In Situ Generation of Artificial Solid‐Electrolyte Interphases on 3D Conducting Scaffolds for High‐Performance Lithium‐Metal Anodes
Rational structure design of the current collector along with further engineering of the solid‐electrolyte interphases (SEI) layer is one of the most promising strategies to achieve uniform Li deposition and inhibit uncontrolled growth of Li dendrites. Here, a Li2S layer as an artificial SEI with hi...
Saved in:
Published in | Advanced energy materials Vol. 10; no. 8 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rational structure design of the current collector along with further engineering of the solid‐electrolyte interphases (SEI) layer is one of the most promising strategies to achieve uniform Li deposition and inhibit uncontrolled growth of Li dendrites. Here, a Li2S layer as an artificial SEI with high compositional uniformity and high lithium ion conductivity is in situ generated on the surface of the 3D porous Cu current collector to regulate homogeneous Li plating/stripping. Both simulations and experiments demonstrate that the Li2S protective layer can passivate the porous Cu skeleton and balance the transport rate of lithium ions and electrons, thereby alleviating the agglomerated Li deposition at the top of the electrode or at the defect area of the SEI layer. As a result, the modified current collector exhibits long‐term cycling of 500 cycles at 1 mA cm−2 and stable electrodeposition capabilities of 4 mAh cm−2 at an ultrahigh current density of 4 mA cm−2. Furthermore, full batteries (LiFePO4 as cathode) paired with this designed 3D anode with only ≈200% extra lithium show superior stability and rate performance than the batteries paired with lithium foil (≈3000% extra lithium). These explorations provide new strategies for developing high‐performance Li metal anodes.
An artificial Li2S layer with high compositional uniformity and high lithium ion conductivity is in situ generated on the surface of a 3D Cu nanowire–Cu foam current collector. Synergistic modulation of local current density, solid‐electrolyte interphase (SEI) breakage and the ratio of electron/ion conductivity achieved on the designed structure guides uniform Li deposition, improving the Li utilization and cycling stability of the anode. |
---|---|
AbstractList | Rational structure design of the current collector along with further engineering of the solid‐electrolyte interphases (SEI) layer is one of the most promising strategies to achieve uniform Li deposition and inhibit uncontrolled growth of Li dendrites. Here, a Li2S layer as an artificial SEI with high compositional uniformity and high lithium ion conductivity is in situ generated on the surface of the 3D porous Cu current collector to regulate homogeneous Li plating/stripping. Both simulations and experiments demonstrate that the Li2S protective layer can passivate the porous Cu skeleton and balance the transport rate of lithium ions and electrons, thereby alleviating the agglomerated Li deposition at the top of the electrode or at the defect area of the SEI layer. As a result, the modified current collector exhibits long‐term cycling of 500 cycles at 1 mA cm−2 and stable electrodeposition capabilities of 4 mAh cm−2 at an ultrahigh current density of 4 mA cm−2. Furthermore, full batteries (LiFePO4 as cathode) paired with this designed 3D anode with only ≈200% extra lithium show superior stability and rate performance than the batteries paired with lithium foil (≈3000% extra lithium). These explorations provide new strategies for developing high‐performance Li metal anodes.
An artificial Li2S layer with high compositional uniformity and high lithium ion conductivity is in situ generated on the surface of a 3D Cu nanowire–Cu foam current collector. Synergistic modulation of local current density, solid‐electrolyte interphase (SEI) breakage and the ratio of electron/ion conductivity achieved on the designed structure guides uniform Li deposition, improving the Li utilization and cycling stability of the anode. Rational structure design of the current collector along with further engineering of the solid‐electrolyte interphases (SEI) layer is one of the most promising strategies to achieve uniform Li deposition and inhibit uncontrolled growth of Li dendrites. Here, a Li2S layer as an artificial SEI with high compositional uniformity and high lithium ion conductivity is in situ generated on the surface of the 3D porous Cu current collector to regulate homogeneous Li plating/stripping. Both simulations and experiments demonstrate that the Li2S protective layer can passivate the porous Cu skeleton and balance the transport rate of lithium ions and electrons, thereby alleviating the agglomerated Li deposition at the top of the electrode or at the defect area of the SEI layer. As a result, the modified current collector exhibits long‐term cycling of 500 cycles at 1 mA cm−2 and stable electrodeposition capabilities of 4 mAh cm−2 at an ultrahigh current density of 4 mA cm−2. Furthermore, full batteries (LiFePO4 as cathode) paired with this designed 3D anode with only ≈200% extra lithium show superior stability and rate performance than the batteries paired with lithium foil (≈3000% extra lithium). These explorations provide new strategies for developing high‐performance Li metal anodes. Rational structure design of the current collector along with further engineering of the solid‐electrolyte interphases (SEI) layer is one of the most promising strategies to achieve uniform Li deposition and inhibit uncontrolled growth of Li dendrites. Here, a Li 2 S layer as an artificial SEI with high compositional uniformity and high lithium ion conductivity is in situ generated on the surface of the 3D porous Cu current collector to regulate homogeneous Li plating/stripping. Both simulations and experiments demonstrate that the Li 2 S protective layer can passivate the porous Cu skeleton and balance the transport rate of lithium ions and electrons, thereby alleviating the agglomerated Li deposition at the top of the electrode or at the defect area of the SEI layer. As a result, the modified current collector exhibits long‐term cycling of 500 cycles at 1 mA cm −2 and stable electrodeposition capabilities of 4 mAh cm −2 at an ultrahigh current density of 4 mA cm −2 . Furthermore, full batteries (LiFePO 4 as cathode) paired with this designed 3D anode with only ≈200% extra lithium show superior stability and rate performance than the batteries paired with lithium foil (≈3000% extra lithium). These explorations provide new strategies for developing high‐performance Li metal anodes. |
Author | Gu, Xiaokang Yang, Shubin Li, Bin Liu, Wei Zhai, Pengbo Zuo, Jinghan Yang, Weiwei Xiao, Jing Wei, Yi Cui, Shiqiang Gong, Yongji |
Author_xml | – sequence: 1 givenname: Pengbo surname: Zhai fullname: Zhai, Pengbo organization: Beihang University – sequence: 2 givenname: Yi surname: Wei fullname: Wei, Yi organization: Beihang University – sequence: 3 givenname: Jing surname: Xiao fullname: Xiao, Jing organization: Beihang University – sequence: 4 givenname: Wei surname: Liu fullname: Liu, Wei organization: Beihang University – sequence: 5 givenname: Jinghan surname: Zuo fullname: Zuo, Jinghan organization: Beihang University – sequence: 6 givenname: Xiaokang surname: Gu fullname: Gu, Xiaokang organization: Beihang University – sequence: 7 givenname: Weiwei surname: Yang fullname: Yang, Weiwei organization: Beihang University – sequence: 8 givenname: Shiqiang surname: Cui fullname: Cui, Shiqiang organization: Beihang University – sequence: 9 givenname: Bin surname: Li fullname: Li, Bin organization: Beihang University – sequence: 10 givenname: Shubin surname: Yang fullname: Yang, Shubin organization: Beihang University – sequence: 11 givenname: Yongji orcidid: 0000-0003-1432-6813 surname: Gong fullname: Gong, Yongji email: yongjigong@buaa.edu.cn organization: Beihang University |
BookMark | eNqFkE9rGzEQxUVwIG6aa86Cnu2MVmtl92gc1zE4TcHJedFqR7bMWnIkLcW3XnPLZ8wnqVyXBAohc5k_vN88eF9IzzqLhFwyGDKA7Eqi3Q4zYCVwzssT0meC5QNR5NB7m3l2Ri5C2ECqvGRJ2SfPc0uXJnZ0hha9jMZZ6jQd-2i0UUa2dOla07z-fpm2qKJ37T4induIfreWAQNNAL-hE2ebTkVjV3SppNaubQLVztNbs1on-if6tG2lVUgXJq5Nt03XO4zJYWxdg-ErOdWyDXjxr5-Tx-_Th8ntYHE_m0_Gi4HiI1EORteZVgg15lAA17VupOa1qAuJmYSCFddQi3QAUZeqELmuR6wB3UCWM9A15-fk2_HvzrunDkOsNq7zNllWGReZEMCKg2p4VCnvQvCoq503W-n3FYPqkHh1SLx6SzwB-X-AMvFvntFL036MlUfsl2lx_4lJNZ7-uHtn_wBkaJx9 |
CitedBy_id | crossref_primary_10_26599_NRE_2023_9120048 crossref_primary_10_1002_ange_202013993 crossref_primary_10_1002_advs_202103930 crossref_primary_10_1039_D1QM00352F crossref_primary_10_1002_adfm_202409812 crossref_primary_10_1039_D3QM00029J crossref_primary_10_1039_D1TA00419K crossref_primary_10_1016_j_cej_2022_137401 crossref_primary_10_1007_s12274_024_6592_7 crossref_primary_10_1016_j_cej_2021_132510 crossref_primary_10_1002_asia_202001414 crossref_primary_10_1016_j_cej_2021_132479 crossref_primary_10_1002_adfm_202206405 crossref_primary_10_1016_j_surfcoat_2024_130617 crossref_primary_10_1002_eem2_12614 crossref_primary_10_1016_j_ensm_2021_04_042 crossref_primary_10_1002_batt_202300246 crossref_primary_10_1039_D1CC02829D crossref_primary_10_1021_acs_jpcc_2c03215 crossref_primary_10_1039_D3QI01290E crossref_primary_10_1002_adfm_202103309 crossref_primary_10_1002_eom2_12269 crossref_primary_10_1016_j_electacta_2021_139646 crossref_primary_10_1002_inf2_12189 crossref_primary_10_1021_acs_nanolett_1c02521 crossref_primary_10_1039_D4TA02002B crossref_primary_10_1002_adfm_202009917 crossref_primary_10_1002_smll_202205571 crossref_primary_10_1016_j_apsusc_2022_153785 crossref_primary_10_1002_asia_202300453 crossref_primary_10_1021_acsaem_1c00926 crossref_primary_10_1039_D1TA01150B crossref_primary_10_1021_acs_jpcc_1c07779 crossref_primary_10_1016_j_cej_2024_148914 crossref_primary_10_1002_aenm_202001257 crossref_primary_10_1002_eem2_12243 crossref_primary_10_1016_j_mtener_2022_100949 crossref_primary_10_1021_acsami_1c11733 crossref_primary_10_1016_j_ensm_2022_03_014 crossref_primary_10_1002_aenm_202200730 crossref_primary_10_1002_smll_202104390 crossref_primary_10_1002_smll_202408771 crossref_primary_10_1016_j_ensm_2023_103079 crossref_primary_10_1021_acsami_2c02631 crossref_primary_10_1002_ange_202115649 crossref_primary_10_3389_fenrg_2022_837071 crossref_primary_10_1016_j_electacta_2022_141245 crossref_primary_10_1002_batt_202200394 crossref_primary_10_1021_acs_energyfuels_1c02008 crossref_primary_10_1002_smll_202306829 crossref_primary_10_1002_ente_202100087 crossref_primary_10_1002_adfm_202104930 crossref_primary_10_1007_s40820_024_01341_4 crossref_primary_10_1002_anie_202115649 crossref_primary_10_1002_adfm_202106676 crossref_primary_10_1177_09506608251318467 crossref_primary_10_1021_acsnano_4c18473 crossref_primary_10_1021_acssuschemeng_1c03904 crossref_primary_10_1021_acsaem_2c00573 crossref_primary_10_1002_adma_202210130 crossref_primary_10_1002_ente_202100871 crossref_primary_10_1002_aenm_202302862 crossref_primary_10_1039_D0CC03864D crossref_primary_10_1016_j_jechem_2022_09_025 crossref_primary_10_1021_acsami_0c17406 crossref_primary_10_1007_s12613_022_2442_3 crossref_primary_10_1016_j_jpcs_2024_112078 crossref_primary_10_1016_j_ensm_2021_11_033 crossref_primary_10_1021_acsami_0c16430 crossref_primary_10_1002_ange_202317016 crossref_primary_10_59761_RCR5126 crossref_primary_10_1002_cssc_202400281 crossref_primary_10_1039_D3TA07229K crossref_primary_10_1016_j_cej_2022_139903 crossref_primary_10_1016_j_ensm_2021_06_015 crossref_primary_10_1016_j_ensm_2022_12_003 crossref_primary_10_1016_j_est_2024_113683 crossref_primary_10_1002_adma_202106897 crossref_primary_10_1002_smll_202208095 crossref_primary_10_1016_j_electacta_2022_141490 crossref_primary_10_1002_anie_202013993 crossref_primary_10_1016_j_jechem_2022_06_046 crossref_primary_10_1016_j_cej_2024_157200 crossref_primary_10_1021_acsnano_0c06133 crossref_primary_10_1002_adma_202411757 crossref_primary_10_1002_aenm_202200568 crossref_primary_10_1002_adma_202002559 crossref_primary_10_1002_aenm_202203687 crossref_primary_10_1016_j_jpowsour_2021_229840 crossref_primary_10_1002_adma_202211203 crossref_primary_10_1016_j_cej_2023_147077 crossref_primary_10_1007_s41918_022_00147_5 crossref_primary_10_1002_aenm_202003239 crossref_primary_10_1002_adfm_202006380 crossref_primary_10_1093_oxfmat_itab013 crossref_primary_10_1002_smtd_202400408 crossref_primary_10_1016_j_jallcom_2023_169953 crossref_primary_10_1016_j_ensm_2021_03_010 crossref_primary_10_1021_acsaem_0c02740 crossref_primary_10_1002_smll_202207902 crossref_primary_10_1021_acsami_2c21558 crossref_primary_10_1016_j_cej_2021_132971 crossref_primary_10_1002_aenm_202202321 crossref_primary_10_1016_j_pmatsci_2022_100996 crossref_primary_10_1002_adfm_202412923 crossref_primary_10_1016_j_jiec_2022_01_003 crossref_primary_10_1002_adfm_202402951 crossref_primary_10_1002_eem2_12393 crossref_primary_10_3390_nano11102476 crossref_primary_10_1002_adfm_202214987 crossref_primary_10_1002_adma_202415258 crossref_primary_10_1016_j_electacta_2022_141035 crossref_primary_10_1002_smsc_202100110 crossref_primary_10_1016_j_ensm_2021_11_009 crossref_primary_10_1002_anie_202317016 crossref_primary_10_1002_adfm_202417923 crossref_primary_10_1007_s40843_023_2575_3 crossref_primary_10_1016_j_jcis_2023_12_187 crossref_primary_10_1039_D1SE01739J crossref_primary_10_1007_s42864_020_00046_6 crossref_primary_10_1039_D3CS00495C crossref_primary_10_1016_j_cej_2024_153227 crossref_primary_10_1002_adfm_202202771 crossref_primary_10_1021_acsapm_2c02234 crossref_primary_10_1002_adfm_202200474 crossref_primary_10_1016_j_jechem_2021_09_024 |
Cites_doi | 10.1103/PhysRevE.78.056704 10.1002/adma.201806541 10.1021/jp303120d 10.1021/cm503447u 10.1038/nnano.2016.32 10.1126/sciadv.aao3170 10.1021/jacs.6b08730 10.1002/adfm.201700348 10.1002/adma.201706216 10.1149/1.2358854 10.1038/ncomms8436 10.1016/j.solidstatesciences.2006.01.013 10.1038/ncomms9058 10.1021/ja305366r 10.1021/acs.nanolett.6b01581 10.1002/aenm.201900858 10.1039/C4CP05865H 10.1021/ja312241y 10.1016/j.joule.2018.02.001 10.1002/aelm.201500246 10.1002/advs.201500213 10.1016/j.electacta.2012.07.118 10.1016/j.ensm.2018.10.015 10.1038/nnano.2014.152 10.1103/PhysRevLett.55.5 10.1002/adma.201806470 10.1073/pnas.1803634115 10.1002/adma.201504117 10.1021/acsnano.8b06051 10.1038/s41560-018-0237-6 10.1002/aenm.201802918 10.1038/s41467-019-09932-1 10.1002/adma.201601409 10.1002/anie.201304762 10.1039/c3cs60177c 10.1002/adma.201801745 10.1021/nl503125u 10.1021/acs.nanolett.8b00183 10.1021/acs.chemrev.7b00115 10.1021/jp112202s 10.1038/s41560-019-0464-5 10.1038/451652a 10.1002/aenm.201800914 10.1002/aenm.201703152 10.1002/ange.201906612 10.1021/jacs.7b01763 10.1021/acsami.6b09031 10.1039/C8TA02810A 10.1038/nnano.2017.16 10.1038/nenergy.2016.114 10.1021/acscentsci.6b00389 10.1016/j.jpowsour.2016.01.078 10.1126/science.1096566 10.1002/aenm.201804019 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201903339 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_201903339 AENM201903339 |
Genre | article |
GrantInformation_xml | – fundername: National Key Technologies R&D Program of China funderid: 2018YFA0306900 – fundername: National Natural Science Foundation of China funderid: 51872012 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 AAESR AAHQN AAIHA AAMMB AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AENEX AEUYR AEYWJ AFBPY AFFPM AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIACR AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR ZZTAW ~S- 31~ AAHHS AANHP AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3569-572fce0be40803fbfdaf3b6b8ae2a081870b63b606b9c864fb51d0fd02410fb33 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:16:24 EDT 2025 Tue Jul 01 01:43:33 EDT 2025 Thu Apr 24 23:12:25 EDT 2025 Sun Jul 06 04:45:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3569-572fce0be40803fbfdaf3b6b8ae2a081870b63b606b9c864fb51d0fd02410fb33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1432-6813 |
PQID | 2362660183 |
PQPubID | 886389 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2362660183 crossref_primary_10_1002_aenm_201903339 crossref_citationtrail_10_1002_aenm_201903339 wiley_primary_10_1002_aenm_201903339_AENM201903339 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2012; 83 2011; 115 2019; 9 2019; 4 2015; 6 2015; 17 2017; 3 2019; 31 2017; 27 2019; 10 2013; 42 2016; 309 2006; 8 2019; 19 2008; 78 2006; 153 2016; 16 2004; 304 2017; 117 2017; 139 2016; 11 2018; 6 2018; 18 2018; 8 2018; 3 2016; 1 2015; 27 2018; 2 2016; 2 2012; 134 2016; 3 2018; 115 2017; 12 2013; 52 2014; 14 2013; 135 2018; 30 2016; 138 2014; 9 1985; 55 2018; 12 2016; 28 2008; 451 2012; 116 2016; 8 2019; 131 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 764 year: 2018 publication-title: Joule – volume: 8 start-page: 640 year: 2006 publication-title: Solid State Sci. – volume: 28 start-page: 2155 year: 2016 publication-title: Adv. Mater. – volume: 3 start-page: 889 year: 2018 publication-title: Nat. Energy – volume: 83 start-page: 78 year: 2012 publication-title: Electrochim. Acta – volume: 55 start-page: 5 year: 1985 publication-title: Phys. Rev. Lett. – volume: 19 start-page: 24 year: 2019 publication-title: Energy Storage Mater. – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 153 year: 2006 publication-title: J. Electrochem. Soc. – volume: 12 start-page: 194 year: 2017 publication-title: Nat. Nanotechnol. – volume: 116 year: 2012 publication-title: J. Phys. Chem. C – volume: 115 start-page: 7044 year: 2011 publication-title: J. Phys. Chem. C – volume: 131 year: 2019 publication-title: Angew. Chem. – volume: 117 year: 2017 publication-title: Chem. Rev. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 14 start-page: 6016 year: 2014 publication-title: Nano Lett. – volume: 6 start-page: 9899 year: 2018 publication-title: J. Mater. Chem. A – volume: 304 start-page: 711 year: 2004 publication-title: Science – volume: 18 start-page: 2067 year: 2018 publication-title: Nano Lett. – volume: 2 year: 2016 publication-title: Adv. Electron. Mater. – volume: 11 start-page: 626 year: 2016 publication-title: Nat. Nanotechnol. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 10 start-page: 1896 year: 2019 publication-title: Nat. Commun. – volume: 4 start-page: 796 year: 2019 publication-title: Nat. Energy – volume: 115 start-page: 5676 year: 2018 publication-title: Proc. Natl. Acad. Sci. USA – volume: 28 start-page: 6932 year: 2016 publication-title: Adv. Mater. – volume: 42 start-page: 9011 year: 2013 publication-title: Chem. Soc. Rev. – volume: 139 start-page: 5916 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 2780 year: 2015 publication-title: Chem. Mater. – volume: 17 start-page: 8670 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 9 start-page: 618 year: 2014 publication-title: Nat. Nanotechnol. – volume: 12 year: 2018 publication-title: ACS Nano – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 134 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 8058 year: 2015 publication-title: Nat. Commun. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 6 start-page: 7436 year: 2015 publication-title: Nat. Commun. – volume: 78 year: 2008 publication-title: Phys. Rev. E – volume: 16 start-page: 4431 year: 2016 publication-title: Nano Lett. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 309 start-page: 221 year: 2016 publication-title: J. Power Sources – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 52 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 135 year: 2017 publication-title: ACS Cent. Sci. – volume: 451 start-page: 652 year: 2008 publication-title: Nature – volume: 135 start-page: 4450 year: 2013 publication-title: J. Am. Chem. Soc. – ident: e_1_2_5_54_1 doi: 10.1103/PhysRevE.78.056704 – ident: e_1_2_5_35_1 doi: 10.1002/adma.201806541 – ident: e_1_2_5_42_1 doi: 10.1021/jp303120d – ident: e_1_2_5_14_1 doi: 10.1021/cm503447u – ident: e_1_2_5_28_1 doi: 10.1038/nnano.2016.32 – ident: e_1_2_5_11_1 doi: 10.1126/sciadv.aao3170 – ident: e_1_2_5_19_1 doi: 10.1021/jacs.6b08730 – ident: e_1_2_5_25_1 doi: 10.1002/adfm.201700348 – ident: e_1_2_5_29_1 doi: 10.1002/adma.201706216 – ident: e_1_2_5_45_1 doi: 10.1149/1.2358854 – ident: e_1_2_5_9_1 doi: 10.1038/ncomms8436 – ident: e_1_2_5_44_1 doi: 10.1016/j.solidstatesciences.2006.01.013 – ident: e_1_2_5_20_1 doi: 10.1038/ncomms9058 – ident: e_1_2_5_38_1 doi: 10.1021/ja305366r – ident: e_1_2_5_23_1 doi: 10.1021/acs.nanolett.6b01581 – ident: e_1_2_5_41_1 doi: 10.1002/aenm.201900858 – ident: e_1_2_5_47_1 doi: 10.1039/C4CP05865H – ident: e_1_2_5_8_1 doi: 10.1021/ja312241y – ident: e_1_2_5_32_1 doi: 10.1016/j.joule.2018.02.001 – ident: e_1_2_5_10_1 doi: 10.1002/aelm.201500246 – ident: e_1_2_5_48_1 doi: 10.1002/advs.201500213 – ident: e_1_2_5_12_1 doi: 10.1016/j.electacta.2012.07.118 – ident: e_1_2_5_53_1 doi: 10.1016/j.ensm.2018.10.015 – ident: e_1_2_5_16_1 doi: 10.1038/nnano.2014.152 – ident: e_1_2_5_40_1 doi: 10.1103/PhysRevLett.55.5 – ident: e_1_2_5_36_1 doi: 10.1002/adma.201806470 – ident: e_1_2_5_52_1 doi: 10.1073/pnas.1803634115 – ident: e_1_2_5_17_1 doi: 10.1002/adma.201504117 – ident: e_1_2_5_46_1 doi: 10.1021/acsnano.8b06051 – ident: e_1_2_5_49_1 doi: 10.1038/s41560-018-0237-6 – ident: e_1_2_5_13_1 doi: 10.1002/aenm.201802918 – ident: e_1_2_5_31_1 doi: 10.1038/s41467-019-09932-1 – ident: e_1_2_5_21_1 doi: 10.1002/adma.201601409 – ident: e_1_2_5_4_1 doi: 10.1002/anie.201304762 – ident: e_1_2_5_6_1 doi: 10.1039/c3cs60177c – ident: e_1_2_5_50_1 doi: 10.1002/adma.201801745 – ident: e_1_2_5_15_1 doi: 10.1021/nl503125u – ident: e_1_2_5_33_1 doi: 10.1021/acs.nanolett.8b00183 – ident: e_1_2_5_3_1 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_5_39_1 doi: 10.1021/jp112202s – ident: e_1_2_5_7_1 doi: 10.1038/s41560-019-0464-5 – ident: e_1_2_5_1_1 doi: 10.1038/451652a – ident: e_1_2_5_22_1 doi: 10.1002/aenm.201800914 – ident: e_1_2_5_30_1 doi: 10.1002/aenm.201703152 – ident: e_1_2_5_51_1 doi: 10.1002/ange.201906612 – ident: e_1_2_5_26_1 doi: 10.1021/jacs.7b01763 – ident: e_1_2_5_27_1 doi: 10.1021/acsami.6b09031 – ident: e_1_2_5_24_1 doi: 10.1039/C8TA02810A – ident: e_1_2_5_2_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_5_5_1 doi: 10.1038/nenergy.2016.114 – ident: e_1_2_5_34_1 doi: 10.1021/acscentsci.6b00389 – ident: e_1_2_5_37_1 doi: 10.1016/j.jpowsour.2016.01.078 – ident: e_1_2_5_43_1 doi: 10.1126/science.1096566 – ident: e_1_2_5_18_1 doi: 10.1002/aenm.201804019 |
SSID | ssj0000491033 |
Score | 2.6086497 |
Snippet | Rational structure design of the current collector along with further engineering of the solid‐electrolyte interphases (SEI) layer is one of the most promising... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 3D current collector Anodes artificial SEI layer Electrolytes Foils high ionic conductivity in situ generation Lithium Lithium ions uniform Li deposition |
Title | In Situ Generation of Artificial Solid‐Electrolyte Interphases on 3D Conducting Scaffolds for High‐Performance Lithium‐Metal Anodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201903339 https://www.proquest.com/docview/2362660183 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd4ED4qcoDOQDEqdAEjtucoxo0YbWCWmbVE5RnNgsUkmmkRy2E1dunPnz-Et4thPHRUUMLlH7ajtp3mf7Pfu9zwi9lCKKSkYCLw858SiMgB6PwJArkyIOaCnyRG-0r47ZwRl9v47Wk8kPJ2qpa_nr4npnXsn_aBVkoFeVJfsPmrWNggA-g37hChqG6410fAh9s2q7njt6sP3SSx3_o5bCT5oNPNQQz7A0R95srto-YPLiHOYwvV9AFir3T3G_aobuIpey2ZSaq0GHgtg2PjiJBkdVe151n-1vK6EyK9O6KfvAxIHddogzECbREIxk83acVevKBAvXn3gzbhZp4cdqEKyr3OwTDdOtCiSqOh0mKCp3_QKcVd_GgpghFwwEj8X9KqdwZYbIyY7TvoPHeOfwb-hkc1ErjgEwdQgxTEnbPNu_zX82KtEwOIeZqp_Z-rfQXgguSDhFe-lidXRiV_DAtwqghPLoh78wsIL64Zvth9i2ekZXxnWItEVzeg_d7V0RnBpc3UcTUT9AdxyCyofo22GNFcLwiDDcSDwiDGuE_fz63cEWdrCFoQJZ4BFb2GILA46wwhbUdlCFe1SBVOMJGzw9QmfvlqdvD7z-8A6vIBFLvGgeykL4XFDwSYjksswl4YzHuQhzxaM49zkDgc84DAuMSh4FpS9LsBkDX3JCHqNp3dTiCcKUFQUVc0JiOac0FImfFKQQiSRRKRmNZsgbXm5W9Mz26oCVTbZbozP0ypa_MJwufyy5P-gq6_v9lyxUDE7Mh7lwhkKtv7-0kqXL45X99vTGd3-Gbo8dZh9N28tOPAcTuOUveiz-Anu_r98 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Generation+of+Artificial+Solid%E2%80%90Electrolyte+Interphases+on+3D+Conducting+Scaffolds+for+High%E2%80%90Performance+Lithium%E2%80%90Metal+Anodes&rft.jtitle=Advanced+energy+materials&rft.au=Zhai%2C+Pengbo&rft.au=Wei%2C+Yi&rft.au=Xiao%2C+Jing&rft.au=Liu%2C+Wei&rft.date=2020-02-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=8&rft_id=info:doi/10.1002%2Faenm.201903339&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_201903339 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |