On the Performance, Scalability and Sensitivity Analysis of a Large Air Pollution Model

Computationally efficient sensitivity analysis of a large-scale air pollution model is an important issue we focus on in this paper. Sensitivity studies play an important role for reliability analysis of the results of complex nonlinear models as those used in the air pollution modelling. There is a...

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 80; pp. 2053 - 2061
Main Authors Ostromsky, Tzvetan, Alexandrov, Vassil, Dimov, Ivan, Zlatev, Zahari
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Computationally efficient sensitivity analysis of a large-scale air pollution model is an important issue we focus on in this paper. Sensitivity studies play an important role for reliability analysis of the results of complex nonlinear models as those used in the air pollution modelling. There is a number of uncertainties in the input data sets, as well as in some internal coefficients, which determine the speed of the main chemical reactions in the chemical part of the model. These uncertainties are subject to our quantitative sensitivity study. Monte Carlo and quasi-Monte Carlo algorithms are used in this study. A large number of numerical experiments with some special modifications of the model must be carried out in order to collect the necessary input data for the particular sensitivity study. For this purpose we created an efficient high performance implementation SA-DEM, based on the MPI version of the package UNI-DEM. A large number of numerical experiments were carried out with SA-DEM on the IBM MareNostrum III at BSC - Barcelona, helped us to identify a severe performance problem with an earlier version of the code and to resolve it successfuly. The improved implementation appears to be quite efficient for that challenging computational problem, as our experiments show. Some numerical results with performance and scalability analysis of these results are presented in the paper.
AbstractList Computationally efficient sensitivity analysis of a large-scale air pollution model is an important issue we focus on in this paper. Sensitivity studies play an important role for reliability analysis of the results of complex nonlinear models as those used in the air pollution modelling. There is a number of uncertainties in the input data sets, as well as in some internal coefficients, which determine the speed of the main chemical reactions in the chemical part of the model. These uncertainties are subject to our quantitative sensitivity study. Monte Carlo and quasi-Monte Carlo algorithms are used in this study. A large number of numerical experiments with some special modifications of the model must be carried out in order to collect the necessary input data for the particular sensitivity study. For this purpose we created an efficient high performance implementation SA-DEM, based on the MPI version of the package UNI-DEM. A large number of numerical experiments were carried out with SA-DEM on the IBM MareNostrum III at BSC - Barcelona, helped us to identify a severe performance problem with an earlier version of the code and to resolve it successfuly. The improved implementation appears to be quite efficient for that challenging computational problem, as our experiments show. Some numerical results with performance and scalability analysis of these results are presented in the paper.
Author Dimov, Ivan
Alexandrov, Vassil
Zlatev, Zahari
Ostromsky, Tzvetan
Author_xml – sequence: 1
  givenname: Tzvetan
  surname: Ostromsky
  fullname: Ostromsky, Tzvetan
  email: ceco@parallel.bas.bg
  organization: Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev, bl. 25A, 1113 Sofia, Bulgaria
– sequence: 2
  givenname: Vassil
  surname: Alexandrov
  fullname: Alexandrov, Vassil
  email: vassil.alexandrov@bsc.es
  organization: ICREA – Barcelona Supercomputing Centre (BSC-CNS), Carrer Jordi Girona 29, E-08034 Barcelona, Spain
– sequence: 3
  givenname: Ivan
  surname: Dimov
  fullname: Dimov, Ivan
  email: ivdimov@bas.bg
  organization: Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev, bl. 25A, 1113 Sofia, Bulgaria
– sequence: 4
  givenname: Zahari
  surname: Zlatev
  fullname: Zlatev, Zahari
  email: zz@dmu.dk
  organization: National Centre for Environment and Energy, University of Århus, Frederiksborgvej 399 P.O. Box 358, DK-4000 Roskilde, Denmark
BookMark eNp9kM1OwzAQhC1UJErpE3DxA5DgnziJDxyqij-pqJUK4mg5zhpcpXZlh0p9e1LKgRN72ZnDrHa-SzTywQNC15TklNDydpPvYjApZ4PJicgFE2doTOuqyoggcvRHX6BpShsyDK9rSasxel963H8CXkG0IW61N3CD10Z3unGd6w9Y-xavwSfXu_3Rz7zuDsklHCzWeKHjB-CZi3gVuu6rd8Hjl9BCd4XOre4STH_3BL093L_On7LF8vF5PltkhouyzyixlnFLScXpIIpGirqUbQFQMihELWTRWtawQtKm5DUREgSTJZE1kdCagk8QP901MaQUwapddFsdD4oSdcSjNuoHjzriUUSoAc-QujulYHht7yCqZBwM3VsXwfSqDe7f_Dcx0W_k
Cites_doi 10.1016/j.cam.2010.05.041
10.1016/j.ress.2011.06.007
10.1007/978-94-011-0311-4
10.1016/j.matcom.2004.06.017
ContentType Journal Article
Copyright 2016
Copyright_xml – notice: 2016
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2016.05.525
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 2061
ExternalDocumentID 10_1016_j_procs_2016_05_525
S1877050916310158
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c356t-10ff23f10731f234b95869d4ee62e458594df2b2491b638059e529609809edc43
IEDL.DBID IXB
ISSN 1877-0509
IngestDate Tue Jul 01 01:27:23 EDT 2025
Wed May 17 00:58:03 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords supercomputer
performance
sensitivity analysis
parallel algorithm
speed-up
MPI
air pollution model
DEM
scalability
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c356t-10ff23f10731f234b95869d4ee62e458594df2b2491b638059e529609809edc43
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877050916310158
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_procs_2016_05_525
elsevier_sciencedirect_doi_10_1016_j_procs_2016_05_525
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016
2016-00-00
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle Procedia computer science
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dimov, Georgieva, Ivanovska, Ostromsky, Zlatev (bib0010) 2010; 235
Dimov, Zlatev (bib0030) 1997; 62
G. I. Marchuk, Mathematical modeling for the problem of the environment, Studies in Mathematics and Applications, No. 16, North-Holland, Amsterdam, (1985).
Sobol, Myshetskaya (bib0065) 2007; 13
Tz. Ostromsky, I. Dimov, R. Georgieva, Z. Zlatev, Sensitivity Analysis of a Large-scale Air Pollution Model: Numerical Aspects and a Highly Parallel Implementation, In: Large-Scale Scientific Computations, LNCS-5910 (2010), Springer, pp. 197-205.
WEB-site of the Danish Eulerian Model, available at
Z. Zlatev, Computer treatment of large air pollution models, Kluwer, 1995.
Z. Zlatev, I. Dimov, Computational and Numerical Challenges in Environmental Modelling, Elsevier, Amsterdam (2006).
Dimov, I. Faragó, Havasi (bib0005) 2004; 67
A. Saltelli, K. Chan, M. Scott, Sensitivity Analysis, Probability and Statistics series, John Wiley. & Sons (2000).
Dimov, Georgieva, Ostromsky (bib0025) 2012; 107
Elsevier (2004), pp. 187-203.
Tz. Ostromsky, Z. Zlatev, Parallel Implementation of a Large-scale 3-D Air Pollution Model, Large Scale Scientific Computing (S. Margenov, J. Wasniewski, P. Yalamov, Eds.), LNCS-2179, Springer (2001), pp. 309-316.
Sobol (bib0060) 1993; 1
I. Dimov, K. Georgiev, Tz. Ostromsky, Z. Zlatev, Computational challenges in the numerical treatment of large air pollution models
Dimov, Georgiev, Ostromsky, Zlatev (bib0020) 2013; 11
A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto, Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models, Halsted Press New York (2004).
Dimov (10.1016/j.procs.2016.05.525_bib0030) 1997; 62
10.1016/j.procs.2016.05.525_bib0075
10.1016/j.procs.2016.05.525_bib0050
10.1016/j.procs.2016.05.525_bib0040
10.1016/j.procs.2016.05.525_bib0045
10.1016/j.procs.2016.05.525_bib0035
10.1016/j.procs.2016.05.525_bib0055
Dimov (10.1016/j.procs.2016.05.525_bib0020) 2013; 11
10.1016/j.procs.2016.05.525_bib0015
Sobol (10.1016/j.procs.2016.05.525_bib0060) 1993; 1
Dimov (10.1016/j.procs.2016.05.525_bib0025) 2012; 107
10.1016/j.procs.2016.05.525_bib0070
Dimov (10.1016/j.procs.2016.05.525_bib0005) 2004; 67
Dimov (10.1016/j.procs.2016.05.525_bib0010) 2010; 235
Sobol (10.1016/j.procs.2016.05.525_bib0065) 2007; 13
10.1016/j.procs.2016.05.525_bib0080
References_xml – volume: 62
  start-page: 167
  year: 1997
  end-page: 175
  ident: bib0030
  article-title: Testing the sensitivity of air pollution levels to variations of some chemical rate constants
  publication-title: Notes on Numerical Fluid Mechanics
– reference: Z. Zlatev, Computer treatment of large air pollution models, Kluwer, 1995.
– reference: , Elsevier (2004), pp. 187-203.
– volume: 235
  start-page: 391
  year: 2010
  end-page: 402
  ident: bib0010
  article-title: Studying the Sensitivity of the Pollutants Concentrations Caused by Variations of Chemical Rates
  publication-title: Journal of Computational and Applied Mathematics
– reference: A. Saltelli, K. Chan, M. Scott, Sensitivity Analysis, Probability and Statistics series, John Wiley. & Sons (2000).
– reference: A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto, Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models, Halsted Press New York (2004).
– volume: 13
  start-page: 455
  year: 2007
  end-page: 465
  ident: bib0065
  article-title: Monte Carlo Estimators for Small Sensitivity Indices
  publication-title: Monte Carlo Methods and Applications
– volume: 11
  start-page: 1531
  year: 2013
  end-page: 1545
  ident: bib0020
  article-title: Sensitivity studies of pollutant concentrations calculated by UNI-DEM with respect to input emissions
  publication-title: Central Europe Journal of Mathematics
– volume: 107
  start-page: 23
  year: 2012
  end-page: 28
  ident: bib0025
  article-title: Monte Carlo Sensitivity Analysis of an Eulerian Large- scale Air Pollution Model
  publication-title: Reliability Engineering and System Safety
– volume: 67
  start-page: 217
  year: 2004
  end-page: 233
  ident: bib0005
  article-title: Operator splitting and commutativity analysis in the Danish Eulerian Model
  publication-title: Math. Comp. Sim.
– reference: G. I. Marchuk, Mathematical modeling for the problem of the environment, Studies in Mathematics and Applications, No. 16, North-Holland, Amsterdam, (1985).
– volume: 1
  start-page: 407
  year: 1993
  end-page: 414
  ident: bib0060
  article-title: Sensitivity estimates for nonlinear mathematical models
  publication-title: Mathematical Modeling and Computational Experiment
– reference: Z. Zlatev, I. Dimov, Computational and Numerical Challenges in Environmental Modelling, Elsevier, Amsterdam (2006).
– reference: Tz. Ostromsky, I. Dimov, R. Georgieva, Z. Zlatev, Sensitivity Analysis of a Large-scale Air Pollution Model: Numerical Aspects and a Highly Parallel Implementation, In: Large-Scale Scientific Computations, LNCS-5910 (2010), Springer, pp. 197-205.
– reference: Tz. Ostromsky, Z. Zlatev, Parallel Implementation of a Large-scale 3-D Air Pollution Model, Large Scale Scientific Computing (S. Margenov, J. Wasniewski, P. Yalamov, Eds.), LNCS-2179, Springer (2001), pp. 309-316.
– reference: WEB-site of the Danish Eulerian Model, available at:
– reference: I. Dimov, K. Georgiev, Tz. Ostromsky, Z. Zlatev, Computational challenges in the numerical treatment of large air pollution models,
– ident: 10.1016/j.procs.2016.05.525_bib0015
– ident: 10.1016/j.procs.2016.05.525_bib0040
– ident: 10.1016/j.procs.2016.05.525_bib0035
– volume: 235
  start-page: 391
  issue: 2
  year: 2010
  ident: 10.1016/j.procs.2016.05.525_bib0010
  article-title: Studying the Sensitivity of the Pollutants Concentrations Caused by Variations of Chemical Rates
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2010.05.041
– volume: 11
  start-page: 1531
  issue: 8
  year: 2013
  ident: 10.1016/j.procs.2016.05.525_bib0020
  article-title: Sensitivity studies of pollutant concentrations calculated by UNI-DEM with respect to input emissions
  publication-title: Central Europe Journal of Mathematics
– volume: 13
  start-page: 455
  issue: 5–6
  year: 2007
  ident: 10.1016/j.procs.2016.05.525_bib0065
  article-title: Monte Carlo Estimators for Small Sensitivity Indices
  publication-title: Monte Carlo Methods and Applications
– volume: 1
  start-page: 407
  year: 1993
  ident: 10.1016/j.procs.2016.05.525_bib0060
  article-title: Sensitivity estimates for nonlinear mathematical models
  publication-title: Mathematical Modeling and Computational Experiment
– ident: 10.1016/j.procs.2016.05.525_bib0050
– volume: 107
  start-page: 23
  year: 2012
  ident: 10.1016/j.procs.2016.05.525_bib0025
  article-title: Monte Carlo Sensitivity Analysis of an Eulerian Large- scale Air Pollution Model
  publication-title: Reliability Engineering and System Safety
  doi: 10.1016/j.ress.2011.06.007
– ident: 10.1016/j.procs.2016.05.525_bib0045
– ident: 10.1016/j.procs.2016.05.525_bib0070
– ident: 10.1016/j.procs.2016.05.525_bib0055
– ident: 10.1016/j.procs.2016.05.525_bib0080
– ident: 10.1016/j.procs.2016.05.525_bib0075
  doi: 10.1007/978-94-011-0311-4
– volume: 67
  start-page: 217
  year: 2004
  ident: 10.1016/j.procs.2016.05.525_bib0005
  article-title: Operator splitting and commutativity analysis in the Danish Eulerian Model
  publication-title: Math. Comp. Sim.
  doi: 10.1016/j.matcom.2004.06.017
– volume: 62
  start-page: 167
  year: 1997
  ident: 10.1016/j.procs.2016.05.525_bib0030
  article-title: Testing the sensitivity of air pollution levels to variations of some chemical rate constants
  publication-title: Notes on Numerical Fluid Mechanics
SSID ssj0000388917
Score 2.0246034
Snippet Computationally efficient sensitivity analysis of a large-scale air pollution model is an important issue we focus on in this paper. Sensitivity studies play...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 2053
SubjectTerms air pollution model
DEM
MPI
parallel algorithm
scalability
sensitivity analysis
speed-up
supercomputer
Title On the Performance, Scalability and Sensitivity Analysis of a Large Air Pollution Model
URI https://dx.doi.org/10.1016/j.procs.2016.05.525
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JawIxFA5iL710L7WL5NCjg7NkMpOjlYrULlIreguJScAio8j00H_f92bpAqWH3mYLDF-Sl5eX976PkGvNlTPOGc8Fvu-x1BdearXvwbyLTWpgSCusd3545MMpu5vH8wbp17UwmFZZ2f7SphfWunrSrdDsbpbL7iRIkwTZS8CjgHEVY8FvxNKiiG9-8xlnQbYTUQjv4vceNqjJh4o0L1wnkLY74MjgGaNk9m8L1LdFZ3BA9ipvkfbKHzokDZsdkf1aiYFWE_OYzJ4yCp4cHX-VAXTgrVqVLNzvVGWGTjBXvRSLoDUXCV07qug9poPT3nJLx6h8jH1FUSRtdUKmg9uX_tCrJBO8RRTzHIyqc2EEuCdRABdMizjlwjBreWgZbA0EMy7UsOcKNMw88K0sHrz6AjrJmgWLTkkzW2f2jFDBEx2FC8FsoJnvQoWxj5TzJHFOuUi1SKfGSW5KZgxZp4y9ygJWibBKP5YAa4vwGkv5o4Ml2O6_Gp7_t-EF2cW7Ml5ySZr59s1egQeR6zbZ6Y2eZ6N2MVQ-APTLxHo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61HvTiW6zPHDx26T6y2c2xFqXVtgq22FtImgQqZVtKPfjvndmHDxAP3pYNA8uXzGSSnfk-Qq41V844ZzwX-L7HUl94qdW-B34Xm9TAklbY7zwY8u6Y3U_iSY10ql4YLKssY38R0_NoXb5plWi2lrNZ6zlIkwTZSyCjgHUVpxtkE7KBBL2zN7n5vGhBuhORK--igYcWFftQXueFGwXydgccKTxj1Mz-bYf6tuvc7ZGdMl2k7eKL9knNZgdkt5JioKVnHpKXx4xCKkefvvoAmjCq5gUN9ztVmaHPWKxeqEXQioyELhxVtI_14LQ9W9EnlD7GyaKokjY_IuO721Gn65WaCd40ivkaoqpzYQTAJ1EAD0yLOOXCMGt5aBmcDQQzLtRw6Ao0uB4kVxb_vPoCZsmaKYuOST1bZPaEUMETHYVTwWygme9ChZcfKedJ4pxykWqQZoWTXBbUGLKqGXuVOawSYZV-LAHWBuEVlvLHDEsI3n8Znv7X8IpsdUeDvuz3hg9nZBtHisuTc1Jfr97sBaQTa32ZL5cPtdTF9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Performance%2C+Scalability+and+Sensitivity+Analysis+of+a+Large+Air+Pollution+Model&rft.jtitle=Procedia+computer+science&rft.au=Ostromsky%2C+Tzvetan&rft.au=Alexandrov%2C+Vassil&rft.au=Dimov%2C+Ivan&rft.au=Zlatev%2C+Zahari&rft.date=2016&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=80&rft.spage=2053&rft.epage=2061&rft_id=info:doi/10.1016%2Fj.procs.2016.05.525&rft.externalDocID=S1877050916310158
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon