Generation of Functional Brown Adipocytes from Human Pluripotent Stem Cells via Progression through a Paraxial Mesoderm State

Brown adipocytes (BAs) are a potential cell source for the treatment of metabolic disease, including type 2 diabetes. In this report, human pluripotent stem cells (hPSCs) are subject to directed differentiation through a paraxial mesoderm progenitor state that generates BAs at high efficiency. Molec...

Full description

Saved in:
Bibliographic Details
Published inCell stem cell Vol. 27; no. 5; pp. 784 - 797.e11
Main Authors Zhang, Liang, Avery, John, Yin, Amelia, Singh, Amar M., Cliff, Timothy S., Yin, Hang, Dalton, Stephen
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 05.11.2020
Subjects
Online AccessGet full text
ISSN1934-5909
1875-9777
1875-9777
DOI10.1016/j.stem.2020.07.013

Cover

Abstract Brown adipocytes (BAs) are a potential cell source for the treatment of metabolic disease, including type 2 diabetes. In this report, human pluripotent stem cells (hPSCs) are subject to directed differentiation through a paraxial mesoderm progenitor state that generates BAs at high efficiency. Molecular analysis identifies potential regulatory networks for BA development, giving insight into development along this lineage. hPSC-derived BAs undergo elevated rates of glycolysis, uncoupled respiration, and lipolysis that are responsive to changes in cyclic AMP (cAMP)-dependent signaling, consistent with metabolic activity in BA tissue depots. Transplanted human BAs engraft into the inter-scapular region of recipient mice and exhibit thermogenic activity. Recipient animals have elevated metabolic activity, respiratory exchange ratios, and whole-body energy expenditure. Finally, transplanted BAs reduce circulating glucose levels in hyperglycemic animals. These data provide a roadmap for brown adipocyte development and indicate that BAs generated from hPSCs have potential as a tool for therapeutic development. [Display omitted] •Serum-free, directed differentiation strategy for generating functional BAs•Identification of a potential network of regulators that control BA development•Transplanted BAs improve whole body energy metabolism and blood glucose disposal Zhang et al. describe a system for the generation of human brown adipocytes (BAs) from pluripotent stem cells and identify potential regulatory networks for developmental commitment and specification of this lineage. Transplantation of BAs increases whole-body energy expenditure and improves glucose homeostasis, suggesting potential utility for treatment of metabolic disease.
AbstractList Brown adipocytes (BAs) are a potential cell source for the treatment of metabolic disease, including type 2 diabetes. In this report, human pluripotent stem cells (hPSCs) are subject to directed differentiation through a paraxial mesoderm progenitor state that generates BAs at high efficiency. Molecular analysis identifies potential regulatory networks for BA development, giving insight into development along this lineage. hPSC-derived BAs undergo elevated rates of glycolysis, uncoupled respiration, and lipolysis that are responsive to changes in cyclic AMP (cAMP)-dependent signaling, consistent with metabolic activity in BA tissue depots. Transplanted human BAs engraft into the inter-scapular region of recipient mice and exhibit thermogenic activity. Recipient animals have elevated metabolic activity, respiratory exchange ratios, and whole-body energy expenditure. Finally, transplanted BAs reduce circulating glucose levels in hyperglycemic animals. These data provide a roadmap for brown adipocyte development and indicate that BAs generated from hPSCs have potential as a tool for therapeutic development.
Brown adipocytes (BAs) are a potential cell source for the treatment of metabolic disease, including type 2 diabetes. In this report, human pluripotent stem cells (hPSCs) are subject to directed differentiation through a paraxial mesoderm progenitor state that generates BAs at high efficiency. Molecular analysis identifies potential regulatory networks for BA development, giving insight into development along this lineage. hPSC-derived BAs undergo elevated rates of glycolysis, uncoupled respiration, and lipolysis that are responsive to changes in cyclic AMP (cAMP)-dependent signaling, consistent with metabolic activity in BA tissue depots. Transplanted human BAs engraft into the inter-scapular region of recipient mice and exhibit thermogenic activity. Recipient animals have elevated metabolic activity, respiratory exchange ratios, and whole-body energy expenditure. Finally, transplanted BAs reduce circulating glucose levels in hyperglycemic animals. These data provide a roadmap for brown adipocyte development and indicate that BAs generated from hPSCs have potential as a tool for therapeutic development.Brown adipocytes (BAs) are a potential cell source for the treatment of metabolic disease, including type 2 diabetes. In this report, human pluripotent stem cells (hPSCs) are subject to directed differentiation through a paraxial mesoderm progenitor state that generates BAs at high efficiency. Molecular analysis identifies potential regulatory networks for BA development, giving insight into development along this lineage. hPSC-derived BAs undergo elevated rates of glycolysis, uncoupled respiration, and lipolysis that are responsive to changes in cyclic AMP (cAMP)-dependent signaling, consistent with metabolic activity in BA tissue depots. Transplanted human BAs engraft into the inter-scapular region of recipient mice and exhibit thermogenic activity. Recipient animals have elevated metabolic activity, respiratory exchange ratios, and whole-body energy expenditure. Finally, transplanted BAs reduce circulating glucose levels in hyperglycemic animals. These data provide a roadmap for brown adipocyte development and indicate that BAs generated from hPSCs have potential as a tool for therapeutic development.
Brown adipocytes (BAs) are a potential cell source for the treatment of metabolic disease, including type 2 diabetes. In this report, human pluripotent stem cells (hPSCs) are subject to directed differentiation through a paraxial mesoderm progenitor state that generates BAs at high efficiency. Molecular analysis identifies potential regulatory networks for BA development, giving insight into development along this lineage. hPSC-derived BAs undergo elevated rates of glycolysis, uncoupled respiration, and lipolysis that are responsive to changes in cyclic AMP (cAMP)-dependent signaling, consistent with metabolic activity in BA tissue depots. Transplanted human BAs engraft into the inter-scapular region of recipient mice and exhibit thermogenic activity. Recipient animals have elevated metabolic activity, respiratory exchange ratios, and whole-body energy expenditure. Finally, transplanted BAs reduce circulating glucose levels in hyperglycemic animals. These data provide a roadmap for brown adipocyte development and indicate that BAs generated from hPSCs have potential as a tool for therapeutic development. [Display omitted] •Serum-free, directed differentiation strategy for generating functional BAs•Identification of a potential network of regulators that control BA development•Transplanted BAs improve whole body energy metabolism and blood glucose disposal Zhang et al. describe a system for the generation of human brown adipocytes (BAs) from pluripotent stem cells and identify potential regulatory networks for developmental commitment and specification of this lineage. Transplantation of BAs increases whole-body energy expenditure and improves glucose homeostasis, suggesting potential utility for treatment of metabolic disease.
Author Cliff, Timothy S.
Zhang, Liang
Yin, Amelia
Avery, John
Singh, Amar M.
Yin, Hang
Dalton, Stephen
Author_xml – sequence: 1
  givenname: Liang
  surname: Zhang
  fullname: Zhang, Liang
  organization: Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA
– sequence: 2
  givenname: John
  surname: Avery
  fullname: Avery, John
  organization: Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA
– sequence: 3
  givenname: Amelia
  surname: Yin
  fullname: Yin, Amelia
  organization: Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA
– sequence: 4
  givenname: Amar M.
  surname: Singh
  fullname: Singh, Amar M.
  organization: Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA
– sequence: 5
  givenname: Timothy S.
  orcidid: 0000-0003-2266-7255
  surname: Cliff
  fullname: Cliff, Timothy S.
  organization: Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA
– sequence: 6
  givenname: Hang
  surname: Yin
  fullname: Yin, Hang
  organization: Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA
– sequence: 7
  givenname: Stephen
  surname: Dalton
  fullname: Dalton, Stephen
  email: sdalton@uga.edu
  organization: Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32783886$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1TAQhS1URH_gBVggL9kk2HES2xKbckVbpFZUAtaWY09aXyX2xXZauuDdcbjtpouuZjQ639HonGN04IMHhN5TUlNC-0_bOmWY64Y0pCa8JpS9QkdU8K6SnPODskvWVp0k8hAdp7QlpOOU8DfokDVcMCH6I_T3HDxEnV3wOIz4bPFm3fWEv8Rw7_GpdbtgHjIkPMYw44tl1h5fT0ss9ww-4x_lB7yBaUr4zml8HcNNhJRWw3wbw3Jzi8tVR_3HFdcrSMFCnAumM7xFr0c9JXj3OE_Qr7OvPzcX1eX382-b08vKsK7PVSPGoW-04NpaqVshJVjJYJRmMC0fudZm6Jq-7UXPNWdSWj0Og2WMdcJKStkJ-rj33cXwe4GU1eySKT9rD2FJqmlZSzpBJCvSD4_SZZjBql10s44P6imyIhB7gYkhpQijMi7_DzBH7SZFiVrbUVu1tqPWdhThqrRT0OYZ-uT-IvR5D0EJ6M5BVMk48Aasi2CyssG9hP8DQ7irMA
CitedBy_id crossref_primary_10_1038_s41574_022_00733_z
crossref_primary_10_1016_j_devcel_2023_08_003
crossref_primary_10_1096_fj_202301575RR
crossref_primary_10_3390_ijms23095099
crossref_primary_10_1016_j_devcel_2023_08_001
crossref_primary_10_3390_biomedicines12020397
crossref_primary_10_1038_s41418_024_01397_0
crossref_primary_10_15252_embj_2021110439
crossref_primary_10_3390_ijms25126303
crossref_primary_10_1016_j_lfs_2024_122758
crossref_primary_10_1016_j_bbrc_2021_06_096
crossref_primary_10_1038_s41580_021_00350_0
crossref_primary_10_3390_ijms23147834
crossref_primary_10_1016_j_bioactmat_2022_10_022
crossref_primary_10_1002_mco2_274
crossref_primary_10_3390_cells11152310
crossref_primary_10_3390_biomedicines12071474
Cites_doi 10.1016/j.cmet.2016.02.007
10.1172/JCI62308
10.1016/j.tem.2013.12.004
10.1038/nprot.2012.130
10.1038/ncb3075
10.1186/s13059-014-0550-8
10.1038/nm.3819
10.1101/gr.1239303
10.1126/science.aav1898
10.1038/ncb2411
10.1016/j.stemcr.2015.08.007
10.1016/j.stem.2017.08.018
10.1038/nature07182
10.1096/fj.01-0568com
10.1016/j.cmet.2018.04.020
10.1038/nm.3891
10.1093/bioinformatics/bts635
10.1016/j.tem.2018.01.001
10.1002/stem.1607
10.1016/j.cmet.2015.09.007
10.1016/j.bbalip.2013.01.009
10.1186/1471-213X-10-81
10.1016/j.biochi.2005.10.004
10.1038/ncomms5099
10.1016/j.molcel.2010.05.004
10.1126/scitranslmed.aad0015
10.1096/fj.14-263038
10.2337/db09-0530
10.1007/BF02534821
10.1016/j.cmet.2011.06.012
10.1038/nm.3881
10.1056/NEJMoa0810780
10.2337/db11-0510
10.1016/j.cell.2016.06.011
10.1038/ni1119
10.1186/1471-2105-12-323
10.1186/gb-2008-9-9-r137
10.1016/j.cmet.2012.08.001
10.1016/j.celrep.2018.11.037
10.1038/nrm.2016.62
10.1093/nar/gky1131
10.1038/nm.2297
10.1093/nar/gks042
10.1016/j.tem.2018.03.002
10.1016/j.chom.2018.03.007
10.2337/db14-0746
10.1038/ncb2740
10.1016/j.celrep.2020.02.023
10.1242/dev.151035
10.1038/nmeth.1923
10.1016/j.cmet.2014.03.025
10.1016/j.cmet.2016.08.002
10.1016/j.ydbio.2010.12.037
10.1002/oby.22334
10.1172/JCI78362
10.1093/nar/gkv007
10.1016/j.stemcr.2015.07.005
10.1016/j.physbeh.2013.11.008
10.1016/j.cmet.2018.05.020
10.1007/978-1-4939-7799-4_4
10.1093/bioinformatics/btp352
10.1016/j.devcel.2017.04.012
10.1093/bioinformatics/btp616
10.1016/j.celrep.2017.01.040
10.1016/j.celrep.2018.05.021
10.1038/nm.3324
10.1056/NEJMoa0808949
10.1038/s41596-018-0102-x
10.1016/j.ydbio.2006.04.449
10.1074/jbc.M112.374041
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.stem.2020.07.013
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1875-9777
EndPage 797.e11
ExternalDocumentID 32783886
10_1016_j_stem_2020_07_013
S1934590920303519
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: S10 RR027814
– fundername: NIAMS NIH HHS
  grantid: R01 AR070178
GroupedDBID ---
--K
0R~
29B
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FEDTE
HVGLF
IHE
IXB
JIG
M41
O-L
O9-
OK1
P2P
RCE
ROL
RPZ
SES
SSZ
TR2
WQ6
ZA5
ZBA
5VS
AAEDT
AAIKJ
AAMRU
AAQFI
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EJD
HZ~
OZT
RIG
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c356t-28fb62a87add9a4899ed93ef9cbc47f7aacb52646867a7399dafbbd33358d9113
IEDL.DBID IXB
ISSN 1934-5909
1875-9777
IngestDate Tue Aug 05 10:27:56 EDT 2025
Thu Apr 03 07:02:17 EDT 2025
Thu Apr 24 23:05:21 EDT 2025
Tue Jul 01 01:08:33 EDT 2025
Fri Feb 23 02:48:31 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords thermogenic adipocytes
pluripotent stem cells
metabolic disease
brown adipocytes
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-28fb62a87add9a4899ed93ef9cbc47f7aacb52646867a7399dafbbd33358d9113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2266-7255
PMID 32783886
PQID 2434058093
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2434058093
pubmed_primary_32783886
crossref_citationtrail_10_1016_j_stem_2020_07_013
crossref_primary_10_1016_j_stem_2020_07_013
elsevier_sciencedirect_doi_10_1016_j_stem_2020_07_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-05
PublicationDateYYYYMMDD 2020-11-05
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-05
  day: 05
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell stem cell
PublicationTitleAlternate Cell Stem Cell
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ritchie, Phipson, Wu, Hu, Law, Shi, Smyth (bib57) 2015; 43
Xi, Fujiwara, Gonzalez, Jan, Liebscher, Van Handel, Schenke-Layland, Pyle (bib82) 2017; 18
Altshuler-Keylin, Shinoda, Hasegawa, Ikeda, Hong, Kang, Yang, Perera, Debnath, Kajimura (bib2) 2016; 24
Kurtenbach, Harbour (bib34) 2019; 10.1101/845529
Cheng, Jiang, Keipert, Zhang, Hauser, Graf, Strom, Tschöp, Jastroch, Perocchi (bib14) 2018; 23
Bolstad, B. (2020). preprocessCore: A collection of pre-processing functions. R package version 1.50.0
Sanchez-Gurmaches, Guertin (bib62) 2014; 5
Hanssen, Hoeks, Brans, van der Lans, Schaart, van den Driessche, Jörgensen, Boekschoten, Hesselink, Havekes (bib25) 2015; 21
Lusk (bib45) 1928
Kishida, Ejima, Yamamoto, Tanaka, Yamamoto, Mazda (bib32) 2015; 5
Su, Guntur, Nguyen, Fakory, Doucette, Leech, Lotana, Kelley, Kohli, Martino (bib72) 2018; 25
Bartelt, Bruns, Reimer, Hohenberg, Ittrich, Peldschus, Kaul, Tromsdorf, Weller, Waurisch (bib6) 2011; 17
Maier, Ostraat, Gao, Fields, Shinton, Medina, Ikawa, Murre, Singh, Hardy, Hagman (bib47) 2004; 5
Cypess, Lehman, Williams, Tal, Rodman, Goldfine, Kuo, Palmer, Tseng, Doria (bib20) 2009; 360
Szklarczyk, Gable, Lyon, Junge, Wyder, Huerta-Cepas, Simonovic, Doncheva, Morris, Bork (bib73) 2019; 47
Rosenwald, Perdikari, Rülicke, Wolfrum (bib60) 2013; 15
Wang, Tao, Gupta, Scherer (bib77) 2013; 19
Virtanen, Lidell, Orava, Heglind, Westergren, Niemi, Taittonen, Laine, Savisto, Enerbäck, Nuutila (bib76) 2009; 360
Nishio, Yoneshiro, Nakahara, Suzuki, Saeki, Hasegawa, Kawai, Akutsu, Umezawa, Yasuda (bib53) 2012; 16
Li, Handsaker, Wysoker, Fennell, Ruan, Homer, Marth, Abecasis, Durbin (bib41) 2009; 25
Moisan, Lee, Zhang, Hudak, Meyer, Prummer, Zoffmann, Truong, Ebeling, Kiialainen (bib50) 2015; 17
Kajimura, Spiegelman, Seale (bib31) 2015; 22
Li, Dewey (bib40) 2011; 12
Roberts, Ashwell, Enser (bib58) 1986; 21
Inagaki, Sakai, Kajimura (bib29) 2016; 17
Chal, Pourquié (bib13) 2017; 144
Laurila, Soronen, Kooijman, Forsström, Boon, Surakka, Kaiharju, Coomans, Van Den Berg, Autio (bib36) 2016; 8
Atit, Sgaier, Mohamed, Taketo, Dufort, Joyner, Niswander, Conlon (bib5) 2006; 296
.
Lee, Bova, Schofield, Bryant, Dieckmann, Slattery, Govendir, Emmett, Greenfield (bib38) 2016; 23
Mottillo, Bloch, Leff, Granneman (bib51) 2012; 287
Langmead, Salzberg (bib35) 2012; 9
McCarthy, Chen, Smyth (bib89) 2012; 40
Shapira, Seale (bib66) 2019; 27
An, Wang, Diao, Long, Fu, Weng, Zhou, Sun, Cheung, Ip (bib3) 2017; 41
Beers, Gulbranson, George, Siniscalchi, Jones, Thomson, Chen (bib8) 2012; 7
Miccheli, Tomassini, Puccetti, Valerio, Peluso, Tuccillo, Calvani, Manetti, Conti (bib93) 2006; 88
Pan, Gustafsson, Aruga, Tiedken, Chen, Emerson (bib55) 2011; 351
Angueira, Shapira, Ishibashi, Sampat, Sostre-Colón, Emmett, Titchenell, Lazar, Lim, Seale (bib4) 2020; 30
Warnes, Bolker, Bonebakker, Gentleman, Huber, Liaw, Lumley, Maechler, Magnusson, Moeller (bib78) 2016
Corces, Granja, Shams, Louie, Seoane, Zhou, Silva, Groeneveld, Wong, Cho (bib19) 2018; 362
Orava, Nuutila, Lidell, Oikonen, Noponen, Viljanen, Scheinin, Taittonen, Niemi, Enerbäck, Virtanen (bib54) 2011; 14
Love, Huber, Anders (bib44) 2014; 15
Gunawardana, Piston (bib23) 2012; 61
Kolde, Kolde (bib33) 2015
Townsend, Tseng (bib75) 2014; 25
Loh, Chen, Koh, Deng, Sinha, Tsai, Barkal, Shen, Jain, Morganti (bib42) 2016; 166
Singh, Sun, Li, Zhang, Wu, Zhao, Qin, Dalton (bib91) 2015; 5
Dobin, Davis, Schlesinger, Drenkow, Zaleski, Jha, Batut, Chaisson, Gingeras (bib21) 2013; 29
Saito, Okamatsu-Ogura, Matsushita, Watanabe, Yoneshiro, Nio-Kobayashi, Iwanaga, Miyagawa, Kameya, Nakada (bib61) 2009; 58
Long, Svensson, Tsai, Zeng, Roh, Kong, Rao, Lou, Lokurkar, Baur (bib43) 2014; 19
Toenhake, Fraschka, Vijayabaskar, Westhead, van Heeringen, Bártfai (bib92) 2018; 23
Cinti, Vettor (bib17) 2009
Yuan, Kremer, Huang, Breitkopf, Ben-Sahra, Manning, Lyssiotis, Asara (bib85) 2019; 14
Singh, Dalton (bib70) 2018; 29
Din, Saari, Raiko, Kudomi, Maurer, Lahesmaa, Fromme, Amri, Klingenspor, Solin (bib94) 2018; 28
Hafner, Mohsen-Kanson, Dani (bib24) 2018; 1773
Ikeda, Maretich, Kajimura (bib28) 2018; 29
Blighe K (2019). EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labeling. R package version 1.2.0.
Cliff, Wu, Boward, Yin, Yin, Glushka, Prestegaard, Dalton (bib18) 2017; 21
Yu, Lewin, Forrest, Adams (bib84) 2002; 16
Zhang, Liu, Meyer, Eeckhoute, Johnson, Bernstein, Nusbaum, Myers, Brown, Li, Liu (bib86) 2008; 9
Stanford, Middelbeek, Townsend, An, Nygaard, Hitchcox, Markan, Nakano, Hirshman, Tseng, Goodyear (bib71) 2013; 123
Shinoda, Luijten, Hasegawa, Hong, Sonne, Kim, Xue, Chondronikola, Cypess, Tseng (bib67) 2015; 21
Nedergaard, Cannon (bib52) 2013; 1831
Heinz, Benner, Spann, Bertolino, Lin, Laslo, Cheng, Murre, Singh, Glass (bib26) 2010; 38
Robinson, McCarthy, Smyth (bib59) 2010; 26
Ahfeldt, Schinzel, Lee, Hendrickson, Kaplan, Lum, Camahort, Xia, Shay, Rhee (bib1) 2012; 14
Lee, Petkova, Konkar, Granneman (bib37) 2015; 29
Sidossis, Kajimura (bib68) 2015; 125
Seale, Bjork, Yang, Kajimura, Chin, Kuang, Scimè, Devarakonda, Conroe, Erdjument-Bromage (bib63) 2008; 454
Shannon, Markiel, Ozier, Baliga, Wang, Ramage, Amin, Schwikowski, Ideker (bib65) 2003; 13
Xue, Lynes, Dreyfuss, Shamsi, Schulz, Zhang, Huang, Townsend, Li, Takahashi (bib83) 2015; 21
Mohsen-Kanson, Hafner, Wdziekonski, Takashima, Villageois, Carrière, Svensson, Bagnis, Chignon-Sicard, Svensson (bib49) 2014; 32
Zhu, Spicer, Gavini, Goudjo-Ako, Novak, Shi (bib87) 2014; 125
Si-Tayeb, Noto, Sepac, Sedlic, Bosnjak, Lough, Duncan (bib88) 2010; 10
Weir, Ramage, Akyol, Rhodes, Kyle, Fletcher, Craven, Wakelin, Drake, Gregoriades (bib79) 2018; 27
Wickham (bib80) 2016
Chondronikola, Volpi, Børsheim, Porter, Annamalai, Enerbäck, Lidell, Saraf, Labbe, Hurren (bib15) 2014; 63
Li (10.1016/j.stem.2020.07.013_bib41) 2009; 25
Virtanen (10.1016/j.stem.2020.07.013_bib76) 2009; 360
Cinti (10.1016/j.stem.2020.07.013_bib17) 2009
Lee (10.1016/j.stem.2020.07.013_bib37) 2015; 29
Chal (10.1016/j.stem.2020.07.013_bib13) 2017; 144
An (10.1016/j.stem.2020.07.013_bib3) 2017; 41
Wickham (10.1016/j.stem.2020.07.013_bib80) 2016
Yuan (10.1016/j.stem.2020.07.013_bib85) 2019; 14
Beers (10.1016/j.stem.2020.07.013_bib8) 2012; 7
Ahfeldt (10.1016/j.stem.2020.07.013_bib1) 2012; 14
Long (10.1016/j.stem.2020.07.013_bib43) 2014; 19
Kishida (10.1016/j.stem.2020.07.013_bib32) 2015; 5
Rosenwald (10.1016/j.stem.2020.07.013_bib60) 2013; 15
Stanford (10.1016/j.stem.2020.07.013_bib71) 2013; 123
Chondronikola (10.1016/j.stem.2020.07.013_bib15) 2014; 63
Pan (10.1016/j.stem.2020.07.013_bib55) 2011; 351
Yu (10.1016/j.stem.2020.07.013_bib84) 2002; 16
10.1016/j.stem.2020.07.013_bib95
Si-Tayeb (10.1016/j.stem.2020.07.013_bib88) 2010; 10
Zhang (10.1016/j.stem.2020.07.013_bib86) 2008; 9
10.1016/j.stem.2020.07.013_bib10
Warnes (10.1016/j.stem.2020.07.013_bib78)
Ikeda (10.1016/j.stem.2020.07.013_bib28) 2018; 29
Dobin (10.1016/j.stem.2020.07.013_bib21) 2013; 29
Li (10.1016/j.stem.2020.07.013_bib40) 2011; 12
Din (10.1016/j.stem.2020.07.013_bib94) 2018; 28
Szklarczyk (10.1016/j.stem.2020.07.013_bib73) 2019; 47
Moisan (10.1016/j.stem.2020.07.013_bib50) 2015; 17
Kolde (10.1016/j.stem.2020.07.013_bib33)
Singh (10.1016/j.stem.2020.07.013_bib70) 2018; 29
Laurila (10.1016/j.stem.2020.07.013_bib36) 2016; 8
Kurtenbach (10.1016/j.stem.2020.07.013_bib34) 2019; 10.1101/845529
Shannon (10.1016/j.stem.2020.07.013_bib65) 2003; 13
Xi (10.1016/j.stem.2020.07.013_bib82) 2017; 18
Xue (10.1016/j.stem.2020.07.013_bib83) 2015; 21
Angueira (10.1016/j.stem.2020.07.013_bib4) 2020; 30
Sanchez-Gurmaches (10.1016/j.stem.2020.07.013_bib62) 2014; 5
Nedergaard (10.1016/j.stem.2020.07.013_bib52) 2013; 1831
Cliff (10.1016/j.stem.2020.07.013_bib18) 2017; 21
Love (10.1016/j.stem.2020.07.013_bib44) 2014; 15
Altshuler-Keylin (10.1016/j.stem.2020.07.013_bib2) 2016; 24
Miccheli (10.1016/j.stem.2020.07.013_bib93) 2006; 88
Heinz (10.1016/j.stem.2020.07.013_bib26) 2010; 38
Seale (10.1016/j.stem.2020.07.013_bib63) 2008; 454
Roberts (10.1016/j.stem.2020.07.013_bib58) 1986; 21
Lee (10.1016/j.stem.2020.07.013_bib38) 2016; 23
Kajimura (10.1016/j.stem.2020.07.013_bib31) 2015; 22
Ritchie (10.1016/j.stem.2020.07.013_bib57) 2015; 43
Sidossis (10.1016/j.stem.2020.07.013_bib68) 2015; 125
Hafner (10.1016/j.stem.2020.07.013_bib24) 2018; 1773
Orava (10.1016/j.stem.2020.07.013_bib54) 2011; 14
Maier (10.1016/j.stem.2020.07.013_bib47) 2004; 5
Singh (10.1016/j.stem.2020.07.013_bib91) 2015; 5
McCarthy (10.1016/j.stem.2020.07.013_bib89) 2012; 40
Atit (10.1016/j.stem.2020.07.013_bib5) 2006; 296
Shapira (10.1016/j.stem.2020.07.013_bib66) 2019; 27
Langmead (10.1016/j.stem.2020.07.013_bib35) 2012; 9
Inagaki (10.1016/j.stem.2020.07.013_bib29) 2016; 17
Gunawardana (10.1016/j.stem.2020.07.013_bib23) 2012; 61
Hanssen (10.1016/j.stem.2020.07.013_bib25) 2015; 21
Mohsen-Kanson (10.1016/j.stem.2020.07.013_bib49) 2014; 32
Saito (10.1016/j.stem.2020.07.013_bib61) 2009; 58
Zhu (10.1016/j.stem.2020.07.013_bib87) 2014; 125
Weir (10.1016/j.stem.2020.07.013_bib79) 2018; 27
Bartelt (10.1016/j.stem.2020.07.013_bib6) 2011; 17
Shinoda (10.1016/j.stem.2020.07.013_bib67) 2015; 21
Toenhake (10.1016/j.stem.2020.07.013_bib92) 2018; 23
Corces (10.1016/j.stem.2020.07.013_bib19) 2018; 362
Mottillo (10.1016/j.stem.2020.07.013_bib51) 2012; 287
Robinson (10.1016/j.stem.2020.07.013_bib59) 2010; 26
Nishio (10.1016/j.stem.2020.07.013_bib53) 2012; 16
Wang (10.1016/j.stem.2020.07.013_bib77) 2013; 19
Cypess (10.1016/j.stem.2020.07.013_bib20) 2009; 360
Loh (10.1016/j.stem.2020.07.013_bib42) 2016; 166
Su (10.1016/j.stem.2020.07.013_bib72) 2018; 25
Cheng (10.1016/j.stem.2020.07.013_bib14) 2018; 23
Townsend (10.1016/j.stem.2020.07.013_bib75) 2014; 25
Lusk (10.1016/j.stem.2020.07.013_bib45) 1928
References_xml – volume: 351
  start-page: 120
  year: 2011
  end-page: 127
  ident: bib55
  article-title: A role for Zic1 and Zic2 in Myf5 regulation and somite myogenesis
  publication-title: Dev. Biol.
– volume: 10.1101/845529
  year: 2019
  ident: bib34
  article-title: SparK: a publication-quality NGS visualization tool
  publication-title: bioRxiv
– volume: 1831
  start-page: 943
  year: 2013
  end-page: 949
  ident: bib52
  article-title: UCP1 mRNA does not produce heat
  publication-title: Biochim. Biophys. Acta
– volume: 14
  start-page: 313
  year: 2019
  end-page: 330
  ident: bib85
  article-title: Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by LC-MS/MS
  publication-title: Nat. Protoc.
– year: 2015
  ident: bib33
  article-title: Package ‘pheatmap’. R Package
– volume: 27
  start-page: 13
  year: 2019
  end-page: 21
  ident: bib66
  article-title: Transcriptional control of brown and beige fat development and function
  publication-title: Obesity (Silver Spring)
– volume: 16
  start-page: 155
  year: 2002
  end-page: 168
  ident: bib84
  article-title: Cold elicits the simultaneous induction of fatty acid synthesis and β-oxidation in murine brown adipose tissue: prediction from differential gene expression and confirmation in vivo
  publication-title: FASEB J.
– volume: 61
  start-page: 674
  year: 2012
  end-page: 682
  ident: bib23
  article-title: Reversal of type 1 diabetes in mice by brown adipose tissue transplant
  publication-title: Diabetes
– volume: 40
  start-page: 4288
  year: 2012
  end-page: 4297
  ident: bib89
  article-title: Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation
  publication-title: Nucleic Acids Res.
– volume: 26
  start-page: 139
  year: 2010
  end-page: 140
  ident: bib59
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
– volume: 362
  start-page: 362
  year: 2018
  ident: bib19
  article-title: The chromatin accessibility landscape of primary human cancers
  publication-title: Science
– volume: 19
  start-page: 1338
  year: 2013
  end-page: 1344
  ident: bib77
  article-title: Tracking adipogenesis during white adipose tissue development, expansion and regeneration
  publication-title: Nat. Med.
– volume: 21
  start-page: 502
  year: 2017
  end-page: 516.e9
  ident: bib18
  article-title: MYC controls human pluripotent stem cell fate decisions through regulation of metabolic flux
  publication-title: Cell Stem Cell
– volume: 30
  start-page: 2869
  year: 2020
  end-page: 2878.e2864
  ident: bib4
  article-title: Early B cell factor activity controls developmental and adaptive thermogenic gene programming in adipocytes
  publication-title: Cell Rep.
– volume: 23
  start-page: 602
  year: 2016
  end-page: 609
  ident: bib38
  article-title: Brown adipose tissue exhibits a glucose-responsive thermogenic biorhythm in humans
  publication-title: Cell Metab.
– volume: 125
  start-page: 478
  year: 2015
  end-page: 486
  ident: bib68
  article-title: Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis
  publication-title: J. Clin. Invest.
– volume: 17
  start-page: 200
  year: 2011
  end-page: 205
  ident: bib6
  article-title: Brown adipose tissue activity controls triglyceride clearance
  publication-title: Nat. Med.
– volume: 18
  start-page: 1573
  year: 2017
  end-page: 1585
  ident: bib82
  article-title: In vivo human somitogenesis guides somite development from hPSCs
  publication-title: Cell Rep.
– volume: 14
  start-page: 272
  year: 2011
  end-page: 279
  ident: bib54
  article-title: Different metabolic responses of human brown adipose tissue to activation by cold and insulin
  publication-title: Cell Metab.
– volume: 360
  start-page: 1509
  year: 2009
  end-page: 1517
  ident: bib20
  article-title: Identification and importance of brown adipose tissue in adult humans
  publication-title: N. Engl. J. Med.
– volume: 58
  start-page: 1526
  year: 2009
  end-page: 1531
  ident: bib61
  article-title: High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity
  publication-title: Diabetes
– volume: 88
  start-page: 437
  year: 2006
  end-page: 448
  ident: bib93
  article-title: Metabolic profiling by 13C-NMR spectroscopy:[1, 2-13C2] glucose reveals a heterogeneous metabolism in human leukemia T cells
  publication-title: Biochimie
– volume: 21
  start-page: 389
  year: 2015
  end-page: 394
  ident: bib67
  article-title: Genetic and functional characterization of clonally derived adult human brown adipocytes
  publication-title: Nat. Med.
– volume: 125
  start-page: 21
  year: 2014
  end-page: 29
  ident: bib87
  article-title: Enhanced sympathetic activity in mice with brown adipose tissue transplantation (transBATation)
  publication-title: Physiol. Behav.
– volume: 5
  start-page: 4099
  year: 2014
  ident: bib62
  article-title: Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed
  publication-title: Nat. Commun.
– volume: 29
  start-page: 286
  year: 2015
  end-page: 299
  ident: bib37
  article-title: Cellular origins of cold-induced brown adipocytes in adult mice
  publication-title: FASEB J.
– volume: 296
  start-page: 164
  year: 2006
  end-page: 176
  ident: bib5
  article-title: β-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse
  publication-title: Dev. Biol.
– volume: 17
  start-page: 480
  year: 2016
  end-page: 495
  ident: bib29
  article-title: Transcriptional and epigenetic control of brown and beige adipose cell fate and function
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 166
  start-page: 451
  year: 2016
  end-page: 467
  ident: bib42
  article-title: Mapping the pairwise choices leading from pluripotency to human bone, heart, and other mesoderm cell types
  publication-title: Cell
– volume: 63
  start-page: 4089
  year: 2014
  end-page: 4099
  ident: bib15
  article-title: Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans
  publication-title: Diabetes
– volume: 360
  start-page: 1518
  year: 2009
  end-page: 1525
  ident: bib76
  article-title: Functional brown adipose tissue in healthy adults
  publication-title: N. Engl. J. Med.
– volume: 29
  start-page: 191
  year: 2018
  end-page: 200
  ident: bib28
  article-title: The common and distinct features of brown and beige adipocytes
  publication-title: Trends Endocrinol. Metab.
– volume: 12
  start-page: 323
  year: 2011
  ident: bib40
  article-title: RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome
  publication-title: BMC Bioinformatics
– volume: 27
  start-page: 1348
  year: 2018
  end-page: 1355.e4
  ident: bib79
  article-title: Substantial metabolic activity of human brown adipose tissue during warm conditions and cold-induced lipolysis of local triglycerides
  publication-title: Cell Metab.
– volume: 25
  start-page: 3215
  year: 2018
  end-page: 3228.e9
  ident: bib72
  article-title: A renewable source of human beige adipocytes for development of therapies to treat metabolic syndrome
  publication-title: Cell Rep.
– volume: 144
  start-page: 2104
  year: 2017
  end-page: 2122
  ident: bib13
  article-title: Making muscle: skeletal myogenesis
  publication-title: Development
– volume: 23
  start-page: 557
  year: 2018
  end-page: 569
  ident: bib92
  article-title: Chromatin accessibility-based characterization of the gene regulatory network underlying Plasmodium falciparum blood-stage development
  publication-title: Cell Host Microbe
– volume: 16
  start-page: 394
  year: 2012
  end-page: 406
  ident: bib53
  article-title: Production of functional classical brown adipocytes from human pluripotent stem cells using specific hemopoietin cocktail without gene transfer
  publication-title: Cell Metab.
– volume: 21
  start-page: 863
  year: 2015
  end-page: 865
  ident: bib25
  article-title: Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus
  publication-title: Nat. Med.
– volume: 5
  start-page: 569
  year: 2015
  end-page: 581
  ident: bib32
  article-title: Reprogrammed functional brown adipocytes ameliorate insulin resistance and dyslipidemia in diet-induced obesity and type 2 diabetes
  publication-title: Stem Cell Reports
– volume: 287
  start-page: 25038
  year: 2012
  end-page: 25048
  ident: bib51
  article-title: Lipolytic products activate peroxisome proliferator-activated receptor (PPAR) α and δ in brown adipocytes to match fatty acid oxidation with supply
  publication-title: J. Biol. Chem.
– volume: 43
  start-page: e47
  year: 2015
  ident: bib57
  article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies
  publication-title: Nucleic Acids Res.
– volume: 15
  start-page: 659
  year: 2013
  end-page: 667
  ident: bib60
  article-title: Bi-directional interconversion of brite and white adipocytes
  publication-title: Nat. Cell Biol.
– year: 2016
  ident: bib80
  article-title: ggplot2: Elegant Graphics for Data Analysis
– volume: 25
  start-page: 2078
  year: 2009
  end-page: 2079
  ident: bib41
  article-title: The sequence alignment/map format and SAMtools
  publication-title: Bioinformatics
– volume: 123
  start-page: 215
  year: 2013
  end-page: 223
  ident: bib71
  article-title: Brown adipose tissue regulates glucose homeostasis and insulin sensitivity
  publication-title: J. Clin. Invest.
– volume: 23
  start-page: 3112
  year: 2018
  end-page: 3125
  ident: bib14
  article-title: Prediction of adipose browning capacity by systematic integration of transcriptional profiles
  publication-title: Cell Rep.
– volume: 19
  start-page: 810
  year: 2014
  end-page: 820
  ident: bib43
  article-title: A smooth muscle-like origin for beige adipocytes
  publication-title: Cell Metab.
– start-page: 11
  year: 2009
  end-page: 31
  ident: bib17
  article-title: The adipose organ
  publication-title: Adipose Tissue and Inflammation
– volume: 21
  start-page: 760
  year: 2015
  end-page: 768
  ident: bib83
  article-title: Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes
  publication-title: Nat. Med.
– volume: 8
  start-page: 323ra13
  year: 2016
  ident: bib36
  article-title: USF1 deficiency activates brown adipose tissue and improves cardiometabolic health
  publication-title: Sci. Transl. Med.
– reference: Bolstad, B. (2020). preprocessCore: A collection of pre-processing functions. R package version 1.50.0,
– volume: 9
  start-page: R137
  year: 2008
  ident: bib86
  article-title: Model-based analysis of ChIP-Seq (MACS)
  publication-title: Genome Biol.
– volume: 7
  start-page: 2029
  year: 2012
  end-page: 2040
  ident: bib8
  article-title: Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions
  publication-title: Nat. Protoc.
– volume: 10
  start-page: 81
  year: 2010
  ident: bib88
  article-title: Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors
  publication-title: BMC Dev Biol.
– volume: 14
  start-page: 209
  year: 2012
  end-page: 219
  ident: bib1
  article-title: Programming human pluripotent stem cells into white and brown adipocytes
  publication-title: Nat. Cell Biol.
– year: 1928
  ident: bib45
  article-title: The Elements of the Science of Nutrition
– volume: 25
  start-page: 168
  year: 2014
  end-page: 177
  ident: bib75
  article-title: Brown fat fuel utilization and thermogenesis
  publication-title: Trends Endocrinol. Metab.
– volume: 29
  start-page: 15
  year: 2013
  end-page: 21
  ident: bib21
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
– year: 2016
  ident: bib78
  article-title: Gplots: various R programming tools for plotting data. R package version 3.0.1
– volume: 21
  start-page: 195
  year: 1986
  end-page: 201
  ident: bib58
  article-title: Brown adipose tissue triacylglycerol fatty acids of obese and lean mice: in situ and in transplants
  publication-title: Lipids
– volume: 17
  start-page: 57
  year: 2015
  end-page: 67
  ident: bib50
  article-title: White-to-brown metabolic conversion of human adipocytes by JAK inhibition
  publication-title: Nat. Cell Biol.
– volume: 24
  start-page: 402
  year: 2016
  end-page: 419
  ident: bib2
  article-title: Beige adipocyte maintenance is regulated by autophagy-induced mitochondrial clearance
  publication-title: Cell Metab.
– reference: Blighe K (2019). EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labeling. R package version 1.2.0.
– volume: 454
  start-page: 961
  year: 2008
  end-page: 967
  ident: bib63
  article-title: PRDM16 controls a brown fat/skeletal muscle switch
  publication-title: Nature
– volume: 1773
  start-page: 31
  year: 2018
  end-page: 39
  ident: bib24
  article-title: Differentiation of brown adipocyte progenitors derived from human induced pluripotent stem cells
  publication-title: Methods Mol. Biol.
– volume: 22
  start-page: 546
  year: 2015
  end-page: 559
  ident: bib31
  article-title: Brown and beige fat: physiological roles beyond heat generation
  publication-title: Cell Metab.
– volume: 38
  start-page: 576
  year: 2010
  end-page: 589
  ident: bib26
  article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
  publication-title: Mol. Cell
– volume: 29
  start-page: 349
  year: 2018
  end-page: 359
  ident: bib70
  article-title: What can ‘Brown-ing’ do for you?
  publication-title: Trends Endocrinol. Metab.
– reference: .
– volume: 13
  start-page: 2498
  year: 2003
  end-page: 2504
  ident: bib65
  article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks
  publication-title: Genome Res.
– volume: 41
  start-page: 382
  year: 2017
  end-page: 391.e5
  ident: bib3
  article-title: A molecular switch regulating cell fate choice between muscle progenitor cells and brown adipocytes
  publication-title: Dev. Cell
– volume: 5
  start-page: 1069
  year: 2004
  end-page: 1077
  ident: bib47
  article-title: Early B cell factor cooperates with Runx1 and mediates epigenetic changes associated with mb-1 transcription
  publication-title: Nat. Immunol.
– volume: 15
  start-page: 550
  year: 2014
  ident: bib44
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
– volume: 5
  start-page: 323
  year: 2015
  end-page: 336
  ident: bib91
  article-title: Cell-cycle control of bivalent epigenetic domains regulates the exit from pluripotency
  publication-title: Stem Cell Reports
– volume: 28
  start-page: 207
  year: 2018
  end-page: 216
  ident: bib94
  article-title: Postprandial oxidative metabolism of human brown fat indicates thermogenesis
  publication-title: Cell Metab.
– volume: 32
  start-page: 1459
  year: 2014
  end-page: 1467
  ident: bib49
  article-title: Differentiation of human induced pluripotent stem cells into brown and white adipocytes: role of Pax3
  publication-title: Stem Cells
– volume: 47
  start-page: D607
  year: 2019
  end-page: D613
  ident: bib73
  article-title: STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets
  publication-title: Nucleic Acids Res.
– volume: 9
  start-page: 357
  year: 2012
  end-page: 359
  ident: bib35
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat. Methods
– volume: 23
  start-page: 602
  year: 2016
  ident: 10.1016/j.stem.2020.07.013_bib38
  article-title: Brown adipose tissue exhibits a glucose-responsive thermogenic biorhythm in humans
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.02.007
– volume: 123
  start-page: 215
  year: 2013
  ident: 10.1016/j.stem.2020.07.013_bib71
  article-title: Brown adipose tissue regulates glucose homeostasis and insulin sensitivity
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI62308
– volume: 25
  start-page: 168
  year: 2014
  ident: 10.1016/j.stem.2020.07.013_bib75
  article-title: Brown fat fuel utilization and thermogenesis
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2013.12.004
– volume: 7
  start-page: 2029
  year: 2012
  ident: 10.1016/j.stem.2020.07.013_bib8
  article-title: Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2012.130
– volume: 17
  start-page: 57
  year: 2015
  ident: 10.1016/j.stem.2020.07.013_bib50
  article-title: White-to-brown metabolic conversion of human adipocytes by JAK inhibition
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3075
– volume: 15
  start-page: 550
  year: 2014
  ident: 10.1016/j.stem.2020.07.013_bib44
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 21
  start-page: 389
  year: 2015
  ident: 10.1016/j.stem.2020.07.013_bib67
  article-title: Genetic and functional characterization of clonally derived adult human brown adipocytes
  publication-title: Nat. Med.
  doi: 10.1038/nm.3819
– volume: 13
  start-page: 2498
  year: 2003
  ident: 10.1016/j.stem.2020.07.013_bib65
  article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks
  publication-title: Genome Res.
  doi: 10.1101/gr.1239303
– year: 1928
  ident: 10.1016/j.stem.2020.07.013_bib45
– volume: 362
  start-page: 362
  year: 2018
  ident: 10.1016/j.stem.2020.07.013_bib19
  article-title: The chromatin accessibility landscape of primary human cancers
  publication-title: Science
  doi: 10.1126/science.aav1898
– volume: 14
  start-page: 209
  year: 2012
  ident: 10.1016/j.stem.2020.07.013_bib1
  article-title: Programming human pluripotent stem cells into white and brown adipocytes
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2411
– volume: 5
  start-page: 569
  year: 2015
  ident: 10.1016/j.stem.2020.07.013_bib32
  article-title: Reprogrammed functional brown adipocytes ameliorate insulin resistance and dyslipidemia in diet-induced obesity and type 2 diabetes
  publication-title: Stem Cell Reports
  doi: 10.1016/j.stemcr.2015.08.007
– volume: 21
  start-page: 502
  year: 2017
  ident: 10.1016/j.stem.2020.07.013_bib18
  article-title: MYC controls human pluripotent stem cell fate decisions through regulation of metabolic flux
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2017.08.018
– volume: 454
  start-page: 961
  year: 2008
  ident: 10.1016/j.stem.2020.07.013_bib63
  article-title: PRDM16 controls a brown fat/skeletal muscle switch
  publication-title: Nature
  doi: 10.1038/nature07182
– volume: 16
  start-page: 155
  year: 2002
  ident: 10.1016/j.stem.2020.07.013_bib84
  article-title: Cold elicits the simultaneous induction of fatty acid synthesis and β-oxidation in murine brown adipose tissue: prediction from differential gene expression and confirmation in vivo
  publication-title: FASEB J.
  doi: 10.1096/fj.01-0568com
– volume: 27
  start-page: 1348
  year: 2018
  ident: 10.1016/j.stem.2020.07.013_bib79
  article-title: Substantial metabolic activity of human brown adipose tissue during warm conditions and cold-induced lipolysis of local triglycerides
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.04.020
– volume: 21
  start-page: 863
  year: 2015
  ident: 10.1016/j.stem.2020.07.013_bib25
  article-title: Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus
  publication-title: Nat. Med.
  doi: 10.1038/nm.3891
– volume: 29
  start-page: 15
  year: 2013
  ident: 10.1016/j.stem.2020.07.013_bib21
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 29
  start-page: 191
  year: 2018
  ident: 10.1016/j.stem.2020.07.013_bib28
  article-title: The common and distinct features of brown and beige adipocytes
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2018.01.001
– volume: 32
  start-page: 1459
  year: 2014
  ident: 10.1016/j.stem.2020.07.013_bib49
  article-title: Differentiation of human induced pluripotent stem cells into brown and white adipocytes: role of Pax3
  publication-title: Stem Cells
  doi: 10.1002/stem.1607
– year: 2016
  ident: 10.1016/j.stem.2020.07.013_bib80
– volume: 22
  start-page: 546
  year: 2015
  ident: 10.1016/j.stem.2020.07.013_bib31
  article-title: Brown and beige fat: physiological roles beyond heat generation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.09.007
– volume: 1831
  start-page: 943
  year: 2013
  ident: 10.1016/j.stem.2020.07.013_bib52
  article-title: UCP1 mRNA does not produce heat
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbalip.2013.01.009
– volume: 10
  start-page: 81
  year: 2010
  ident: 10.1016/j.stem.2020.07.013_bib88
  article-title: Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors
  publication-title: BMC Dev Biol.
  doi: 10.1186/1471-213X-10-81
– ident: 10.1016/j.stem.2020.07.013_bib95
– volume: 88
  start-page: 437
  year: 2006
  ident: 10.1016/j.stem.2020.07.013_bib93
  article-title: Metabolic profiling by 13C-NMR spectroscopy:[1, 2-13C2] glucose reveals a heterogeneous metabolism in human leukemia T cells
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2005.10.004
– start-page: 11
  year: 2009
  ident: 10.1016/j.stem.2020.07.013_bib17
  article-title: The adipose organ
– volume: 5
  start-page: 4099
  year: 2014
  ident: 10.1016/j.stem.2020.07.013_bib62
  article-title: Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5099
– volume: 38
  start-page: 576
  year: 2010
  ident: 10.1016/j.stem.2020.07.013_bib26
  article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.05.004
– ident: 10.1016/j.stem.2020.07.013_bib33
– volume: 8
  start-page: 323ra13
  year: 2016
  ident: 10.1016/j.stem.2020.07.013_bib36
  article-title: USF1 deficiency activates brown adipose tissue and improves cardiometabolic health
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aad0015
– volume: 29
  start-page: 286
  year: 2015
  ident: 10.1016/j.stem.2020.07.013_bib37
  article-title: Cellular origins of cold-induced brown adipocytes in adult mice
  publication-title: FASEB J.
  doi: 10.1096/fj.14-263038
– volume: 58
  start-page: 1526
  year: 2009
  ident: 10.1016/j.stem.2020.07.013_bib61
  article-title: High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity
  publication-title: Diabetes
  doi: 10.2337/db09-0530
– volume: 21
  start-page: 195
  year: 1986
  ident: 10.1016/j.stem.2020.07.013_bib58
  article-title: Brown adipose tissue triacylglycerol fatty acids of obese and lean mice: in situ and in transplants
  publication-title: Lipids
  doi: 10.1007/BF02534821
– volume: 14
  start-page: 272
  year: 2011
  ident: 10.1016/j.stem.2020.07.013_bib54
  article-title: Different metabolic responses of human brown adipose tissue to activation by cold and insulin
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.06.012
– volume: 21
  start-page: 760
  year: 2015
  ident: 10.1016/j.stem.2020.07.013_bib83
  article-title: Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes
  publication-title: Nat. Med.
  doi: 10.1038/nm.3881
– volume: 360
  start-page: 1509
  year: 2009
  ident: 10.1016/j.stem.2020.07.013_bib20
  article-title: Identification and importance of brown adipose tissue in adult humans
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa0810780
– ident: 10.1016/j.stem.2020.07.013_bib10
– volume: 61
  start-page: 674
  year: 2012
  ident: 10.1016/j.stem.2020.07.013_bib23
  article-title: Reversal of type 1 diabetes in mice by brown adipose tissue transplant
  publication-title: Diabetes
  doi: 10.2337/db11-0510
– volume: 166
  start-page: 451
  year: 2016
  ident: 10.1016/j.stem.2020.07.013_bib42
  article-title: Mapping the pairwise choices leading from pluripotency to human bone, heart, and other mesoderm cell types
  publication-title: Cell
  doi: 10.1016/j.cell.2016.06.011
– ident: 10.1016/j.stem.2020.07.013_bib78
– volume: 5
  start-page: 1069
  year: 2004
  ident: 10.1016/j.stem.2020.07.013_bib47
  article-title: Early B cell factor cooperates with Runx1 and mediates epigenetic changes associated with mb-1 transcription
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1119
– volume: 12
  start-page: 323
  year: 2011
  ident: 10.1016/j.stem.2020.07.013_bib40
  article-title: RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-323
– volume: 9
  start-page: R137
  year: 2008
  ident: 10.1016/j.stem.2020.07.013_bib86
  article-title: Model-based analysis of ChIP-Seq (MACS)
  publication-title: Genome Biol.
  doi: 10.1186/gb-2008-9-9-r137
– volume: 16
  start-page: 394
  year: 2012
  ident: 10.1016/j.stem.2020.07.013_bib53
  article-title: Production of functional classical brown adipocytes from human pluripotent stem cells using specific hemopoietin cocktail without gene transfer
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.08.001
– volume: 25
  start-page: 3215
  year: 2018
  ident: 10.1016/j.stem.2020.07.013_bib72
  article-title: A renewable source of human beige adipocytes for development of therapies to treat metabolic syndrome
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.11.037
– volume: 17
  start-page: 480
  year: 2016
  ident: 10.1016/j.stem.2020.07.013_bib29
  article-title: Transcriptional and epigenetic control of brown and beige adipose cell fate and function
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2016.62
– volume: 10.1101/845529
  year: 2019
  ident: 10.1016/j.stem.2020.07.013_bib34
  article-title: SparK: a publication-quality NGS visualization tool
  publication-title: bioRxiv
– volume: 47
  start-page: D607
  issue: D1
  year: 2019
  ident: 10.1016/j.stem.2020.07.013_bib73
  article-title: STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1131
– volume: 17
  start-page: 200
  year: 2011
  ident: 10.1016/j.stem.2020.07.013_bib6
  article-title: Brown adipose tissue activity controls triglyceride clearance
  publication-title: Nat. Med.
  doi: 10.1038/nm.2297
– volume: 40
  start-page: 4288
  year: 2012
  ident: 10.1016/j.stem.2020.07.013_bib89
  article-title: Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks042
– volume: 29
  start-page: 349
  year: 2018
  ident: 10.1016/j.stem.2020.07.013_bib70
  article-title: What can ‘Brown-ing’ do for you?
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2018.03.002
– volume: 23
  start-page: 557
  year: 2018
  ident: 10.1016/j.stem.2020.07.013_bib92
  article-title: Chromatin accessibility-based characterization of the gene regulatory network underlying Plasmodium falciparum blood-stage development
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2018.03.007
– volume: 63
  start-page: 4089
  year: 2014
  ident: 10.1016/j.stem.2020.07.013_bib15
  article-title: Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans
  publication-title: Diabetes
  doi: 10.2337/db14-0746
– volume: 15
  start-page: 659
  year: 2013
  ident: 10.1016/j.stem.2020.07.013_bib60
  article-title: Bi-directional interconversion of brite and white adipocytes
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2740
– volume: 30
  start-page: 2869
  year: 2020
  ident: 10.1016/j.stem.2020.07.013_bib4
  article-title: Early B cell factor activity controls developmental and adaptive thermogenic gene programming in adipocytes
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.02.023
– volume: 144
  start-page: 2104
  year: 2017
  ident: 10.1016/j.stem.2020.07.013_bib13
  article-title: Making muscle: skeletal myogenesis in vivo and in vitro
  publication-title: Development
  doi: 10.1242/dev.151035
– volume: 9
  start-page: 357
  year: 2012
  ident: 10.1016/j.stem.2020.07.013_bib35
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1923
– volume: 19
  start-page: 810
  year: 2014
  ident: 10.1016/j.stem.2020.07.013_bib43
  article-title: A smooth muscle-like origin for beige adipocytes
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.03.025
– volume: 24
  start-page: 402
  year: 2016
  ident: 10.1016/j.stem.2020.07.013_bib2
  article-title: Beige adipocyte maintenance is regulated by autophagy-induced mitochondrial clearance
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.08.002
– volume: 351
  start-page: 120
  year: 2011
  ident: 10.1016/j.stem.2020.07.013_bib55
  article-title: A role for Zic1 and Zic2 in Myf5 regulation and somite myogenesis
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2010.12.037
– volume: 27
  start-page: 13
  year: 2019
  ident: 10.1016/j.stem.2020.07.013_bib66
  article-title: Transcriptional control of brown and beige fat development and function
  publication-title: Obesity (Silver Spring)
  doi: 10.1002/oby.22334
– volume: 125
  start-page: 478
  year: 2015
  ident: 10.1016/j.stem.2020.07.013_bib68
  article-title: Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI78362
– volume: 43
  start-page: e47
  year: 2015
  ident: 10.1016/j.stem.2020.07.013_bib57
  article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv007
– volume: 5
  start-page: 323
  year: 2015
  ident: 10.1016/j.stem.2020.07.013_bib91
  article-title: Cell-cycle control of bivalent epigenetic domains regulates the exit from pluripotency
  publication-title: Stem Cell Reports
  doi: 10.1016/j.stemcr.2015.07.005
– volume: 125
  start-page: 21
  year: 2014
  ident: 10.1016/j.stem.2020.07.013_bib87
  article-title: Enhanced sympathetic activity in mice with brown adipose tissue transplantation (transBATation)
  publication-title: Physiol. Behav.
  doi: 10.1016/j.physbeh.2013.11.008
– volume: 28
  start-page: 207
  year: 2018
  ident: 10.1016/j.stem.2020.07.013_bib94
  article-title: Postprandial oxidative metabolism of human brown fat indicates thermogenesis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.05.020
– volume: 1773
  start-page: 31
  year: 2018
  ident: 10.1016/j.stem.2020.07.013_bib24
  article-title: Differentiation of brown adipocyte progenitors derived from human induced pluripotent stem cells
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7799-4_4
– volume: 25
  start-page: 2078
  year: 2009
  ident: 10.1016/j.stem.2020.07.013_bib41
  article-title: The sequence alignment/map format and SAMtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 41
  start-page: 382
  year: 2017
  ident: 10.1016/j.stem.2020.07.013_bib3
  article-title: A molecular switch regulating cell fate choice between muscle progenitor cells and brown adipocytes
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2017.04.012
– volume: 26
  start-page: 139
  year: 2010
  ident: 10.1016/j.stem.2020.07.013_bib59
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 18
  start-page: 1573
  year: 2017
  ident: 10.1016/j.stem.2020.07.013_bib82
  article-title: In vivo human somitogenesis guides somite development from hPSCs
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.01.040
– volume: 23
  start-page: 3112
  year: 2018
  ident: 10.1016/j.stem.2020.07.013_bib14
  article-title: Prediction of adipose browning capacity by systematic integration of transcriptional profiles
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.05.021
– volume: 19
  start-page: 1338
  year: 2013
  ident: 10.1016/j.stem.2020.07.013_bib77
  article-title: Tracking adipogenesis during white adipose tissue development, expansion and regeneration
  publication-title: Nat. Med.
  doi: 10.1038/nm.3324
– volume: 360
  start-page: 1518
  year: 2009
  ident: 10.1016/j.stem.2020.07.013_bib76
  article-title: Functional brown adipose tissue in healthy adults
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa0808949
– volume: 14
  start-page: 313
  year: 2019
  ident: 10.1016/j.stem.2020.07.013_bib85
  article-title: Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by LC-MS/MS
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-018-0102-x
– volume: 296
  start-page: 164
  year: 2006
  ident: 10.1016/j.stem.2020.07.013_bib5
  article-title: β-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2006.04.449
– volume: 287
  start-page: 25038
  year: 2012
  ident: 10.1016/j.stem.2020.07.013_bib51
  article-title: Lipolytic products activate peroxisome proliferator-activated receptor (PPAR) α and δ in brown adipocytes to match fatty acid oxidation with supply
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.374041
SSID ssj0057107
Score 2.4499967
Snippet Brown adipocytes (BAs) are a potential cell source for the treatment of metabolic disease, including type 2 diabetes. In this report, human pluripotent stem...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 784
SubjectTerms brown adipocytes
metabolic disease
pluripotent stem cells
thermogenic adipocytes
Title Generation of Functional Brown Adipocytes from Human Pluripotent Stem Cells via Progression through a Paraxial Mesoderm State
URI https://dx.doi.org/10.1016/j.stem.2020.07.013
https://www.ncbi.nlm.nih.gov/pubmed/32783886
https://www.proquest.com/docview/2434058093
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7E91tG8CZla5O06VEXFxFWBBX2FpI2gZV1u-xD9OB_d6ZpBQ_uwWNLQkMm_b4vyTwYu8h8HLvSxZG1pY-QoWRknVBRqaxIrUWOSylQuP-Q3r2I-4EcrLBuGwtDbpUN9gdMr9G6edNpZrMzGQ47Tyg9hMzjPMF1SmXmEIcpqpSC-AY3LRpLZNAs3CyLiFo3gTPBx4tyJeMeMYnrBJ5X_C9y-kt81iTU22QbjXqE6zDALbbixttsLdST_NxhXyGJNM01VB56yFnhqA_q3TZcl8NJVXyiugQKK4H6BB8eRwtEjgrF8xyecKjQdaPRDN6HBh7Jeytk7oCmog_gWzM1H7huoe9mVErtDWrJusteerfP3buoqa8QFVym8yhR3qaJURliXG4E7rxcmXPn88IWIvOZMYWVKJhSlWYmQyVTGo8m5ZxLVSJI8j22Oq7G7oCBd55OtBLlUF95leQOdaFXwiLbCe_zQ3bVTqwumuTjVANjpFsvs1dNxtBkDB1nGo1xyC5_-kxC6o2lrWVrL_1rAWnkhqX9zlvjavyz6LrEjF21mOlEcFSzKs6xzX6w-s84OBUoUSo9-udXj9k6PdVBjfKErc6nC3eK6mZuz-rl-w0xvflx
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcY0zQu0za2ARvsIXGboob4I86RVVRlowgJkHqz7MSWirqmoi2CA__73osTJA5w4OrYiuX3_H4_2--DsYM8pKmvfJo4V4UEEUomzgudVNoJ5RxinKJA4dGZGl6JP2M5XmP9LhaG3Cpb2x9temOt25Zeu5q9-WTSu0DqIWSRFhnqKZWZe8PeIhtQlED_ZPy7M8cSITSPT8sioe5t5Ex08qJkyXhIzNImg-chfw6dnmOfDQoNPrIPLX2EozjDT2zNzz6zd7Gg5P0me4hZpGmxoQ4wQNCKd33QHLfhqJrM6_Ie6SVQXAk0V_hwPl2h6aiRPS_hAqcKfT-dLuB2YuGc3Ldi6g5oS_oAttobe4eKCyO_oFpq_6DhrF_Y1eD4sj9M2gILScmlWiaZDk5lVudo5Aor8Ojlq4L7UJSuFHnIrS2dRMaktMptjlSmsgFlyjmXukIryb-y9Vk981sMgg90pZVpjwQr6KzwSAyDFg7hToRQbLPDbmFN2WYfpyIYU9O5mV0bEoYhYZg0NyiMbfbrccw85t54sbfs5GWeaJBBcHhx3H4nXINbi95L7MzXq4XJBEc6q9MC-3yLUn-cB6cKJVqrnVf-9Sd7P7wcnZrTk7O_39kGfWkiHOUPtr68WfldpDpLt9eo8n_MpvyV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+of+Functional+Brown+Adipocytes+from+Human+Pluripotent+Stem+Cells+via+Progression+through+a+Paraxial+Mesoderm+State&rft.jtitle=Cell+stem+cell&rft.au=Zhang%2C+Liang&rft.au=Avery%2C+John&rft.au=Yin%2C+Amelia&rft.au=Singh%2C+Amar+M&rft.date=2020-11-05&rft.issn=1875-9777&rft.eissn=1875-9777&rft.volume=27&rft.issue=5&rft.spage=784&rft_id=info:doi/10.1016%2Fj.stem.2020.07.013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-5909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-5909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-5909&client=summon