Constructing Multichannel Carbon Fibers as Freestanding Anodes for Potassium‐Ion Battery with High Capacity and Long Cycle Life
Potassium‐ion battery (PIB) is a potential low‐cost energy storage technology owing to the abundant source and wide distribution of potassium element. However, the PIB usually suffers from poor cycling and rate performance induced by volume expansion and sluggish potassiation kinetics. Herein, multi...
Saved in:
Published in | Advanced materials interfaces Vol. 7; no. 3 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Potassium‐ion battery (PIB) is a potential low‐cost energy storage technology owing to the abundant source and wide distribution of potassium element. However, the PIB usually suffers from poor cycling and rate performance induced by volume expansion and sluggish potassiation kinetics. Herein, multichannel carbon fibers (MCCFs) are rationally constructed as freestanding PIB anodes by electrospinning suitable ratio of poly(methyl methacrylate)/polyacrylonitrile with subsequent calcination treatment. The MCCF electrode shows a high reversible capacity/charge capacity of 420.1/304.2 mAh g−1 at current density of 50 mA g−1 and delivers a capacity of 110.9 mAh g−1 over 2000 cycles at a higher current density of 2000 mA g−1. The excellent electrochemical performance is attributed to the unique multichannels in amorphous MCCFs for buffering volume change and facilitating electrolyte infiltration, as well as high conductivity of N‐, O‐doping in MCCFs. This strategy of fabricating multifunctional electrode materials provides an effective approach to develop high‐performance materials for cost‐effective alkali‐ion batteries.
The multichannel carbon fibers (MCCFs) as freestanding anodes for potassium‐ion batteries are rationally constructed by electrospinning suitable ratio of poly(methyl methacrylate)/polyacrylonitrile with subsequent heat treatment. The MCCF anodes present high reversible capacity and excellent long‐term cycling performance, which are attributed to the unique multichannel structure and high conductivity of MCCFs, as well as in situ N‐, O‐doping in MCCFs. |
---|---|
AbstractList | Potassium‐ion battery (PIB) is a potential low‐cost energy storage technology owing to the abundant source and wide distribution of potassium element. However, the PIB usually suffers from poor cycling and rate performance induced by volume expansion and sluggish potassiation kinetics. Herein, multichannel carbon fibers (MCCFs) are rationally constructed as freestanding PIB anodes by electrospinning suitable ratio of poly(methyl methacrylate)/polyacrylonitrile with subsequent calcination treatment. The MCCF electrode shows a high reversible capacity/charge capacity of 420.1/304.2 mAh g
−1
at current density of 50 mA g
−1
and delivers a capacity of 110.9 mAh g
−1
over 2000 cycles at a higher current density of 2000 mA g
−1
. The excellent electrochemical performance is attributed to the unique multichannels in amorphous MCCFs for buffering volume change and facilitating electrolyte infiltration, as well as high conductivity of N‐, O‐doping in MCCFs. This strategy of fabricating multifunctional electrode materials provides an effective approach to develop high‐performance materials for cost‐effective alkali‐ion batteries. Potassium‐ion battery (PIB) is a potential low‐cost energy storage technology owing to the abundant source and wide distribution of potassium element. However, the PIB usually suffers from poor cycling and rate performance induced by volume expansion and sluggish potassiation kinetics. Herein, multichannel carbon fibers (MCCFs) are rationally constructed as freestanding PIB anodes by electrospinning suitable ratio of poly(methyl methacrylate)/polyacrylonitrile with subsequent calcination treatment. The MCCF electrode shows a high reversible capacity/charge capacity of 420.1/304.2 mAh g−1 at current density of 50 mA g−1 and delivers a capacity of 110.9 mAh g−1 over 2000 cycles at a higher current density of 2000 mA g−1. The excellent electrochemical performance is attributed to the unique multichannels in amorphous MCCFs for buffering volume change and facilitating electrolyte infiltration, as well as high conductivity of N‐, O‐doping in MCCFs. This strategy of fabricating multifunctional electrode materials provides an effective approach to develop high‐performance materials for cost‐effective alkali‐ion batteries. The multichannel carbon fibers (MCCFs) as freestanding anodes for potassium‐ion batteries are rationally constructed by electrospinning suitable ratio of poly(methyl methacrylate)/polyacrylonitrile with subsequent heat treatment. The MCCF anodes present high reversible capacity and excellent long‐term cycling performance, which are attributed to the unique multichannel structure and high conductivity of MCCFs, as well as in situ N‐, O‐doping in MCCFs. Potassium‐ion battery (PIB) is a potential low‐cost energy storage technology owing to the abundant source and wide distribution of potassium element. However, the PIB usually suffers from poor cycling and rate performance induced by volume expansion and sluggish potassiation kinetics. Herein, multichannel carbon fibers (MCCFs) are rationally constructed as freestanding PIB anodes by electrospinning suitable ratio of poly(methyl methacrylate)/polyacrylonitrile with subsequent calcination treatment. The MCCF electrode shows a high reversible capacity/charge capacity of 420.1/304.2 mAh g−1 at current density of 50 mA g−1 and delivers a capacity of 110.9 mAh g−1 over 2000 cycles at a higher current density of 2000 mA g−1. The excellent electrochemical performance is attributed to the unique multichannels in amorphous MCCFs for buffering volume change and facilitating electrolyte infiltration, as well as high conductivity of N‐, O‐doping in MCCFs. This strategy of fabricating multifunctional electrode materials provides an effective approach to develop high‐performance materials for cost‐effective alkali‐ion batteries. |
Author | Xu, Ying Zhao, Yahui Zheng, Shiyou Yao, Hongfei Yuan, Tao Yang, Junhe |
Author_xml | – sequence: 1 givenname: Ying surname: Xu fullname: Xu, Ying organization: University of Shanghai for Science and Technology – sequence: 2 givenname: Tao surname: Yuan fullname: Yuan, Tao organization: University of Shanghai for Science and Technology – sequence: 3 givenname: Yahui surname: Zhao fullname: Zhao, Yahui organization: University of Shanghai for Science and Technology – sequence: 4 givenname: Hongfei surname: Yao fullname: Yao, Hongfei organization: University of Shanghai for Science and Technology – sequence: 5 givenname: Junhe surname: Yang fullname: Yang, Junhe email: jhyang@usst.edu.cn organization: University of Shanghai for Science and Technology – sequence: 6 givenname: Shiyou orcidid: 0000-0002-6614-9567 surname: Zheng fullname: Zheng, Shiyou email: syzheng@usst.edu.cn organization: University of Shanghai for Science and Technology |
BookMark | eNqFkM1qGzEUhUVwIK6TbdaCrO1eaX5sLd1pXRscmkWyHjTSnVhhLLmShjC75A3yjH2Syri0pVCyundxvnM45wMZWWeRkGsGMwbAP0q9NzMOTABbcHFGxpyJcjrPChj99V-QqxCeAIAxzvgiG5PXytkQfa-isY_0tu-iUTtpLXa0kr5xlq5Mgz5QGejKI4YorT5Kl9ZpDLR1nt65KEMw_f7Hy9smEZ9kjOgH-mzijq7N4y5ZHaQycaAJpluX8GpQHdKtafGSnLeyC3j1607Iw-rLfbWebr993VTL7VRlRSmmQpSIc9ZkeSmwaHLV6IXmkEuUvGmFgFwoLRpdFDIDzUqNHKFUc8lAgwKVTcjNyffg3fc-FamfXO9tiqx5ViSnMoMyqWYnlfIuBI9tffBmL_1QM6iPS9fHpevfSycg_wdIRWU0zkYvTfd_TJywZ9Ph8E5Ivfx8u_nD_gR2SJeo |
CitedBy_id | crossref_primary_10_1002_celc_202200059 crossref_primary_10_1016_S1872_5805_22_60607_3 crossref_primary_10_1039_D0DT02493G crossref_primary_10_1002_smll_202207423 crossref_primary_10_1016_j_apsusc_2022_154332 crossref_primary_10_1016_j_jallcom_2022_164845 crossref_primary_10_1002_eem2_12146 crossref_primary_10_1016_j_jechem_2023_10_013 crossref_primary_10_1021_acsaem_0c01574 crossref_primary_10_1021_acsnano_0c05951 crossref_primary_10_1002_adts_202100070 crossref_primary_10_54097_ajst_v4i3_4778 crossref_primary_10_1016_j_jcis_2022_10_065 crossref_primary_10_1016_j_electacta_2021_139759 crossref_primary_10_1007_s12274_021_3439_3 crossref_primary_10_1016_S1872_5805_23_60721_8 crossref_primary_10_1016_S1872_5805_22_60631_0 crossref_primary_10_1002_inf2_12272 crossref_primary_10_1007_s41918_021_00103_9 crossref_primary_10_1088_1361_6528_abe4fa crossref_primary_10_1007_s40820_020_00524_z crossref_primary_10_1039_D2CC06692K crossref_primary_10_1039_D2TA05082J crossref_primary_10_1016_j_colsurfa_2022_130332 crossref_primary_10_1073_pnas_2307477120 crossref_primary_10_1016_j_carbon_2022_11_058 crossref_primary_10_1016_j_jallcom_2022_165680 crossref_primary_10_1016_j_compositesb_2023_110712 crossref_primary_10_1016_j_carbon_2024_118969 crossref_primary_10_1016_j_est_2024_110782 crossref_primary_10_1007_s12598_023_02530_7 crossref_primary_10_1039_D1QI00664A crossref_primary_10_1007_s11426_022_1442_4 crossref_primary_10_1021_acsami_1c04278 crossref_primary_10_1016_j_cej_2020_126991 crossref_primary_10_1021_acsnano_4c11146 crossref_primary_10_1016_j_est_2020_101877 |
Cites_doi | 10.1002/adfm.201805371 10.1016/j.jpowsour.2019.01.073 10.1038/s41467-018-05786-1 10.1007/s12274-019-2335-6 10.1039/C4TA06411A 10.1016/j.carbon.2017.07.041 10.1039/C8TA06652C 10.1016/j.electacta.2018.10.036 10.1038/s41467-018-04190-z 10.1002/adma.201700104 10.1002/aenm.201701648 10.1002/aenm.201800171 10.1002/aenm.201501874 10.1021/acsaem.8b00182 10.1002/adfm.201700324 10.1002/advs.201700322 10.1016/j.gee.2017.04.002 10.1002/cssc.201701759 10.1021/acsami.9b13889 10.1002/adma.201802074 10.1016/j.nanoen.2019.01.009 10.1016/j.ensm.2019.05.037 10.1016/j.ensm.2017.09.009 10.1039/C7TA04264G 10.1002/adfm.201903496 10.1002/smll.201802140 10.1016/j.pmatsci.2015.08.002 10.1016/j.carbon.2017.11.064 10.1021/jacs.5b06809 10.1002/adfm.201801989 10.1002/aenm.201803894 10.1016/j.elecom.2015.09.002 10.1002/adma.201702268 10.1039/C8TA11921J 10.1021/acsami.7b02476 10.1039/C7TA08171E 10.1002/aenm.201802386 10.1016/j.carbon.2018.11.001 10.1002/adma.201805430 10.1039/C7TA01108C 10.1021/acsnano.6b05998 10.1016/j.carbon.2018.01.094 10.1021/jacs.7b07027 10.1021/jacs.8b02178 10.1016/j.nanoen.2018.08.075 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/admi.201901829 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2196-7350 |
EndPage | n/a |
ExternalDocumentID | 10_1002_admi_201901829 ADMI201901829 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51671135; 51971146 – fundername: Science and Technology Development Project of USST – fundername: Shanghai Outstanding Academic Leaders Plan – fundername: Shanghai Municipal Education Commission funderid: 2019‐01‐07‐00‐07‐E00015 – fundername: Program of Shanghai Subject Chief Scientist funderid: 17XD1403000 |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG DPXWK EBS G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ M~E O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW AAFWJ AAYXX ABJCF ABJNI ACCMX ADMLS AFKRA AFPKN ARAPS BENPR BGLVJ CCPQU CITATION EJD GROUPED_DOAJ HCIFZ KB. M7S PDBOC PHGZM PHGZT PTHSS 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3569-996ee71b3469e5b4cbd8d204aea2bf99049cd9bd55a30d16de2e06c7a10d0c0c3 |
ISSN | 2196-7350 |
IngestDate | Fri Jul 25 11:57:41 EDT 2025 Tue Jul 01 00:39:35 EDT 2025 Thu Apr 24 22:59:49 EDT 2025 Sat Aug 24 01:08:01 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3569-996ee71b3469e5b4cbd8d204aea2bf99049cd9bd55a30d16de2e06c7a10d0c0c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6614-9567 |
PQID | 2352046306 |
PQPubID | 2034582 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2352046306 crossref_primary_10_1002_admi_201901829 crossref_citationtrail_10_1002_admi_201901829 wiley_primary_10_1002_admi_201901829_ADMI201901829 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials interfaces |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2017; 5 2019; 7 2019; 9 2018; 28 2017; 2 2018; 140 2015; 3 2018; 128 2019; 31 2019; 11 2017; 27 2019; 57 2019; 12 2016; 10 2016; 76 2017; 29 2017; 9 2017; 139 2019; 143 2018; 131 2018; 6 2018; 9 2016; 6 2018; 8 2018; 5 2015; 137 2015; 60 2018; 1 2019; 23 2019; 29 2018; 30 2019; 415 2018; 11 2017; 123 2019; 293 2018; 53 2018; 14 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 131 start-page: 79 year: 2018 publication-title: Carbon – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 143 start-page: 138 year: 2019 publication-title: Carbon – volume: 11 start-page: 38 year: 2018 publication-title: Energy Storage Mater. – volume: 6 start-page: 434 year: 2018 publication-title: J. Mater. Chem. A – volume: 140 start-page: 7127 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 14 year: 2018 publication-title: Small – volume: 11 start-page: 202 year: 2018 publication-title: ChemSusChem – volume: 9 start-page: 3645 year: 2018 publication-title: Nat. Commun. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 415 year: 2018 publication-title: Nano Energy – volume: 5 start-page: 7854 year: 2017 publication-title: J. Mater. Chem. A – volume: 60 start-page: 172 year: 2015 publication-title: Electrochem. Commun. – volume: 128 start-page: 224 year: 2018 publication-title: Carbon – volume: 12 start-page: 1025 year: 2019 publication-title: Nano Res. – volume: 9 start-page: 1720 year: 2018 publication-title: Nat. Commun. – volume: 7 start-page: 6363 year: 2019 publication-title: J. Mater. Chem. A – volume: 3 start-page: 3409 year: 2015 publication-title: J. Mater. Chem. A – volume: 415 start-page: 165 year: 2019 publication-title: J. Power Sources – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 1 start-page: 1703 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 76 start-page: 319 year: 2016 publication-title: Prog. Mater. Sci. – volume: 123 start-page: 54 year: 2017 publication-title: Carbon – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 278 year: 2017 publication-title: Green Energy Environ. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 23 start-page: 46 year: 2019 publication-title: Energy Storage Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 9738 year: 2016 publication-title: ACS Nano – volume: 57 start-page: 728 year: 2019 publication-title: Nano Energy – volume: 293 start-page: 364 year: 2019 publication-title: Electrochim. Acta – ident: e_1_2_7_44_1 doi: 10.1002/adfm.201805371 – ident: e_1_2_7_39_1 doi: 10.1016/j.jpowsour.2019.01.073 – ident: e_1_2_7_6_1 doi: 10.1038/s41467-018-05786-1 – ident: e_1_2_7_26_1 doi: 10.1007/s12274-019-2335-6 – ident: e_1_2_7_35_1 doi: 10.1039/C4TA06411A – ident: e_1_2_7_4_1 doi: 10.1016/j.carbon.2017.07.041 – ident: e_1_2_7_30_1 doi: 10.1039/C8TA06652C – ident: e_1_2_7_8_1 doi: 10.1016/j.electacta.2018.10.036 – ident: e_1_2_7_19_1 doi: 10.1038/s41467-018-04190-z – ident: e_1_2_7_34_1 doi: 10.1002/adma.201700104 – ident: e_1_2_7_2_1 doi: 10.1002/aenm.201701648 – ident: e_1_2_7_14_1 doi: 10.1002/aenm.201800171 – ident: e_1_2_7_15_1 doi: 10.1002/aenm.201501874 – ident: e_1_2_7_23_1 doi: 10.1021/acsaem.8b00182 – ident: e_1_2_7_16_1 doi: 10.1002/adfm.201700324 – ident: e_1_2_7_43_1 doi: 10.1002/advs.201700322 – ident: e_1_2_7_21_1 doi: 10.1016/j.gee.2017.04.002 – ident: e_1_2_7_3_1 doi: 10.1002/cssc.201701759 – ident: e_1_2_7_18_1 doi: 10.1021/acsami.9b13889 – ident: e_1_2_7_10_1 doi: 10.1002/adma.201802074 – ident: e_1_2_7_31_1 doi: 10.1016/j.nanoen.2019.01.009 – ident: e_1_2_7_13_1 doi: 10.1016/j.ensm.2019.05.037 – ident: e_1_2_7_33_1 doi: 10.1016/j.ensm.2017.09.009 – ident: e_1_2_7_32_1 doi: 10.1039/C7TA04264G – ident: e_1_2_7_36_1 doi: 10.1002/adfm.201903496 – ident: e_1_2_7_1_1 doi: 10.1002/smll.201802140 – ident: e_1_2_7_27_1 doi: 10.1016/j.pmatsci.2015.08.002 – ident: e_1_2_7_7_1 doi: 10.1016/j.carbon.2017.11.064 – ident: e_1_2_7_9_1 doi: 10.1021/jacs.5b06809 – ident: e_1_2_7_42_1 doi: 10.1002/adfm.201801989 – ident: e_1_2_7_38_1 doi: 10.1002/aenm.201803894 – ident: e_1_2_7_20_1 doi: 10.1016/j.elecom.2015.09.002 – ident: e_1_2_7_29_1 doi: 10.1002/adma.201702268 – ident: e_1_2_7_45_1 doi: 10.1039/C8TA11921J – ident: e_1_2_7_12_1 doi: 10.1021/acsami.7b02476 – ident: e_1_2_7_41_1 doi: 10.1039/C7TA08171E – ident: e_1_2_7_28_1 doi: 10.1002/aenm.201802386 – ident: e_1_2_7_37_1 doi: 10.1016/j.carbon.2018.11.001 – ident: e_1_2_7_40_1 doi: 10.1002/adma.201805430 – ident: e_1_2_7_5_1 doi: 10.1039/C7TA01108C – ident: e_1_2_7_17_1 doi: 10.1021/acsnano.6b05998 – ident: e_1_2_7_24_1 doi: 10.1016/j.carbon.2018.01.094 – ident: e_1_2_7_25_1 doi: 10.1021/jacs.7b07027 – ident: e_1_2_7_11_1 doi: 10.1021/jacs.8b02178 – ident: e_1_2_7_22_1 doi: 10.1016/j.nanoen.2018.08.075 |
SSID | ssj0001121283 |
Score | 2.3658698 |
Snippet | Potassium‐ion battery (PIB) is a potential low‐cost energy storage technology owing to the abundant source and wide distribution of potassium element. However,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anodes Battery cycles Carbon fibers controllable preparation Current density Electrochemical analysis Electrode materials Electrodes electrospinning Energy storage multichannel carbon fibers Polyacrylonitrile Polymethyl methacrylate Potassium potassium‐ion batteries Rechargeable batteries |
Title | Constructing Multichannel Carbon Fibers as Freestanding Anodes for Potassium‐Ion Battery with High Capacity and Long Cycle Life |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.201901829 https://www.proquest.com/docview/2352046306 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FVEhcEE9RWtAekDggw3rXz2NUGqUoLRwSFLhY-7KI1CaoSQ7tqfwDfiO_hJld27Gl8LxYyWq9sfx92Z0ZfTNDyIu8LC3QRgYq52kA9r8KpInyIAUTyWahVMxl8Z-eJaNp9G4Wz3q963Z2yVq91tc780r-B1UYA1wxS_YfkG0WhQH4DPjCFRCG619hjN02ff1X8PddKi3m8S7sOeo4FOA6RD3ICnvJDC-tbXJYwOc31hViePVhuQbzeb65aFQPJ3Cfr7p55aO0KAWBBcG5RosdA-1jbFB0dAVPAz592RETDWpNAVjC_hW4ihSXJUq_anRnG7fz16em6wtWtUmWy1Yo24VxP8kvm3kzz4-N4AFKO2-HLMA_ZR35xw5NUFv4ad3uBztpEqTCV6Wtt-q0xUix8wDwBWWluZijbA-MnawKqHQqbZ-9L4bT8biYHM8mt8geBxeD98ne4OP083QboQvhWM9EXemT8TfdZbuWzNY9aTs5zkqZ3CN3K_eCDjxX7pOeXTwgt53MV68ekm9txtA2Y6hnDPWMoXJF24yhnjEUGEMbxvy4-Q5coRVXKHKFIldozRUKN1PkCnVcociVR2Q6PJ4cjYKqCUegRZzkAfjD1qahElGS21hFWpnMcBZJK7kqwZaJcm1yZeJYCmbCxFhuWaJTGTLDNNPiMekvlgv7hFCRypjbEE4QEUVRXGZxrhNmTMwTZYRI9klQv9BCVxXqsVHKeeFra_MCASgaAPbJy2b-V1-b5ZczD2t8iur_uyo4-B5YL4_BD3OH2R9WKQZvT0-ab09_v-YBubOl_iHpA7b2Gdiva_W8ItpPgieeQw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7aInoRn_g2B8FTMJts9nEs1dJqWzxYES9LXisF3YqrB2_6D_yN_hIn-2j1IILHhUx2N5PJfDPMfEHoKE5TC9tGEhWzkAD-V0QaPyYhQCQbeVLRoot_MAy6I__8RtTVhK4XpuSHmCbcnGUU57UzcJeQPpmxhkrzMHa1WeDRIhbPo6aDNlEDNVvXo9vRLNHiwelc0HGCcQYk5ILW5I2Unfyc5KdzmiHO77i1cDydFbRcIUbcKlW8iuZstoYWispNna-jd3flZkkCm93hop_WNfPC3-G2fFKTDHdcUUiOZY47T9bWjSwYAn9jcwygFV9OngFDj18ePt8-eiBRkm6-Ypekxa4SBKaC2BoAOwZh3J-AePsVvgb3x6ndQKPO2VW7S6p7FYjmIogJhDjWhp7iEBpboXytTGQY9aWVTKXgnvxYm1gZISSnxguMZZYGOpQeNVRTzTdRI5tkdgthHkrBrAeHAvd9X6SRiHVAjREsUIbzYBuRekETXZGOu7sv7pOSLpklTgHJVAHb6Hg6_rGk2_h15F6tn6QyuzxhACcdBRqFF7NCZ3_MkrROB73p085_hA7RYvdq0E_6veHFLlpiLh4vqrr3UAO0b_cBtDyrg2pbfgGFreRr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaACsSCeIry9IDEZOHYcdKMVSFqoa0YKEIskV9BlWiKSBnY4B_wG_klnJO0hQEhMUbyOYnP5_vudPcZoZMoTS1sG0lUxEIC-F8RafyIhACRbMOTihZd_L1-0B74l3fi7lsXf8kPMUu4Ocsozmtn4E8mPZuThkozGrrSLHBoDRYtopqjyoN9XWveDu4H8zyLB4dzwcYJthmQkAs65W6k7OznJD990xxwfoethd-J19FaBRhxs9TwBlqw2SZaLgo3db6F3t2NmyUHbPaAi3Za18sLP4db8lmNMxy7mpAcyxzHz9ZO-1gwxP3G5hgwK74eTwBCD19Gn28fHZAoOTdfscvRYlcIAlNBaA14HYMw7o5BvPUKX4O7w9Ruo0F8cdNqk-paBaK5CCICEY61oac4RMZWKF8r0zCM-tJKplLwTn6kTaSMEJJT4wXGMksDHUqPGqqp5jtoKRtndhdhHkrBrAdnAvd9X6QNEemAGiNYoAznQR2R6YImuuIcd1dfPCYlWzJLnAKSmQLq6HQ2_qlk2_h15MFUP0lldXnCAE06BjQKL2aFzv6YJWme9zqzp73_CB2jlevzOOl2-lf7aJW5aLyo6T5AS6B8ewiQZaKOql35BS2945Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+Multichannel+Carbon+Fibers+as+Freestanding+Anodes+for+Potassium%E2%80%90Ion+Battery+with+High+Capacity+and+Long+Cycle+Life&rft.jtitle=Advanced+materials+interfaces&rft.au=Xu%2C+Ying&rft.au=Yuan%2C+Tao&rft.au=Zhao%2C+Yahui&rft.au=Yao%2C+Hongfei&rft.date=2020-02-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2196-7350&rft.volume=7&rft.issue=3&rft_id=info:doi/10.1002%2Fadmi.201901829&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon |