Waterproof lithium metal anode enabled by cross-linking encapsulation
[Display omitted] Lithium (Li) metal is considered as the ultimate anode choice for developing next-generation high-energy batteries. However, the poor tolerance against moist air and the unstable solid electrolyte interphases (SEI) induced by the intrinsic high reactivity of lithium bring series of...
Saved in:
Published in | Science bulletin Vol. 65; no. 11; pp. 909 - 916 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2095-9273 2095-9281 |
DOI | 10.1016/j.scib.2020.02.022 |
Cover
Loading…
Abstract | [Display omitted]
Lithium (Li) metal is considered as the ultimate anode choice for developing next-generation high-energy batteries. However, the poor tolerance against moist air and the unstable solid electrolyte interphases (SEI) induced by the intrinsic high reactivity of lithium bring series of obstacles such as the rigorous operating condition, the poor electrochemical performance, and safety anxiety of the cell, which to a large extent hinder the commercial utilization of Li metal anode. Here, an effective encapsulation strategy was reported via a facile drop-casting and a following heat-assisted cross-linking process. Benefiting from the inherent hydrophobicity and the compact micro-structure of the cross-linked poly(vinylidene-co-hexafluoropropylene) (PVDF–HFP), the as-encapsulated Li metal exhibited prominent stability toward moisture, as well corroborated by the evaluations both under the humid air at 25 °C with 30% relative humidity (RH) and pure water. Moreover, the encapsulated Li metal anode exhibits a decent electrochemical performance without substantially increasing the cell polarization due to the uniform and unblocked ion channels, which originally comes from the superior affinity of the PVDF–HFP polymer toward non-aqueous electrolyte. This work demonstrates a novel and valid encapsulation strategy for humidity-sensitive alkali metal electrodes, aiming to pave the way for the large-scale and low-cost deployment of the alkali metal-based high-energy-density batteries. |
---|---|
AbstractList | Lithium (Li) metal is considered as the ultimate anode choice for developing next-generation high-energy batteries. However, the poor tolerance against moist air and the unstable solid electrolyte interphases (SEI) induced by the intrinsic high reactivity of lithium bring series of obstacles such as the rigorous operating condition, the poor electrochemical performance, and safety anxiety of the cell, which to a large extent hinder the commercial utilization of Li metal anode. Here, an effective encapsulation strategy was reported via a facile drop-casting and a following heat-assisted cross-linking process. Benefiting from the inherent hydrophobicity and the compact micro-structure of the cross-linked poly(vinylidene-co-hexafluoropropylene) (PVDF-HFP), the as-encapsulated Li metal exhibited prominent stability toward moisture, as well corroborated by the evaluations both under the humid air at 25 °C with 30% relative humidity (RH) and pure water. Moreover, the encapsulated Li metal anode exhibits a decent electrochemical performance without substantially increasing the cell polarization due to the uniform and unblocked ion channels, which originally comes from the superior affinity of the PVDF-HFP polymer toward non-aqueous electrolyte. This work demonstrates a novel and valid encapsulation strategy for humidity-sensitive alkali metal electrodes, aiming to pave the way for the large-scale and low-cost deployment of the alkali metal-based high-energy-density batteries. [Display omitted] Lithium (Li) metal is considered as the ultimate anode choice for developing next-generation high-energy batteries. However, the poor tolerance against moist air and the unstable solid electrolyte interphases (SEI) induced by the intrinsic high reactivity of lithium bring series of obstacles such as the rigorous operating condition, the poor electrochemical performance, and safety anxiety of the cell, which to a large extent hinder the commercial utilization of Li metal anode. Here, an effective encapsulation strategy was reported via a facile drop-casting and a following heat-assisted cross-linking process. Benefiting from the inherent hydrophobicity and the compact micro-structure of the cross-linked poly(vinylidene-co-hexafluoropropylene) (PVDF–HFP), the as-encapsulated Li metal exhibited prominent stability toward moisture, as well corroborated by the evaluations both under the humid air at 25 °C with 30% relative humidity (RH) and pure water. Moreover, the encapsulated Li metal anode exhibits a decent electrochemical performance without substantially increasing the cell polarization due to the uniform and unblocked ion channels, which originally comes from the superior affinity of the PVDF–HFP polymer toward non-aqueous electrolyte. This work demonstrates a novel and valid encapsulation strategy for humidity-sensitive alkali metal electrodes, aiming to pave the way for the large-scale and low-cost deployment of the alkali metal-based high-energy-density batteries. |
Author | Xu, Rui Xiao, Ye Ding, Jun-Fan Huang, Jia-Qi Liang, Yeru Yan, Chong |
Author_xml | – sequence: 1 givenname: Ye surname: Xiao fullname: Xiao, Ye organization: School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China – sequence: 2 givenname: Rui surname: Xu fullname: Xu, Rui organization: School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China – sequence: 3 givenname: Chong surname: Yan fullname: Yan, Chong organization: School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China – sequence: 4 givenname: Yeru surname: Liang fullname: Liang, Yeru organization: College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China – sequence: 5 givenname: Jun-Fan surname: Ding fullname: Ding, Jun-Fan organization: School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China – sequence: 6 givenname: Jia-Qi surname: Huang fullname: Huang, Jia-Qi email: jqhuang@bit.edu.cn organization: School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36747423$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMlKA0EQhhuJmBjzAh5kXmDG3mZp8CIhLhDwEvDY9FKjHWejpyPk7Z1JNAcPgYIqqP8r6v-v0aRpG0DoluCEYJLdb5PeOJ1QTHGC6VD0As0oFmksaEEmpzlnU7To-y3GmHBBOc6v0JRlOc85ZTO0elcBfOfbtowqFz7dro5qCKqKVNNaiKBRugIb6X1kfNv3ceWaL9d8DAujun5XqeDa5gZdlqrqYfHb52jztNosX-L12_Pr8nEdG5ZmISbaMguMCw64GN4UJZQWa2wBmKZCmFQXBaG8yIwqeWFzgQvNLTdKWctSNkd3x7PdTtdgZeddrfxe_tkZBPQoOPzqoTxJCJZjbHIrx9jkGJvEdCg6QMU_yLhwsBW8ctV59OGIwmD624EfJUMyYJ0HE6Rt3Tn8B_sAiNk |
CitedBy_id | crossref_primary_10_1016_j_cej_2020_125254 crossref_primary_10_1016_j_cej_2020_126542 crossref_primary_10_1016_j_jechem_2021_04_045 crossref_primary_10_1016_j_jechem_2021_04_005 crossref_primary_10_1016_j_ensm_2023_102884 crossref_primary_10_1016_j_ensm_2022_12_043 crossref_primary_10_1002_eem2_12181 crossref_primary_10_1016_j_electacta_2022_140212 crossref_primary_10_1016_j_jechem_2022_12_007 crossref_primary_10_1016_j_jpowsour_2022_232599 crossref_primary_10_1016_j_jechem_2020_08_019 crossref_primary_10_1007_s40820_024_01535_w crossref_primary_10_1007_s11426_023_1908_9 crossref_primary_10_1002_smtd_202201177 crossref_primary_10_1002_nano_202100118 crossref_primary_10_1016_j_jechem_2020_09_030 crossref_primary_10_1002_celc_202200983 crossref_primary_10_1016_j_cej_2021_128534 crossref_primary_10_1016_j_cclet_2023_109284 crossref_primary_10_1016_j_ensm_2021_03_006 crossref_primary_10_1002_admi_202102428 crossref_primary_10_1016_j_enchem_2021_100063 crossref_primary_10_1016_j_jechem_2020_11_034 crossref_primary_10_1002_smtd_202001035 crossref_primary_10_1002_aenm_202002360 crossref_primary_10_1002_adma_202008133 crossref_primary_10_1007_s40843_020_1655_3 crossref_primary_10_1021_acs_energyfuels_1c01904 crossref_primary_10_1016_j_jechem_2020_07_036 crossref_primary_10_1002_eem2_12122 crossref_primary_10_1002_mame_202100923 crossref_primary_10_1021_acsnano_0c05636 crossref_primary_10_1002_adfm_202010958 crossref_primary_10_1039_D0QM01134G crossref_primary_10_1002_adfm_202108449 crossref_primary_10_1016_j_jechem_2024_06_032 crossref_primary_10_1016_j_cclet_2023_108812 crossref_primary_10_1016_j_est_2023_109048 crossref_primary_10_1007_s11426_022_1221_4 crossref_primary_10_1007_s10570_022_04499_5 crossref_primary_10_1016_j_partic_2020_12_003 crossref_primary_10_1039_D1SE01277K crossref_primary_10_1126_sciadv_adf1550 crossref_primary_10_1016_j_jechem_2022_10_026 crossref_primary_10_1021_acs_nanolett_0c03206 crossref_primary_10_1016_j_mtnano_2020_100103 crossref_primary_10_1002_aenm_202203818 crossref_primary_10_1016_j_scib_2023_06_008 crossref_primary_10_1039_D0MH01030H crossref_primary_10_1002_advs_202307726 crossref_primary_10_1016_j_jechem_2021_03_018 crossref_primary_10_1016_j_scib_2020_09_018 crossref_primary_10_1016_j_ensm_2022_01_049 crossref_primary_10_12677_NAT_2022_123020 crossref_primary_10_1007_s11426_023_1866_y crossref_primary_10_1016_j_jechem_2020_11_016 crossref_primary_10_1002_smll_202303344 crossref_primary_10_1016_j_apsusc_2022_155863 crossref_primary_10_1021_acsami_1c06632 crossref_primary_10_1021_acsenergylett_3c01357 |
Cites_doi | 10.1016/j.jechem.2018.12.013 10.1021/je60015a047 10.1038/nnano.2017.16 10.1021/cr030203g 10.1002/adfm.201705838 10.1021/acs.jpcc.8b01817 10.1002/aenm.201802107 10.1007/s11426-019-9519-9 10.1002/aenm.201702258 10.1016/j.scib.2019.05.025 10.1002/aenm.201902125 10.1002/pol.1983.170211208 10.1021/acs.nanolett.7b02630 10.1002/anie.201905712 10.1002/advs.201500213 10.1021/ja02193a004 10.1016/j.cclet.2018.05.016 10.1039/C5NR00719D 10.1016/j.jechem.2019.02.001 10.1021/acs.chemrev.7b00115 10.1021/acs.jpcc.7b06983 10.1016/0378-7753(80)80101-7 10.1002/anie.201907759 10.1021/nl801457b 10.1016/S0376-7388(99)00253-7 10.1021/acsami.8b08585 10.1149/1.1838857 10.1021/acscentsci.8b00845 10.1016/j.jechem.2019.03.014 10.1016/j.jechem.2019.12.024 10.1038/s41467-019-08767-0 10.1080/10408397009527100 10.1016/j.joule.2019.07.027 10.1149/1.1837858 10.1002/aenm.201900611 10.1002/adma.201606552 10.1021/acs.chemrev.8b00422 10.1021/jacs.7b06364 10.1002/adma.201803270 10.1016/j.jechem.2020.01.027 10.1016/j.jechem.2018.11.016 10.1038/nnano.2017.129 10.1016/j.memsci.2014.03.055 10.1038/nenergy.2016.114 10.1038/s41560-018-0107-2 10.1021/acsnano.5b02166 10.1038/s41560-018-0096-1 10.1016/j.jechem.2017.11.010 10.1002/adma.201705711 |
ContentType | Journal Article |
Copyright | 2020 Science China Press Copyright © 2020 Science China Press. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Science China Press – notice: Copyright © 2020 Science China Press. Published by Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM |
DOI | 10.1016/j.scib.2020.02.022 |
DatabaseName | CrossRef PubMed |
DatabaseTitle | CrossRef PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2095-9281 |
EndPage | 916 |
ExternalDocumentID | 36747423 10_1016_j_scib_2020_02_022 S2095927320300980 |
Genre | Journal Article |
GroupedDBID | --M 0R~ 4.4 5VR AACTN AAEDT AAEDW AAIAV AAJKR AAKOC AALRI AAOAW AARTL AAXUO AAYIU ABBBX ABJNI ABMAC ABQEM ABQYD ABTHY ABUDA ABYKQ ACDAQ ACGFS ACIWK ACKNC ACPRK ACRLP ADBBV ADINQ AEBSH AEGNC AEHWI AEJHL AENEX AFKWA AFRAH AFTJW AFUIB AFXIZ AFZHZ AFZKB AGUBO AGWZB AGYKE AHBYD AHJVU AIEXJ AIIXL AIKHN AITUG AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AUKKA AVWKF AXJTR AZFZN BGNMA BJAXD BKOJK CCEZO CCVFK CHBEP EBS EFJIC EFLBG FA0 FDB FIRID FRRFC FYGXN IXD KOM KOV M41 M4Y NU0 O9- ROL RSV SOJ SPC SPCBC SSE SSK SST SSU SSZ T5K ~G- -SA -S~ 5XA 5XB AAIAL AANXM AAQFI AATTM AAXKI AAYQN AAYTO AAYWO AAYXX AAYZH ABFSG ABJOX ABTEG ABTMW ACBXY ACSTC ACVFH ADCNI ADKPE ADRFC ADVLN AEIPS AEOHA AEPYU AEUPX AEZWR AFBBN AFHIU AFJKZ AFLOW AFPUW AGCQF AGJBK AGQMX AGRNS AHAVH AHSBF AHWEU AIGII AIIUN AIXLP AJBLW AKBMS AKRWK AKYEP AMKLP ANKPU APXCP BNPGV CAJEA CITATION CJPJV CSCUP EJD H13 HX~ Q-- SSH TCJ TGP U1G U5K UG4 NPM |
ID | FETCH-LOGICAL-c356t-1bd3de3494e089289fefd0b0dee3b299c5b8812486caf48d7908b4d4caadd353 |
IEDL.DBID | AIKHN |
ISSN | 2095-9273 |
IngestDate | Thu Jan 02 22:53:07 EST 2025 Tue Jul 01 02:08:24 EDT 2025 Thu Apr 24 22:55:25 EDT 2025 Fri Feb 23 02:47:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Water-stable Polymer encapsulation Cross-linking Air-stable Lithium metal anode Interfacial protection |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2020 Science China Press. Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c356t-1bd3de3494e089289fefd0b0dee3b299c5b8812486caf48d7908b4d4caadd353 |
PMID | 36747423 |
PageCount | 8 |
ParticipantIDs | pubmed_primary_36747423 crossref_primary_10_1016_j_scib_2020_02_022 crossref_citationtrail_10_1016_j_scib_2020_02_022 elsevier_sciencedirect_doi_10_1016_j_scib_2020_02_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-15 |
PublicationDateYYYYMMDD | 2020-06-15 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Science bulletin |
PublicationTitleAlternate | Sci Bull (Beijing) |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Tikekar, Choudhury, Tu (b0070) 2016; 1 Wang, Zhang, Liu (b0200) 2015; 7 Arora, White, Doyle (b0060) 1998; 145 Kise, Ogata (b0245) 1983; 21 Jiang, Jin, Han (b0175) 2019; 58 Shang, Shirazian (b0065) 2018; 122 Alaboina, Rodrigues, Rottmayer (b0115) 2018; 10 Zhu, Wu, Wang (b0180) 2019; 37 Wang, Cui, Chu (b0020) 2020; 48 Lin, Liu, Cui (b0025) 2017; 12 Adair, Zhao, Banis (b0120) 2019; 58 Lewis, Keyes (b0010) 1913; 35 Zhang, Lv, Huang (b0135) 2019; 64 Qi, Lv, Lv (b0215) 2019; 39 Xu, Wang, Wang (b0090) 2018; 27 Xu, Zhang, Cheng (b0225) 2018; 28 Xu (b0035) 2004; 104 Cheng, Zhang, Zhao (b0030) 2016; 3 Li, Li, Sun (b0055) 2017; 17 Xiang, Yang, Yuan (b0260) 2019; 3 Schmuch, Wagner, Hörpel (b0075) 2018; 3 Jeppson, Ballif, Yuan (b0050) 1978 Yuan, Huang, Peng (b0210) 2018; 8 Gao, Zhang, Huang (b0145) 2019; 30 Kang, Cao (b0220) 2014; 463 Brody, Sacharow (b0230) 1970; 1 Flory (b0255) 1953 Liang, Li, Zhao (b0165) 2019; 9 Cheng, Zhang, Zhao (b0015) 2017; 117 Shen, Cheng, Shi (b0155) 2019; 37 Zhao, Duan, Huang (b0105) 2019; 62 Kozen, Lin, Pearse (b0110) 2015; 9 Markowitz, Boryta (b0045) 1962; 7 Liao, Wu, Mu (b0100) 2018; 30 Xu, Liu, Yu (b0125) 2017; 29 Zhang, Liu, Zhang (b0250) 2017; 139 Grady (b0040) 1980; 5 Bottino, Capannelli, Monticelli (b0240) 2000; 166 Yuan, Wu, Chen (b0170) 2019; 37 Tu, Choudhury, Zachman (b0150) 2018; 3 Winter, Barnett, Xu (b0005) 2018; 118 Kwak, Park, Jung (b0130) 2018; 8 Leung, Jungjohann (b0085) 2017; 121 Liang, Xiao, Yan (b0095) 2020 Bunch, Verbridge, Alden (b0195) 2008; 8 Zhao, Zhou, Yan (b0185) 2017; 12 Shen, Li, Qian (b0190) 2019; 10 Xu, Su, Jin (b0205) 2019; 9 ASTM E96/E96M-16, Standard test methods for water vapor transmission of materials. ASTM International, West Conshohocken, PA; 2016. Kang, Wang, Guo (b0140) 2019; 5 Huang, Ren, Zhang (b0160) 2018; 30 Peled, Golodnitsky, Ardel (b0080) 1997; 144 Zhu (10.1016/j.scib.2020.02.022_b0180) 2019; 37 Kozen (10.1016/j.scib.2020.02.022_b0110) 2015; 9 Winter (10.1016/j.scib.2020.02.022_b0005) 2018; 118 Gao (10.1016/j.scib.2020.02.022_b0145) 2019; 30 Schmuch (10.1016/j.scib.2020.02.022_b0075) 2018; 3 Liao (10.1016/j.scib.2020.02.022_b0100) 2018; 30 Jeppson (10.1016/j.scib.2020.02.022_b0050) 1978 Tikekar (10.1016/j.scib.2020.02.022_b0070) 2016; 1 Adair (10.1016/j.scib.2020.02.022_b0120) 2019; 58 Kang (10.1016/j.scib.2020.02.022_b0140) 2019; 5 Wang (10.1016/j.scib.2020.02.022_b0200) 2015; 7 10.1016/j.scib.2020.02.022_b0235 Zhang (10.1016/j.scib.2020.02.022_b0135) 2019; 64 Li (10.1016/j.scib.2020.02.022_b0055) 2017; 17 Xu (10.1016/j.scib.2020.02.022_b0035) 2004; 104 Xiang (10.1016/j.scib.2020.02.022_b0260) 2019; 3 Yuan (10.1016/j.scib.2020.02.022_b0210) 2018; 8 Cheng (10.1016/j.scib.2020.02.022_b0030) 2016; 3 Markowitz (10.1016/j.scib.2020.02.022_b0045) 1962; 7 Brody (10.1016/j.scib.2020.02.022_b0230) 1970; 1 Liang (10.1016/j.scib.2020.02.022_b0165) 2019; 9 Tu (10.1016/j.scib.2020.02.022_b0150) 2018; 3 Alaboina (10.1016/j.scib.2020.02.022_b0115) 2018; 10 Lin (10.1016/j.scib.2020.02.022_b0025) 2017; 12 Peled (10.1016/j.scib.2020.02.022_b0080) 1997; 144 Kang (10.1016/j.scib.2020.02.022_b0220) 2014; 463 Xu (10.1016/j.scib.2020.02.022_b0090) 2018; 27 Grady (10.1016/j.scib.2020.02.022_b0040) 1980; 5 Bottino (10.1016/j.scib.2020.02.022_b0240) 2000; 166 Flory (10.1016/j.scib.2020.02.022_b0255) 1953 Zhao (10.1016/j.scib.2020.02.022_b0185) 2017; 12 Yuan (10.1016/j.scib.2020.02.022_b0170) 2019; 37 Arora (10.1016/j.scib.2020.02.022_b0060) 1998; 145 Shen (10.1016/j.scib.2020.02.022_b0190) 2019; 10 Shen (10.1016/j.scib.2020.02.022_b0155) 2019; 37 Leung (10.1016/j.scib.2020.02.022_b0085) 2017; 121 Bunch (10.1016/j.scib.2020.02.022_b0195) 2008; 8 Jiang (10.1016/j.scib.2020.02.022_b0175) 2019; 58 Huang (10.1016/j.scib.2020.02.022_b0160) 2018; 30 Cheng (10.1016/j.scib.2020.02.022_b0015) 2017; 117 Shang (10.1016/j.scib.2020.02.022_b0065) 2018; 122 Kise (10.1016/j.scib.2020.02.022_b0245) 1983; 21 Liang (10.1016/j.scib.2020.02.022_b0095) 2020 Qi (10.1016/j.scib.2020.02.022_b0215) 2019; 39 Lewis (10.1016/j.scib.2020.02.022_b0010) 1913; 35 Zhao (10.1016/j.scib.2020.02.022_b0105) 2019; 62 Xu (10.1016/j.scib.2020.02.022_b0125) 2017; 29 Zhang (10.1016/j.scib.2020.02.022_b0250) 2017; 139 Xu (10.1016/j.scib.2020.02.022_b0205) 2019; 9 Xu (10.1016/j.scib.2020.02.022_b0225) 2018; 28 Wang (10.1016/j.scib.2020.02.022_b0020) 2020; 48 Kwak (10.1016/j.scib.2020.02.022_b0130) 2018; 8 |
References_xml | – volume: 30 start-page: 1705711 year: 2018 ident: b0100 article-title: Developing a “water-defendable” and “dendrite-free” lithium-metal anode using a simple and promising GeCl publication-title: Adv Mater – volume: 30 start-page: 1803270 year: 2018 ident: b0160 article-title: Protecting the Li-metal anode in a Li–O publication-title: Adv Mater – volume: 12 start-page: 194 year: 2017 end-page: 206 ident: b0025 article-title: Reviving the lithium metal anode for high-energy batteries publication-title: Nat Nanotechnol – volume: 58 start-page: 15797 year: 2019 end-page: 15802 ident: b0120 article-title: Highly stable lithium metal anode interface via molecular layer deposition zircone coatings for long life next-generation battery systems publication-title: Angew Chem Int Ed – volume: 9 start-page: 1900611 year: 2019 ident: b0205 article-title: generated fireproof gel polymer electrolyte with Li publication-title: Adv Energy Mater – volume: 122 start-page: 16016 year: 2018 end-page: 16022 ident: b0065 article-title: Facilitated dissociation of water in the presence of lithium metal at ambient temperature as a requisite for lithium–gas reactions publication-title: J Phys Chem C – volume: 5 start-page: 127 year: 1980 end-page: 135 ident: b0040 article-title: Lithium metal for the battery industry publication-title: J Power Sources – volume: 10 start-page: 32801 year: 2018 end-page: 32808 ident: b0115 article-title: dendrite suppression study of nanolayer encapsulated Li metal enabled by zirconia atomic layer deposition publication-title: ACS Appl Mater Interfaces – volume: 10 start-page: 900 year: 2019 ident: b0190 article-title: Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery publication-title: Nat Commun – volume: 144 start-page: L208 year: 1997 end-page: L210 ident: b0080 article-title: Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes publication-title: J Electrochem Soc – start-page: 29 year: 1953 end-page: 68 ident: b0255 article-title: Principles of polymer chemistry – year: 1978 ident: b0050 article-title: Lithium literature review: lithium’s properties and interactions – volume: 30 start-page: 525 year: 2019 end-page: 528 ident: b0145 article-title: Protection of Li metal anode by surface-coating of PVDF thin film to enhance the cycling performance of Li batteries publication-title: Chin Chem Lett – volume: 463 start-page: 145 year: 2014 end-page: 165 ident: b0220 article-title: Application and modification of poly(vinylidene fluoride) (PVDF) membranes – a review publication-title: J Membr Sci – volume: 3 start-page: 2334 year: 2019 end-page: 2363 ident: b0260 article-title: Alkali-metal anodes: from lab to market publication-title: Joule – volume: 28 start-page: 1705838 year: 2018 ident: b0225 article-title: Artificial soft–rigid protective layer for dendrite-free lithium metal anode publication-title: Adv Funct Mater – volume: 21 start-page: 3443 year: 1983 end-page: 3451 ident: b0245 article-title: Phase transfer catalysis in dehydrofluorination of poly(vinylidene fluoride) by aqueous sodium hydroxide solutions publication-title: J Polym Sci Polym Chem Ed – volume: 139 start-page: 13779 year: 2017 end-page: 13785 ident: b0250 article-title: Synergistic coupling between Li publication-title: J Am Chem Soc – volume: 3 start-page: 1500213 year: 2016 ident: b0030 article-title: A review of solid electrolyte interphases on lithium metal anode publication-title: Adv Sci – volume: 3 start-page: 310 year: 2018 end-page: 316 ident: b0150 article-title: Fast ion transport at solid–solid interfaces in hybrid battery anodes publication-title: Nat Energy – volume: 37 start-page: 29 year: 2019 end-page: 34 ident: b0155 article-title: Lithium–matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries publication-title: J Energy Chem – volume: 62 start-page: 1286 year: 2019 end-page: 1299 ident: b0105 article-title: Designing solid-state interfaces on lithium-metal anodes: a review publication-title: Sci China Chem – volume: 64 start-page: 910 year: 2019 end-page: 917 ident: b0135 article-title: An air-stable and waterproof lithium metal anode enabled by wax composite packaging publication-title: Sci Bull – volume: 118 start-page: 11433 year: 2018 end-page: 11456 ident: b0005 article-title: Before Li ion batteries publication-title: Chem Rev – volume: 27 start-page: 513 year: 2018 end-page: 527 ident: b0090 article-title: Recent progresses in the suppression method based on the growth mechanism of lithium dendrite publication-title: J Energy Chem – volume: 145 start-page: 3647 year: 1998 end-page: 3667 ident: b0060 article-title: Capacity fade mechanisms and side reactions in lithium-ion batteries publication-title: J Electrochem Soc – volume: 8 start-page: 2458 year: 2008 end-page: 2462 ident: b0195 article-title: Impermeable atomic membranes from graphene sheets publication-title: Nano Lett – volume: 9 start-page: 5884 year: 2015 end-page: 5892 ident: b0110 article-title: Next-generation lithium metal anode engineering via atomic layer deposition publication-title: ACS Nano – year: 2020 ident: b0095 article-title: A bifunctional ethylene-vinyl acetate copolymer protective layer for dendrites-free lithium metal anodes publication-title: J Energy Chem – reference: ASTM E96/E96M-16, Standard test methods for water vapor transmission of materials. ASTM International, West Conshohocken, PA; 2016. – volume: 121 start-page: 20188 year: 2017 end-page: 20196 ident: b0085 article-title: Spatial heterogeneities and onset of passivation breakdown at lithium anode interfaces publication-title: J Phys Chem C – volume: 39 start-page: 88 year: 2019 end-page: 100 ident: b0215 article-title: Multifunctional binder designs for lithium-sulfur batteries publication-title: J Energy Chem – volume: 1 start-page: 16114 year: 2016 ident: b0070 article-title: Design principles for electrolytes and interfaces for stable lithium-metal batteries publication-title: Nat Energy – volume: 1 start-page: 71 year: 1970 end-page: 155 ident: b0230 article-title: Flexible packaging of foods publication-title: CRC Crit Rev Food Technol – volume: 37 start-page: 126 year: 2019 end-page: 142 ident: b0180 article-title: Recent advances in gel polymer electrolyte for high-performance lithium batteries publication-title: J Energy Chem – volume: 29 start-page: 1606552 year: 2017 ident: b0125 article-title: construction of stable tissue-directed/reinforced bifunctional separator/protection film on lithium anode for lithium–oxygen batteries publication-title: Adv Mater – volume: 8 start-page: 1802107 year: 2018 ident: b0210 article-title: A review of functional binders in lithium–sulfur batteries publication-title: Adv Energy Mater – volume: 37 start-page: 197 year: 2019 end-page: 203 ident: b0170 article-title: Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode publication-title: J Energy Chem – volume: 17 start-page: 5171 year: 2017 end-page: 5178 ident: b0055 article-title: Revealing nanoscale passivation and corrosion mechanisms of reactive battery materials in gas environments publication-title: Nano Lett – volume: 12 start-page: 993 year: 2017 end-page: 999 ident: b0185 article-title: Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes publication-title: Nat Nanotech – volume: 104 start-page: 4303 year: 2004 end-page: 4418 ident: b0035 article-title: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries publication-title: Chem Rev – volume: 35 start-page: 340 year: 1913 end-page: 344 ident: b0010 article-title: The potential of the lithium electrode publication-title: J Am Chem Soc – volume: 5 start-page: 468 year: 2019 end-page: 476 ident: b0140 article-title: Self-assembled monolayer enables slurry-coating of Li anode publication-title: ACS Cent Sci – volume: 8 start-page: 1702258 year: 2018 ident: b0130 article-title: Optimized concentration of redox mediator and surface protection of Li metal for maintenance of high energy efficiency in Li–O publication-title: Adv Energy Mater – volume: 7 start-page: 586 year: 1962 end-page: 591 ident: b0045 article-title: Lithium metal-gas reactions publication-title: J Chem Eng Data – volume: 9 start-page: 1902125 year: 2019 ident: b0165 article-title: An air-stable and dendrite-free Li anode for highly stable all-solid-state sulfide-based Li batteries publication-title: Adv Energy Mater – volume: 166 start-page: 23 year: 2000 end-page: 29 ident: b0240 article-title: Poly(vinylidene fluoride) with improved functionalization for membrane production publication-title: J Membr Sci – volume: 7 start-page: 7101 year: 2015 end-page: 7114 ident: b0200 article-title: Recent developments in superhydrophobic graphene and graphene-related materials: from preparation to potential applications publication-title: Nanoscale – volume: 117 start-page: 10403 year: 2017 end-page: 10473 ident: b0015 article-title: Toward safe lithium metal anode in rechargeable batteries: a review publication-title: Chem Rev – volume: 48 start-page: 145 year: 2020 end-page: 159 ident: b0020 article-title: Lithium metal anodes: present and future publication-title: J Energy Chem – volume: 3 start-page: 267 year: 2018 end-page: 278 ident: b0075 article-title: Performance and cost of materials for lithium-based rechargeable automotive batteries publication-title: Nat Energy – volume: 58 start-page: 11374 year: 2019 ident: b0175 article-title: Facile generation of polymer–alloy hybrid layers for dendrite-free lithium-metal anodes with improved moisture stability publication-title: Angew Chem Int Ed – volume: 37 start-page: 126 year: 2019 ident: 10.1016/j.scib.2020.02.022_b0180 article-title: Recent advances in gel polymer electrolyte for high-performance lithium batteries publication-title: J Energy Chem doi: 10.1016/j.jechem.2018.12.013 – volume: 7 start-page: 586 year: 1962 ident: 10.1016/j.scib.2020.02.022_b0045 article-title: Lithium metal-gas reactions publication-title: J Chem Eng Data doi: 10.1021/je60015a047 – volume: 12 start-page: 194 year: 2017 ident: 10.1016/j.scib.2020.02.022_b0025 article-title: Reviving the lithium metal anode for high-energy batteries publication-title: Nat Nanotechnol doi: 10.1038/nnano.2017.16 – volume: 104 start-page: 4303 year: 2004 ident: 10.1016/j.scib.2020.02.022_b0035 article-title: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries publication-title: Chem Rev doi: 10.1021/cr030203g – volume: 28 start-page: 1705838 year: 2018 ident: 10.1016/j.scib.2020.02.022_b0225 article-title: Artificial soft–rigid protective layer for dendrite-free lithium metal anode publication-title: Adv Funct Mater doi: 10.1002/adfm.201705838 – volume: 122 start-page: 16016 year: 2018 ident: 10.1016/j.scib.2020.02.022_b0065 article-title: Facilitated dissociation of water in the presence of lithium metal at ambient temperature as a requisite for lithium–gas reactions publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.8b01817 – volume: 8 start-page: 1802107 year: 2018 ident: 10.1016/j.scib.2020.02.022_b0210 article-title: A review of functional binders in lithium–sulfur batteries publication-title: Adv Energy Mater doi: 10.1002/aenm.201802107 – volume: 62 start-page: 1286 year: 2019 ident: 10.1016/j.scib.2020.02.022_b0105 article-title: Designing solid-state interfaces on lithium-metal anodes: a review publication-title: Sci China Chem doi: 10.1007/s11426-019-9519-9 – volume: 8 start-page: 1702258 year: 2018 ident: 10.1016/j.scib.2020.02.022_b0130 article-title: Optimized concentration of redox mediator and surface protection of Li metal for maintenance of high energy efficiency in Li–O2 batteries publication-title: Adv Energy Mater doi: 10.1002/aenm.201702258 – volume: 64 start-page: 910 year: 2019 ident: 10.1016/j.scib.2020.02.022_b0135 article-title: An air-stable and waterproof lithium metal anode enabled by wax composite packaging publication-title: Sci Bull doi: 10.1016/j.scib.2019.05.025 – volume: 9 start-page: 1902125 year: 2019 ident: 10.1016/j.scib.2020.02.022_b0165 article-title: An air-stable and dendrite-free Li anode for highly stable all-solid-state sulfide-based Li batteries publication-title: Adv Energy Mater doi: 10.1002/aenm.201902125 – year: 1978 ident: 10.1016/j.scib.2020.02.022_b0050 – volume: 21 start-page: 3443 year: 1983 ident: 10.1016/j.scib.2020.02.022_b0245 article-title: Phase transfer catalysis in dehydrofluorination of poly(vinylidene fluoride) by aqueous sodium hydroxide solutions publication-title: J Polym Sci Polym Chem Ed doi: 10.1002/pol.1983.170211208 – volume: 17 start-page: 5171 year: 2017 ident: 10.1016/j.scib.2020.02.022_b0055 article-title: Revealing nanoscale passivation and corrosion mechanisms of reactive battery materials in gas environments publication-title: Nano Lett doi: 10.1021/acs.nanolett.7b02630 – volume: 58 start-page: 11374 year: 2019 ident: 10.1016/j.scib.2020.02.022_b0175 article-title: Facile generation of polymer–alloy hybrid layers for dendrite-free lithium-metal anodes with improved moisture stability publication-title: Angew Chem Int Ed doi: 10.1002/anie.201905712 – volume: 3 start-page: 1500213 year: 2016 ident: 10.1016/j.scib.2020.02.022_b0030 article-title: A review of solid electrolyte interphases on lithium metal anode publication-title: Adv Sci doi: 10.1002/advs.201500213 – volume: 35 start-page: 340 year: 1913 ident: 10.1016/j.scib.2020.02.022_b0010 article-title: The potential of the lithium electrode publication-title: J Am Chem Soc doi: 10.1021/ja02193a004 – volume: 30 start-page: 525 year: 2019 ident: 10.1016/j.scib.2020.02.022_b0145 article-title: Protection of Li metal anode by surface-coating of PVDF thin film to enhance the cycling performance of Li batteries publication-title: Chin Chem Lett doi: 10.1016/j.cclet.2018.05.016 – volume: 7 start-page: 7101 year: 2015 ident: 10.1016/j.scib.2020.02.022_b0200 article-title: Recent developments in superhydrophobic graphene and graphene-related materials: from preparation to potential applications publication-title: Nanoscale doi: 10.1039/C5NR00719D – volume: 39 start-page: 88 year: 2019 ident: 10.1016/j.scib.2020.02.022_b0215 article-title: Multifunctional binder designs for lithium-sulfur batteries publication-title: J Energy Chem doi: 10.1016/j.jechem.2019.02.001 – volume: 117 start-page: 10403 year: 2017 ident: 10.1016/j.scib.2020.02.022_b0015 article-title: Toward safe lithium metal anode in rechargeable batteries: a review publication-title: Chem Rev doi: 10.1021/acs.chemrev.7b00115 – volume: 121 start-page: 20188 year: 2017 ident: 10.1016/j.scib.2020.02.022_b0085 article-title: Spatial heterogeneities and onset of passivation breakdown at lithium anode interfaces publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.7b06983 – volume: 5 start-page: 127 year: 1980 ident: 10.1016/j.scib.2020.02.022_b0040 article-title: Lithium metal for the battery industry publication-title: J Power Sources doi: 10.1016/0378-7753(80)80101-7 – volume: 58 start-page: 15797 year: 2019 ident: 10.1016/j.scib.2020.02.022_b0120 article-title: Highly stable lithium metal anode interface via molecular layer deposition zircone coatings for long life next-generation battery systems publication-title: Angew Chem Int Ed doi: 10.1002/anie.201907759 – volume: 8 start-page: 2458 year: 2008 ident: 10.1016/j.scib.2020.02.022_b0195 article-title: Impermeable atomic membranes from graphene sheets publication-title: Nano Lett doi: 10.1021/nl801457b – volume: 166 start-page: 23 year: 2000 ident: 10.1016/j.scib.2020.02.022_b0240 article-title: Poly(vinylidene fluoride) with improved functionalization for membrane production publication-title: J Membr Sci doi: 10.1016/S0376-7388(99)00253-7 – volume: 10 start-page: 32801 year: 2018 ident: 10.1016/j.scib.2020.02.022_b0115 article-title: In situ dendrite suppression study of nanolayer encapsulated Li metal enabled by zirconia atomic layer deposition publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.8b08585 – volume: 145 start-page: 3647 year: 1998 ident: 10.1016/j.scib.2020.02.022_b0060 article-title: Capacity fade mechanisms and side reactions in lithium-ion batteries publication-title: J Electrochem Soc doi: 10.1149/1.1838857 – volume: 5 start-page: 468 year: 2019 ident: 10.1016/j.scib.2020.02.022_b0140 article-title: Self-assembled monolayer enables slurry-coating of Li anode publication-title: ACS Cent Sci doi: 10.1021/acscentsci.8b00845 – volume: 37 start-page: 197 year: 2019 ident: 10.1016/j.scib.2020.02.022_b0170 article-title: Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode publication-title: J Energy Chem doi: 10.1016/j.jechem.2019.03.014 – volume: 48 start-page: 145 year: 2020 ident: 10.1016/j.scib.2020.02.022_b0020 article-title: Lithium metal anodes: present and future publication-title: J Energy Chem doi: 10.1016/j.jechem.2019.12.024 – volume: 10 start-page: 900 year: 2019 ident: 10.1016/j.scib.2020.02.022_b0190 article-title: Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery publication-title: Nat Commun doi: 10.1038/s41467-019-08767-0 – volume: 1 start-page: 71 year: 1970 ident: 10.1016/j.scib.2020.02.022_b0230 article-title: Flexible packaging of foods publication-title: CRC Crit Rev Food Technol doi: 10.1080/10408397009527100 – volume: 3 start-page: 2334 year: 2019 ident: 10.1016/j.scib.2020.02.022_b0260 article-title: Alkali-metal anodes: from lab to market publication-title: Joule doi: 10.1016/j.joule.2019.07.027 – start-page: 29 year: 1953 ident: 10.1016/j.scib.2020.02.022_b0255 – volume: 144 start-page: L208 year: 1997 ident: 10.1016/j.scib.2020.02.022_b0080 article-title: Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes publication-title: J Electrochem Soc doi: 10.1149/1.1837858 – volume: 9 start-page: 1900611 year: 2019 ident: 10.1016/j.scib.2020.02.022_b0205 article-title: In situ generated fireproof gel polymer electrolyte with Li6.4Ga0.2La3Zr2O12 as initiator and ion-conductive filler publication-title: Adv Energy Mater doi: 10.1002/aenm.201900611 – volume: 29 start-page: 1606552 year: 2017 ident: 10.1016/j.scib.2020.02.022_b0125 article-title: In situ construction of stable tissue-directed/reinforced bifunctional separator/protection film on lithium anode for lithium–oxygen batteries publication-title: Adv Mater doi: 10.1002/adma.201606552 – ident: 10.1016/j.scib.2020.02.022_b0235 – volume: 118 start-page: 11433 year: 2018 ident: 10.1016/j.scib.2020.02.022_b0005 article-title: Before Li ion batteries publication-title: Chem Rev doi: 10.1021/acs.chemrev.8b00422 – volume: 139 start-page: 13779 year: 2017 ident: 10.1016/j.scib.2020.02.022_b0250 article-title: Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes publication-title: J Am Chem Soc doi: 10.1021/jacs.7b06364 – volume: 30 start-page: 1803270 year: 2018 ident: 10.1016/j.scib.2020.02.022_b0160 article-title: Protecting the Li-metal anode in a Li–O2 battery by using boric acid as an SEI-forming additive publication-title: Adv Mater doi: 10.1002/adma.201803270 – year: 2020 ident: 10.1016/j.scib.2020.02.022_b0095 article-title: A bifunctional ethylene-vinyl acetate copolymer protective layer for dendrites-free lithium metal anodes publication-title: J Energy Chem doi: 10.1016/j.jechem.2020.01.027 – volume: 37 start-page: 29 year: 2019 ident: 10.1016/j.scib.2020.02.022_b0155 article-title: Lithium–matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries publication-title: J Energy Chem doi: 10.1016/j.jechem.2018.11.016 – volume: 12 start-page: 993 year: 2017 ident: 10.1016/j.scib.2020.02.022_b0185 article-title: Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes publication-title: Nat Nanotech doi: 10.1038/nnano.2017.129 – volume: 463 start-page: 145 year: 2014 ident: 10.1016/j.scib.2020.02.022_b0220 article-title: Application and modification of poly(vinylidene fluoride) (PVDF) membranes – a review publication-title: J Membr Sci doi: 10.1016/j.memsci.2014.03.055 – volume: 1 start-page: 16114 year: 2016 ident: 10.1016/j.scib.2020.02.022_b0070 article-title: Design principles for electrolytes and interfaces for stable lithium-metal batteries publication-title: Nat Energy doi: 10.1038/nenergy.2016.114 – volume: 3 start-page: 267 year: 2018 ident: 10.1016/j.scib.2020.02.022_b0075 article-title: Performance and cost of materials for lithium-based rechargeable automotive batteries publication-title: Nat Energy doi: 10.1038/s41560-018-0107-2 – volume: 9 start-page: 5884 year: 2015 ident: 10.1016/j.scib.2020.02.022_b0110 article-title: Next-generation lithium metal anode engineering via atomic layer deposition publication-title: ACS Nano doi: 10.1021/acsnano.5b02166 – volume: 3 start-page: 310 year: 2018 ident: 10.1016/j.scib.2020.02.022_b0150 article-title: Fast ion transport at solid–solid interfaces in hybrid battery anodes publication-title: Nat Energy doi: 10.1038/s41560-018-0096-1 – volume: 27 start-page: 513 year: 2018 ident: 10.1016/j.scib.2020.02.022_b0090 article-title: Recent progresses in the suppression method based on the growth mechanism of lithium dendrite publication-title: J Energy Chem doi: 10.1016/j.jechem.2017.11.010 – volume: 30 start-page: 1705711 year: 2018 ident: 10.1016/j.scib.2020.02.022_b0100 article-title: Developing a “water-defendable” and “dendrite-free” lithium-metal anode using a simple and promising GeCl4 pretreatment method publication-title: Adv Mater doi: 10.1002/adma.201705711 |
SSID | ssj0001492407 ssib054405809 |
Score | 2.5082023 |
Snippet | [Display omitted]
Lithium (Li) metal is considered as the ultimate anode choice for developing next-generation high-energy batteries. However, the poor... Lithium (Li) metal is considered as the ultimate anode choice for developing next-generation high-energy batteries. However, the poor tolerance against moist... |
SourceID | pubmed crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 909 |
SubjectTerms | Air-stable Cross-linking Interfacial protection Lithium metal anode Polymer encapsulation Water-stable |
Title | Waterproof lithium metal anode enabled by cross-linking encapsulation |
URI | https://dx.doi.org/10.1016/j.scib.2020.02.022 https://www.ncbi.nlm.nih.gov/pubmed/36747423 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QLl6M-IkfpAcPGrPQtd3WHQmB4AeEKEZuy7p2ESMbUTj43_u6FdQLJia7bGu75u2993uveR8IXXAWiyAEASSCJw4PPNCDAEMOVa4vecBVmpoE58HQ7z_x24k3qaDOKhfGhFVa3V_q9EJb2yctS83WfDptPVJzhAXoS4FPSSjAb69RFvrA2rX2zV1_-H3UwkPjt5g2c8R0JoQ5Nn2mjPSC1SV4ipQU1Tsp_QOifuBPbxftWMMRt8u91VFFZ3uobkXzA1_a-tFX-6j7HBeBhHmeYjCyX6bLGZ5pMLJxnOVKY12kSyksP3GxAcf2T4AXSQxOcxkdd4DGve6403dstwQnYZ6_cFypmNKm2owmIgQ_KtWpIpIorZkE0Ek8KQyaCz-JUy5UEBIhueJJDCqOeewQVbM808cIu0LAAC6ZMLXwQcIDGSueykC5NFaUNZC7ok-U2EripqHFW7QKGXuNDE0jQ9OIULhoA12v58zLOhobR3srske_uCECRb9x3lH5j9bfYD74S2AynvxzxVO0be5McJjrnaHq4n2pz8EMWcgmsFnn4X7UtOzWRFvD0eALNrLbeQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqdoAFUZ7l6YEBhKI6tpM4Y1W1SuljoYhuURw7oog-BO3Av-ecOAWWIiFlin2OdTnfw7r7DqEbzhIRhHAAieCpwwMP9CCYIYcq15c84CrLTIHzcORHT_xh4k0qqF3Wwpi0Sqv7C52ea2v7pmm52VxOp81Haq6wwPpSkFMSCojbawadyquiWqvXj0bfVy08NHGLaTNHTGdCoLHlM0WmF6wuIVKkJEfvpPQPE_XD_nT30Z51HHGr2FsdVfT8ANXt0fzAtxY_-u4QdZ6TPJFwscgwONkv0_UMzzQ42TiZL5TGOi-XUlh-4nwDju2fAANpAkFzkR13hMbdzrgdObZbgpMyz185rlRMaYM2o4kIIY7KdKaIJEprJsHopJ4UxpoLP00yLlQQEiG54mkCKo557BhV54u5PkXYFQImcMmEwcKHEx7IRPFMBsqliaKsgdySP3FqkcRNQ4u3uEwZe40NT2PD05hQeGgD3W9olgWOxtbZXsn2-Jc0xKDot9KdFP9o8w3mQ7wELuPZP1e8RjvReDiIB71R_xztmhGTKOZ6F6i6el_rS3BJVvLKitwXiUnbvg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Waterproof+lithium+metal+anode+enabled+by+cross-linking+encapsulation&rft.jtitle=Science+bulletin+%28Beijing%29&rft.au=Xiao%2C+Ye&rft.au=Xu%2C+Rui&rft.au=Yan%2C+Chong&rft.au=Liang%2C+Yeru&rft.date=2020-06-15&rft.issn=2095-9273&rft.volume=65&rft.issue=11&rft.spage=909&rft.epage=916&rft_id=info:doi/10.1016%2Fj.scib.2020.02.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scib_2020_02_022 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-9273&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-9273&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-9273&client=summon |