Waterproof lithium metal anode enabled by cross-linking encapsulation

[Display omitted] Lithium (Li) metal is considered as the ultimate anode choice for developing next-generation high-energy batteries. However, the poor tolerance against moist air and the unstable solid electrolyte interphases (SEI) induced by the intrinsic high reactivity of lithium bring series of...

Full description

Saved in:
Bibliographic Details
Published inScience bulletin Vol. 65; no. 11; pp. 909 - 916
Main Authors Xiao, Ye, Xu, Rui, Yan, Chong, Liang, Yeru, Ding, Jun-Fan, Huang, Jia-Qi
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.06.2020
Subjects
Online AccessGet full text
ISSN2095-9273
2095-9281
DOI10.1016/j.scib.2020.02.022

Cover

Loading…
Abstract [Display omitted] Lithium (Li) metal is considered as the ultimate anode choice for developing next-generation high-energy batteries. However, the poor tolerance against moist air and the unstable solid electrolyte interphases (SEI) induced by the intrinsic high reactivity of lithium bring series of obstacles such as the rigorous operating condition, the poor electrochemical performance, and safety anxiety of the cell, which to a large extent hinder the commercial utilization of Li metal anode. Here, an effective encapsulation strategy was reported via a facile drop-casting and a following heat-assisted cross-linking process. Benefiting from the inherent hydrophobicity and the compact micro-structure of the cross-linked poly(vinylidene-co-hexafluoropropylene) (PVDF–HFP), the as-encapsulated Li metal exhibited prominent stability toward moisture, as well corroborated by the evaluations both under the humid air at 25 °C with 30% relative humidity (RH) and pure water. Moreover, the encapsulated Li metal anode exhibits a decent electrochemical performance without substantially increasing the cell polarization due to the uniform and unblocked ion channels, which originally comes from the superior affinity of the PVDF–HFP polymer toward non-aqueous electrolyte. This work demonstrates a novel and valid encapsulation strategy for humidity-sensitive alkali metal electrodes, aiming to pave the way for the large-scale and low-cost deployment of the alkali metal-based high-energy-density batteries.
AbstractList Lithium (Li) metal is considered as the ultimate anode choice for developing next-generation high-energy batteries. However, the poor tolerance against moist air and the unstable solid electrolyte interphases (SEI) induced by the intrinsic high reactivity of lithium bring series of obstacles such as the rigorous operating condition, the poor electrochemical performance, and safety anxiety of the cell, which to a large extent hinder the commercial utilization of Li metal anode. Here, an effective encapsulation strategy was reported via a facile drop-casting and a following heat-assisted cross-linking process. Benefiting from the inherent hydrophobicity and the compact micro-structure of the cross-linked poly(vinylidene-co-hexafluoropropylene) (PVDF-HFP), the as-encapsulated Li metal exhibited prominent stability toward moisture, as well corroborated by the evaluations both under the humid air at 25 °C with 30% relative humidity (RH) and pure water. Moreover, the encapsulated Li metal anode exhibits a decent electrochemical performance without substantially increasing the cell polarization due to the uniform and unblocked ion channels, which originally comes from the superior affinity of the PVDF-HFP polymer toward non-aqueous electrolyte. This work demonstrates a novel and valid encapsulation strategy for humidity-sensitive alkali metal electrodes, aiming to pave the way for the large-scale and low-cost deployment of the alkali metal-based high-energy-density batteries.
[Display omitted] Lithium (Li) metal is considered as the ultimate anode choice for developing next-generation high-energy batteries. However, the poor tolerance against moist air and the unstable solid electrolyte interphases (SEI) induced by the intrinsic high reactivity of lithium bring series of obstacles such as the rigorous operating condition, the poor electrochemical performance, and safety anxiety of the cell, which to a large extent hinder the commercial utilization of Li metal anode. Here, an effective encapsulation strategy was reported via a facile drop-casting and a following heat-assisted cross-linking process. Benefiting from the inherent hydrophobicity and the compact micro-structure of the cross-linked poly(vinylidene-co-hexafluoropropylene) (PVDF–HFP), the as-encapsulated Li metal exhibited prominent stability toward moisture, as well corroborated by the evaluations both under the humid air at 25 °C with 30% relative humidity (RH) and pure water. Moreover, the encapsulated Li metal anode exhibits a decent electrochemical performance without substantially increasing the cell polarization due to the uniform and unblocked ion channels, which originally comes from the superior affinity of the PVDF–HFP polymer toward non-aqueous electrolyte. This work demonstrates a novel and valid encapsulation strategy for humidity-sensitive alkali metal electrodes, aiming to pave the way for the large-scale and low-cost deployment of the alkali metal-based high-energy-density batteries.
Author Xu, Rui
Xiao, Ye
Ding, Jun-Fan
Huang, Jia-Qi
Liang, Yeru
Yan, Chong
Author_xml – sequence: 1
  givenname: Ye
  surname: Xiao
  fullname: Xiao, Ye
  organization: School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
– sequence: 2
  givenname: Rui
  surname: Xu
  fullname: Xu, Rui
  organization: School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
– sequence: 3
  givenname: Chong
  surname: Yan
  fullname: Yan, Chong
  organization: School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
– sequence: 4
  givenname: Yeru
  surname: Liang
  fullname: Liang, Yeru
  organization: College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
– sequence: 5
  givenname: Jun-Fan
  surname: Ding
  fullname: Ding, Jun-Fan
  organization: School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
– sequence: 6
  givenname: Jia-Qi
  surname: Huang
  fullname: Huang, Jia-Qi
  email: jqhuang@bit.edu.cn
  organization: School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36747423$$D View this record in MEDLINE/PubMed
BookMark eNp9kMlKA0EQhhuJmBjzAh5kXmDG3mZp8CIhLhDwEvDY9FKjHWejpyPk7Z1JNAcPgYIqqP8r6v-v0aRpG0DoluCEYJLdb5PeOJ1QTHGC6VD0As0oFmksaEEmpzlnU7To-y3GmHBBOc6v0JRlOc85ZTO0elcBfOfbtowqFz7dro5qCKqKVNNaiKBRugIb6X1kfNv3ceWaL9d8DAujun5XqeDa5gZdlqrqYfHb52jztNosX-L12_Pr8nEdG5ZmISbaMguMCw64GN4UJZQWa2wBmKZCmFQXBaG8yIwqeWFzgQvNLTdKWctSNkd3x7PdTtdgZeddrfxe_tkZBPQoOPzqoTxJCJZjbHIrx9jkGJvEdCg6QMU_yLhwsBW8ctV59OGIwmD624EfJUMyYJ0HE6Rt3Tn8B_sAiNk
CitedBy_id crossref_primary_10_1016_j_cej_2020_125254
crossref_primary_10_1016_j_cej_2020_126542
crossref_primary_10_1016_j_jechem_2021_04_045
crossref_primary_10_1016_j_jechem_2021_04_005
crossref_primary_10_1016_j_ensm_2023_102884
crossref_primary_10_1016_j_ensm_2022_12_043
crossref_primary_10_1002_eem2_12181
crossref_primary_10_1016_j_electacta_2022_140212
crossref_primary_10_1016_j_jechem_2022_12_007
crossref_primary_10_1016_j_jpowsour_2022_232599
crossref_primary_10_1016_j_jechem_2020_08_019
crossref_primary_10_1007_s40820_024_01535_w
crossref_primary_10_1007_s11426_023_1908_9
crossref_primary_10_1002_smtd_202201177
crossref_primary_10_1002_nano_202100118
crossref_primary_10_1016_j_jechem_2020_09_030
crossref_primary_10_1002_celc_202200983
crossref_primary_10_1016_j_cej_2021_128534
crossref_primary_10_1016_j_cclet_2023_109284
crossref_primary_10_1016_j_ensm_2021_03_006
crossref_primary_10_1002_admi_202102428
crossref_primary_10_1016_j_enchem_2021_100063
crossref_primary_10_1016_j_jechem_2020_11_034
crossref_primary_10_1002_smtd_202001035
crossref_primary_10_1002_aenm_202002360
crossref_primary_10_1002_adma_202008133
crossref_primary_10_1007_s40843_020_1655_3
crossref_primary_10_1021_acs_energyfuels_1c01904
crossref_primary_10_1016_j_jechem_2020_07_036
crossref_primary_10_1002_eem2_12122
crossref_primary_10_1002_mame_202100923
crossref_primary_10_1021_acsnano_0c05636
crossref_primary_10_1002_adfm_202010958
crossref_primary_10_1039_D0QM01134G
crossref_primary_10_1002_adfm_202108449
crossref_primary_10_1016_j_jechem_2024_06_032
crossref_primary_10_1016_j_cclet_2023_108812
crossref_primary_10_1016_j_est_2023_109048
crossref_primary_10_1007_s11426_022_1221_4
crossref_primary_10_1007_s10570_022_04499_5
crossref_primary_10_1016_j_partic_2020_12_003
crossref_primary_10_1039_D1SE01277K
crossref_primary_10_1126_sciadv_adf1550
crossref_primary_10_1016_j_jechem_2022_10_026
crossref_primary_10_1021_acs_nanolett_0c03206
crossref_primary_10_1016_j_mtnano_2020_100103
crossref_primary_10_1002_aenm_202203818
crossref_primary_10_1016_j_scib_2023_06_008
crossref_primary_10_1039_D0MH01030H
crossref_primary_10_1002_advs_202307726
crossref_primary_10_1016_j_jechem_2021_03_018
crossref_primary_10_1016_j_scib_2020_09_018
crossref_primary_10_1016_j_ensm_2022_01_049
crossref_primary_10_12677_NAT_2022_123020
crossref_primary_10_1007_s11426_023_1866_y
crossref_primary_10_1016_j_jechem_2020_11_016
crossref_primary_10_1002_smll_202303344
crossref_primary_10_1016_j_apsusc_2022_155863
crossref_primary_10_1021_acsami_1c06632
crossref_primary_10_1021_acsenergylett_3c01357
Cites_doi 10.1016/j.jechem.2018.12.013
10.1021/je60015a047
10.1038/nnano.2017.16
10.1021/cr030203g
10.1002/adfm.201705838
10.1021/acs.jpcc.8b01817
10.1002/aenm.201802107
10.1007/s11426-019-9519-9
10.1002/aenm.201702258
10.1016/j.scib.2019.05.025
10.1002/aenm.201902125
10.1002/pol.1983.170211208
10.1021/acs.nanolett.7b02630
10.1002/anie.201905712
10.1002/advs.201500213
10.1021/ja02193a004
10.1016/j.cclet.2018.05.016
10.1039/C5NR00719D
10.1016/j.jechem.2019.02.001
10.1021/acs.chemrev.7b00115
10.1021/acs.jpcc.7b06983
10.1016/0378-7753(80)80101-7
10.1002/anie.201907759
10.1021/nl801457b
10.1016/S0376-7388(99)00253-7
10.1021/acsami.8b08585
10.1149/1.1838857
10.1021/acscentsci.8b00845
10.1016/j.jechem.2019.03.014
10.1016/j.jechem.2019.12.024
10.1038/s41467-019-08767-0
10.1080/10408397009527100
10.1016/j.joule.2019.07.027
10.1149/1.1837858
10.1002/aenm.201900611
10.1002/adma.201606552
10.1021/acs.chemrev.8b00422
10.1021/jacs.7b06364
10.1002/adma.201803270
10.1016/j.jechem.2020.01.027
10.1016/j.jechem.2018.11.016
10.1038/nnano.2017.129
10.1016/j.memsci.2014.03.055
10.1038/nenergy.2016.114
10.1038/s41560-018-0107-2
10.1021/acsnano.5b02166
10.1038/s41560-018-0096-1
10.1016/j.jechem.2017.11.010
10.1002/adma.201705711
ContentType Journal Article
Copyright 2020 Science China Press
Copyright © 2020 Science China Press. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Science China Press
– notice: Copyright © 2020 Science China Press. Published by Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
DOI 10.1016/j.scib.2020.02.022
DatabaseName CrossRef
PubMed
DatabaseTitle CrossRef
PubMed
DatabaseTitleList PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2095-9281
EndPage 916
ExternalDocumentID 36747423
10_1016_j_scib_2020_02_022
S2095927320300980
Genre Journal Article
GroupedDBID --M
0R~
4.4
5VR
AACTN
AAEDT
AAEDW
AAIAV
AAJKR
AAKOC
AALRI
AAOAW
AARTL
AAXUO
AAYIU
ABBBX
ABJNI
ABMAC
ABQEM
ABQYD
ABTHY
ABUDA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKNC
ACPRK
ACRLP
ADBBV
ADINQ
AEBSH
AEGNC
AEHWI
AEJHL
AENEX
AFKWA
AFRAH
AFTJW
AFUIB
AFXIZ
AFZHZ
AFZKB
AGUBO
AGWZB
AGYKE
AHBYD
AHJVU
AIEXJ
AIIXL
AIKHN
AITUG
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AUKKA
AVWKF
AXJTR
AZFZN
BGNMA
BJAXD
BKOJK
CCEZO
CCVFK
CHBEP
EBS
EFJIC
EFLBG
FA0
FDB
FIRID
FRRFC
FYGXN
IXD
KOM
KOV
M41
M4Y
NU0
O9-
ROL
RSV
SOJ
SPC
SPCBC
SSE
SSK
SST
SSU
SSZ
T5K
~G-
-SA
-S~
5XA
5XB
AAIAL
AANXM
AAQFI
AATTM
AAXKI
AAYQN
AAYTO
AAYWO
AAYXX
AAYZH
ABFSG
ABJOX
ABTEG
ABTMW
ACBXY
ACSTC
ACVFH
ADCNI
ADKPE
ADRFC
ADVLN
AEIPS
AEOHA
AEPYU
AEUPX
AEZWR
AFBBN
AFHIU
AFJKZ
AFLOW
AFPUW
AGCQF
AGJBK
AGQMX
AGRNS
AHAVH
AHSBF
AHWEU
AIGII
AIIUN
AIXLP
AJBLW
AKBMS
AKRWK
AKYEP
AMKLP
ANKPU
APXCP
BNPGV
CAJEA
CITATION
CJPJV
CSCUP
EJD
H13
HX~
Q--
SSH
TCJ
TGP
U1G
U5K
UG4
NPM
ID FETCH-LOGICAL-c356t-1bd3de3494e089289fefd0b0dee3b299c5b8812486caf48d7908b4d4caadd353
IEDL.DBID AIKHN
ISSN 2095-9273
IngestDate Thu Jan 02 22:53:07 EST 2025
Tue Jul 01 02:08:24 EDT 2025
Thu Apr 24 22:55:25 EDT 2025
Fri Feb 23 02:47:30 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Water-stable
Polymer encapsulation
Cross-linking
Air-stable
Lithium metal anode
Interfacial protection
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2020 Science China Press. Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-1bd3de3494e089289fefd0b0dee3b299c5b8812486caf48d7908b4d4caadd353
PMID 36747423
PageCount 8
ParticipantIDs pubmed_primary_36747423
crossref_primary_10_1016_j_scib_2020_02_022
crossref_citationtrail_10_1016_j_scib_2020_02_022
elsevier_sciencedirect_doi_10_1016_j_scib_2020_02_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-15
PublicationDateYYYYMMDD 2020-06-15
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Science bulletin
PublicationTitleAlternate Sci Bull (Beijing)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tikekar, Choudhury, Tu (b0070) 2016; 1
Wang, Zhang, Liu (b0200) 2015; 7
Arora, White, Doyle (b0060) 1998; 145
Kise, Ogata (b0245) 1983; 21
Jiang, Jin, Han (b0175) 2019; 58
Shang, Shirazian (b0065) 2018; 122
Alaboina, Rodrigues, Rottmayer (b0115) 2018; 10
Zhu, Wu, Wang (b0180) 2019; 37
Wang, Cui, Chu (b0020) 2020; 48
Lin, Liu, Cui (b0025) 2017; 12
Adair, Zhao, Banis (b0120) 2019; 58
Lewis, Keyes (b0010) 1913; 35
Zhang, Lv, Huang (b0135) 2019; 64
Qi, Lv, Lv (b0215) 2019; 39
Xu, Wang, Wang (b0090) 2018; 27
Xu, Zhang, Cheng (b0225) 2018; 28
Xu (b0035) 2004; 104
Cheng, Zhang, Zhao (b0030) 2016; 3
Li, Li, Sun (b0055) 2017; 17
Xiang, Yang, Yuan (b0260) 2019; 3
Schmuch, Wagner, Hörpel (b0075) 2018; 3
Jeppson, Ballif, Yuan (b0050) 1978
Yuan, Huang, Peng (b0210) 2018; 8
Gao, Zhang, Huang (b0145) 2019; 30
Kang, Cao (b0220) 2014; 463
Brody, Sacharow (b0230) 1970; 1
Flory (b0255) 1953
Liang, Li, Zhao (b0165) 2019; 9
Cheng, Zhang, Zhao (b0015) 2017; 117
Shen, Cheng, Shi (b0155) 2019; 37
Zhao, Duan, Huang (b0105) 2019; 62
Kozen, Lin, Pearse (b0110) 2015; 9
Markowitz, Boryta (b0045) 1962; 7
Liao, Wu, Mu (b0100) 2018; 30
Xu, Liu, Yu (b0125) 2017; 29
Zhang, Liu, Zhang (b0250) 2017; 139
Grady (b0040) 1980; 5
Bottino, Capannelli, Monticelli (b0240) 2000; 166
Yuan, Wu, Chen (b0170) 2019; 37
Tu, Choudhury, Zachman (b0150) 2018; 3
Winter, Barnett, Xu (b0005) 2018; 118
Kwak, Park, Jung (b0130) 2018; 8
Leung, Jungjohann (b0085) 2017; 121
Liang, Xiao, Yan (b0095) 2020
Bunch, Verbridge, Alden (b0195) 2008; 8
Zhao, Zhou, Yan (b0185) 2017; 12
Shen, Li, Qian (b0190) 2019; 10
Xu, Su, Jin (b0205) 2019; 9
ASTM E96/E96M-16, Standard test methods for water vapor transmission of materials. ASTM International, West Conshohocken, PA; 2016.
Kang, Wang, Guo (b0140) 2019; 5
Huang, Ren, Zhang (b0160) 2018; 30
Peled, Golodnitsky, Ardel (b0080) 1997; 144
Zhu (10.1016/j.scib.2020.02.022_b0180) 2019; 37
Kozen (10.1016/j.scib.2020.02.022_b0110) 2015; 9
Winter (10.1016/j.scib.2020.02.022_b0005) 2018; 118
Gao (10.1016/j.scib.2020.02.022_b0145) 2019; 30
Schmuch (10.1016/j.scib.2020.02.022_b0075) 2018; 3
Liao (10.1016/j.scib.2020.02.022_b0100) 2018; 30
Jeppson (10.1016/j.scib.2020.02.022_b0050) 1978
Tikekar (10.1016/j.scib.2020.02.022_b0070) 2016; 1
Adair (10.1016/j.scib.2020.02.022_b0120) 2019; 58
Kang (10.1016/j.scib.2020.02.022_b0140) 2019; 5
Wang (10.1016/j.scib.2020.02.022_b0200) 2015; 7
10.1016/j.scib.2020.02.022_b0235
Zhang (10.1016/j.scib.2020.02.022_b0135) 2019; 64
Li (10.1016/j.scib.2020.02.022_b0055) 2017; 17
Xu (10.1016/j.scib.2020.02.022_b0035) 2004; 104
Xiang (10.1016/j.scib.2020.02.022_b0260) 2019; 3
Yuan (10.1016/j.scib.2020.02.022_b0210) 2018; 8
Cheng (10.1016/j.scib.2020.02.022_b0030) 2016; 3
Markowitz (10.1016/j.scib.2020.02.022_b0045) 1962; 7
Brody (10.1016/j.scib.2020.02.022_b0230) 1970; 1
Liang (10.1016/j.scib.2020.02.022_b0165) 2019; 9
Tu (10.1016/j.scib.2020.02.022_b0150) 2018; 3
Alaboina (10.1016/j.scib.2020.02.022_b0115) 2018; 10
Lin (10.1016/j.scib.2020.02.022_b0025) 2017; 12
Peled (10.1016/j.scib.2020.02.022_b0080) 1997; 144
Kang (10.1016/j.scib.2020.02.022_b0220) 2014; 463
Xu (10.1016/j.scib.2020.02.022_b0090) 2018; 27
Grady (10.1016/j.scib.2020.02.022_b0040) 1980; 5
Bottino (10.1016/j.scib.2020.02.022_b0240) 2000; 166
Flory (10.1016/j.scib.2020.02.022_b0255) 1953
Zhao (10.1016/j.scib.2020.02.022_b0185) 2017; 12
Yuan (10.1016/j.scib.2020.02.022_b0170) 2019; 37
Arora (10.1016/j.scib.2020.02.022_b0060) 1998; 145
Shen (10.1016/j.scib.2020.02.022_b0190) 2019; 10
Shen (10.1016/j.scib.2020.02.022_b0155) 2019; 37
Leung (10.1016/j.scib.2020.02.022_b0085) 2017; 121
Bunch (10.1016/j.scib.2020.02.022_b0195) 2008; 8
Jiang (10.1016/j.scib.2020.02.022_b0175) 2019; 58
Huang (10.1016/j.scib.2020.02.022_b0160) 2018; 30
Cheng (10.1016/j.scib.2020.02.022_b0015) 2017; 117
Shang (10.1016/j.scib.2020.02.022_b0065) 2018; 122
Kise (10.1016/j.scib.2020.02.022_b0245) 1983; 21
Liang (10.1016/j.scib.2020.02.022_b0095) 2020
Qi (10.1016/j.scib.2020.02.022_b0215) 2019; 39
Lewis (10.1016/j.scib.2020.02.022_b0010) 1913; 35
Zhao (10.1016/j.scib.2020.02.022_b0105) 2019; 62
Xu (10.1016/j.scib.2020.02.022_b0125) 2017; 29
Zhang (10.1016/j.scib.2020.02.022_b0250) 2017; 139
Xu (10.1016/j.scib.2020.02.022_b0205) 2019; 9
Xu (10.1016/j.scib.2020.02.022_b0225) 2018; 28
Wang (10.1016/j.scib.2020.02.022_b0020) 2020; 48
Kwak (10.1016/j.scib.2020.02.022_b0130) 2018; 8
References_xml – volume: 30
  start-page: 1705711
  year: 2018
  ident: b0100
  article-title: Developing a “water-defendable” and “dendrite-free” lithium-metal anode using a simple and promising GeCl
  publication-title: Adv Mater
– volume: 30
  start-page: 1803270
  year: 2018
  ident: b0160
  article-title: Protecting the Li-metal anode in a Li–O
  publication-title: Adv Mater
– volume: 12
  start-page: 194
  year: 2017
  end-page: 206
  ident: b0025
  article-title: Reviving the lithium metal anode for high-energy batteries
  publication-title: Nat Nanotechnol
– volume: 58
  start-page: 15797
  year: 2019
  end-page: 15802
  ident: b0120
  article-title: Highly stable lithium metal anode interface via molecular layer deposition zircone coatings for long life next-generation battery systems
  publication-title: Angew Chem Int Ed
– volume: 9
  start-page: 1900611
  year: 2019
  ident: b0205
  article-title: generated fireproof gel polymer electrolyte with Li
  publication-title: Adv Energy Mater
– volume: 122
  start-page: 16016
  year: 2018
  end-page: 16022
  ident: b0065
  article-title: Facilitated dissociation of water in the presence of lithium metal at ambient temperature as a requisite for lithium–gas reactions
  publication-title: J Phys Chem C
– volume: 5
  start-page: 127
  year: 1980
  end-page: 135
  ident: b0040
  article-title: Lithium metal for the battery industry
  publication-title: J Power Sources
– volume: 10
  start-page: 32801
  year: 2018
  end-page: 32808
  ident: b0115
  article-title: dendrite suppression study of nanolayer encapsulated Li metal enabled by zirconia atomic layer deposition
  publication-title: ACS Appl Mater Interfaces
– volume: 10
  start-page: 900
  year: 2019
  ident: b0190
  article-title: Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery
  publication-title: Nat Commun
– volume: 144
  start-page: L208
  year: 1997
  end-page: L210
  ident: b0080
  article-title: Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes
  publication-title: J Electrochem Soc
– start-page: 29
  year: 1953
  end-page: 68
  ident: b0255
  article-title: Principles of polymer chemistry
– year: 1978
  ident: b0050
  article-title: Lithium literature review: lithium’s properties and interactions
– volume: 30
  start-page: 525
  year: 2019
  end-page: 528
  ident: b0145
  article-title: Protection of Li metal anode by surface-coating of PVDF thin film to enhance the cycling performance of Li batteries
  publication-title: Chin Chem Lett
– volume: 463
  start-page: 145
  year: 2014
  end-page: 165
  ident: b0220
  article-title: Application and modification of poly(vinylidene fluoride) (PVDF) membranes – a review
  publication-title: J Membr Sci
– volume: 3
  start-page: 2334
  year: 2019
  end-page: 2363
  ident: b0260
  article-title: Alkali-metal anodes: from lab to market
  publication-title: Joule
– volume: 28
  start-page: 1705838
  year: 2018
  ident: b0225
  article-title: Artificial soft–rigid protective layer for dendrite-free lithium metal anode
  publication-title: Adv Funct Mater
– volume: 21
  start-page: 3443
  year: 1983
  end-page: 3451
  ident: b0245
  article-title: Phase transfer catalysis in dehydrofluorination of poly(vinylidene fluoride) by aqueous sodium hydroxide solutions
  publication-title: J Polym Sci Polym Chem Ed
– volume: 139
  start-page: 13779
  year: 2017
  end-page: 13785
  ident: b0250
  article-title: Synergistic coupling between Li
  publication-title: J Am Chem Soc
– volume: 3
  start-page: 1500213
  year: 2016
  ident: b0030
  article-title: A review of solid electrolyte interphases on lithium metal anode
  publication-title: Adv Sci
– volume: 3
  start-page: 310
  year: 2018
  end-page: 316
  ident: b0150
  article-title: Fast ion transport at solid–solid interfaces in hybrid battery anodes
  publication-title: Nat Energy
– volume: 37
  start-page: 29
  year: 2019
  end-page: 34
  ident: b0155
  article-title: Lithium–matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries
  publication-title: J Energy Chem
– volume: 62
  start-page: 1286
  year: 2019
  end-page: 1299
  ident: b0105
  article-title: Designing solid-state interfaces on lithium-metal anodes: a review
  publication-title: Sci China Chem
– volume: 64
  start-page: 910
  year: 2019
  end-page: 917
  ident: b0135
  article-title: An air-stable and waterproof lithium metal anode enabled by wax composite packaging
  publication-title: Sci Bull
– volume: 118
  start-page: 11433
  year: 2018
  end-page: 11456
  ident: b0005
  article-title: Before Li ion batteries
  publication-title: Chem Rev
– volume: 27
  start-page: 513
  year: 2018
  end-page: 527
  ident: b0090
  article-title: Recent progresses in the suppression method based on the growth mechanism of lithium dendrite
  publication-title: J Energy Chem
– volume: 145
  start-page: 3647
  year: 1998
  end-page: 3667
  ident: b0060
  article-title: Capacity fade mechanisms and side reactions in lithium-ion batteries
  publication-title: J Electrochem Soc
– volume: 8
  start-page: 2458
  year: 2008
  end-page: 2462
  ident: b0195
  article-title: Impermeable atomic membranes from graphene sheets
  publication-title: Nano Lett
– volume: 9
  start-page: 5884
  year: 2015
  end-page: 5892
  ident: b0110
  article-title: Next-generation lithium metal anode engineering via atomic layer deposition
  publication-title: ACS Nano
– year: 2020
  ident: b0095
  article-title: A bifunctional ethylene-vinyl acetate copolymer protective layer for dendrites-free lithium metal anodes
  publication-title: J Energy Chem
– reference: ASTM E96/E96M-16, Standard test methods for water vapor transmission of materials. ASTM International, West Conshohocken, PA; 2016.
– volume: 121
  start-page: 20188
  year: 2017
  end-page: 20196
  ident: b0085
  article-title: Spatial heterogeneities and onset of passivation breakdown at lithium anode interfaces
  publication-title: J Phys Chem C
– volume: 39
  start-page: 88
  year: 2019
  end-page: 100
  ident: b0215
  article-title: Multifunctional binder designs for lithium-sulfur batteries
  publication-title: J Energy Chem
– volume: 1
  start-page: 16114
  year: 2016
  ident: b0070
  article-title: Design principles for electrolytes and interfaces for stable lithium-metal batteries
  publication-title: Nat Energy
– volume: 1
  start-page: 71
  year: 1970
  end-page: 155
  ident: b0230
  article-title: Flexible packaging of foods
  publication-title: CRC Crit Rev Food Technol
– volume: 37
  start-page: 126
  year: 2019
  end-page: 142
  ident: b0180
  article-title: Recent advances in gel polymer electrolyte for high-performance lithium batteries
  publication-title: J Energy Chem
– volume: 29
  start-page: 1606552
  year: 2017
  ident: b0125
  article-title: construction of stable tissue-directed/reinforced bifunctional separator/protection film on lithium anode for lithium–oxygen batteries
  publication-title: Adv Mater
– volume: 8
  start-page: 1802107
  year: 2018
  ident: b0210
  article-title: A review of functional binders in lithium–sulfur batteries
  publication-title: Adv Energy Mater
– volume: 37
  start-page: 197
  year: 2019
  end-page: 203
  ident: b0170
  article-title: Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode
  publication-title: J Energy Chem
– volume: 17
  start-page: 5171
  year: 2017
  end-page: 5178
  ident: b0055
  article-title: Revealing nanoscale passivation and corrosion mechanisms of reactive battery materials in gas environments
  publication-title: Nano Lett
– volume: 12
  start-page: 993
  year: 2017
  end-page: 999
  ident: b0185
  article-title: Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes
  publication-title: Nat Nanotech
– volume: 104
  start-page: 4303
  year: 2004
  end-page: 4418
  ident: b0035
  article-title: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries
  publication-title: Chem Rev
– volume: 35
  start-page: 340
  year: 1913
  end-page: 344
  ident: b0010
  article-title: The potential of the lithium electrode
  publication-title: J Am Chem Soc
– volume: 5
  start-page: 468
  year: 2019
  end-page: 476
  ident: b0140
  article-title: Self-assembled monolayer enables slurry-coating of Li anode
  publication-title: ACS Cent Sci
– volume: 8
  start-page: 1702258
  year: 2018
  ident: b0130
  article-title: Optimized concentration of redox mediator and surface protection of Li metal for maintenance of high energy efficiency in Li–O
  publication-title: Adv Energy Mater
– volume: 7
  start-page: 586
  year: 1962
  end-page: 591
  ident: b0045
  article-title: Lithium metal-gas reactions
  publication-title: J Chem Eng Data
– volume: 9
  start-page: 1902125
  year: 2019
  ident: b0165
  article-title: An air-stable and dendrite-free Li anode for highly stable all-solid-state sulfide-based Li batteries
  publication-title: Adv Energy Mater
– volume: 166
  start-page: 23
  year: 2000
  end-page: 29
  ident: b0240
  article-title: Poly(vinylidene fluoride) with improved functionalization for membrane production
  publication-title: J Membr Sci
– volume: 7
  start-page: 7101
  year: 2015
  end-page: 7114
  ident: b0200
  article-title: Recent developments in superhydrophobic graphene and graphene-related materials: from preparation to potential applications
  publication-title: Nanoscale
– volume: 117
  start-page: 10403
  year: 2017
  end-page: 10473
  ident: b0015
  article-title: Toward safe lithium metal anode in rechargeable batteries: a review
  publication-title: Chem Rev
– volume: 48
  start-page: 145
  year: 2020
  end-page: 159
  ident: b0020
  article-title: Lithium metal anodes: present and future
  publication-title: J Energy Chem
– volume: 3
  start-page: 267
  year: 2018
  end-page: 278
  ident: b0075
  article-title: Performance and cost of materials for lithium-based rechargeable automotive batteries
  publication-title: Nat Energy
– volume: 58
  start-page: 11374
  year: 2019
  ident: b0175
  article-title: Facile generation of polymer–alloy hybrid layers for dendrite-free lithium-metal anodes with improved moisture stability
  publication-title: Angew Chem Int Ed
– volume: 37
  start-page: 126
  year: 2019
  ident: 10.1016/j.scib.2020.02.022_b0180
  article-title: Recent advances in gel polymer electrolyte for high-performance lithium batteries
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2018.12.013
– volume: 7
  start-page: 586
  year: 1962
  ident: 10.1016/j.scib.2020.02.022_b0045
  article-title: Lithium metal-gas reactions
  publication-title: J Chem Eng Data
  doi: 10.1021/je60015a047
– volume: 12
  start-page: 194
  year: 2017
  ident: 10.1016/j.scib.2020.02.022_b0025
  article-title: Reviving the lithium metal anode for high-energy batteries
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2017.16
– volume: 104
  start-page: 4303
  year: 2004
  ident: 10.1016/j.scib.2020.02.022_b0035
  article-title: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries
  publication-title: Chem Rev
  doi: 10.1021/cr030203g
– volume: 28
  start-page: 1705838
  year: 2018
  ident: 10.1016/j.scib.2020.02.022_b0225
  article-title: Artificial soft–rigid protective layer for dendrite-free lithium metal anode
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201705838
– volume: 122
  start-page: 16016
  year: 2018
  ident: 10.1016/j.scib.2020.02.022_b0065
  article-title: Facilitated dissociation of water in the presence of lithium metal at ambient temperature as a requisite for lithium–gas reactions
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.8b01817
– volume: 8
  start-page: 1802107
  year: 2018
  ident: 10.1016/j.scib.2020.02.022_b0210
  article-title: A review of functional binders in lithium–sulfur batteries
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201802107
– volume: 62
  start-page: 1286
  year: 2019
  ident: 10.1016/j.scib.2020.02.022_b0105
  article-title: Designing solid-state interfaces on lithium-metal anodes: a review
  publication-title: Sci China Chem
  doi: 10.1007/s11426-019-9519-9
– volume: 8
  start-page: 1702258
  year: 2018
  ident: 10.1016/j.scib.2020.02.022_b0130
  article-title: Optimized concentration of redox mediator and surface protection of Li metal for maintenance of high energy efficiency in Li–O2 batteries
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201702258
– volume: 64
  start-page: 910
  year: 2019
  ident: 10.1016/j.scib.2020.02.022_b0135
  article-title: An air-stable and waterproof lithium metal anode enabled by wax composite packaging
  publication-title: Sci Bull
  doi: 10.1016/j.scib.2019.05.025
– volume: 9
  start-page: 1902125
  year: 2019
  ident: 10.1016/j.scib.2020.02.022_b0165
  article-title: An air-stable and dendrite-free Li anode for highly stable all-solid-state sulfide-based Li batteries
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201902125
– year: 1978
  ident: 10.1016/j.scib.2020.02.022_b0050
– volume: 21
  start-page: 3443
  year: 1983
  ident: 10.1016/j.scib.2020.02.022_b0245
  article-title: Phase transfer catalysis in dehydrofluorination of poly(vinylidene fluoride) by aqueous sodium hydroxide solutions
  publication-title: J Polym Sci Polym Chem Ed
  doi: 10.1002/pol.1983.170211208
– volume: 17
  start-page: 5171
  year: 2017
  ident: 10.1016/j.scib.2020.02.022_b0055
  article-title: Revealing nanoscale passivation and corrosion mechanisms of reactive battery materials in gas environments
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.7b02630
– volume: 58
  start-page: 11374
  year: 2019
  ident: 10.1016/j.scib.2020.02.022_b0175
  article-title: Facile generation of polymer–alloy hybrid layers for dendrite-free lithium-metal anodes with improved moisture stability
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201905712
– volume: 3
  start-page: 1500213
  year: 2016
  ident: 10.1016/j.scib.2020.02.022_b0030
  article-title: A review of solid electrolyte interphases on lithium metal anode
  publication-title: Adv Sci
  doi: 10.1002/advs.201500213
– volume: 35
  start-page: 340
  year: 1913
  ident: 10.1016/j.scib.2020.02.022_b0010
  article-title: The potential of the lithium electrode
  publication-title: J Am Chem Soc
  doi: 10.1021/ja02193a004
– volume: 30
  start-page: 525
  year: 2019
  ident: 10.1016/j.scib.2020.02.022_b0145
  article-title: Protection of Li metal anode by surface-coating of PVDF thin film to enhance the cycling performance of Li batteries
  publication-title: Chin Chem Lett
  doi: 10.1016/j.cclet.2018.05.016
– volume: 7
  start-page: 7101
  year: 2015
  ident: 10.1016/j.scib.2020.02.022_b0200
  article-title: Recent developments in superhydrophobic graphene and graphene-related materials: from preparation to potential applications
  publication-title: Nanoscale
  doi: 10.1039/C5NR00719D
– volume: 39
  start-page: 88
  year: 2019
  ident: 10.1016/j.scib.2020.02.022_b0215
  article-title: Multifunctional binder designs for lithium-sulfur batteries
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2019.02.001
– volume: 117
  start-page: 10403
  year: 2017
  ident: 10.1016/j.scib.2020.02.022_b0015
  article-title: Toward safe lithium metal anode in rechargeable batteries: a review
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.7b00115
– volume: 121
  start-page: 20188
  year: 2017
  ident: 10.1016/j.scib.2020.02.022_b0085
  article-title: Spatial heterogeneities and onset of passivation breakdown at lithium anode interfaces
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.7b06983
– volume: 5
  start-page: 127
  year: 1980
  ident: 10.1016/j.scib.2020.02.022_b0040
  article-title: Lithium metal for the battery industry
  publication-title: J Power Sources
  doi: 10.1016/0378-7753(80)80101-7
– volume: 58
  start-page: 15797
  year: 2019
  ident: 10.1016/j.scib.2020.02.022_b0120
  article-title: Highly stable lithium metal anode interface via molecular layer deposition zircone coatings for long life next-generation battery systems
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201907759
– volume: 8
  start-page: 2458
  year: 2008
  ident: 10.1016/j.scib.2020.02.022_b0195
  article-title: Impermeable atomic membranes from graphene sheets
  publication-title: Nano Lett
  doi: 10.1021/nl801457b
– volume: 166
  start-page: 23
  year: 2000
  ident: 10.1016/j.scib.2020.02.022_b0240
  article-title: Poly(vinylidene fluoride) with improved functionalization for membrane production
  publication-title: J Membr Sci
  doi: 10.1016/S0376-7388(99)00253-7
– volume: 10
  start-page: 32801
  year: 2018
  ident: 10.1016/j.scib.2020.02.022_b0115
  article-title: In situ dendrite suppression study of nanolayer encapsulated Li metal enabled by zirconia atomic layer deposition
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.8b08585
– volume: 145
  start-page: 3647
  year: 1998
  ident: 10.1016/j.scib.2020.02.022_b0060
  article-title: Capacity fade mechanisms and side reactions in lithium-ion batteries
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1838857
– volume: 5
  start-page: 468
  year: 2019
  ident: 10.1016/j.scib.2020.02.022_b0140
  article-title: Self-assembled monolayer enables slurry-coating of Li anode
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.8b00845
– volume: 37
  start-page: 197
  year: 2019
  ident: 10.1016/j.scib.2020.02.022_b0170
  article-title: Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2019.03.014
– volume: 48
  start-page: 145
  year: 2020
  ident: 10.1016/j.scib.2020.02.022_b0020
  article-title: Lithium metal anodes: present and future
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2019.12.024
– volume: 10
  start-page: 900
  year: 2019
  ident: 10.1016/j.scib.2020.02.022_b0190
  article-title: Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-08767-0
– volume: 1
  start-page: 71
  year: 1970
  ident: 10.1016/j.scib.2020.02.022_b0230
  article-title: Flexible packaging of foods
  publication-title: CRC Crit Rev Food Technol
  doi: 10.1080/10408397009527100
– volume: 3
  start-page: 2334
  year: 2019
  ident: 10.1016/j.scib.2020.02.022_b0260
  article-title: Alkali-metal anodes: from lab to market
  publication-title: Joule
  doi: 10.1016/j.joule.2019.07.027
– start-page: 29
  year: 1953
  ident: 10.1016/j.scib.2020.02.022_b0255
– volume: 144
  start-page: L208
  year: 1997
  ident: 10.1016/j.scib.2020.02.022_b0080
  article-title: Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1837858
– volume: 9
  start-page: 1900611
  year: 2019
  ident: 10.1016/j.scib.2020.02.022_b0205
  article-title: In situ generated fireproof gel polymer electrolyte with Li6.4Ga0.2La3Zr2O12 as initiator and ion-conductive filler
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201900611
– volume: 29
  start-page: 1606552
  year: 2017
  ident: 10.1016/j.scib.2020.02.022_b0125
  article-title: In situ construction of stable tissue-directed/reinforced bifunctional separator/protection film on lithium anode for lithium–oxygen batteries
  publication-title: Adv Mater
  doi: 10.1002/adma.201606552
– ident: 10.1016/j.scib.2020.02.022_b0235
– volume: 118
  start-page: 11433
  year: 2018
  ident: 10.1016/j.scib.2020.02.022_b0005
  article-title: Before Li ion batteries
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.8b00422
– volume: 139
  start-page: 13779
  year: 2017
  ident: 10.1016/j.scib.2020.02.022_b0250
  article-title: Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.7b06364
– volume: 30
  start-page: 1803270
  year: 2018
  ident: 10.1016/j.scib.2020.02.022_b0160
  article-title: Protecting the Li-metal anode in a Li–O2 battery by using boric acid as an SEI-forming additive
  publication-title: Adv Mater
  doi: 10.1002/adma.201803270
– year: 2020
  ident: 10.1016/j.scib.2020.02.022_b0095
  article-title: A bifunctional ethylene-vinyl acetate copolymer protective layer for dendrites-free lithium metal anodes
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2020.01.027
– volume: 37
  start-page: 29
  year: 2019
  ident: 10.1016/j.scib.2020.02.022_b0155
  article-title: Lithium–matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2018.11.016
– volume: 12
  start-page: 993
  year: 2017
  ident: 10.1016/j.scib.2020.02.022_b0185
  article-title: Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes
  publication-title: Nat Nanotech
  doi: 10.1038/nnano.2017.129
– volume: 463
  start-page: 145
  year: 2014
  ident: 10.1016/j.scib.2020.02.022_b0220
  article-title: Application and modification of poly(vinylidene fluoride) (PVDF) membranes – a review
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2014.03.055
– volume: 1
  start-page: 16114
  year: 2016
  ident: 10.1016/j.scib.2020.02.022_b0070
  article-title: Design principles for electrolytes and interfaces for stable lithium-metal batteries
  publication-title: Nat Energy
  doi: 10.1038/nenergy.2016.114
– volume: 3
  start-page: 267
  year: 2018
  ident: 10.1016/j.scib.2020.02.022_b0075
  article-title: Performance and cost of materials for lithium-based rechargeable automotive batteries
  publication-title: Nat Energy
  doi: 10.1038/s41560-018-0107-2
– volume: 9
  start-page: 5884
  year: 2015
  ident: 10.1016/j.scib.2020.02.022_b0110
  article-title: Next-generation lithium metal anode engineering via atomic layer deposition
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b02166
– volume: 3
  start-page: 310
  year: 2018
  ident: 10.1016/j.scib.2020.02.022_b0150
  article-title: Fast ion transport at solid–solid interfaces in hybrid battery anodes
  publication-title: Nat Energy
  doi: 10.1038/s41560-018-0096-1
– volume: 27
  start-page: 513
  year: 2018
  ident: 10.1016/j.scib.2020.02.022_b0090
  article-title: Recent progresses in the suppression method based on the growth mechanism of lithium dendrite
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2017.11.010
– volume: 30
  start-page: 1705711
  year: 2018
  ident: 10.1016/j.scib.2020.02.022_b0100
  article-title: Developing a “water-defendable” and “dendrite-free” lithium-metal anode using a simple and promising GeCl4 pretreatment method
  publication-title: Adv Mater
  doi: 10.1002/adma.201705711
SSID ssj0001492407
ssib054405809
Score 2.5082023
Snippet [Display omitted] Lithium (Li) metal is considered as the ultimate anode choice for developing next-generation high-energy batteries. However, the poor...
Lithium (Li) metal is considered as the ultimate anode choice for developing next-generation high-energy batteries. However, the poor tolerance against moist...
SourceID pubmed
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 909
SubjectTerms Air-stable
Cross-linking
Interfacial protection
Lithium metal anode
Polymer encapsulation
Water-stable
Title Waterproof lithium metal anode enabled by cross-linking encapsulation
URI https://dx.doi.org/10.1016/j.scib.2020.02.022
https://www.ncbi.nlm.nih.gov/pubmed/36747423
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QLl6M-IkfpAcPGrPQtd3WHQmB4AeEKEZuy7p2ESMbUTj43_u6FdQLJia7bGu75u2993uveR8IXXAWiyAEASSCJw4PPNCDAEMOVa4vecBVmpoE58HQ7z_x24k3qaDOKhfGhFVa3V_q9EJb2yctS83WfDptPVJzhAXoS4FPSSjAb69RFvrA2rX2zV1_-H3UwkPjt5g2c8R0JoQ5Nn2mjPSC1SV4ipQU1Tsp_QOifuBPbxftWMMRt8u91VFFZ3uobkXzA1_a-tFX-6j7HBeBhHmeYjCyX6bLGZ5pMLJxnOVKY12kSyksP3GxAcf2T4AXSQxOcxkdd4DGve6403dstwQnYZ6_cFypmNKm2owmIgQ_KtWpIpIorZkE0Ek8KQyaCz-JUy5UEBIhueJJDCqOeewQVbM808cIu0LAAC6ZMLXwQcIDGSueykC5NFaUNZC7ok-U2EripqHFW7QKGXuNDE0jQ9OIULhoA12v58zLOhobR3srske_uCECRb9x3lH5j9bfYD74S2AynvxzxVO0be5McJjrnaHq4n2pz8EMWcgmsFnn4X7UtOzWRFvD0eALNrLbeQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqdoAFUZ7l6YEBhKI6tpM4Y1W1SuljoYhuURw7oog-BO3Av-ecOAWWIiFlin2OdTnfw7r7DqEbzhIRhHAAieCpwwMP9CCYIYcq15c84CrLTIHzcORHT_xh4k0qqF3Wwpi0Sqv7C52ea2v7pmm52VxOp81Haq6wwPpSkFMSCojbawadyquiWqvXj0bfVy08NHGLaTNHTGdCoLHlM0WmF6wuIVKkJEfvpPQPE_XD_nT30Z51HHGr2FsdVfT8ANXt0fzAtxY_-u4QdZ6TPJFwscgwONkv0_UMzzQ42TiZL5TGOi-XUlh-4nwDju2fAANpAkFzkR13hMbdzrgdObZbgpMyz185rlRMaYM2o4kIIY7KdKaIJEprJsHopJ4UxpoLP00yLlQQEiG54mkCKo557BhV54u5PkXYFQImcMmEwcKHEx7IRPFMBsqliaKsgdySP3FqkcRNQ4u3uEwZe40NT2PD05hQeGgD3W9olgWOxtbZXsn2-Jc0xKDot9KdFP9o8w3mQ7wELuPZP1e8RjvReDiIB71R_xztmhGTKOZ6F6i6el_rS3BJVvLKitwXiUnbvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Waterproof+lithium+metal+anode+enabled+by+cross-linking+encapsulation&rft.jtitle=Science+bulletin+%28Beijing%29&rft.au=Xiao%2C+Ye&rft.au=Xu%2C+Rui&rft.au=Yan%2C+Chong&rft.au=Liang%2C+Yeru&rft.date=2020-06-15&rft.issn=2095-9273&rft.volume=65&rft.issue=11&rft.spage=909&rft.epage=916&rft_id=info:doi/10.1016%2Fj.scib.2020.02.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scib_2020_02_022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-9273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-9273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-9273&client=summon