Generation of Functional Brown Adipocytes from Human Pluripotent Stem Cells via Progression through a Paraxial Mesoderm State
Brown adipocytes (BAs) are a potential cell source for the treatment of metabolic disease, including type 2 diabetes. In this report, human pluripotent stem cells (hPSCs) are subject to directed differentiation through a paraxial mesoderm progenitor state that generates BAs at high efficiency. Molec...
Saved in:
Published in | Cell stem cell Vol. 27; no. 5; pp. 784 - 797.e11 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
05.11.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1934-5909 1875-9777 1875-9777 |
DOI | 10.1016/j.stem.2020.07.013 |
Cover
Abstract | Brown adipocytes (BAs) are a potential cell source for the treatment of metabolic disease, including type 2 diabetes. In this report, human pluripotent stem cells (hPSCs) are subject to directed differentiation through a paraxial mesoderm progenitor state that generates BAs at high efficiency. Molecular analysis identifies potential regulatory networks for BA development, giving insight into development along this lineage. hPSC-derived BAs undergo elevated rates of glycolysis, uncoupled respiration, and lipolysis that are responsive to changes in cyclic AMP (cAMP)-dependent signaling, consistent with metabolic activity in BA tissue depots. Transplanted human BAs engraft into the inter-scapular region of recipient mice and exhibit thermogenic activity. Recipient animals have elevated metabolic activity, respiratory exchange ratios, and whole-body energy expenditure. Finally, transplanted BAs reduce circulating glucose levels in hyperglycemic animals. These data provide a roadmap for brown adipocyte development and indicate that BAs generated from hPSCs have potential as a tool for therapeutic development.
[Display omitted]
•Serum-free, directed differentiation strategy for generating functional BAs•Identification of a potential network of regulators that control BA development•Transplanted BAs improve whole body energy metabolism and blood glucose disposal
Zhang et al. describe a system for the generation of human brown adipocytes (BAs) from pluripotent stem cells and identify potential regulatory networks for developmental commitment and specification of this lineage. Transplantation of BAs increases whole-body energy expenditure and improves glucose homeostasis, suggesting potential utility for treatment of metabolic disease. |
---|---|
AbstractList | Brown adipocytes (BAs) are a potential cell source for the treatment of metabolic disease, including type 2 diabetes. In this report, human pluripotent stem cells (hPSCs) are subject to directed differentiation through a paraxial mesoderm progenitor state that generates BAs at high efficiency. Molecular analysis identifies potential regulatory networks for BA development, giving insight into development along this lineage. hPSC-derived BAs undergo elevated rates of glycolysis, uncoupled respiration, and lipolysis that are responsive to changes in cyclic AMP (cAMP)-dependent signaling, consistent with metabolic activity in BA tissue depots. Transplanted human BAs engraft into the inter-scapular region of recipient mice and exhibit thermogenic activity. Recipient animals have elevated metabolic activity, respiratory exchange ratios, and whole-body energy expenditure. Finally, transplanted BAs reduce circulating glucose levels in hyperglycemic animals. These data provide a roadmap for brown adipocyte development and indicate that BAs generated from hPSCs have potential as a tool for therapeutic development. Brown adipocytes (BAs) are a potential cell source for the treatment of metabolic disease, including type 2 diabetes. In this report, human pluripotent stem cells (hPSCs) are subject to directed differentiation through a paraxial mesoderm progenitor state that generates BAs at high efficiency. Molecular analysis identifies potential regulatory networks for BA development, giving insight into development along this lineage. hPSC-derived BAs undergo elevated rates of glycolysis, uncoupled respiration, and lipolysis that are responsive to changes in cyclic AMP (cAMP)-dependent signaling, consistent with metabolic activity in BA tissue depots. Transplanted human BAs engraft into the inter-scapular region of recipient mice and exhibit thermogenic activity. Recipient animals have elevated metabolic activity, respiratory exchange ratios, and whole-body energy expenditure. Finally, transplanted BAs reduce circulating glucose levels in hyperglycemic animals. These data provide a roadmap for brown adipocyte development and indicate that BAs generated from hPSCs have potential as a tool for therapeutic development.Brown adipocytes (BAs) are a potential cell source for the treatment of metabolic disease, including type 2 diabetes. In this report, human pluripotent stem cells (hPSCs) are subject to directed differentiation through a paraxial mesoderm progenitor state that generates BAs at high efficiency. Molecular analysis identifies potential regulatory networks for BA development, giving insight into development along this lineage. hPSC-derived BAs undergo elevated rates of glycolysis, uncoupled respiration, and lipolysis that are responsive to changes in cyclic AMP (cAMP)-dependent signaling, consistent with metabolic activity in BA tissue depots. Transplanted human BAs engraft into the inter-scapular region of recipient mice and exhibit thermogenic activity. Recipient animals have elevated metabolic activity, respiratory exchange ratios, and whole-body energy expenditure. Finally, transplanted BAs reduce circulating glucose levels in hyperglycemic animals. These data provide a roadmap for brown adipocyte development and indicate that BAs generated from hPSCs have potential as a tool for therapeutic development. Brown adipocytes (BAs) are a potential cell source for the treatment of metabolic disease, including type 2 diabetes. In this report, human pluripotent stem cells (hPSCs) are subject to directed differentiation through a paraxial mesoderm progenitor state that generates BAs at high efficiency. Molecular analysis identifies potential regulatory networks for BA development, giving insight into development along this lineage. hPSC-derived BAs undergo elevated rates of glycolysis, uncoupled respiration, and lipolysis that are responsive to changes in cyclic AMP (cAMP)-dependent signaling, consistent with metabolic activity in BA tissue depots. Transplanted human BAs engraft into the inter-scapular region of recipient mice and exhibit thermogenic activity. Recipient animals have elevated metabolic activity, respiratory exchange ratios, and whole-body energy expenditure. Finally, transplanted BAs reduce circulating glucose levels in hyperglycemic animals. These data provide a roadmap for brown adipocyte development and indicate that BAs generated from hPSCs have potential as a tool for therapeutic development. [Display omitted] •Serum-free, directed differentiation strategy for generating functional BAs•Identification of a potential network of regulators that control BA development•Transplanted BAs improve whole body energy metabolism and blood glucose disposal Zhang et al. describe a system for the generation of human brown adipocytes (BAs) from pluripotent stem cells and identify potential regulatory networks for developmental commitment and specification of this lineage. Transplantation of BAs increases whole-body energy expenditure and improves glucose homeostasis, suggesting potential utility for treatment of metabolic disease. |
Author | Cliff, Timothy S. Zhang, Liang Yin, Amelia Avery, John Singh, Amar M. Yin, Hang Dalton, Stephen |
Author_xml | – sequence: 1 givenname: Liang surname: Zhang fullname: Zhang, Liang organization: Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA – sequence: 2 givenname: John surname: Avery fullname: Avery, John organization: Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA – sequence: 3 givenname: Amelia surname: Yin fullname: Yin, Amelia organization: Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA – sequence: 4 givenname: Amar M. surname: Singh fullname: Singh, Amar M. organization: Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA – sequence: 5 givenname: Timothy S. orcidid: 0000-0003-2266-7255 surname: Cliff fullname: Cliff, Timothy S. organization: Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA – sequence: 6 givenname: Hang surname: Yin fullname: Yin, Hang organization: Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA – sequence: 7 givenname: Stephen surname: Dalton fullname: Dalton, Stephen email: sdalton@uga.edu organization: Center for Molecular Medicine, University of Georgia, 325 Riverbend Road, Athens, GA 30605, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32783886$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1TAQhS1URH_gBVggL9kk2HES2xKbckVbpFZUAtaWY09aXyX2xXZauuDdcbjtpouuZjQ639HonGN04IMHhN5TUlNC-0_bOmWY64Y0pCa8JpS9QkdU8K6SnPODskvWVp0k8hAdp7QlpOOU8DfokDVcMCH6I_T3HDxEnV3wOIz4bPFm3fWEv8Rw7_GpdbtgHjIkPMYw44tl1h5fT0ss9ww-4x_lB7yBaUr4zml8HcNNhJRWw3wbw3Jzi8tVR_3HFdcrSMFCnAumM7xFr0c9JXj3OE_Qr7OvPzcX1eX382-b08vKsK7PVSPGoW-04NpaqVshJVjJYJRmMC0fudZm6Jq-7UXPNWdSWj0Og2WMdcJKStkJ-rj33cXwe4GU1eySKT9rD2FJqmlZSzpBJCvSD4_SZZjBql10s44P6imyIhB7gYkhpQijMi7_DzBH7SZFiVrbUVu1tqPWdhThqrRT0OYZ-uT-IvR5D0EJ6M5BVMk48Aasi2CyssG9hP8DQ7irMA |
CitedBy_id | crossref_primary_10_1038_s41574_022_00733_z crossref_primary_10_1016_j_devcel_2023_08_003 crossref_primary_10_1096_fj_202301575RR crossref_primary_10_3390_ijms23095099 crossref_primary_10_1016_j_devcel_2023_08_001 crossref_primary_10_3390_biomedicines12020397 crossref_primary_10_1038_s41418_024_01397_0 crossref_primary_10_15252_embj_2021110439 crossref_primary_10_3390_ijms25126303 crossref_primary_10_1016_j_lfs_2024_122758 crossref_primary_10_1016_j_bbrc_2021_06_096 crossref_primary_10_1038_s41580_021_00350_0 crossref_primary_10_3390_ijms23147834 crossref_primary_10_1016_j_bioactmat_2022_10_022 crossref_primary_10_1002_mco2_274 crossref_primary_10_3390_cells11152310 crossref_primary_10_3390_biomedicines12071474 |
Cites_doi | 10.1016/j.cmet.2016.02.007 10.1172/JCI62308 10.1016/j.tem.2013.12.004 10.1038/nprot.2012.130 10.1038/ncb3075 10.1186/s13059-014-0550-8 10.1038/nm.3819 10.1101/gr.1239303 10.1126/science.aav1898 10.1038/ncb2411 10.1016/j.stemcr.2015.08.007 10.1016/j.stem.2017.08.018 10.1038/nature07182 10.1096/fj.01-0568com 10.1016/j.cmet.2018.04.020 10.1038/nm.3891 10.1093/bioinformatics/bts635 10.1016/j.tem.2018.01.001 10.1002/stem.1607 10.1016/j.cmet.2015.09.007 10.1016/j.bbalip.2013.01.009 10.1186/1471-213X-10-81 10.1016/j.biochi.2005.10.004 10.1038/ncomms5099 10.1016/j.molcel.2010.05.004 10.1126/scitranslmed.aad0015 10.1096/fj.14-263038 10.2337/db09-0530 10.1007/BF02534821 10.1016/j.cmet.2011.06.012 10.1038/nm.3881 10.1056/NEJMoa0810780 10.2337/db11-0510 10.1016/j.cell.2016.06.011 10.1038/ni1119 10.1186/1471-2105-12-323 10.1186/gb-2008-9-9-r137 10.1016/j.cmet.2012.08.001 10.1016/j.celrep.2018.11.037 10.1038/nrm.2016.62 10.1093/nar/gky1131 10.1038/nm.2297 10.1093/nar/gks042 10.1016/j.tem.2018.03.002 10.1016/j.chom.2018.03.007 10.2337/db14-0746 10.1038/ncb2740 10.1016/j.celrep.2020.02.023 10.1242/dev.151035 10.1038/nmeth.1923 10.1016/j.cmet.2014.03.025 10.1016/j.cmet.2016.08.002 10.1016/j.ydbio.2010.12.037 10.1002/oby.22334 10.1172/JCI78362 10.1093/nar/gkv007 10.1016/j.stemcr.2015.07.005 10.1016/j.physbeh.2013.11.008 10.1016/j.cmet.2018.05.020 10.1007/978-1-4939-7799-4_4 10.1093/bioinformatics/btp352 10.1016/j.devcel.2017.04.012 10.1093/bioinformatics/btp616 10.1016/j.celrep.2017.01.040 10.1016/j.celrep.2018.05.021 10.1038/nm.3324 10.1056/NEJMoa0808949 10.1038/s41596-018-0102-x 10.1016/j.ydbio.2006.04.449 10.1074/jbc.M112.374041 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.stem.2020.07.013 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1875-9777 |
EndPage | 797.e11 |
ExternalDocumentID | 32783886 10_1016_j_stem_2020_07_013 S1934590920303519 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: S10 RR027814 – fundername: NIAMS NIH HHS grantid: R01 AR070178 |
GroupedDBID | --- --K 0R~ 29B 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE HVGLF IHE IXB JIG M41 O-L O9- OK1 P2P RCE ROL RPZ SES SSZ TR2 WQ6 ZA5 ZBA 5VS AAEDT AAIKJ AAMRU AAQFI AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD HZ~ OZT RIG NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c356t-28fb62a87add9a4899ed93ef9cbc47f7aacb52646867a7399dafbbd33358d9113 |
IEDL.DBID | IXB |
ISSN | 1934-5909 1875-9777 |
IngestDate | Tue Aug 05 10:27:56 EDT 2025 Thu Apr 03 07:02:17 EDT 2025 Thu Apr 24 23:05:21 EDT 2025 Tue Jul 01 01:08:33 EDT 2025 Fri Feb 23 02:48:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | thermogenic adipocytes pluripotent stem cells metabolic disease brown adipocytes |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-28fb62a87add9a4899ed93ef9cbc47f7aacb52646867a7399dafbbd33358d9113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2266-7255 |
PMID | 32783886 |
PQID | 2434058093 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2434058093 pubmed_primary_32783886 crossref_citationtrail_10_1016_j_stem_2020_07_013 crossref_primary_10_1016_j_stem_2020_07_013 elsevier_sciencedirect_doi_10_1016_j_stem_2020_07_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-05 |
PublicationDateYYYYMMDD | 2020-11-05 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell stem cell |
PublicationTitleAlternate | Cell Stem Cell |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Ritchie, Phipson, Wu, Hu, Law, Shi, Smyth (bib57) 2015; 43 Xi, Fujiwara, Gonzalez, Jan, Liebscher, Van Handel, Schenke-Layland, Pyle (bib82) 2017; 18 Altshuler-Keylin, Shinoda, Hasegawa, Ikeda, Hong, Kang, Yang, Perera, Debnath, Kajimura (bib2) 2016; 24 Kurtenbach, Harbour (bib34) 2019; 10.1101/845529 Cheng, Jiang, Keipert, Zhang, Hauser, Graf, Strom, Tschöp, Jastroch, Perocchi (bib14) 2018; 23 Bolstad, B. (2020). preprocessCore: A collection of pre-processing functions. R package version 1.50.0 Sanchez-Gurmaches, Guertin (bib62) 2014; 5 Hanssen, Hoeks, Brans, van der Lans, Schaart, van den Driessche, Jörgensen, Boekschoten, Hesselink, Havekes (bib25) 2015; 21 Lusk (bib45) 1928 Kishida, Ejima, Yamamoto, Tanaka, Yamamoto, Mazda (bib32) 2015; 5 Su, Guntur, Nguyen, Fakory, Doucette, Leech, Lotana, Kelley, Kohli, Martino (bib72) 2018; 25 Bartelt, Bruns, Reimer, Hohenberg, Ittrich, Peldschus, Kaul, Tromsdorf, Weller, Waurisch (bib6) 2011; 17 Maier, Ostraat, Gao, Fields, Shinton, Medina, Ikawa, Murre, Singh, Hardy, Hagman (bib47) 2004; 5 Cypess, Lehman, Williams, Tal, Rodman, Goldfine, Kuo, Palmer, Tseng, Doria (bib20) 2009; 360 Szklarczyk, Gable, Lyon, Junge, Wyder, Huerta-Cepas, Simonovic, Doncheva, Morris, Bork (bib73) 2019; 47 Rosenwald, Perdikari, Rülicke, Wolfrum (bib60) 2013; 15 Wang, Tao, Gupta, Scherer (bib77) 2013; 19 Virtanen, Lidell, Orava, Heglind, Westergren, Niemi, Taittonen, Laine, Savisto, Enerbäck, Nuutila (bib76) 2009; 360 Nishio, Yoneshiro, Nakahara, Suzuki, Saeki, Hasegawa, Kawai, Akutsu, Umezawa, Yasuda (bib53) 2012; 16 Li, Handsaker, Wysoker, Fennell, Ruan, Homer, Marth, Abecasis, Durbin (bib41) 2009; 25 Moisan, Lee, Zhang, Hudak, Meyer, Prummer, Zoffmann, Truong, Ebeling, Kiialainen (bib50) 2015; 17 Kajimura, Spiegelman, Seale (bib31) 2015; 22 Li, Dewey (bib40) 2011; 12 Roberts, Ashwell, Enser (bib58) 1986; 21 Inagaki, Sakai, Kajimura (bib29) 2016; 17 Chal, Pourquié (bib13) 2017; 144 Laurila, Soronen, Kooijman, Forsström, Boon, Surakka, Kaiharju, Coomans, Van Den Berg, Autio (bib36) 2016; 8 Atit, Sgaier, Mohamed, Taketo, Dufort, Joyner, Niswander, Conlon (bib5) 2006; 296 . Lee, Bova, Schofield, Bryant, Dieckmann, Slattery, Govendir, Emmett, Greenfield (bib38) 2016; 23 Mottillo, Bloch, Leff, Granneman (bib51) 2012; 287 Langmead, Salzberg (bib35) 2012; 9 McCarthy, Chen, Smyth (bib89) 2012; 40 Shapira, Seale (bib66) 2019; 27 An, Wang, Diao, Long, Fu, Weng, Zhou, Sun, Cheung, Ip (bib3) 2017; 41 Beers, Gulbranson, George, Siniscalchi, Jones, Thomson, Chen (bib8) 2012; 7 Miccheli, Tomassini, Puccetti, Valerio, Peluso, Tuccillo, Calvani, Manetti, Conti (bib93) 2006; 88 Pan, Gustafsson, Aruga, Tiedken, Chen, Emerson (bib55) 2011; 351 Angueira, Shapira, Ishibashi, Sampat, Sostre-Colón, Emmett, Titchenell, Lazar, Lim, Seale (bib4) 2020; 30 Warnes, Bolker, Bonebakker, Gentleman, Huber, Liaw, Lumley, Maechler, Magnusson, Moeller (bib78) 2016 Corces, Granja, Shams, Louie, Seoane, Zhou, Silva, Groeneveld, Wong, Cho (bib19) 2018; 362 Orava, Nuutila, Lidell, Oikonen, Noponen, Viljanen, Scheinin, Taittonen, Niemi, Enerbäck, Virtanen (bib54) 2011; 14 Love, Huber, Anders (bib44) 2014; 15 Gunawardana, Piston (bib23) 2012; 61 Kolde, Kolde (bib33) 2015 Townsend, Tseng (bib75) 2014; 25 Loh, Chen, Koh, Deng, Sinha, Tsai, Barkal, Shen, Jain, Morganti (bib42) 2016; 166 Singh, Sun, Li, Zhang, Wu, Zhao, Qin, Dalton (bib91) 2015; 5 Dobin, Davis, Schlesinger, Drenkow, Zaleski, Jha, Batut, Chaisson, Gingeras (bib21) 2013; 29 Saito, Okamatsu-Ogura, Matsushita, Watanabe, Yoneshiro, Nio-Kobayashi, Iwanaga, Miyagawa, Kameya, Nakada (bib61) 2009; 58 Long, Svensson, Tsai, Zeng, Roh, Kong, Rao, Lou, Lokurkar, Baur (bib43) 2014; 19 Toenhake, Fraschka, Vijayabaskar, Westhead, van Heeringen, Bártfai (bib92) 2018; 23 Cinti, Vettor (bib17) 2009 Yuan, Kremer, Huang, Breitkopf, Ben-Sahra, Manning, Lyssiotis, Asara (bib85) 2019; 14 Singh, Dalton (bib70) 2018; 29 Din, Saari, Raiko, Kudomi, Maurer, Lahesmaa, Fromme, Amri, Klingenspor, Solin (bib94) 2018; 28 Hafner, Mohsen-Kanson, Dani (bib24) 2018; 1773 Ikeda, Maretich, Kajimura (bib28) 2018; 29 Blighe K (2019). EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labeling. R package version 1.2.0. Cliff, Wu, Boward, Yin, Yin, Glushka, Prestegaard, Dalton (bib18) 2017; 21 Yu, Lewin, Forrest, Adams (bib84) 2002; 16 Zhang, Liu, Meyer, Eeckhoute, Johnson, Bernstein, Nusbaum, Myers, Brown, Li, Liu (bib86) 2008; 9 Stanford, Middelbeek, Townsend, An, Nygaard, Hitchcox, Markan, Nakano, Hirshman, Tseng, Goodyear (bib71) 2013; 123 Shinoda, Luijten, Hasegawa, Hong, Sonne, Kim, Xue, Chondronikola, Cypess, Tseng (bib67) 2015; 21 Nedergaard, Cannon (bib52) 2013; 1831 Heinz, Benner, Spann, Bertolino, Lin, Laslo, Cheng, Murre, Singh, Glass (bib26) 2010; 38 Robinson, McCarthy, Smyth (bib59) 2010; 26 Ahfeldt, Schinzel, Lee, Hendrickson, Kaplan, Lum, Camahort, Xia, Shay, Rhee (bib1) 2012; 14 Lee, Petkova, Konkar, Granneman (bib37) 2015; 29 Sidossis, Kajimura (bib68) 2015; 125 Seale, Bjork, Yang, Kajimura, Chin, Kuang, Scimè, Devarakonda, Conroe, Erdjument-Bromage (bib63) 2008; 454 Shannon, Markiel, Ozier, Baliga, Wang, Ramage, Amin, Schwikowski, Ideker (bib65) 2003; 13 Xue, Lynes, Dreyfuss, Shamsi, Schulz, Zhang, Huang, Townsend, Li, Takahashi (bib83) 2015; 21 Mohsen-Kanson, Hafner, Wdziekonski, Takashima, Villageois, Carrière, Svensson, Bagnis, Chignon-Sicard, Svensson (bib49) 2014; 32 Zhu, Spicer, Gavini, Goudjo-Ako, Novak, Shi (bib87) 2014; 125 Si-Tayeb, Noto, Sepac, Sedlic, Bosnjak, Lough, Duncan (bib88) 2010; 10 Weir, Ramage, Akyol, Rhodes, Kyle, Fletcher, Craven, Wakelin, Drake, Gregoriades (bib79) 2018; 27 Wickham (bib80) 2016 Chondronikola, Volpi, Børsheim, Porter, Annamalai, Enerbäck, Lidell, Saraf, Labbe, Hurren (bib15) 2014; 63 Li (10.1016/j.stem.2020.07.013_bib41) 2009; 25 Virtanen (10.1016/j.stem.2020.07.013_bib76) 2009; 360 Cinti (10.1016/j.stem.2020.07.013_bib17) 2009 Lee (10.1016/j.stem.2020.07.013_bib37) 2015; 29 Chal (10.1016/j.stem.2020.07.013_bib13) 2017; 144 An (10.1016/j.stem.2020.07.013_bib3) 2017; 41 Wickham (10.1016/j.stem.2020.07.013_bib80) 2016 Yuan (10.1016/j.stem.2020.07.013_bib85) 2019; 14 Beers (10.1016/j.stem.2020.07.013_bib8) 2012; 7 Ahfeldt (10.1016/j.stem.2020.07.013_bib1) 2012; 14 Long (10.1016/j.stem.2020.07.013_bib43) 2014; 19 Kishida (10.1016/j.stem.2020.07.013_bib32) 2015; 5 Rosenwald (10.1016/j.stem.2020.07.013_bib60) 2013; 15 Stanford (10.1016/j.stem.2020.07.013_bib71) 2013; 123 Chondronikola (10.1016/j.stem.2020.07.013_bib15) 2014; 63 Pan (10.1016/j.stem.2020.07.013_bib55) 2011; 351 Yu (10.1016/j.stem.2020.07.013_bib84) 2002; 16 10.1016/j.stem.2020.07.013_bib95 Si-Tayeb (10.1016/j.stem.2020.07.013_bib88) 2010; 10 Zhang (10.1016/j.stem.2020.07.013_bib86) 2008; 9 10.1016/j.stem.2020.07.013_bib10 Warnes (10.1016/j.stem.2020.07.013_bib78) Ikeda (10.1016/j.stem.2020.07.013_bib28) 2018; 29 Dobin (10.1016/j.stem.2020.07.013_bib21) 2013; 29 Li (10.1016/j.stem.2020.07.013_bib40) 2011; 12 Din (10.1016/j.stem.2020.07.013_bib94) 2018; 28 Szklarczyk (10.1016/j.stem.2020.07.013_bib73) 2019; 47 Moisan (10.1016/j.stem.2020.07.013_bib50) 2015; 17 Kolde (10.1016/j.stem.2020.07.013_bib33) Singh (10.1016/j.stem.2020.07.013_bib70) 2018; 29 Laurila (10.1016/j.stem.2020.07.013_bib36) 2016; 8 Kurtenbach (10.1016/j.stem.2020.07.013_bib34) 2019; 10.1101/845529 Shannon (10.1016/j.stem.2020.07.013_bib65) 2003; 13 Xi (10.1016/j.stem.2020.07.013_bib82) 2017; 18 Xue (10.1016/j.stem.2020.07.013_bib83) 2015; 21 Angueira (10.1016/j.stem.2020.07.013_bib4) 2020; 30 Sanchez-Gurmaches (10.1016/j.stem.2020.07.013_bib62) 2014; 5 Nedergaard (10.1016/j.stem.2020.07.013_bib52) 2013; 1831 Cliff (10.1016/j.stem.2020.07.013_bib18) 2017; 21 Love (10.1016/j.stem.2020.07.013_bib44) 2014; 15 Altshuler-Keylin (10.1016/j.stem.2020.07.013_bib2) 2016; 24 Miccheli (10.1016/j.stem.2020.07.013_bib93) 2006; 88 Heinz (10.1016/j.stem.2020.07.013_bib26) 2010; 38 Seale (10.1016/j.stem.2020.07.013_bib63) 2008; 454 Roberts (10.1016/j.stem.2020.07.013_bib58) 1986; 21 Lee (10.1016/j.stem.2020.07.013_bib38) 2016; 23 Kajimura (10.1016/j.stem.2020.07.013_bib31) 2015; 22 Ritchie (10.1016/j.stem.2020.07.013_bib57) 2015; 43 Sidossis (10.1016/j.stem.2020.07.013_bib68) 2015; 125 Hafner (10.1016/j.stem.2020.07.013_bib24) 2018; 1773 Orava (10.1016/j.stem.2020.07.013_bib54) 2011; 14 Maier (10.1016/j.stem.2020.07.013_bib47) 2004; 5 Singh (10.1016/j.stem.2020.07.013_bib91) 2015; 5 McCarthy (10.1016/j.stem.2020.07.013_bib89) 2012; 40 Atit (10.1016/j.stem.2020.07.013_bib5) 2006; 296 Shapira (10.1016/j.stem.2020.07.013_bib66) 2019; 27 Langmead (10.1016/j.stem.2020.07.013_bib35) 2012; 9 Inagaki (10.1016/j.stem.2020.07.013_bib29) 2016; 17 Gunawardana (10.1016/j.stem.2020.07.013_bib23) 2012; 61 Hanssen (10.1016/j.stem.2020.07.013_bib25) 2015; 21 Mohsen-Kanson (10.1016/j.stem.2020.07.013_bib49) 2014; 32 Saito (10.1016/j.stem.2020.07.013_bib61) 2009; 58 Zhu (10.1016/j.stem.2020.07.013_bib87) 2014; 125 Weir (10.1016/j.stem.2020.07.013_bib79) 2018; 27 Bartelt (10.1016/j.stem.2020.07.013_bib6) 2011; 17 Shinoda (10.1016/j.stem.2020.07.013_bib67) 2015; 21 Toenhake (10.1016/j.stem.2020.07.013_bib92) 2018; 23 Corces (10.1016/j.stem.2020.07.013_bib19) 2018; 362 Mottillo (10.1016/j.stem.2020.07.013_bib51) 2012; 287 Robinson (10.1016/j.stem.2020.07.013_bib59) 2010; 26 Nishio (10.1016/j.stem.2020.07.013_bib53) 2012; 16 Wang (10.1016/j.stem.2020.07.013_bib77) 2013; 19 Cypess (10.1016/j.stem.2020.07.013_bib20) 2009; 360 Loh (10.1016/j.stem.2020.07.013_bib42) 2016; 166 Su (10.1016/j.stem.2020.07.013_bib72) 2018; 25 Cheng (10.1016/j.stem.2020.07.013_bib14) 2018; 23 Townsend (10.1016/j.stem.2020.07.013_bib75) 2014; 25 Lusk (10.1016/j.stem.2020.07.013_bib45) 1928 |
References_xml | – volume: 351 start-page: 120 year: 2011 end-page: 127 ident: bib55 article-title: A role for Zic1 and Zic2 in Myf5 regulation and somite myogenesis publication-title: Dev. Biol. – volume: 10.1101/845529 year: 2019 ident: bib34 article-title: SparK: a publication-quality NGS visualization tool publication-title: bioRxiv – volume: 1831 start-page: 943 year: 2013 end-page: 949 ident: bib52 article-title: UCP1 mRNA does not produce heat publication-title: Biochim. Biophys. Acta – volume: 14 start-page: 313 year: 2019 end-page: 330 ident: bib85 article-title: Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by LC-MS/MS publication-title: Nat. Protoc. – year: 2015 ident: bib33 article-title: Package ‘pheatmap’. R Package – volume: 27 start-page: 13 year: 2019 end-page: 21 ident: bib66 article-title: Transcriptional control of brown and beige fat development and function publication-title: Obesity (Silver Spring) – volume: 16 start-page: 155 year: 2002 end-page: 168 ident: bib84 article-title: Cold elicits the simultaneous induction of fatty acid synthesis and β-oxidation in murine brown adipose tissue: prediction from differential gene expression and confirmation in vivo publication-title: FASEB J. – volume: 61 start-page: 674 year: 2012 end-page: 682 ident: bib23 article-title: Reversal of type 1 diabetes in mice by brown adipose tissue transplant publication-title: Diabetes – volume: 40 start-page: 4288 year: 2012 end-page: 4297 ident: bib89 article-title: Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation publication-title: Nucleic Acids Res. – volume: 26 start-page: 139 year: 2010 end-page: 140 ident: bib59 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics – volume: 362 start-page: 362 year: 2018 ident: bib19 article-title: The chromatin accessibility landscape of primary human cancers publication-title: Science – volume: 19 start-page: 1338 year: 2013 end-page: 1344 ident: bib77 article-title: Tracking adipogenesis during white adipose tissue development, expansion and regeneration publication-title: Nat. Med. – volume: 21 start-page: 502 year: 2017 end-page: 516.e9 ident: bib18 article-title: MYC controls human pluripotent stem cell fate decisions through regulation of metabolic flux publication-title: Cell Stem Cell – volume: 30 start-page: 2869 year: 2020 end-page: 2878.e2864 ident: bib4 article-title: Early B cell factor activity controls developmental and adaptive thermogenic gene programming in adipocytes publication-title: Cell Rep. – volume: 23 start-page: 602 year: 2016 end-page: 609 ident: bib38 article-title: Brown adipose tissue exhibits a glucose-responsive thermogenic biorhythm in humans publication-title: Cell Metab. – volume: 125 start-page: 478 year: 2015 end-page: 486 ident: bib68 article-title: Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis publication-title: J. Clin. Invest. – volume: 17 start-page: 200 year: 2011 end-page: 205 ident: bib6 article-title: Brown adipose tissue activity controls triglyceride clearance publication-title: Nat. Med. – volume: 18 start-page: 1573 year: 2017 end-page: 1585 ident: bib82 article-title: In vivo human somitogenesis guides somite development from hPSCs publication-title: Cell Rep. – volume: 14 start-page: 272 year: 2011 end-page: 279 ident: bib54 article-title: Different metabolic responses of human brown adipose tissue to activation by cold and insulin publication-title: Cell Metab. – volume: 360 start-page: 1509 year: 2009 end-page: 1517 ident: bib20 article-title: Identification and importance of brown adipose tissue in adult humans publication-title: N. Engl. J. Med. – volume: 58 start-page: 1526 year: 2009 end-page: 1531 ident: bib61 article-title: High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity publication-title: Diabetes – volume: 88 start-page: 437 year: 2006 end-page: 448 ident: bib93 article-title: Metabolic profiling by 13C-NMR spectroscopy:[1, 2-13C2] glucose reveals a heterogeneous metabolism in human leukemia T cells publication-title: Biochimie – volume: 21 start-page: 389 year: 2015 end-page: 394 ident: bib67 article-title: Genetic and functional characterization of clonally derived adult human brown adipocytes publication-title: Nat. Med. – volume: 125 start-page: 21 year: 2014 end-page: 29 ident: bib87 article-title: Enhanced sympathetic activity in mice with brown adipose tissue transplantation (transBATation) publication-title: Physiol. Behav. – volume: 5 start-page: 4099 year: 2014 ident: bib62 article-title: Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed publication-title: Nat. Commun. – volume: 29 start-page: 286 year: 2015 end-page: 299 ident: bib37 article-title: Cellular origins of cold-induced brown adipocytes in adult mice publication-title: FASEB J. – volume: 296 start-page: 164 year: 2006 end-page: 176 ident: bib5 article-title: β-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse publication-title: Dev. Biol. – volume: 17 start-page: 480 year: 2016 end-page: 495 ident: bib29 article-title: Transcriptional and epigenetic control of brown and beige adipose cell fate and function publication-title: Nat. Rev. Mol. Cell Biol. – volume: 166 start-page: 451 year: 2016 end-page: 467 ident: bib42 article-title: Mapping the pairwise choices leading from pluripotency to human bone, heart, and other mesoderm cell types publication-title: Cell – volume: 63 start-page: 4089 year: 2014 end-page: 4099 ident: bib15 article-title: Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans publication-title: Diabetes – volume: 360 start-page: 1518 year: 2009 end-page: 1525 ident: bib76 article-title: Functional brown adipose tissue in healthy adults publication-title: N. Engl. J. Med. – volume: 29 start-page: 191 year: 2018 end-page: 200 ident: bib28 article-title: The common and distinct features of brown and beige adipocytes publication-title: Trends Endocrinol. Metab. – volume: 12 start-page: 323 year: 2011 ident: bib40 article-title: RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome publication-title: BMC Bioinformatics – volume: 27 start-page: 1348 year: 2018 end-page: 1355.e4 ident: bib79 article-title: Substantial metabolic activity of human brown adipose tissue during warm conditions and cold-induced lipolysis of local triglycerides publication-title: Cell Metab. – volume: 25 start-page: 3215 year: 2018 end-page: 3228.e9 ident: bib72 article-title: A renewable source of human beige adipocytes for development of therapies to treat metabolic syndrome publication-title: Cell Rep. – volume: 144 start-page: 2104 year: 2017 end-page: 2122 ident: bib13 article-title: Making muscle: skeletal myogenesis publication-title: Development – volume: 23 start-page: 557 year: 2018 end-page: 569 ident: bib92 article-title: Chromatin accessibility-based characterization of the gene regulatory network underlying Plasmodium falciparum blood-stage development publication-title: Cell Host Microbe – volume: 16 start-page: 394 year: 2012 end-page: 406 ident: bib53 article-title: Production of functional classical brown adipocytes from human pluripotent stem cells using specific hemopoietin cocktail without gene transfer publication-title: Cell Metab. – volume: 21 start-page: 863 year: 2015 end-page: 865 ident: bib25 article-title: Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus publication-title: Nat. Med. – volume: 5 start-page: 569 year: 2015 end-page: 581 ident: bib32 article-title: Reprogrammed functional brown adipocytes ameliorate insulin resistance and dyslipidemia in diet-induced obesity and type 2 diabetes publication-title: Stem Cell Reports – volume: 287 start-page: 25038 year: 2012 end-page: 25048 ident: bib51 article-title: Lipolytic products activate peroxisome proliferator-activated receptor (PPAR) α and δ in brown adipocytes to match fatty acid oxidation with supply publication-title: J. Biol. Chem. – volume: 43 start-page: e47 year: 2015 ident: bib57 article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies publication-title: Nucleic Acids Res. – volume: 15 start-page: 659 year: 2013 end-page: 667 ident: bib60 article-title: Bi-directional interconversion of brite and white adipocytes publication-title: Nat. Cell Biol. – year: 2016 ident: bib80 article-title: ggplot2: Elegant Graphics for Data Analysis – volume: 25 start-page: 2078 year: 2009 end-page: 2079 ident: bib41 article-title: The sequence alignment/map format and SAMtools publication-title: Bioinformatics – volume: 123 start-page: 215 year: 2013 end-page: 223 ident: bib71 article-title: Brown adipose tissue regulates glucose homeostasis and insulin sensitivity publication-title: J. Clin. Invest. – volume: 23 start-page: 3112 year: 2018 end-page: 3125 ident: bib14 article-title: Prediction of adipose browning capacity by systematic integration of transcriptional profiles publication-title: Cell Rep. – volume: 19 start-page: 810 year: 2014 end-page: 820 ident: bib43 article-title: A smooth muscle-like origin for beige adipocytes publication-title: Cell Metab. – start-page: 11 year: 2009 end-page: 31 ident: bib17 article-title: The adipose organ publication-title: Adipose Tissue and Inflammation – volume: 21 start-page: 760 year: 2015 end-page: 768 ident: bib83 article-title: Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes publication-title: Nat. Med. – volume: 8 start-page: 323ra13 year: 2016 ident: bib36 article-title: USF1 deficiency activates brown adipose tissue and improves cardiometabolic health publication-title: Sci. Transl. Med. – reference: Bolstad, B. (2020). preprocessCore: A collection of pre-processing functions. R package version 1.50.0, – volume: 9 start-page: R137 year: 2008 ident: bib86 article-title: Model-based analysis of ChIP-Seq (MACS) publication-title: Genome Biol. – volume: 7 start-page: 2029 year: 2012 end-page: 2040 ident: bib8 article-title: Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions publication-title: Nat. Protoc. – volume: 10 start-page: 81 year: 2010 ident: bib88 article-title: Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors publication-title: BMC Dev Biol. – volume: 14 start-page: 209 year: 2012 end-page: 219 ident: bib1 article-title: Programming human pluripotent stem cells into white and brown adipocytes publication-title: Nat. Cell Biol. – year: 1928 ident: bib45 article-title: The Elements of the Science of Nutrition – volume: 25 start-page: 168 year: 2014 end-page: 177 ident: bib75 article-title: Brown fat fuel utilization and thermogenesis publication-title: Trends Endocrinol. Metab. – volume: 29 start-page: 15 year: 2013 end-page: 21 ident: bib21 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics – year: 2016 ident: bib78 article-title: Gplots: various R programming tools for plotting data. R package version 3.0.1 – volume: 21 start-page: 195 year: 1986 end-page: 201 ident: bib58 article-title: Brown adipose tissue triacylglycerol fatty acids of obese and lean mice: in situ and in transplants publication-title: Lipids – volume: 17 start-page: 57 year: 2015 end-page: 67 ident: bib50 article-title: White-to-brown metabolic conversion of human adipocytes by JAK inhibition publication-title: Nat. Cell Biol. – volume: 24 start-page: 402 year: 2016 end-page: 419 ident: bib2 article-title: Beige adipocyte maintenance is regulated by autophagy-induced mitochondrial clearance publication-title: Cell Metab. – reference: Blighe K (2019). EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labeling. R package version 1.2.0. – volume: 454 start-page: 961 year: 2008 end-page: 967 ident: bib63 article-title: PRDM16 controls a brown fat/skeletal muscle switch publication-title: Nature – volume: 1773 start-page: 31 year: 2018 end-page: 39 ident: bib24 article-title: Differentiation of brown adipocyte progenitors derived from human induced pluripotent stem cells publication-title: Methods Mol. Biol. – volume: 22 start-page: 546 year: 2015 end-page: 559 ident: bib31 article-title: Brown and beige fat: physiological roles beyond heat generation publication-title: Cell Metab. – volume: 38 start-page: 576 year: 2010 end-page: 589 ident: bib26 article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities publication-title: Mol. Cell – volume: 29 start-page: 349 year: 2018 end-page: 359 ident: bib70 article-title: What can ‘Brown-ing’ do for you? publication-title: Trends Endocrinol. Metab. – reference: . – volume: 13 start-page: 2498 year: 2003 end-page: 2504 ident: bib65 article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks publication-title: Genome Res. – volume: 41 start-page: 382 year: 2017 end-page: 391.e5 ident: bib3 article-title: A molecular switch regulating cell fate choice between muscle progenitor cells and brown adipocytes publication-title: Dev. Cell – volume: 5 start-page: 1069 year: 2004 end-page: 1077 ident: bib47 article-title: Early B cell factor cooperates with Runx1 and mediates epigenetic changes associated with mb-1 transcription publication-title: Nat. Immunol. – volume: 15 start-page: 550 year: 2014 ident: bib44 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. – volume: 5 start-page: 323 year: 2015 end-page: 336 ident: bib91 article-title: Cell-cycle control of bivalent epigenetic domains regulates the exit from pluripotency publication-title: Stem Cell Reports – volume: 28 start-page: 207 year: 2018 end-page: 216 ident: bib94 article-title: Postprandial oxidative metabolism of human brown fat indicates thermogenesis publication-title: Cell Metab. – volume: 32 start-page: 1459 year: 2014 end-page: 1467 ident: bib49 article-title: Differentiation of human induced pluripotent stem cells into brown and white adipocytes: role of Pax3 publication-title: Stem Cells – volume: 47 start-page: D607 year: 2019 end-page: D613 ident: bib73 article-title: STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets publication-title: Nucleic Acids Res. – volume: 9 start-page: 357 year: 2012 end-page: 359 ident: bib35 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat. Methods – volume: 23 start-page: 602 year: 2016 ident: 10.1016/j.stem.2020.07.013_bib38 article-title: Brown adipose tissue exhibits a glucose-responsive thermogenic biorhythm in humans publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.02.007 – volume: 123 start-page: 215 year: 2013 ident: 10.1016/j.stem.2020.07.013_bib71 article-title: Brown adipose tissue regulates glucose homeostasis and insulin sensitivity publication-title: J. Clin. Invest. doi: 10.1172/JCI62308 – volume: 25 start-page: 168 year: 2014 ident: 10.1016/j.stem.2020.07.013_bib75 article-title: Brown fat fuel utilization and thermogenesis publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2013.12.004 – volume: 7 start-page: 2029 year: 2012 ident: 10.1016/j.stem.2020.07.013_bib8 article-title: Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions publication-title: Nat. Protoc. doi: 10.1038/nprot.2012.130 – volume: 17 start-page: 57 year: 2015 ident: 10.1016/j.stem.2020.07.013_bib50 article-title: White-to-brown metabolic conversion of human adipocytes by JAK inhibition publication-title: Nat. Cell Biol. doi: 10.1038/ncb3075 – volume: 15 start-page: 550 year: 2014 ident: 10.1016/j.stem.2020.07.013_bib44 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 21 start-page: 389 year: 2015 ident: 10.1016/j.stem.2020.07.013_bib67 article-title: Genetic and functional characterization of clonally derived adult human brown adipocytes publication-title: Nat. Med. doi: 10.1038/nm.3819 – volume: 13 start-page: 2498 year: 2003 ident: 10.1016/j.stem.2020.07.013_bib65 article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks publication-title: Genome Res. doi: 10.1101/gr.1239303 – year: 1928 ident: 10.1016/j.stem.2020.07.013_bib45 – volume: 362 start-page: 362 year: 2018 ident: 10.1016/j.stem.2020.07.013_bib19 article-title: The chromatin accessibility landscape of primary human cancers publication-title: Science doi: 10.1126/science.aav1898 – volume: 14 start-page: 209 year: 2012 ident: 10.1016/j.stem.2020.07.013_bib1 article-title: Programming human pluripotent stem cells into white and brown adipocytes publication-title: Nat. Cell Biol. doi: 10.1038/ncb2411 – volume: 5 start-page: 569 year: 2015 ident: 10.1016/j.stem.2020.07.013_bib32 article-title: Reprogrammed functional brown adipocytes ameliorate insulin resistance and dyslipidemia in diet-induced obesity and type 2 diabetes publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2015.08.007 – volume: 21 start-page: 502 year: 2017 ident: 10.1016/j.stem.2020.07.013_bib18 article-title: MYC controls human pluripotent stem cell fate decisions through regulation of metabolic flux publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.08.018 – volume: 454 start-page: 961 year: 2008 ident: 10.1016/j.stem.2020.07.013_bib63 article-title: PRDM16 controls a brown fat/skeletal muscle switch publication-title: Nature doi: 10.1038/nature07182 – volume: 16 start-page: 155 year: 2002 ident: 10.1016/j.stem.2020.07.013_bib84 article-title: Cold elicits the simultaneous induction of fatty acid synthesis and β-oxidation in murine brown adipose tissue: prediction from differential gene expression and confirmation in vivo publication-title: FASEB J. doi: 10.1096/fj.01-0568com – volume: 27 start-page: 1348 year: 2018 ident: 10.1016/j.stem.2020.07.013_bib79 article-title: Substantial metabolic activity of human brown adipose tissue during warm conditions and cold-induced lipolysis of local triglycerides publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.04.020 – volume: 21 start-page: 863 year: 2015 ident: 10.1016/j.stem.2020.07.013_bib25 article-title: Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus publication-title: Nat. Med. doi: 10.1038/nm.3891 – volume: 29 start-page: 15 year: 2013 ident: 10.1016/j.stem.2020.07.013_bib21 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 29 start-page: 191 year: 2018 ident: 10.1016/j.stem.2020.07.013_bib28 article-title: The common and distinct features of brown and beige adipocytes publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2018.01.001 – volume: 32 start-page: 1459 year: 2014 ident: 10.1016/j.stem.2020.07.013_bib49 article-title: Differentiation of human induced pluripotent stem cells into brown and white adipocytes: role of Pax3 publication-title: Stem Cells doi: 10.1002/stem.1607 – year: 2016 ident: 10.1016/j.stem.2020.07.013_bib80 – volume: 22 start-page: 546 year: 2015 ident: 10.1016/j.stem.2020.07.013_bib31 article-title: Brown and beige fat: physiological roles beyond heat generation publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.09.007 – volume: 1831 start-page: 943 year: 2013 ident: 10.1016/j.stem.2020.07.013_bib52 article-title: UCP1 mRNA does not produce heat publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2013.01.009 – volume: 10 start-page: 81 year: 2010 ident: 10.1016/j.stem.2020.07.013_bib88 article-title: Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors publication-title: BMC Dev Biol. doi: 10.1186/1471-213X-10-81 – ident: 10.1016/j.stem.2020.07.013_bib95 – volume: 88 start-page: 437 year: 2006 ident: 10.1016/j.stem.2020.07.013_bib93 article-title: Metabolic profiling by 13C-NMR spectroscopy:[1, 2-13C2] glucose reveals a heterogeneous metabolism in human leukemia T cells publication-title: Biochimie doi: 10.1016/j.biochi.2005.10.004 – start-page: 11 year: 2009 ident: 10.1016/j.stem.2020.07.013_bib17 article-title: The adipose organ – volume: 5 start-page: 4099 year: 2014 ident: 10.1016/j.stem.2020.07.013_bib62 article-title: Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed publication-title: Nat. Commun. doi: 10.1038/ncomms5099 – volume: 38 start-page: 576 year: 2010 ident: 10.1016/j.stem.2020.07.013_bib26 article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.05.004 – ident: 10.1016/j.stem.2020.07.013_bib33 – volume: 8 start-page: 323ra13 year: 2016 ident: 10.1016/j.stem.2020.07.013_bib36 article-title: USF1 deficiency activates brown adipose tissue and improves cardiometabolic health publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aad0015 – volume: 29 start-page: 286 year: 2015 ident: 10.1016/j.stem.2020.07.013_bib37 article-title: Cellular origins of cold-induced brown adipocytes in adult mice publication-title: FASEB J. doi: 10.1096/fj.14-263038 – volume: 58 start-page: 1526 year: 2009 ident: 10.1016/j.stem.2020.07.013_bib61 article-title: High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity publication-title: Diabetes doi: 10.2337/db09-0530 – volume: 21 start-page: 195 year: 1986 ident: 10.1016/j.stem.2020.07.013_bib58 article-title: Brown adipose tissue triacylglycerol fatty acids of obese and lean mice: in situ and in transplants publication-title: Lipids doi: 10.1007/BF02534821 – volume: 14 start-page: 272 year: 2011 ident: 10.1016/j.stem.2020.07.013_bib54 article-title: Different metabolic responses of human brown adipose tissue to activation by cold and insulin publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.06.012 – volume: 21 start-page: 760 year: 2015 ident: 10.1016/j.stem.2020.07.013_bib83 article-title: Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes publication-title: Nat. Med. doi: 10.1038/nm.3881 – volume: 360 start-page: 1509 year: 2009 ident: 10.1016/j.stem.2020.07.013_bib20 article-title: Identification and importance of brown adipose tissue in adult humans publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0810780 – ident: 10.1016/j.stem.2020.07.013_bib10 – volume: 61 start-page: 674 year: 2012 ident: 10.1016/j.stem.2020.07.013_bib23 article-title: Reversal of type 1 diabetes in mice by brown adipose tissue transplant publication-title: Diabetes doi: 10.2337/db11-0510 – volume: 166 start-page: 451 year: 2016 ident: 10.1016/j.stem.2020.07.013_bib42 article-title: Mapping the pairwise choices leading from pluripotency to human bone, heart, and other mesoderm cell types publication-title: Cell doi: 10.1016/j.cell.2016.06.011 – ident: 10.1016/j.stem.2020.07.013_bib78 – volume: 5 start-page: 1069 year: 2004 ident: 10.1016/j.stem.2020.07.013_bib47 article-title: Early B cell factor cooperates with Runx1 and mediates epigenetic changes associated with mb-1 transcription publication-title: Nat. Immunol. doi: 10.1038/ni1119 – volume: 12 start-page: 323 year: 2011 ident: 10.1016/j.stem.2020.07.013_bib40 article-title: RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-323 – volume: 9 start-page: R137 year: 2008 ident: 10.1016/j.stem.2020.07.013_bib86 article-title: Model-based analysis of ChIP-Seq (MACS) publication-title: Genome Biol. doi: 10.1186/gb-2008-9-9-r137 – volume: 16 start-page: 394 year: 2012 ident: 10.1016/j.stem.2020.07.013_bib53 article-title: Production of functional classical brown adipocytes from human pluripotent stem cells using specific hemopoietin cocktail without gene transfer publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.08.001 – volume: 25 start-page: 3215 year: 2018 ident: 10.1016/j.stem.2020.07.013_bib72 article-title: A renewable source of human beige adipocytes for development of therapies to treat metabolic syndrome publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.11.037 – volume: 17 start-page: 480 year: 2016 ident: 10.1016/j.stem.2020.07.013_bib29 article-title: Transcriptional and epigenetic control of brown and beige adipose cell fate and function publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2016.62 – volume: 10.1101/845529 year: 2019 ident: 10.1016/j.stem.2020.07.013_bib34 article-title: SparK: a publication-quality NGS visualization tool publication-title: bioRxiv – volume: 47 start-page: D607 issue: D1 year: 2019 ident: 10.1016/j.stem.2020.07.013_bib73 article-title: STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1131 – volume: 17 start-page: 200 year: 2011 ident: 10.1016/j.stem.2020.07.013_bib6 article-title: Brown adipose tissue activity controls triglyceride clearance publication-title: Nat. Med. doi: 10.1038/nm.2297 – volume: 40 start-page: 4288 year: 2012 ident: 10.1016/j.stem.2020.07.013_bib89 article-title: Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks042 – volume: 29 start-page: 349 year: 2018 ident: 10.1016/j.stem.2020.07.013_bib70 article-title: What can ‘Brown-ing’ do for you? publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2018.03.002 – volume: 23 start-page: 557 year: 2018 ident: 10.1016/j.stem.2020.07.013_bib92 article-title: Chromatin accessibility-based characterization of the gene regulatory network underlying Plasmodium falciparum blood-stage development publication-title: Cell Host Microbe doi: 10.1016/j.chom.2018.03.007 – volume: 63 start-page: 4089 year: 2014 ident: 10.1016/j.stem.2020.07.013_bib15 article-title: Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans publication-title: Diabetes doi: 10.2337/db14-0746 – volume: 15 start-page: 659 year: 2013 ident: 10.1016/j.stem.2020.07.013_bib60 article-title: Bi-directional interconversion of brite and white adipocytes publication-title: Nat. Cell Biol. doi: 10.1038/ncb2740 – volume: 30 start-page: 2869 year: 2020 ident: 10.1016/j.stem.2020.07.013_bib4 article-title: Early B cell factor activity controls developmental and adaptive thermogenic gene programming in adipocytes publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.02.023 – volume: 144 start-page: 2104 year: 2017 ident: 10.1016/j.stem.2020.07.013_bib13 article-title: Making muscle: skeletal myogenesis in vivo and in vitro publication-title: Development doi: 10.1242/dev.151035 – volume: 9 start-page: 357 year: 2012 ident: 10.1016/j.stem.2020.07.013_bib35 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat. Methods doi: 10.1038/nmeth.1923 – volume: 19 start-page: 810 year: 2014 ident: 10.1016/j.stem.2020.07.013_bib43 article-title: A smooth muscle-like origin for beige adipocytes publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.03.025 – volume: 24 start-page: 402 year: 2016 ident: 10.1016/j.stem.2020.07.013_bib2 article-title: Beige adipocyte maintenance is regulated by autophagy-induced mitochondrial clearance publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.08.002 – volume: 351 start-page: 120 year: 2011 ident: 10.1016/j.stem.2020.07.013_bib55 article-title: A role for Zic1 and Zic2 in Myf5 regulation and somite myogenesis publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2010.12.037 – volume: 27 start-page: 13 year: 2019 ident: 10.1016/j.stem.2020.07.013_bib66 article-title: Transcriptional control of brown and beige fat development and function publication-title: Obesity (Silver Spring) doi: 10.1002/oby.22334 – volume: 125 start-page: 478 year: 2015 ident: 10.1016/j.stem.2020.07.013_bib68 article-title: Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis publication-title: J. Clin. Invest. doi: 10.1172/JCI78362 – volume: 43 start-page: e47 year: 2015 ident: 10.1016/j.stem.2020.07.013_bib57 article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv007 – volume: 5 start-page: 323 year: 2015 ident: 10.1016/j.stem.2020.07.013_bib91 article-title: Cell-cycle control of bivalent epigenetic domains regulates the exit from pluripotency publication-title: Stem Cell Reports doi: 10.1016/j.stemcr.2015.07.005 – volume: 125 start-page: 21 year: 2014 ident: 10.1016/j.stem.2020.07.013_bib87 article-title: Enhanced sympathetic activity in mice with brown adipose tissue transplantation (transBATation) publication-title: Physiol. Behav. doi: 10.1016/j.physbeh.2013.11.008 – volume: 28 start-page: 207 year: 2018 ident: 10.1016/j.stem.2020.07.013_bib94 article-title: Postprandial oxidative metabolism of human brown fat indicates thermogenesis publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.05.020 – volume: 1773 start-page: 31 year: 2018 ident: 10.1016/j.stem.2020.07.013_bib24 article-title: Differentiation of brown adipocyte progenitors derived from human induced pluripotent stem cells publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7799-4_4 – volume: 25 start-page: 2078 year: 2009 ident: 10.1016/j.stem.2020.07.013_bib41 article-title: The sequence alignment/map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 41 start-page: 382 year: 2017 ident: 10.1016/j.stem.2020.07.013_bib3 article-title: A molecular switch regulating cell fate choice between muscle progenitor cells and brown adipocytes publication-title: Dev. Cell doi: 10.1016/j.devcel.2017.04.012 – volume: 26 start-page: 139 year: 2010 ident: 10.1016/j.stem.2020.07.013_bib59 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 18 start-page: 1573 year: 2017 ident: 10.1016/j.stem.2020.07.013_bib82 article-title: In vivo human somitogenesis guides somite development from hPSCs publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.01.040 – volume: 23 start-page: 3112 year: 2018 ident: 10.1016/j.stem.2020.07.013_bib14 article-title: Prediction of adipose browning capacity by systematic integration of transcriptional profiles publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.05.021 – volume: 19 start-page: 1338 year: 2013 ident: 10.1016/j.stem.2020.07.013_bib77 article-title: Tracking adipogenesis during white adipose tissue development, expansion and regeneration publication-title: Nat. Med. doi: 10.1038/nm.3324 – volume: 360 start-page: 1518 year: 2009 ident: 10.1016/j.stem.2020.07.013_bib76 article-title: Functional brown adipose tissue in healthy adults publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0808949 – volume: 14 start-page: 313 year: 2019 ident: 10.1016/j.stem.2020.07.013_bib85 article-title: Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by LC-MS/MS publication-title: Nat. Protoc. doi: 10.1038/s41596-018-0102-x – volume: 296 start-page: 164 year: 2006 ident: 10.1016/j.stem.2020.07.013_bib5 article-title: β-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2006.04.449 – volume: 287 start-page: 25038 year: 2012 ident: 10.1016/j.stem.2020.07.013_bib51 article-title: Lipolytic products activate peroxisome proliferator-activated receptor (PPAR) α and δ in brown adipocytes to match fatty acid oxidation with supply publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.374041 |
SSID | ssj0057107 |
Score | 2.4499967 |
Snippet | Brown adipocytes (BAs) are a potential cell source for the treatment of metabolic disease, including type 2 diabetes. In this report, human pluripotent stem... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 784 |
SubjectTerms | brown adipocytes metabolic disease pluripotent stem cells thermogenic adipocytes |
Title | Generation of Functional Brown Adipocytes from Human Pluripotent Stem Cells via Progression through a Paraxial Mesoderm State |
URI | https://dx.doi.org/10.1016/j.stem.2020.07.013 https://www.ncbi.nlm.nih.gov/pubmed/32783886 https://www.proquest.com/docview/2434058093 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7E91tG8CZla5O06VEXFxFWBBX2FpI2gZV1u-xD9OB_d6ZpBQ_uwWNLQkMm_b4vyTwYu8h8HLvSxZG1pY-QoWRknVBRqaxIrUWOSylQuP-Q3r2I-4EcrLBuGwtDbpUN9gdMr9G6edNpZrMzGQ47Tyg9hMzjPMF1SmXmEIcpqpSC-AY3LRpLZNAs3CyLiFo3gTPBx4tyJeMeMYnrBJ5X_C9y-kt81iTU22QbjXqE6zDALbbixttsLdST_NxhXyGJNM01VB56yFnhqA_q3TZcl8NJVXyiugQKK4H6BB8eRwtEjgrF8xyecKjQdaPRDN6HBh7Jeytk7oCmog_gWzM1H7huoe9mVErtDWrJusteerfP3buoqa8QFVym8yhR3qaJURliXG4E7rxcmXPn88IWIvOZMYWVKJhSlWYmQyVTGo8m5ZxLVSJI8j22Oq7G7oCBd55OtBLlUF95leQOdaFXwiLbCe_zQ3bVTqwumuTjVANjpFsvs1dNxtBkDB1nGo1xyC5_-kxC6o2lrWVrL_1rAWnkhqX9zlvjavyz6LrEjF21mOlEcFSzKs6xzX6w-s84OBUoUSo9-udXj9k6PdVBjfKErc6nC3eK6mZuz-rl-w0xvflx |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcY0zQu0za2ARvsIXGboob4I86RVVRlowgJkHqz7MSWirqmoi2CA__73osTJA5w4OrYiuX3_H4_2--DsYM8pKmvfJo4V4UEEUomzgudVNoJ5RxinKJA4dGZGl6JP2M5XmP9LhaG3Cpb2x9temOt25Zeu5q9-WTSu0DqIWSRFhnqKZWZe8PeIhtQlED_ZPy7M8cSITSPT8sioe5t5Ex08qJkyXhIzNImg-chfw6dnmOfDQoNPrIPLX2EozjDT2zNzz6zd7Gg5P0me4hZpGmxoQ4wQNCKd33QHLfhqJrM6_Ie6SVQXAk0V_hwPl2h6aiRPS_hAqcKfT-dLuB2YuGc3Ldi6g5oS_oAttobe4eKCyO_oFpq_6DhrF_Y1eD4sj9M2gILScmlWiaZDk5lVudo5Aor8Ojlq4L7UJSuFHnIrS2dRMaktMptjlSmsgFlyjmXukIryb-y9Vk981sMgg90pZVpjwQr6KzwSAyDFg7hToRQbLPDbmFN2WYfpyIYU9O5mV0bEoYhYZg0NyiMbfbrccw85t54sbfs5GWeaJBBcHhx3H4nXINbi95L7MzXq4XJBEc6q9MC-3yLUn-cB6cKJVqrnVf-9Sd7P7wcnZrTk7O_39kGfWkiHOUPtr68WfldpDpLt9eo8n_MpvyV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generation+of+Functional+Brown+Adipocytes+from+Human+Pluripotent+Stem+Cells+via+Progression+through+a+Paraxial+Mesoderm+State&rft.jtitle=Cell+stem+cell&rft.au=Zhang%2C+Liang&rft.au=Avery%2C+John&rft.au=Yin%2C+Amelia&rft.au=Singh%2C+Amar+M&rft.date=2020-11-05&rft.issn=1875-9777&rft.eissn=1875-9777&rft.volume=27&rft.issue=5&rft.spage=784&rft_id=info:doi/10.1016%2Fj.stem.2020.07.013&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1934-5909&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1934-5909&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1934-5909&client=summon |