Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis

The main aim of this paper is to study the global existence of solutions of initial value problems for nonlinear fractional differential equations(FDEs) on the half-axis, which is fundamental in the basic theory of FDEs and important in stability analysis of this kind of equations. In this paper, we...

Full description

Saved in:
Bibliographic Details
Published inNonlinear analysis Vol. 74; no. 17; pp. 5975 - 5986
Main Authors Kou, Chunhai, Zhou, Huacheng, Yan, Ye
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.12.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The main aim of this paper is to study the global existence of solutions of initial value problems for nonlinear fractional differential equations(FDEs) on the half-axis, which is fundamental in the basic theory of FDEs and important in stability analysis of this kind of equations. In this paper, we are concerned with the nonlinear FDE D 0 + α x ( t ) = f ( t , x ) , t ∈ ( 0 , + ∞ ) , 0 < α ≤ 1 , where D 0 + α is the standard Riemann–Liouville fractional derivative, subject to the initial value condition lim t → 0 + t 1 − α x ( t ) = u 0 . By constructing a special Banach space and employing fixed-point theorems, some sufficient conditions are obtained to guarantee the global existence of solutions on the interval [ 0 , + ∞ ) . Moreover, in the case α = 1 , existence results of solutions of initial value problems for ordinary differential equations on the half-axis are also obtained. An interesting example is also included. ► We study the IVPs for nonlinear fractional differential equations. ► We construct a special Banach space. ► Some global existence results of solutions on the half-axis are obtained. ► Existence results of solutions of IVPs for ODEs on the half-axis are also included.
AbstractList The main aim of this paper is to study the global existence of solutions of initial value problems for nonlinear fractional differential equations(FDEs) on the half-axis, which is fundamental in the basic theory of FDEs and important in stability analysis of this kind of equations. In this paper, we are concerned with the nonlinear FDE [inline image][inline image] where [inline image][inline image] is the standard Riemann-Liouville fractional derivative, subject to the initial value condition [inline image][inline image] By constructing a special Banach space and employing fixed-point theorems, some sufficient conditions are obtained to guarantee the global existence of solutions on the interval [0,+[infinity]). Moreover, in the case alpha =1, existence results of solutions of initial value problems for ordinary differential equations on the half-axis are also obtained. An interesting example is also included.
The main aim of this paper is to study the global existence of solutions of initial value problems for nonlinear fractional differential equations(FDEs) on the half-axis, which is fundamental in the basic theory of FDEs and important in stability analysis of this kind of equations. In this paper, we are concerned with the nonlinear FDE D 0 + α x ( t ) = f ( t , x ) , t ∈ ( 0 , + ∞ ) , 0 < α ≤ 1 , where D 0 + α is the standard Riemann–Liouville fractional derivative, subject to the initial value condition lim t → 0 + t 1 − α x ( t ) = u 0 . By constructing a special Banach space and employing fixed-point theorems, some sufficient conditions are obtained to guarantee the global existence of solutions on the interval [ 0 , + ∞ ) . Moreover, in the case α = 1 , existence results of solutions of initial value problems for ordinary differential equations on the half-axis are also obtained. An interesting example is also included. ► We study the IVPs for nonlinear fractional differential equations. ► We construct a special Banach space. ► Some global existence results of solutions on the half-axis are obtained. ► Existence results of solutions of IVPs for ODEs on the half-axis are also included.
Author Kou, Chunhai
Yan, Ye
Zhou, Huacheng
Author_xml – sequence: 1
  givenname: Chunhai
  surname: Kou
  fullname: Kou, Chunhai
  email: kouchunhai@dhu.edu.cn, kouchunhai@hotmail.com
  organization: Department of Applied Mathematics, Donghua University, Shanghai 201620, PR China
– sequence: 2
  givenname: Huacheng
  surname: Zhou
  fullname: Zhou, Huacheng
  email: hilbertstory@163.com
  organization: Department of Applied Mathematics, Donghua University, Shanghai 201620, PR China
– sequence: 3
  givenname: Ye
  surname: Yan
  fullname: Yan, Ye
  email: yanye1983@mail.dhu.edu.cn
  organization: College of Information Science and Technology, Donghua University, Shanghai 201620, PR China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24473286$$DView record in Pascal Francis
BookMark eNp9kb1rHDEQxUWwIWfHvUs1wdVu9LXaVbpgnA8wpEnAndBpR1iHTvJJWpP899H6Lk3AaUYMvN-b0bwLdBZTBISuKekpofLDro-mZ4TSngw9GcUbtKHTyLuB0eEMbQiXrBuEfHiLLkrZEULoyOUGHe5--VIhWsDJ4ZLCUn2KZW189NWbgJ9NWAA_5bQNsC_YpYzb7OAjmIxdNnYlmm72zkGG-ALBYTEnp4jrI-BHE1xn2rB36NyZUODq9F6in5_vftx-7e6_f_l2--m-s3yQtaOw5cN2NJOaHQgq2cwEkfPWEilkq9yCskqOdlLMOaUonZzkfBbtGIJNE79EN0fftvlhgVL13hcLIZgIaSlaUaX4IBRpyvcnpSm2rZlNtL7op-z3Jv_WTIiRs0k2nTzqbE6lZHDa-vryy5qND5oSvUahdzoavUahyaBbFA0k_4B_vf-DfDwi0E707CHrYv0a0-wz2Krn5F-H_wDX9KOy
CODEN NOANDD
CitedBy_id crossref_primary_10_1007_s12215_016_0230_5
crossref_primary_10_1007_s13540_022_00057_9
crossref_primary_10_1186_1687_2770_2012_64
crossref_primary_10_3934_math_2022899
crossref_primary_10_3390_sym16081058
crossref_primary_10_1155_2014_537971
crossref_primary_10_53006_rna_1023029
crossref_primary_10_1063_1_3701726
crossref_primary_10_1155_2018_1070713
crossref_primary_10_1155_2013_349025
crossref_primary_10_1007_s00009_018_1114_z
crossref_primary_10_1007_s12190_013_0715_8
crossref_primary_10_3390_fractalfract6050241
crossref_primary_10_3934_math_20231172
crossref_primary_10_1002_mma_6957
crossref_primary_10_26637_MJM0802_0011
crossref_primary_10_1016_j_jfranklin_2021_03_026
crossref_primary_10_2298_FIL2317775K
crossref_primary_10_1186_s13662_017_1185_3
crossref_primary_10_3390_fractalfract8040191
crossref_primary_10_1007_s10473_020_0110_3
crossref_primary_10_11948_20200463
crossref_primary_10_3390_math7030286
crossref_primary_10_1134_S0005117913040012
crossref_primary_10_12677_PM_2017_74027
crossref_primary_10_5937_MatMor2001109L
crossref_primary_10_1186_s13661_016_0621_8
crossref_primary_10_1155_2023_8668325
crossref_primary_10_1007_s11565_021_00372_8
crossref_primary_10_1155_2014_158436
crossref_primary_10_1186_s13660_018_1801_0
crossref_primary_10_5269_bspm_52043
crossref_primary_10_3390_axioms11040144
crossref_primary_10_1007_s11117_016_0461_x
crossref_primary_10_1186_s13661_019_1230_0
crossref_primary_10_1016_j_amc_2014_11_109
crossref_primary_10_1007_s12190_013_0689_6
crossref_primary_10_1016_j_aej_2024_07_111
crossref_primary_10_3390_fractalfract7070560
crossref_primary_10_5269_bspm_62981
crossref_primary_10_1007_s13370_017_0505_9
crossref_primary_10_1515_ijnsns_2017_0009
crossref_primary_10_1007_s12190_012_0603_7
crossref_primary_10_1007_s12591_015_0270_x
crossref_primary_10_14232_ejqtde_2020_1_5
crossref_primary_10_1515_fca_2016_0056
crossref_primary_10_15407_mag16_01_027
crossref_primary_10_1007_s40863_019_00147_2
crossref_primary_10_1007_s40863_024_00424_9
crossref_primary_10_1080_01630563_2019_1620771
crossref_primary_10_1007_s00009_016_0797_2
crossref_primary_10_1216_JIE_2019_31_2_265
crossref_primary_10_2478_s13540_013_0038_3
crossref_primary_10_3934_math_2019_4_1101
crossref_primary_10_3934_math_2023938
crossref_primary_10_1155_2013_401596
crossref_primary_10_1016_j_padiff_2025_101104
crossref_primary_10_1155_2012_180672
crossref_primary_10_1186_s13661_023_01698_2
crossref_primary_10_53006_rna_865900
crossref_primary_10_1016_j_amc_2014_08_067
crossref_primary_10_1155_2013_295837
crossref_primary_10_3390_sym14020392
crossref_primary_10_1002_mma_4590
crossref_primary_10_1007_s00009_015_0571_x
crossref_primary_10_3390_fractalfract6100593
crossref_primary_10_1016_j_jmaa_2020_124921
crossref_primary_10_1007_s13398_018_0548_2
crossref_primary_10_1155_2021_6687949
crossref_primary_10_3390_fractalfract7080607
crossref_primary_10_1155_2023_3642394
crossref_primary_10_1007_s12190_017_1094_3
crossref_primary_10_1016_j_chaos_2023_113847
crossref_primary_10_1186_s13660_019_2102_y
crossref_primary_10_1186_1687_1847_2013_324
Cites_doi 10.1016/0096-3003(92)90024-U
10.1016/j.amc.2006.08.163
10.1155/2010/142175
10.1016/j.na.2007.10.021
10.1016/j.jmaa.2008.11.056
10.1016/j.sigpro.2006.02.007
10.1006/jmaa.1996.0456
10.1016/j.jmaa.2004.12.015
10.1016/j.na.2007.08.042
10.1080/00036810108840931
10.1016/S0096-3003(99)00208-8
10.1016/j.camwa.2009.06.028
10.1016/j.na.2009.06.106
10.1016/j.jde.2003.12.002
10.1016/j.jmaa.2010.01.023
10.1016/j.aml.2010.06.007
10.1016/0888-3270(91)90016-X
10.2748/tmj/1178224769
10.1080/0003681021000022032
10.1016/S0022-247X(02)00716-3
10.1016/S0362-546X(97)00525-7
10.1007/BF02083817
10.1016/j.na.2008.03.037
10.1063/1.470346
10.1115/1.3167616
10.1007/s10440-008-9329-9
10.1016/j.na.2009.01.043
ContentType Journal Article
Copyright 2011 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.na.2011.05.074
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1873-5215
EndPage 5986
ExternalDocumentID 24473286
10_1016_j_na_2011_05_074
S0362546X11003750
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
GBLVA
HMJ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M26
M41
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WUQ
XPP
YQT
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c356t-1eb35b7a89dfe4162d2406dbc0646bc03ce9c967c892ff99118f633d401642883
IEDL.DBID .~1
ISSN 0362-546X
IngestDate Fri Jul 11 16:01:58 EDT 2025
Mon Jul 21 09:16:09 EDT 2025
Tue Jul 01 01:42:05 EDT 2025
Thu Apr 24 23:08:24 EDT 2025
Fri Feb 23 02:29:49 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords Fractional differential equation
Global existence
Half-axis
Initial value problem
Non linear equation
Differential equation
Existence of solution
Nonlinear analysis
Mathematical model
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-1eb35b7a89dfe4162d2406dbc0646bc03ce9c967c892ff99118f633d401642883
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 919935490
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_919935490
pascalfrancis_primary_24473286
crossref_citationtrail_10_1016_j_na_2011_05_074
crossref_primary_10_1016_j_na_2011_05_074
elsevier_sciencedirect_doi_10_1016_j_na_2011_05_074
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-12-01
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Nonlinear analysis
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Podlubny (br000030) 2002; 5
El-Sayed (br000095) 1996; 35
Arara, Benchohra, Hamidi, Nieto (br000175) 2010; 72
Hilfer (br000005) 2000
Muslim, Conca, Nandakumaran (br000120) 2010; 59
Granas, Dugundji (br000190) 2003
Koeller (br000020) 1984; 51
El-Sayed (br000100) 1998; 33
Podlubny (br000050) 1999
Yu, Gao (br000140) 2005; 310
Srivastava, Saxena (br000075) 2001; 118
Stojanović (br000125) 2009; 353
Lakshmikantham, Vatsala (br000060) 2008; 69
Kilbas, Srivastava, Trujillo (br000040) 2006; vol. 204
Ouahab (br000085) 2008; 69
Agarwal, Regan (br000180) 2001
Agarwal, Benchohra, Slimani (br000080) 2008; 44
Miller, Ross (br000045) 1993
El-Sayed (br000090) 1992; 49
Delbosco, Rodino (br000130) 1996; 204
Babakhani, Gejji (br000135) 2003; 278
Kosmatov (br000115) 2009; 70
Kilbas, Bonilla, Trujillo (br000150) 2000; 33
Agarwal, Regan (br000185) 1999; 51
Diethelm, Freed (br000015) 1999
Nieto (br000105) 2010; 23
Li, Deng (br000110) 2007; 187
Gaul, Klein, Kempfle (br000010) 1991; 5
Kou, Liu, Ye (br000145) 2010
Metzler, Schick, Kilian, Nonnenmacher (br000035) 1995; 103
Kilbas, Trujillo (br000070) 2002; 81
Kumar, Agrawal (br000025) 2006; 86
Zhang (br000160) 2009; 71
Eidelman, Kochubei (br000155) 2004
Zhao, Ge (br000170) 2010; 109
Lakshmikantham, Leela, Vasundhara (br000055) 2009
Kilbas, Trujillo (br000065) 2001; 78
Wei, Li, Che (br000165) 2010; 367
Podlubny (10.1016/j.na.2011.05.074_br000030) 2002; 5
El-Sayed (10.1016/j.na.2011.05.074_br000090) 1992; 49
Muslim (10.1016/j.na.2011.05.074_br000120) 2010; 59
Yu (10.1016/j.na.2011.05.074_br000140) 2005; 310
Wei (10.1016/j.na.2011.05.074_br000165) 2010; 367
Miller (10.1016/j.na.2011.05.074_br000045) 1993
Babakhani (10.1016/j.na.2011.05.074_br000135) 2003; 278
Gaul (10.1016/j.na.2011.05.074_br000010) 1991; 5
Hilfer (10.1016/j.na.2011.05.074_br000005) 2000
Ouahab (10.1016/j.na.2011.05.074_br000085) 2008; 69
Stojanović (10.1016/j.na.2011.05.074_br000125) 2009; 353
Kumar (10.1016/j.na.2011.05.074_br000025) 2006; 86
Srivastava (10.1016/j.na.2011.05.074_br000075) 2001; 118
El-Sayed (10.1016/j.na.2011.05.074_br000100) 1998; 33
Kilbas (10.1016/j.na.2011.05.074_br000150) 2000; 33
Eidelman (10.1016/j.na.2011.05.074_br000155) 2004
Agarwal (10.1016/j.na.2011.05.074_br000080) 2008; 44
El-Sayed (10.1016/j.na.2011.05.074_br000095) 1996; 35
Arara (10.1016/j.na.2011.05.074_br000175) 2010; 72
Podlubny (10.1016/j.na.2011.05.074_br000050) 1999
Li (10.1016/j.na.2011.05.074_br000110) 2007; 187
Kilbas (10.1016/j.na.2011.05.074_br000040) 2006; vol. 204
Zhao (10.1016/j.na.2011.05.074_br000170) 2010; 109
Metzler (10.1016/j.na.2011.05.074_br000035) 1995; 103
Lakshmikantham (10.1016/j.na.2011.05.074_br000055) 2009
Nieto (10.1016/j.na.2011.05.074_br000105) 2010; 23
Agarwal (10.1016/j.na.2011.05.074_br000185) 1999; 51
Lakshmikantham (10.1016/j.na.2011.05.074_br000060) 2008; 69
Zhang (10.1016/j.na.2011.05.074_br000160) 2009; 71
Delbosco (10.1016/j.na.2011.05.074_br000130) 1996; 204
Diethelm (10.1016/j.na.2011.05.074_br000015) 1999
Kosmatov (10.1016/j.na.2011.05.074_br000115) 2009; 70
Kou (10.1016/j.na.2011.05.074_br000145) 2010
Koeller (10.1016/j.na.2011.05.074_br000020) 1984; 51
Agarwal (10.1016/j.na.2011.05.074_br000180) 2001
Granas (10.1016/j.na.2011.05.074_br000190) 2003
Kilbas (10.1016/j.na.2011.05.074_br000065) 2001; 78
Kilbas (10.1016/j.na.2011.05.074_br000070) 2002; 81
References_xml – volume: 86
  start-page: 2602
  year: 2006
  end-page: 2610
  ident: br000025
  article-title: An approximate method for numerical solution of fractional differential equations
  publication-title: Signal Process.
– volume: vol. 204
  year: 2006
  ident: br000040
  publication-title: Theory and Applications of Fractional Differential Equations
– volume: 5
  start-page: 81
  year: 1991
  end-page: 88
  ident: br000010
  article-title: Damping description involving fractional operators
  publication-title: Mech. Syst. Signal Process.
– year: 2000
  ident: br000005
  article-title: Applications of Fractional Calculus in Physics
– volume: 78
  start-page: 153
  year: 2001
  end-page: 192
  ident: br000065
  article-title: Differential equations of fractional order: Methods, results and problems I
  publication-title: Appl. Anal.
– volume: 109
  start-page: 495
  year: 2010
  end-page: 505
  ident: br000170
  article-title: Unbounded solutions for fractional bounded value problems on the infinite interval
  publication-title: Acta Appl. Math.
– volume: 81
  start-page: 435
  year: 2002
  end-page: 493
  ident: br000070
  article-title: Differential equations of fractional order: Methods, results and problems II
  publication-title: Appl. Anal.
– volume: 103
  start-page: 7180
  year: 1995
  end-page: 7186
  ident: br000035
  article-title: Relaxation in filled polymers: a fractional calculus approach
  publication-title: J. Chem. Phys.
– volume: 33
  start-page: 181
  year: 1998
  end-page: 186
  ident: br000100
  article-title: Nonlinear functional differential equations of arbitrary orders
  publication-title: Nonlinear Anal.
– volume: 310
  start-page: 26
  year: 2005
  end-page: 29
  ident: br000140
  article-title: Existence of fractional differential equations
  publication-title: J. Math. Anal. Appl.
– volume: 49
  start-page: 205
  year: 1992
  end-page: 213
  ident: br000090
  article-title: On the fractional differential equation
  publication-title: Appl. Math. Comput.
– volume: 23
  start-page: 1248
  year: 2010
  end-page: 1251
  ident: br000105
  article-title: Maximum principles for fractional differential equations derived from Mittag-Leffler functions
  publication-title: Appl. Math. Lett.
– volume: 367
  start-page: 260
  year: 2010
  end-page: 272
  ident: br000165
  article-title: Initial value problems for fractional differential equations involving Riemann–Liouville sequential fractional derivative
  publication-title: J. Math. Anal. Appl.
– year: 2009
  ident: br000055
  article-title: Theory of Fractional Dynamic Systems
– volume: 278
  start-page: 434
  year: 2003
  end-page: 442
  ident: br000135
  article-title: Existence of positive solutions of nonlinear fractional differential equations
  publication-title: J. Math. Anal. Appl.
– start-page: 211
  year: 2004
  end-page: 255
  ident: br000155
  article-title: Cauchy problem for fractional diffusion equations
  publication-title: J. Differential Equations
– year: 2010
  ident: br000145
  article-title: Existence and uniqueness of solutions for the Cauchy-type problems of fractional differential equations
  publication-title: Disc. Dyn. Nat. Soc.
– volume: 204
  start-page: 609
  year: 1996
  end-page: 625
  ident: br000130
  article-title: Existence and uniqueness for a nonlinear fractional differential equation
  publication-title: J. Math. Anal. Appl.
– volume: 51
  start-page: 299
  year: 1984
  end-page: 307
  ident: br000020
  article-title: Application of fractional calculus to the theory of viscoelasticity
  publication-title: J. Appl. Mech
– volume: 51
  start-page: 391C397
  year: 1999
  ident: br000185
  article-title: Boundary value problems of nonsingular type on the semi-infinite interval
  publication-title: Tohoku. Math. J.
– year: 1999
  ident: br000015
  article-title: On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity
  publication-title: Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties
– volume: 187
  start-page: 777
  year: 2007
  end-page: 784
  ident: br000110
  article-title: Remarks on fractional derivatives
  publication-title: Appl. Math. Comput.
– year: 2001
  ident: br000180
  article-title: Infinite Interval Problems for Differential, Difference and Integral Equations
– volume: 69
  start-page: 2677
  year: 2008
  end-page: 2682
  ident: br000060
  article-title: Basic theory of fractional differential equations
  publication-title: Nonlinear Anal.
– volume: 5
  start-page: 367
  year: 2002
  end-page: 386
  ident: br000030
  article-title: Geometric and physical interpretation of fractional integration and fractional differentiation
  publication-title: Fract. Calc. Appl. Anal.
– volume: 59
  start-page: 1236
  year: 2010
  end-page: 1244
  ident: br000120
  article-title: Approximate of solutions to fractional integral equation
  publication-title: Comput. Math. Appl.
– year: 2003
  ident: br000190
  article-title: Fixed Point Theory
– volume: 71
  start-page: 2087
  year: 2009
  end-page: 2093
  ident: br000160
  article-title: Monotone iterative method for initial value problem involving Riemann–Louville derivatives
  publication-title: Nonlinear Anal.
– volume: 72
  start-page: 580
  year: 2010
  end-page: 586
  ident: br000175
  article-title: Fractional order differential equations on an unbounded domain
  publication-title: Nonlinear Anal.
– volume: 44
  start-page: 1
  year: 2008
  end-page: 21
  ident: br000080
  article-title: Existence results for differential equations with fractional order and impulses, Mem. Differential Equations
  publication-title: Math. Phys.
– volume: 35
  start-page: 311
  year: 1996
  end-page: 322
  ident: br000095
  article-title: Fractional order diffusion-wave equations
  publication-title: Internat. J. Theoret. Phys.
– volume: 33
  start-page: 538
  year: 2000
  end-page: 602
  ident: br000150
  article-title: Existence and uniqueness theorems for nonlinear fractional differential equations
  publication-title: Demonstratio Math.
– volume: 70
  start-page: 2521
  year: 2009
  end-page: 2529
  ident: br000115
  article-title: Integral equations and initial value problems for nonlinear differential equations of fractional order
  publication-title: Nonlinear Anal.
– volume: 353
  start-page: 244
  year: 2009
  end-page: 245
  ident: br000125
  article-title: Existence-uniqueness result for a nonlinear
  publication-title: J. Math. Anal. Appl.
– year: 1999
  ident: br000050
  article-title: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications
– year: 1993
  ident: br000045
  article-title: An Introduction to the Fractional Calculus and Differential Equations
– volume: 118
  start-page: 1
  year: 2001
  end-page: 52
  ident: br000075
  article-title: Operators of fractional integration and their applications
  publication-title: Appl. Math. Comput.
– volume: 69
  start-page: 3877
  year: 2008
  end-page: 3896
  ident: br000085
  article-title: Some results for fractional boundary value problem of differential inclusions
  publication-title: Nonlinear Anal.
– volume: 49
  start-page: 205
  year: 1992
  ident: 10.1016/j.na.2011.05.074_br000090
  article-title: On the fractional differential equation
  publication-title: Appl. Math. Comput.
  doi: 10.1016/0096-3003(92)90024-U
– year: 2003
  ident: 10.1016/j.na.2011.05.074_br000190
– volume: 187
  start-page: 777
  year: 2007
  ident: 10.1016/j.na.2011.05.074_br000110
  article-title: Remarks on fractional derivatives
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.08.163
– year: 2010
  ident: 10.1016/j.na.2011.05.074_br000145
  article-title: Existence and uniqueness of solutions for the Cauchy-type problems of fractional differential equations
  publication-title: Disc. Dyn. Nat. Soc.
  doi: 10.1155/2010/142175
– volume: 5
  start-page: 367
  year: 2002
  ident: 10.1016/j.na.2011.05.074_br000030
  article-title: Geometric and physical interpretation of fractional integration and fractional differentiation
  publication-title: Fract. Calc. Appl. Anal.
– volume: 69
  start-page: 3877
  year: 2008
  ident: 10.1016/j.na.2011.05.074_br000085
  article-title: Some results for fractional boundary value problem of differential inclusions
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2007.10.021
– volume: 353
  start-page: 244
  year: 2009
  ident: 10.1016/j.na.2011.05.074_br000125
  article-title: Existence-uniqueness result for a nonlinear n-term fractional equation
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2008.11.056
– volume: 86
  start-page: 2602
  year: 2006
  ident: 10.1016/j.na.2011.05.074_br000025
  article-title: An approximate method for numerical solution of fractional differential equations
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2006.02.007
– volume: 204
  start-page: 609
  year: 1996
  ident: 10.1016/j.na.2011.05.074_br000130
  article-title: Existence and uniqueness for a nonlinear fractional differential equation
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1996.0456
– volume: 310
  start-page: 26
  year: 2005
  ident: 10.1016/j.na.2011.05.074_br000140
  article-title: Existence of fractional differential equations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2004.12.015
– year: 1993
  ident: 10.1016/j.na.2011.05.074_br000045
– volume: 69
  start-page: 2677
  year: 2008
  ident: 10.1016/j.na.2011.05.074_br000060
  article-title: Basic theory of fractional differential equations
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2007.08.042
– volume: 78
  start-page: 153
  year: 2001
  ident: 10.1016/j.na.2011.05.074_br000065
  article-title: Differential equations of fractional order: Methods, results and problems I
  publication-title: Appl. Anal.
  doi: 10.1080/00036810108840931
– volume: 118
  start-page: 1
  year: 2001
  ident: 10.1016/j.na.2011.05.074_br000075
  article-title: Operators of fractional integration and their applications
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(99)00208-8
– volume: 59
  start-page: 1236
  year: 2010
  ident: 10.1016/j.na.2011.05.074_br000120
  article-title: Approximate of solutions to fractional integral equation
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2009.06.028
– year: 1999
  ident: 10.1016/j.na.2011.05.074_br000050
– volume: 72
  start-page: 580
  year: 2010
  ident: 10.1016/j.na.2011.05.074_br000175
  article-title: Fractional order differential equations on an unbounded domain
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2009.06.106
– start-page: 211
  issue: 199
  year: 2004
  ident: 10.1016/j.na.2011.05.074_br000155
  article-title: Cauchy problem for fractional diffusion equations
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2003.12.002
– volume: 367
  start-page: 260
  year: 2010
  ident: 10.1016/j.na.2011.05.074_br000165
  article-title: Initial value problems for fractional differential equations involving Riemann–Liouville sequential fractional derivative
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2010.01.023
– year: 2000
  ident: 10.1016/j.na.2011.05.074_br000005
– volume: 23
  start-page: 1248
  year: 2010
  ident: 10.1016/j.na.2011.05.074_br000105
  article-title: Maximum principles for fractional differential equations derived from Mittag-Leffler functions
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2010.06.007
– volume: 5
  start-page: 81
  year: 1991
  ident: 10.1016/j.na.2011.05.074_br000010
  article-title: Damping description involving fractional operators
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/0888-3270(91)90016-X
– volume: 51
  start-page: 391C397
  year: 1999
  ident: 10.1016/j.na.2011.05.074_br000185
  article-title: Boundary value problems of nonsingular type on the semi-infinite interval
  publication-title: Tohoku. Math. J.
  doi: 10.2748/tmj/1178224769
– volume: 81
  start-page: 435
  year: 2002
  ident: 10.1016/j.na.2011.05.074_br000070
  article-title: Differential equations of fractional order: Methods, results and problems II
  publication-title: Appl. Anal.
  doi: 10.1080/0003681021000022032
– year: 2009
  ident: 10.1016/j.na.2011.05.074_br000055
– volume: 278
  start-page: 434
  year: 2003
  ident: 10.1016/j.na.2011.05.074_br000135
  article-title: Existence of positive solutions of nonlinear fractional differential equations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/S0022-247X(02)00716-3
– volume: 44
  start-page: 1
  year: 2008
  ident: 10.1016/j.na.2011.05.074_br000080
  article-title: Existence results for differential equations with fractional order and impulses, Mem. Differential Equations
  publication-title: Math. Phys.
– volume: 33
  start-page: 181
  year: 1998
  ident: 10.1016/j.na.2011.05.074_br000100
  article-title: Nonlinear functional differential equations of arbitrary orders
  publication-title: Nonlinear Anal.
  doi: 10.1016/S0362-546X(97)00525-7
– volume: 35
  start-page: 311
  year: 1996
  ident: 10.1016/j.na.2011.05.074_br000095
  article-title: Fractional order diffusion-wave equations
  publication-title: Internat. J. Theoret. Phys.
  doi: 10.1007/BF02083817
– volume: 70
  start-page: 2521
  year: 2009
  ident: 10.1016/j.na.2011.05.074_br000115
  article-title: Integral equations and initial value problems for nonlinear differential equations of fractional order
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2008.03.037
– volume: 33
  start-page: 538
  issue: 3
  year: 2000
  ident: 10.1016/j.na.2011.05.074_br000150
  article-title: Existence and uniqueness theorems for nonlinear fractional differential equations
  publication-title: Demonstratio Math.
– volume: 103
  start-page: 7180
  year: 1995
  ident: 10.1016/j.na.2011.05.074_br000035
  article-title: Relaxation in filled polymers: a fractional calculus approach
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470346
– volume: 51
  start-page: 299
  year: 1984
  ident: 10.1016/j.na.2011.05.074_br000020
  article-title: Application of fractional calculus to the theory of viscoelasticity
  publication-title: J. Appl. Mech
  doi: 10.1115/1.3167616
– volume: vol. 204
  year: 2006
  ident: 10.1016/j.na.2011.05.074_br000040
– volume: 109
  start-page: 495
  year: 2010
  ident: 10.1016/j.na.2011.05.074_br000170
  article-title: Unbounded solutions for fractional bounded value problems on the infinite interval
  publication-title: Acta Appl. Math.
  doi: 10.1007/s10440-008-9329-9
– year: 1999
  ident: 10.1016/j.na.2011.05.074_br000015
  article-title: On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity
– year: 2001
  ident: 10.1016/j.na.2011.05.074_br000180
– volume: 71
  start-page: 2087
  year: 2009
  ident: 10.1016/j.na.2011.05.074_br000160
  article-title: Monotone iterative method for initial value problem involving Riemann–Louville derivatives
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2009.01.043
SSID ssj0001736
Score 2.306176
Snippet The main aim of this paper is to study the global existence of solutions of initial value problems for nonlinear fractional differential equations(FDEs) on the...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5975
SubjectTerms Banach space
Derivatives
Differential equations
Exact sciences and technology
Fractional differential equation
Global existence
Half-axis
Initial value problem
Initial value problems
Mathematical analysis
Mathematics
Nonlinearity
Numerical analysis
Numerical analysis. Scientific computation
Ordinary differential equations
Partial differential equations
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Sciences and techniques of general use
Title Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis
URI https://dx.doi.org/10.1016/j.na.2011.05.074
https://www.proquest.com/docview/919935490
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFH5C5bIJjY0NrcAqH3bZIW1SO3ZzRFVRByoXhtSb5Ti21gmF0hSJE7-d9xKngNB64BIpkR0nfs_vfS95_h7AzyIWFuMKH6E39higJEWU2xxDlYzA89BYYWhz8uxSTq_F-Tyd78C43QtDaZXB9jc2vbbW4cogzOZguVgMrsj2pkLOifSMqzpuF0KRlvcfn9M8EsVlSyFFrcOvyibHqzSBxDPtx0r8zzXtLU2FE-abShdvjHbtic4-w6cAIdlp85RfYMeVB7Af4CQLi7U6gI8vuAbxbLYhaK2-wt3kgeSLDdmtZxv9o5MFpRPh_YkG3LFQcKZiCG5Z2fBqmBXzq2ZDBLZrS6zUndxdQx2OdyoZjsf-4htFBgf7Btdnkz_jaRSqL0SWp3IdJRhmp7kyo6zwDmHbsCDnX-QWQYzEI7cus5lUdpQNvUeYmYy85LwQRNpFNYwPoYOP5b4DExlaUWUTXO65KKQyXsTcK7TDlitjXRcG7cRrG6jJqULGjW5z0P7p0mgSlY5TjaLqwq9Nj2VDy7GlLW9lqV-plkavsaVX75XYN8MgHiKCI9kF1uqBxiVJ_1lM6W7vK51RUiTG3fHRu0Y-hg_1h-s6Z-YEOuvVvfuByGed92rV7sHu6e-L6eUTF0wDew
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RemgRanmK7YP6QA89hE1ix9kceqgKaCksl4K0N-M4tliEwrJZRHvpn-of7EziLCBUDkhcIiXyI_FMvplJxt8AbBWhMBhXuACtscMAJSqC3OQYqmTkPMfaCE2bkwdHsn8ifgyT4Rz8bffCUFqlx_4G02u09le6fjW749Go-5OwNxFySKRnHA2fz6w8sL9vMG6rvu7voJA_x_He7vH3fuBLCwSGJ3IaRBhDJnmqe1nhLPokcUGWrcgNWmiJR25sZjKZml4WO4c-VNRzkvNCECMVFejFcV_AS4FwQWUTtv_c5pVEKZctZxXdnv832iSVldqzhibbYSr-ZwsXx7pCCbmmtMYDK1Gbvr0leON9VvatWZZlmLPlCrz1_ivz6FCtwMIdckM8G8wYYatVuNr9RQqFDdmlYzOFp5MR5S_h-MQ7bpmvcFMx9KZZ2RB56Alzk2YHBrZra7rUnexVw1WOI5UM52Nn-ESBxsnW4ORZZLIO83hbdgOYyBC2UxMhvuSikKl2IuQuReA3PNXGdqDbLrwyngudSnJcqDbp7VyVWpGoVJgoFFUHvsx6jBsekEfa8laW6p4uKzRTj_TavCf22TTogBGjkuwAa_VAIQbQjx1d2svrSmWUhYmBfvjuSTN_glf948GhOtw_OngPr-uv5nXCzgeYn06u7Ud0u6b5Zq3mDE6f-736B2lhPek
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Existence+of+solutions+of+initial+value+problems+for+nonlinear+fractional+differential+equations+on+the+half-axis&rft.jtitle=Nonlinear+analysis&rft.au=Kou%2C+Chunhai&rft.au=Zhou%2C+Huacheng&rft.au=Yan%2C+Ye&rft.date=2011-12-01&rft.pub=Elsevier+Ltd&rft.issn=0362-546X&rft.eissn=1873-5215&rft.volume=74&rft.issue=17&rft.spage=5975&rft.epage=5986&rft_id=info:doi/10.1016%2Fj.na.2011.05.074&rft.externalDocID=S0362546X11003750
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0362-546X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0362-546X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0362-546X&client=summon