2 year: 2018 ident: CR23 article-title: Effects of SnO on spectroscopic properties of borosilicate glasses before and after plasma treatment and its mechanical properties publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aaaee8 – volume: 126 start-page: 52 issue: 1–2 year: 1990 end-page: 67 ident: CR26 article-title: Infrared reflectance spectra of lithium borate glasses publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(90)91023-K – volume: 125 start-page: 275 year: 2019 ident: CR6 article-title: Investigation of structural and radiation shielding properties of 40B O –30PbO–(30– ) BaO- ZnO glass system publication-title: Appl. Phys. A doi: 10.1007/s00339-019-2574-0 – year: 2020 ident: CR17 article-title: Comparative studies on polarizability, optical basicity and optical properties of lead borosilicate modified with titania publication-title: J. Inorg. Organomet. Polym. doi: 10.1007/s10904-020-01650-2 – volume: 48 start-page: 571 year: 2010 end-page: 574 ident: CR56 article-title: Model for calculating the refractive index of different materials publication-title: Ind. J. Pure Appl. Phys. – volume: 253 start-page: 95 issue: 1–3 year: 1999 end-page: 118 ident: CR20 article-title: Vibrational spectra, related properties, and structure of inorganic glasses publication-title: J. Non-Crystalline Solids doi: 10.1016/S0022-3093(99)00409-3 – volume: 52 start-page: 458 year: 2020 ident: CR30 article-title: Enhancement of optical and mechanical properties of sodium silicate glasses using zirconia publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-020-02575-3 – volume: 31 start-page: 4986 year: 2020 end-page: 4996 ident: CR47 article-title: Judd-Ofelt analysis and physical properties of erbium modified cadmium lithium gadolinium silicate glasses publication-title: J Mater Sci – year: 2020 ident: CR25 article-title: Spectroscopic Properties, Electronic Polarizability, and Optical Basicity of Titanium-Cadmium Tellurite Glasses Doped with Different Amounts of Lanthanum publication-title: J Inorg Organomet Polym doi: 10.1007/s10904-020-01640-4 – volume: 100 start-page: 715 issue: 2 year: 1980 end-page: 719 ident: CR54 article-title: Comments on the moss formula publication-title: Physica Status Solidi (b) doi: 10.1002/pssb.2221000240 – volume: 126 start-page: 804 year: 2020 ident: CR31 article-title: Mechanical and radiation-shielding properties of B O –P O –Li O–MoO glasses publication-title: Appl. Phys. A doi: 10.1007/s00339-020-03982-9 – volume: 92 start-page: 1324 issue: 5 year: 1953 end-page: 1324 ident: CR50 article-title: The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids publication-title: Phys. Rev. doi: 10.1103/PhysRev.92.1324 – volume: 31 start-page: 6963 year: 2020 end-page: 6976 ident: CR10 article-title: Investigation of gamma and neutron shielding parameters for borosilicate glasses doped europium oxide for the immobilization of radioactive waste publication-title: J. Mater. Sci. – volume: 299 start-page: 180 issue: 1–2 year: 2001 end-page: 186 ident: CR22 article-title: Characterization of novel CeO –B O glasses, structure, and properties publication-title: Phys. B doi: 10.1016/S0921-4526(00)00593-7 – volume: 125 start-page: 869 issue: 12 year: 2019 ident: CR8 article-title: Radiation shielding, and physical properties of lead borate glass doped ZrO nanoparticles publication-title: Appl. Phys. A doi: 10.1007/s00339-019-3166-8 – volume: 19 start-page: 26034 issue: 38 year: 2017 end-page: 26046 ident: CR33 article-title: Structure and thermal relaxation of network units and crystallization of lithium silicate-based glasses doped with oxides of Al and B publication-title: Phys. Chem. Chem. Phys doi: 10.1039/c7cp01690e – volume: 110 start-page: 13245 issue: 49 year: 2006 end-page: 13248 ident: CR38 article-title: Ionic−covalent character of metal and nonmetal oxides publication-title: J. Phys. Chem. A doi: 10.1021/jp063846j – volume: 52 start-page: 8159 year: 2017 end-page: 8175 ident: CR45 article-title: Elastic properties of quaternary glasses in the MgO–CaO–Al O –SiO system: modelling versus measurement publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-1023-8 – volume: 21 start-page: 283 issue: 5 year: 1981 end-page: 285 ident: CR53 article-title: Energy gap-refractive index relation—some observations publication-title: Infrared Phys. doi: 10.1016/0020-0891(81)90033-6 – volume: 338 start-page: 294 year: 2007 end-page: 302 ident: CR41 article-title: Mechanical and structural studies on sodium borosilicate glasses doped with Er O using ultrasonic velocity and FTIR spectroscopy publication-title: Phys. B doi: 10.1016/j.physb.2006.06.132 – volume: 407 start-page: 4269 year: 2012 end-page: 4273 ident: CR15 article-title: Conversion of covalent to ionic character of V O –CeO –PbO–B O glasses for solid state ionic devices publication-title: Phys. B doi: 10.1016/j.physb.2012.07.015 – volume: 157 start-page: 42 year: 2016 end-page: 47 ident: CR13 article-title: Solarization-induced redox reactions in doubly Ce /Mn —highly doped transmission glasses studied by optical absorption and photoluminescence publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.05.010 – volume: 3 start-page: 307 issue: 3 year: 1989 end-page: 312 ident: CR27 article-title: Infrared studies of the structure of borate glasses publication-title: Mater. Sci. Eng., B doi: 10.1016/0921-5107(89)90026-3 – volume: 49 start-page: 2040 year: 2020 end-page: 2049 ident: CR5 article-title: Electronic polarizability, optical basicity, thermal, mechanical and optical investigations of (65B O –30Li O–5Al O ) glasses doped with titanate publication-title: J. Electron. Mater. doi: 10.1007/s11664-019-07889-x – volume: 172 start-page: 2278 year: 2013 end-page: 3075 ident: CR4 article-title: Comparative study of lead borate and lead silicate glass systems doped with aluminum oxide as gamma-ray shielding materials publication-title: Int. J. Innov. Technol. Explor. Eng. – volume: 3 start-page: 155 issue: 2 year: 2014 end-page: 164 ident: CR34 article-title: Influence of Fe O on the physical, structural and electrical properties of sodium lead borate glasses publication-title: J. Adv. Ceramics doi: 10.1007/s40145-014-0107-z – year: 2020 ident: CR9 article-title: Structural and optical study of CoO doping in borophosphate host glass and effect of gamma irradiation publication-title: J. Inorg. Organomet. Polym. doi: 10.1007/s10904-020-01641-3 – volume: 12 start-page: 35 issue: 1 year: 1973 end-page: 45 ident: CR42 article-title: Direct calculation of young's moidulus of glass publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(73)90053-7 – volume: 485 start-page: 14 year: 2018 end-page: 23 ident: CR12 article-title: Optical, FT infrared and photoluminescence spectra of CeO —doped Na O–ZnO–B O host glass and effects of gamma irradiation publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2018.01.045 – volume: 242 start-page: 118774 year: 2020 ident: CR29 article-title: Visible and mid-infrared spectral emissions and radiative rates calculations of Tm doped BBLC glass publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2020.118774 – volume: 29 start-page: 1680 year: 2019 end-page: 1687 ident: CR11 article-title: Optical, infrared spectral and mechanical investigations of CeO -doped borosilicate glasses containing Bi O and TeO publication-title: J. Inorg. Organomet. Polym. doi: 10.1007/s10904-019-01130-2 – volume: 49 start-page: 76 issue: Special Issue F year: 2017 end-page: 83 ident: CR40 article-title: Electronic polarizability, optical basicity and chemical bonding of zinc oxide-barium oxide-vanadium oxide glasses publication-title: Bulg. Chem. Commun – volume: 123 start-page: 457 issue: 6 year: 2017 end-page: 466 ident: CR19 article-title: Studying effect of MoO3 on elastic and crystallization behavior of lithium diborate glasses publication-title: Appl. Phys. A doi: 10.1007/s00339-017-1052-9 – volume: 546 start-page: 224 year: 2013 end-page: 228 ident: CR37 article-title: Conversion of covalent to ionic behavior of Fe O –CeO –PbO–B O glasses for ionic and photonic application publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2012.08.105 – volume: 470 start-page: 70 year: 2017 end-page: 77 ident: CR14 article-title: Spectra and magneto optical behavior of CeO doped heavy metal diamagnetic glass publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2017.05.001 – volume: 131 start-page: 415 issue: 2 year: 1985 end-page: 427 ident: CR52 article-title: Relations between the refractive index and energy gap of semiconductors publication-title: Physica Status Solidi (b) doi: 10.1002/pssb.2221310202 – year: 2020 ident: CR16 article-title: Investigation of crystallization and mechanical characteristics of glass and glass-ceramic with the compositions Fe O -35SiO -35B O -10Al O -(20– ) Na O publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-020-04969-6 – volume: 44 start-page: 79 issue: 2 year: 2003 end-page: 87 ident: CR28 article-title: Infrared studies of borate glasses publication-title: Phys. Chem. Glasses Eur. J. Glass Sci. Technol. Part B – volume: 11 start-page: 2421 year: 2019 end-page: 2428 ident: CR18 article-title: Physical and structural properties of lithium borate glasses containing MoO publication-title: Silicon doi: 10.1007/s12633-016-9519-4 – volume: 11 start-page: 1853 year: 2019 end-page: 1861 ident: CR3 article-title: Synthesis, mechanical and optical features of Dy O doped lead alkali borosilicate glasses publication-title: Silicon doi: 10.1007/s12633-018-0004-0 – volume: 203 start-page: 163976 year: 2020 ident: CR35 article-title: Optical properties of Bi O doped boro tellurite glasses and glass ceramics publication-title: Optik Int. J. Light Electron. Opt. doi: 10.1016/j.ijleo.2019.163976 – volume: 49 start-page: 68 year: 2013 end-page: 74 ident: CR48 article-title: Nanostructured cobalt oxide and cobalt titanate thin films as optical humidity sensor: a new approach publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2012.12.011 – volume: 35 start-page: 609 issue: 4 year: 1994 end-page: 615 ident: CR57 article-title: General relation between refractive index and energy gap in semiconductors publication-title: Infrared Phys. Technol. doi: 10.1016/1350-4495(94)90026-4 – volume: 528 start-page: 119754 year: 2020 ident: CR7 article-title: Investigation of mechanical and radiation shielding characteristics of novel glass systems with the composition xNiO-20ZnO-60B O -(20–x) CdO based on nano metal oxides publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2019.119754 – year: 2020 ident: CR36 article-title: Structural and mechanical properties of lithium bismuth borate glasses containing molybdenum (LBBM) together with their glass-ceramics publication-title: J Inorg Organomet Polym doi: 10.1007/s10904-020-01708-1 – volume: 79 start-page: 1741 issue: 3 year: 1996 end-page: 1745 ident: CR39 article-title: Linear and nonlinear optical properties of simple oxides II publication-title: J. Appl. Phys. doi: 10.1063/1.360963 – volume: 37 start-page: 253 year: 2019 end-page: 259 ident: CR49 article-title: Optical properties and radiative rates of Nd doped zinc-sodium phosphate glasses publication-title: J. Rare Earths doi: 10.1016/j.jre.2018.06.006 – year: 2020 ident: CR24 article-title: Mechanical, structural and crystallization properties in titanate doped phosphate glasses publication-title: J Inorg Organomet Polym doi: 10.1007/s10904-020-01574-x – volume: 225 start-page: 305 year: 2004 end-page: 309 ident: CR2 article-title: Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B doi: 10.1016/j.nimb.2004.05.016 – volume: 29 start-page: 8100 issue: 10 year: 2018 ident: CR46 article-title: Preparation and optical properties of borate glass doped with MnO publication-title: J. Mater. Sci. – volume: 44 start-page: 3862 year: 2018 end-page: 3867 ident: CR44 article-title: Physical properties of pseudo quaternary Na B O –SiO –MoO –Dy O glasses publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.11.175 – year: 1976 ident: CR21 publication-title: Glass Structure by Spectroscopy – volume: 52 start-page: 125 year: 2020 ident: CR32 article-title: Electronic polarizability, optical basicity, and mechanical properties of aluminum lead phosphate glasses publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-020-2191-3 – volume: 144 start-page: 139 year: 2013 end-page: 145 ident: CR51 article-title: Concentration dependent luminescence quenching of Er -doped zinc boro-tellurite glass publication-title: J. Lumin. doi: 10.1016/j.jlumin.2013.06.050 – volume: 528 start-page: 119754 year: 2020 ident: 1799_CR7 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2019.119754 – volume: 110 start-page: 13245 issue: 49 year: 2006 ident: 1799_CR38 publication-title: J. Phys. Chem. A doi: 10.1021/jp063846j – volume: 125 start-page: 275 year: 2019 ident: 1799_CR6 publication-title: Appl. Phys. A doi: 10.1007/s00339-019-2574-0 – volume: 48 start-page: 571 year: 2010 ident: 1799_CR56 publication-title: Ind. J. Pure Appl. Phys. – volume: 157 start-page: 42 year: 2016 ident: 1799_CR13 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.05.010 – year: 2020 ident: 1799_CR17 publication-title: J. Inorg. Organomet. Polym. doi: 10.1007/s10904-020-01650-2 – volume: 12 start-page: 35 issue: 1 year: 1973 ident: 1799_CR42 publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(73)90053-7 – volume: 123 start-page: 457 issue: 6 year: 2017 ident: 1799_CR19 publication-title: Appl. Phys. A doi: 10.1007/s00339-017-1052-9 – volume: 19 start-page: 26034 issue: 38 year: 2017 ident: 1799_CR33 publication-title: Phys. Chem. Chem. Phys doi: 10.1039/c7cp01690e – volume: 253 start-page: 95 issue: 1–3 year: 1999 ident: 1799_CR20 publication-title: J. Non-Crystalline Solids doi: 10.1016/S0022-3093(99)00409-3 – volume: 485 start-page: 14 year: 2018 ident: 1799_CR12 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2018.01.045 – volume: 52 start-page: 8159 year: 2017 ident: 1799_CR45 publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-1023-8 – volume: 546 start-page: 224 year: 2013 ident: 1799_CR37 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2012.08.105 – volume: 44 start-page: 3862 year: 2018 ident: 1799_CR44 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.11.175 – volume: 3 start-page: 155 issue: 2 year: 2014 ident: 1799_CR34 publication-title: J. Adv. Ceramics doi: 10.1007/s40145-014-0107-z – volume: 41 start-page: 570 year: 2008 ident: 1799_CR55 publication-title: Comput. Mater. Sci doi: 10.1016/j.commatsci.2007.05.023 – volume-title: Glass Structure by Spectroscopy year: 1976 ident: 1799_CR21 – volume: 49 start-page: 2040 year: 2020 ident: 1799_CR5 publication-title: J. Electron. Mater. doi: 10.1007/s11664-019-07889-x – volume: 3 start-page: 307 issue: 3 year: 1989 ident: 1799_CR27 publication-title: Mater. Sci. Eng., B doi: 10.1016/0921-5107(89)90026-3 – volume: 52 start-page: 125 year: 2020 ident: 1799_CR32 publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-020-2191-3 – volume: 29 start-page: 8100 issue: 10 year: 2018 ident: 1799_CR46 publication-title: J. Mater. Sci. – volume: 29 start-page: 1680 year: 2019 ident: 1799_CR11 publication-title: J. Inorg. Organomet. Polym. doi: 10.1007/s10904-019-01130-2 – volume: 407 start-page: 4269 year: 2012 ident: 1799_CR15 publication-title: Phys. B doi: 10.1016/j.physb.2012.07.015 – volume: 52 start-page: 458 year: 2020 ident: 1799_CR30 publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-020-02575-3 – volume: 92 start-page: 1324 issue: 5 year: 1953 ident: 1799_CR50 publication-title: Phys. Rev. doi: 10.1103/PhysRev.92.1324 – volume: 131 start-page: 415 issue: 2 year: 1985 ident: 1799_CR52 publication-title: Physica Status Solidi (b) doi: 10.1002/pssb.2221310202 – volume: 126 start-page: 804 year: 2020 ident: 1799_CR31 publication-title: Appl. Phys. A doi: 10.1007/s00339-020-03982-9 – volume: 31 start-page: 4986 year: 2020 ident: 1799_CR47 publication-title: J Mater Sci – volume: 126 start-page: 52 issue: 1–2 year: 1990 ident: 1799_CR26 publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(90)91023-K – volume: 299 start-page: 180 issue: 1–2 year: 2001 ident: 1799_CR22 publication-title: Phys. B doi: 10.1016/S0921-4526(00)00593-7 – volume: 44 start-page: 79 issue: 2 year: 2003 ident: 1799_CR28 publication-title: Phys. Chem. Glasses Eur. J. Glass Sci. Technol. Part B – volume: 338 start-page: 294 year: 2007 ident: 1799_CR41 publication-title: Phys. B doi: 10.1016/j.physb.2006.06.132 – volume: 9 start-page: 785 issue: 5 year: 2017 ident: 1799_CR1 publication-title: Silicon doi: 10.1007/s12633-017-9558-5 – year: 2020 ident: 1799_CR25 publication-title: J Inorg Organomet Polym doi: 10.1007/s10904-020-01640-4 – volume: 470 start-page: 70 year: 2017 ident: 1799_CR14 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2017.05.001 – volume: 144 start-page: 139 year: 2013 ident: 1799_CR51 publication-title: J. Lumin. doi: 10.1016/j.jlumin.2013.06.050 – volume: 49 start-page: 76 issue: Special Issue F year: 2017 ident: 1799_CR40 publication-title: Bulg. Chem. Commun – year: 2020 ident: 1799_CR24 publication-title: J Inorg Organomet Polym doi: 10.1007/s10904-020-01574-x – volume: 11 start-page: 2421 year: 2019 ident: 1799_CR18 publication-title: Silicon doi: 10.1007/s12633-016-9519-4 – year: 2020 ident: 1799_CR36 publication-title: J Inorg Organomet Polym doi: 10.1007/s10904-020-01708-1 – volume: 11 start-page: 1853 year: 2019 ident: 1799_CR3 publication-title: Silicon doi: 10.1007/s12633-018-0004-0 – volume: 79 start-page: 1741 issue: 3 year: 1996 ident: 1799_CR39 publication-title: J. Appl. Phys. doi: 10.1063/1.360963 – volume: 125 start-page: 869 issue: 12 year: 2019 ident: 1799_CR8 publication-title: Appl. Phys. A doi: 10.1007/s00339-019-3166-8 – volume: 203 start-page: 163976 year: 2020 ident: 1799_CR35 publication-title: Optik Int. J. Light Electron. Opt. doi: 10.1016/j.ijleo.2019.163976 – volume: 35 start-page: 609 issue: 4 year: 1994 ident: 1799_CR57 publication-title: Infrared Phys. Technol. doi: 10.1016/1350-4495(94)90026-4 – volume: 225 start-page: 305 year: 2004 ident: 1799_CR2 publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B doi: 10.1016/j.nimb.2004.05.016 – year: 2020 ident: 1799_CR9 publication-title: J. Inorg. Organomet. Polym. doi: 10.1007/s10904-020-01641-3 – year: 2020 ident: 1799_CR16 publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-020-04969-6 – volume: 5 start-page: 025207 issue: 2 year: 2018 ident: 1799_CR23 publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aaaee8 – volume: 49 start-page: 68 year: 2013 ident: 1799_CR48 publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2012.12.011 – volume: 100 start-page: 715 issue: 2 year: 1980 ident: 1799_CR54 publication-title: Physica Status Solidi (b) doi: 10.1002/pssb.2221000240 – volume: 242 start-page: 118774 year: 2020 ident: 1799_CR29 publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2020.118774 – volume: 21 start-page: 283 issue: 5 year: 1981 ident: 1799_CR53 publication-title: Infrared Phys. doi: 10.1016/0020-0891(81)90033-6 – volume: 172 start-page: 2278 year: 2013 ident: 1799_CR4 publication-title: Int. J. Innov. Technol. Explor. Eng. – volume: 37 start-page: 253 year: 2019 ident: 1799_CR49 publication-title: J. Rare Earths doi: 10.1016/j.jre.2018.06.006 – volume: 31 start-page: 6963 year: 2020 ident: 1799_CR10 publication-title: J. Mater. Sci. – volume: 17 start-page: 147 issue: 2 year: 1975 ident: 1799_CR43 publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(75)90047-2 |
SSID | ssj0038051 |
Score | 2.466029 |
Snippet | The melt-quenching method has been used to fabricate a PbO
2
–B
2
O
3
–CeO
2
glass system. The XRD diffractometer procedure was used to check the status of... The melt-quenching method has been used to fabricate a PbO2–B2O3–CeO2 glass system. The XRD diffractometer procedure was used to check the status of these... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1774 |
SubjectTerms | Boron oxides Cerium oxides Chemistry Chemistry and Materials Science Crystallization Glass transition temperature Inorganic Chemistry Lead oxides Mechanical properties Organic Chemistry Oxygen atoms Oxygen ions Polymer Sciences Refractivity Thermal stability |
Title | Spectroscopic, Structural, Thermal, and Mechanical Properties of B2O3-CeO2-PbO2 Glasses |
URI | https://link.springer.com/article/10.1007/s10904-020-01799-w https://www.proquest.com/docview/2502220655 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90PuiL3-J0jjz45iJteunH4zacQ9EJOpxPpUlTEGUbbjLwr_fStU5FBd8KTY_27pL8rrn7HcCxZSDUIkg4xdPIUbs0pQLUPFUZonEtiVWeIHvtd_t4MZCDoihsUma7l0eS-Ur9qdjNirPhjvWiiM-WYUW6YRRWYKV5_nB5Vq7AXujIOU9qgJwCBq8olvlZytcNaYEyvx2M5vtNZwP65ZvO00yeTl-n6lS_fSNx_O-nbMJ6AUBZc-4xW7Bkhtuw2i77vu3AvW1JP7Ukl6Pxo26w25xh1rJzNBg5FS3kdJEMU3ZlbNWwNTK7sb_0Xyw3KxtlrCV6Hm-bnuA3qifYuQXoZrIL_c7ZXbvLi_YLXHvSn3JhHBWEJqMYx9WucjAjdBh5jlGpQhUpgZnwlafROCKJpEfAy3XCJElUiBFmqbcHleFoaPaB-QH6WihHYxKgTCJlUswiiW5gKNyRQRXc0gaxLrjJbYuM53jBqmxVFpPK4lxl8awKJx_PjOfMHH-OrpWmjYtZOokJ_hE8IhAmq9AoLbW4_bu0g_8NP4Q1YVNh8oSfGlTIbuaIsMxU1cl1O63Wdb1w4Tos90XzHccL6QU |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgO8CFN2IwIAduLKhN3XY9wrQHbDAkNgGnqklTCYG2iQ0h8etxupbBBEi7VWpqtbaTfG7szwAnhoFQCT_iFE8jR2XTlPJR8VgmiNo2JFZpguyN1-rj1YP7kBWFjfNs9_xIMl2pvxW7GXEm3DFeFPD3ZSgixeBWAYrnzcd2PV-BnarlTnlSfeQUMDhZsczvUn5uSDOUOXcwmu43jXXo5286TTN5PnubyDP1MUfiuOinbMBaBkDZ-dRjNmFJD7ZgpZb3fduGe9OSfmJILoejJ1VhdynDrGHnqDByKlrI6SIaxOxam6phY2R2a37pvxpuVjZM2IXoOrymu4Lfyq5gTQPQ9XgH-o16r9biWfsFrhzXm3ChLelXdUIxjq1saWFC6DBwLC1jiTKQAhPhSUehtkQUuA4BL9uqRlEkqxhgEju7UBgMB3oPmOejp4S0FEY-ulEgdYxJ4KLtawp3XL8Edm6DUGXc5KZFxks4Y1U2KgtJZWGqsvC9BKdfz4ymzBz_ji7npg2zWToOCf4RPCIQ5pagkltqdvtvafuLDT-GlVbvuhN2Lm_aB7AqTFpMmvxThgLZUB8SrpnIo8yNPwHlYel9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSMAF8RSDATlwY9Ha1G3X4xiM8domwcRuVZOmEhLqJlZpfx-7a9lAgMStUlMfbMf53NifGTsnBkIt_UhgPg0CtI1bygctYpUAGJtIrPIC2Z7XHcLdyB0tdfHn1e7lleS8p4FYmtKsMYmTxlLjG4mm1Ic8KhCzVbaG4dgmTx_KVhmLnablzhlTfRCYOjhF28zPMr4eTQu8-e2KND95Ottsq4CMvDW38Q5bMeku22iXk9r22AsNkc-IlnI8edV1_pRzwhKfRp2jG2DoxYcojfmjoT5fMgsf0E_4d2JT5eOEX8q-I9qmL8VA9SW_IUhtpvts2Ll-bndFMTBBaMf1MiGNpfymSTArsbWtLEgQzwWOZVSsQAVKQiI95WgwlowC10GoZFvNKIpUEwJIYueAVdJxag4Z93zwtFSWhsgHNwqUiSEJXLB9gwmK61eZXeoq1AWbOA21eAsXPMik3xD1G-b6DWdVdvH5zWTOpfHn6lppgrDYV9MQARsCGoRNbpXVS7MsXv8u7eh_y8_Y-uCqEz7c9u6P2aakOpa8WqfGKmhCc4JAJFOnua99AKXV0IA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectroscopic%2C+Structural%2C+Thermal%2C+and+Mechanical+Properties+of+B2O3-CeO2-PbO2+Glasses&rft.jtitle=Journal+of+inorganic+and+organometallic+polymers+and+materials&rft.au=El-Rehim%2C+A.+F.+Abd&rft.au=Ali%2C+Atif+Mossad&rft.au=Zahran%2C+H.+Y.&rft.au=Yahia%2C+I.+S.&rft.date=2021-04-01&rft.pub=Springer+US&rft.issn=1574-1443&rft.eissn=1574-1451&rft.volume=31&rft.issue=4&rft.spage=1774&rft.epage=1786&rft_id=info:doi/10.1007%2Fs10904-020-01799-w&rft.externalDocID=10_1007_s10904_020_01799_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-1443&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-1443&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-1443&client=summon |