Constructing Multichannel Carbon Fibers as Freestanding Anodes for Potassium‐Ion Battery with High Capacity and Long Cycle Life

Potassium‐ion battery (PIB) is a potential low‐cost energy storage technology owing to the abundant source and wide distribution of potassium element. However, the PIB usually suffers from poor cycling and rate performance induced by volume expansion and sluggish potassiation kinetics. Herein, multi...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials interfaces Vol. 7; no. 3
Main Authors Xu, Ying, Yuan, Tao, Zhao, Yahui, Yao, Hongfei, Yang, Junhe, Zheng, Shiyou
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Potassium‐ion battery (PIB) is a potential low‐cost energy storage technology owing to the abundant source and wide distribution of potassium element. However, the PIB usually suffers from poor cycling and rate performance induced by volume expansion and sluggish potassiation kinetics. Herein, multichannel carbon fibers (MCCFs) are rationally constructed as freestanding PIB anodes by electrospinning suitable ratio of poly(methyl methacrylate)/polyacrylonitrile with subsequent calcination treatment. The MCCF electrode shows a high reversible capacity/charge capacity of 420.1/304.2 mAh g−1 at current density of 50 mA g−1 and delivers a capacity of 110.9 mAh g−1 over 2000 cycles at a higher current density of 2000 mA g−1. The excellent electrochemical performance is attributed to the unique multichannels in amorphous MCCFs for buffering volume change and facilitating electrolyte infiltration, as well as high conductivity of N‐, O‐doping in MCCFs. This strategy of fabricating multifunctional electrode materials provides an effective approach to develop high‐performance materials for cost‐effective alkali‐ion batteries. The multichannel carbon fibers (MCCFs) as freestanding anodes for potassium‐ion batteries are rationally constructed by electrospinning suitable ratio of poly(methyl methacrylate)/polyacrylonitrile with subsequent heat treatment. The MCCF anodes present high reversible capacity and excellent long‐term cycling performance, which are attributed to the unique multichannel structure and high conductivity of MCCFs, as well as in situ N‐, O‐doping in MCCFs.
AbstractList Potassium‐ion battery (PIB) is a potential low‐cost energy storage technology owing to the abundant source and wide distribution of potassium element. However, the PIB usually suffers from poor cycling and rate performance induced by volume expansion and sluggish potassiation kinetics. Herein, multichannel carbon fibers (MCCFs) are rationally constructed as freestanding PIB anodes by electrospinning suitable ratio of poly(methyl methacrylate)/polyacrylonitrile with subsequent calcination treatment. The MCCF electrode shows a high reversible capacity/charge capacity of 420.1/304.2 mAh g −1 at current density of 50 mA g −1 and delivers a capacity of 110.9 mAh g −1 over 2000 cycles at a higher current density of 2000 mA g −1 . The excellent electrochemical performance is attributed to the unique multichannels in amorphous MCCFs for buffering volume change and facilitating electrolyte infiltration, as well as high conductivity of N‐, O‐doping in MCCFs. This strategy of fabricating multifunctional electrode materials provides an effective approach to develop high‐performance materials for cost‐effective alkali‐ion batteries.
Potassium‐ion battery (PIB) is a potential low‐cost energy storage technology owing to the abundant source and wide distribution of potassium element. However, the PIB usually suffers from poor cycling and rate performance induced by volume expansion and sluggish potassiation kinetics. Herein, multichannel carbon fibers (MCCFs) are rationally constructed as freestanding PIB anodes by electrospinning suitable ratio of poly(methyl methacrylate)/polyacrylonitrile with subsequent calcination treatment. The MCCF electrode shows a high reversible capacity/charge capacity of 420.1/304.2 mAh g−1 at current density of 50 mA g−1 and delivers a capacity of 110.9 mAh g−1 over 2000 cycles at a higher current density of 2000 mA g−1. The excellent electrochemical performance is attributed to the unique multichannels in amorphous MCCFs for buffering volume change and facilitating electrolyte infiltration, as well as high conductivity of N‐, O‐doping in MCCFs. This strategy of fabricating multifunctional electrode materials provides an effective approach to develop high‐performance materials for cost‐effective alkali‐ion batteries. The multichannel carbon fibers (MCCFs) as freestanding anodes for potassium‐ion batteries are rationally constructed by electrospinning suitable ratio of poly(methyl methacrylate)/polyacrylonitrile with subsequent heat treatment. The MCCF anodes present high reversible capacity and excellent long‐term cycling performance, which are attributed to the unique multichannel structure and high conductivity of MCCFs, as well as in situ N‐, O‐doping in MCCFs.
Potassium‐ion battery (PIB) is a potential low‐cost energy storage technology owing to the abundant source and wide distribution of potassium element. However, the PIB usually suffers from poor cycling and rate performance induced by volume expansion and sluggish potassiation kinetics. Herein, multichannel carbon fibers (MCCFs) are rationally constructed as freestanding PIB anodes by electrospinning suitable ratio of poly(methyl methacrylate)/polyacrylonitrile with subsequent calcination treatment. The MCCF electrode shows a high reversible capacity/charge capacity of 420.1/304.2 mAh g−1 at current density of 50 mA g−1 and delivers a capacity of 110.9 mAh g−1 over 2000 cycles at a higher current density of 2000 mA g−1. The excellent electrochemical performance is attributed to the unique multichannels in amorphous MCCFs for buffering volume change and facilitating electrolyte infiltration, as well as high conductivity of N‐, O‐doping in MCCFs. This strategy of fabricating multifunctional electrode materials provides an effective approach to develop high‐performance materials for cost‐effective alkali‐ion batteries.
Author Xu, Ying
Zhao, Yahui
Zheng, Shiyou
Yao, Hongfei
Yuan, Tao
Yang, Junhe
Author_xml – sequence: 1
  givenname: Ying
  surname: Xu
  fullname: Xu, Ying
  organization: University of Shanghai for Science and Technology
– sequence: 2
  givenname: Tao
  surname: Yuan
  fullname: Yuan, Tao
  organization: University of Shanghai for Science and Technology
– sequence: 3
  givenname: Yahui
  surname: Zhao
  fullname: Zhao, Yahui
  organization: University of Shanghai for Science and Technology
– sequence: 4
  givenname: Hongfei
  surname: Yao
  fullname: Yao, Hongfei
  organization: University of Shanghai for Science and Technology
– sequence: 5
  givenname: Junhe
  surname: Yang
  fullname: Yang, Junhe
  email: jhyang@usst.edu.cn
  organization: University of Shanghai for Science and Technology
– sequence: 6
  givenname: Shiyou
  orcidid: 0000-0002-6614-9567
  surname: Zheng
  fullname: Zheng, Shiyou
  email: syzheng@usst.edu.cn
  organization: University of Shanghai for Science and Technology
BookMark eNqFkM1qGzEUhUVwIK6TbdaCrO1eaX5sLd1pXRscmkWyHjTSnVhhLLmShjC75A3yjH2Syri0pVCyundxvnM45wMZWWeRkGsGMwbAP0q9NzMOTABbcHFGxpyJcjrPChj99V-QqxCeAIAxzvgiG5PXytkQfa-isY_0tu-iUTtpLXa0kr5xlq5Mgz5QGejKI4YorT5Kl9ZpDLR1nt65KEMw_f7Hy9smEZ9kjOgH-mzijq7N4y5ZHaQycaAJpluX8GpQHdKtafGSnLeyC3j1607Iw-rLfbWebr993VTL7VRlRSmmQpSIc9ZkeSmwaHLV6IXmkEuUvGmFgFwoLRpdFDIDzUqNHKFUc8lAgwKVTcjNyffg3fc-FamfXO9tiqx5ViSnMoMyqWYnlfIuBI9tffBmL_1QM6iPS9fHpevfSycg_wdIRWU0zkYvTfd_TJywZ9Ph8E5Ivfx8u_nD_gR2SJeo
CitedBy_id crossref_primary_10_1002_celc_202200059
crossref_primary_10_1016_S1872_5805_22_60607_3
crossref_primary_10_1039_D0DT02493G
crossref_primary_10_1002_smll_202207423
crossref_primary_10_1016_j_apsusc_2022_154332
crossref_primary_10_1016_j_jallcom_2022_164845
crossref_primary_10_1002_eem2_12146
crossref_primary_10_1016_j_jechem_2023_10_013
crossref_primary_10_1021_acsaem_0c01574
crossref_primary_10_1021_acsnano_0c05951
crossref_primary_10_1002_adts_202100070
crossref_primary_10_54097_ajst_v4i3_4778
crossref_primary_10_1016_j_jcis_2022_10_065
crossref_primary_10_1016_j_electacta_2021_139759
crossref_primary_10_1007_s12274_021_3439_3
crossref_primary_10_1016_S1872_5805_23_60721_8
crossref_primary_10_1016_S1872_5805_22_60631_0
crossref_primary_10_1002_inf2_12272
crossref_primary_10_1007_s41918_021_00103_9
crossref_primary_10_1088_1361_6528_abe4fa
crossref_primary_10_1007_s40820_020_00524_z
crossref_primary_10_1039_D2CC06692K
crossref_primary_10_1039_D2TA05082J
crossref_primary_10_1016_j_colsurfa_2022_130332
crossref_primary_10_1073_pnas_2307477120
crossref_primary_10_1016_j_carbon_2022_11_058
crossref_primary_10_1016_j_jallcom_2022_165680
crossref_primary_10_1016_j_compositesb_2023_110712
crossref_primary_10_1016_j_carbon_2024_118969
crossref_primary_10_1016_j_est_2024_110782
crossref_primary_10_1007_s12598_023_02530_7
crossref_primary_10_1039_D1QI00664A
crossref_primary_10_1007_s11426_022_1442_4
crossref_primary_10_1021_acsami_1c04278
crossref_primary_10_1016_j_cej_2020_126991
crossref_primary_10_1021_acsnano_4c11146
crossref_primary_10_1016_j_est_2020_101877
Cites_doi 10.1002/adfm.201805371
10.1016/j.jpowsour.2019.01.073
10.1038/s41467-018-05786-1
10.1007/s12274-019-2335-6
10.1039/C4TA06411A
10.1016/j.carbon.2017.07.041
10.1039/C8TA06652C
10.1016/j.electacta.2018.10.036
10.1038/s41467-018-04190-z
10.1002/adma.201700104
10.1002/aenm.201701648
10.1002/aenm.201800171
10.1002/aenm.201501874
10.1021/acsaem.8b00182
10.1002/adfm.201700324
10.1002/advs.201700322
10.1016/j.gee.2017.04.002
10.1002/cssc.201701759
10.1021/acsami.9b13889
10.1002/adma.201802074
10.1016/j.nanoen.2019.01.009
10.1016/j.ensm.2019.05.037
10.1016/j.ensm.2017.09.009
10.1039/C7TA04264G
10.1002/adfm.201903496
10.1002/smll.201802140
10.1016/j.pmatsci.2015.08.002
10.1016/j.carbon.2017.11.064
10.1021/jacs.5b06809
10.1002/adfm.201801989
10.1002/aenm.201803894
10.1016/j.elecom.2015.09.002
10.1002/adma.201702268
10.1039/C8TA11921J
10.1021/acsami.7b02476
10.1039/C7TA08171E
10.1002/aenm.201802386
10.1016/j.carbon.2018.11.001
10.1002/adma.201805430
10.1039/C7TA01108C
10.1021/acsnano.6b05998
10.1016/j.carbon.2018.01.094
10.1021/jacs.7b07027
10.1021/jacs.8b02178
10.1016/j.nanoen.2018.08.075
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/admi.201901829
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID 10_1002_admi_201901829
ADMI201901829
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51671135; 51971146
– fundername: Science and Technology Development Project of USST
– fundername: Shanghai Outstanding Academic Leaders Plan
– fundername: Shanghai Municipal Education Commission
  funderid: 2019‐01‐07‐00‐07‐E00015
– fundername: Program of Shanghai Subject Chief Scientist
  funderid: 17XD1403000
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
DPXWK
EBS
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
M~E
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAFWJ
AAYXX
ABJCF
ABJNI
ACCMX
ADMLS
AFKRA
AFPKN
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
EJD
GROUPED_DOAJ
HCIFZ
KB.
M7S
PDBOC
PHGZM
PHGZT
PTHSS
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3569-996ee71b3469e5b4cbd8d204aea2bf99049cd9bd55a30d16de2e06c7a10d0c0c3
ISSN 2196-7350
IngestDate Fri Jul 25 11:57:41 EDT 2025
Tue Jul 01 00:39:35 EDT 2025
Thu Apr 24 22:59:49 EDT 2025
Sat Aug 24 01:08:01 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3569-996ee71b3469e5b4cbd8d204aea2bf99049cd9bd55a30d16de2e06c7a10d0c0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6614-9567
PQID 2352046306
PQPubID 2034582
PageCount 8
ParticipantIDs proquest_journals_2352046306
crossref_primary_10_1002_admi_201901829
crossref_citationtrail_10_1002_admi_201901829
wiley_primary_10_1002_admi_201901829_ADMI201901829
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 5
2019; 7
2019; 9
2018; 28
2017; 2
2018; 140
2015; 3
2018; 128
2019; 31
2019; 11
2017; 27
2019; 57
2019; 12
2016; 10
2016; 76
2017; 29
2017; 9
2017; 139
2019; 143
2018; 131
2018; 6
2018; 9
2016; 6
2018; 8
2018; 5
2015; 137
2015; 60
2018; 1
2019; 23
2019; 29
2018; 30
2019; 415
2018; 11
2017; 123
2019; 293
2018; 53
2018; 14
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 131
  start-page: 79
  year: 2018
  publication-title: Carbon
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 143
  start-page: 138
  year: 2019
  publication-title: Carbon
– volume: 11
  start-page: 38
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 6
  start-page: 434
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 140
  start-page: 7127
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 11
  start-page: 202
  year: 2018
  publication-title: ChemSusChem
– volume: 9
  start-page: 3645
  year: 2018
  publication-title: Nat. Commun.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 415
  year: 2018
  publication-title: Nano Energy
– volume: 5
  start-page: 7854
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 60
  start-page: 172
  year: 2015
  publication-title: Electrochem. Commun.
– volume: 128
  start-page: 224
  year: 2018
  publication-title: Carbon
– volume: 12
  start-page: 1025
  year: 2019
  publication-title: Nano Res.
– volume: 9
  start-page: 1720
  year: 2018
  publication-title: Nat. Commun.
– volume: 7
  start-page: 6363
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 3409
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 415
  start-page: 165
  year: 2019
  publication-title: J. Power Sources
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 1
  start-page: 1703
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 76
  start-page: 319
  year: 2016
  publication-title: Prog. Mater. Sci.
– volume: 123
  start-page: 54
  year: 2017
  publication-title: Carbon
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 278
  year: 2017
  publication-title: Green Energy Environ.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 23
  start-page: 46
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 9738
  year: 2016
  publication-title: ACS Nano
– volume: 57
  start-page: 728
  year: 2019
  publication-title: Nano Energy
– volume: 293
  start-page: 364
  year: 2019
  publication-title: Electrochim. Acta
– ident: e_1_2_7_44_1
  doi: 10.1002/adfm.201805371
– ident: e_1_2_7_39_1
  doi: 10.1016/j.jpowsour.2019.01.073
– ident: e_1_2_7_6_1
  doi: 10.1038/s41467-018-05786-1
– ident: e_1_2_7_26_1
  doi: 10.1007/s12274-019-2335-6
– ident: e_1_2_7_35_1
  doi: 10.1039/C4TA06411A
– ident: e_1_2_7_4_1
  doi: 10.1016/j.carbon.2017.07.041
– ident: e_1_2_7_30_1
  doi: 10.1039/C8TA06652C
– ident: e_1_2_7_8_1
  doi: 10.1016/j.electacta.2018.10.036
– ident: e_1_2_7_19_1
  doi: 10.1038/s41467-018-04190-z
– ident: e_1_2_7_34_1
  doi: 10.1002/adma.201700104
– ident: e_1_2_7_2_1
  doi: 10.1002/aenm.201701648
– ident: e_1_2_7_14_1
  doi: 10.1002/aenm.201800171
– ident: e_1_2_7_15_1
  doi: 10.1002/aenm.201501874
– ident: e_1_2_7_23_1
  doi: 10.1021/acsaem.8b00182
– ident: e_1_2_7_16_1
  doi: 10.1002/adfm.201700324
– ident: e_1_2_7_43_1
  doi: 10.1002/advs.201700322
– ident: e_1_2_7_21_1
  doi: 10.1016/j.gee.2017.04.002
– ident: e_1_2_7_3_1
  doi: 10.1002/cssc.201701759
– ident: e_1_2_7_18_1
  doi: 10.1021/acsami.9b13889
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.201802074
– ident: e_1_2_7_31_1
  doi: 10.1016/j.nanoen.2019.01.009
– ident: e_1_2_7_13_1
  doi: 10.1016/j.ensm.2019.05.037
– ident: e_1_2_7_33_1
  doi: 10.1016/j.ensm.2017.09.009
– ident: e_1_2_7_32_1
  doi: 10.1039/C7TA04264G
– ident: e_1_2_7_36_1
  doi: 10.1002/adfm.201903496
– ident: e_1_2_7_1_1
  doi: 10.1002/smll.201802140
– ident: e_1_2_7_27_1
  doi: 10.1016/j.pmatsci.2015.08.002
– ident: e_1_2_7_7_1
  doi: 10.1016/j.carbon.2017.11.064
– ident: e_1_2_7_9_1
  doi: 10.1021/jacs.5b06809
– ident: e_1_2_7_42_1
  doi: 10.1002/adfm.201801989
– ident: e_1_2_7_38_1
  doi: 10.1002/aenm.201803894
– ident: e_1_2_7_20_1
  doi: 10.1016/j.elecom.2015.09.002
– ident: e_1_2_7_29_1
  doi: 10.1002/adma.201702268
– ident: e_1_2_7_45_1
  doi: 10.1039/C8TA11921J
– ident: e_1_2_7_12_1
  doi: 10.1021/acsami.7b02476
– ident: e_1_2_7_41_1
  doi: 10.1039/C7TA08171E
– ident: e_1_2_7_28_1
  doi: 10.1002/aenm.201802386
– ident: e_1_2_7_37_1
  doi: 10.1016/j.carbon.2018.11.001
– ident: e_1_2_7_40_1
  doi: 10.1002/adma.201805430
– ident: e_1_2_7_5_1
  doi: 10.1039/C7TA01108C
– ident: e_1_2_7_17_1
  doi: 10.1021/acsnano.6b05998
– ident: e_1_2_7_24_1
  doi: 10.1016/j.carbon.2018.01.094
– ident: e_1_2_7_25_1
  doi: 10.1021/jacs.7b07027
– ident: e_1_2_7_11_1
  doi: 10.1021/jacs.8b02178
– ident: e_1_2_7_22_1
  doi: 10.1016/j.nanoen.2018.08.075
SSID ssj0001121283
Score 2.3658698
Snippet Potassium‐ion battery (PIB) is a potential low‐cost energy storage technology owing to the abundant source and wide distribution of potassium element. However,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anodes
Battery cycles
Carbon fibers
controllable preparation
Current density
Electrochemical analysis
Electrode materials
Electrodes
electrospinning
Energy storage
multichannel carbon fibers
Polyacrylonitrile
Polymethyl methacrylate
Potassium
potassium‐ion batteries
Rechargeable batteries
Title Constructing Multichannel Carbon Fibers as Freestanding Anodes for Potassium‐Ion Battery with High Capacity and Long Cycle Life
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.201901829
https://www.proquest.com/docview/2352046306
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVEhcEE9RWtAekDggw3rXz2NUGqUoLRwSFLhY-7KI1CaoSQ7tqfwDfiO_hJld27Gl8LxYyWq9sfx92Z0ZfTNDyIu8LC3QRgYq52kA9r8KpInyIAUTyWahVMxl8Z-eJaNp9G4Wz3q963Z2yVq91tc780r-B1UYA1wxS_YfkG0WhQH4DPjCFRCG619hjN02ff1X8PddKi3m8S7sOeo4FOA6RD3ICnvJDC-tbXJYwOc31hViePVhuQbzeb65aFQPJ3Cfr7p55aO0KAWBBcG5RosdA-1jbFB0dAVPAz592RETDWpNAVjC_hW4ihSXJUq_anRnG7fz16em6wtWtUmWy1Yo24VxP8kvm3kzz4-N4AFKO2-HLMA_ZR35xw5NUFv4ad3uBztpEqTCV6Wtt-q0xUix8wDwBWWluZijbA-MnawKqHQqbZ-9L4bT8biYHM8mt8geBxeD98ne4OP083QboQvhWM9EXemT8TfdZbuWzNY9aTs5zkqZ3CN3K_eCDjxX7pOeXTwgt53MV68ekm9txtA2Y6hnDPWMoXJF24yhnjEUGEMbxvy4-Q5coRVXKHKFIldozRUKN1PkCnVcociVR2Q6PJ4cjYKqCUegRZzkAfjD1qahElGS21hFWpnMcBZJK7kqwZaJcm1yZeJYCmbCxFhuWaJTGTLDNNPiMekvlgv7hFCRypjbEE4QEUVRXGZxrhNmTMwTZYRI9klQv9BCVxXqsVHKeeFra_MCASgaAPbJy2b-V1-b5ZczD2t8iur_uyo4-B5YL4_BD3OH2R9WKQZvT0-ab09_v-YBubOl_iHpA7b2Gdiva_W8ItpPgieeQw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7aInoRn_g2B8FTMJts9nEs1dJqWzxYES9LXisF3YqrB2_6D_yN_hIn-2j1IILHhUx2N5PJfDPMfEHoKE5TC9tGEhWzkAD-V0QaPyYhQCQbeVLRoot_MAy6I__8RtTVhK4XpuSHmCbcnGUU57UzcJeQPpmxhkrzMHa1WeDRIhbPo6aDNlEDNVvXo9vRLNHiwelc0HGCcQYk5ILW5I2Unfyc5KdzmiHO77i1cDydFbRcIUbcKlW8iuZstoYWispNna-jd3flZkkCm93hop_WNfPC3-G2fFKTDHdcUUiOZY47T9bWjSwYAn9jcwygFV9OngFDj18ePt8-eiBRkm6-Ypekxa4SBKaC2BoAOwZh3J-AePsVvgb3x6ndQKPO2VW7S6p7FYjmIogJhDjWhp7iEBpboXytTGQY9aWVTKXgnvxYm1gZISSnxguMZZYGOpQeNVRTzTdRI5tkdgthHkrBrAeHAvd9X6SRiHVAjREsUIbzYBuRekETXZGOu7sv7pOSLpklTgHJVAHb6Hg6_rGk2_h15F6tn6QyuzxhACcdBRqFF7NCZ3_MkrROB73p085_hA7RYvdq0E_6veHFLlpiLh4vqrr3UAO0b_cBtDyrg2pbfgGFreRr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaACsSCeIry9IDEZOHYcdKMVSFqoa0YKEIskV9BlWiKSBnY4B_wG_klnJO0hQEhMUbyOYnP5_vudPcZoZMoTS1sG0lUxEIC-F8RafyIhACRbMOTihZd_L1-0B74l3fi7lsXf8kPMUu4Ocsozmtn4E8mPZuThkozGrrSLHBoDRYtopqjyoN9XWveDu4H8zyLB4dzwcYJthmQkAs65W6k7OznJD990xxwfoethd-J19FaBRhxs9TwBlqw2SZaLgo3db6F3t2NmyUHbPaAi3Za18sLP4db8lmNMxy7mpAcyxzHz9ZO-1gwxP3G5hgwK74eTwBCD19Gn28fHZAoOTdfscvRYlcIAlNBaA14HYMw7o5BvPUKX4O7w9Ruo0F8cdNqk-paBaK5CCICEY61oac4RMZWKF8r0zCM-tJKplLwTn6kTaSMEJJT4wXGMksDHUqPGqqp5jtoKRtndhdhHkrBrAdnAvd9X6QNEemAGiNYoAznQR2R6YImuuIcd1dfPCYlWzJLnAKSmQLq6HQ2_qlk2_h15MFUP0lldXnCAE06BjQKL2aFzv6YJWme9zqzp73_CB2jlevzOOl2-lf7aJW5aLyo6T5AS6B8ewiQZaKOql35BS2945Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+Multichannel+Carbon+Fibers+as+Freestanding+Anodes+for+Potassium%E2%80%90Ion+Battery+with+High+Capacity+and+Long+Cycle+Life&rft.jtitle=Advanced+materials+interfaces&rft.au=Xu%2C+Ying&rft.au=Yuan%2C+Tao&rft.au=Zhao%2C+Yahui&rft.au=Yao%2C+Hongfei&rft.date=2020-02-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2196-7350&rft.volume=7&rft.issue=3&rft_id=info:doi/10.1002%2Fadmi.201901829&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon