In Situ Generation of Artificial Solid‐Electrolyte Interphases on 3D Conducting Scaffolds for High‐Performance Lithium‐Metal Anodes

Rational structure design of the current collector along with further engineering of the solid‐electrolyte interphases (SEI) layer is one of the most promising strategies to achieve uniform Li deposition and inhibit uncontrolled growth of Li dendrites. Here, a Li2S layer as an artificial SEI with hi...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 10; no. 8
Main Authors Zhai, Pengbo, Wei, Yi, Xiao, Jing, Liu, Wei, Zuo, Jinghan, Gu, Xiaokang, Yang, Weiwei, Cui, Shiqiang, Li, Bin, Yang, Shubin, Gong, Yongji
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rational structure design of the current collector along with further engineering of the solid‐electrolyte interphases (SEI) layer is one of the most promising strategies to achieve uniform Li deposition and inhibit uncontrolled growth of Li dendrites. Here, a Li2S layer as an artificial SEI with high compositional uniformity and high lithium ion conductivity is in situ generated on the surface of the 3D porous Cu current collector to regulate homogeneous Li plating/stripping. Both simulations and experiments demonstrate that the Li2S protective layer can passivate the porous Cu skeleton and balance the transport rate of lithium ions and electrons, thereby alleviating the agglomerated Li deposition at the top of the electrode or at the defect area of the SEI layer. As a result, the modified current collector exhibits long‐term cycling of 500 cycles at 1 mA cm−2 and stable electrodeposition capabilities of 4 mAh cm−2 at an ultrahigh current density of 4 mA cm−2. Furthermore, full batteries (LiFePO4 as cathode) paired with this designed 3D anode with only ≈200% extra lithium show superior stability and rate performance than the batteries paired with lithium foil (≈3000% extra lithium). These explorations provide new strategies for developing high‐performance Li metal anodes. An artificial Li2S layer with high compositional uniformity and high lithium ion conductivity is in situ generated on the surface of a 3D Cu nanowire–Cu foam current collector. Synergistic modulation of local current density, solid‐electrolyte interphase (SEI) breakage and the ratio of electron/ion conductivity achieved on the designed structure guides uniform Li deposition, improving the Li utilization and cycling stability of the anode.
AbstractList Rational structure design of the current collector along with further engineering of the solid‐electrolyte interphases (SEI) layer is one of the most promising strategies to achieve uniform Li deposition and inhibit uncontrolled growth of Li dendrites. Here, a Li2S layer as an artificial SEI with high compositional uniformity and high lithium ion conductivity is in situ generated on the surface of the 3D porous Cu current collector to regulate homogeneous Li plating/stripping. Both simulations and experiments demonstrate that the Li2S protective layer can passivate the porous Cu skeleton and balance the transport rate of lithium ions and electrons, thereby alleviating the agglomerated Li deposition at the top of the electrode or at the defect area of the SEI layer. As a result, the modified current collector exhibits long‐term cycling of 500 cycles at 1 mA cm−2 and stable electrodeposition capabilities of 4 mAh cm−2 at an ultrahigh current density of 4 mA cm−2. Furthermore, full batteries (LiFePO4 as cathode) paired with this designed 3D anode with only ≈200% extra lithium show superior stability and rate performance than the batteries paired with lithium foil (≈3000% extra lithium). These explorations provide new strategies for developing high‐performance Li metal anodes. An artificial Li2S layer with high compositional uniformity and high lithium ion conductivity is in situ generated on the surface of a 3D Cu nanowire–Cu foam current collector. Synergistic modulation of local current density, solid‐electrolyte interphase (SEI) breakage and the ratio of electron/ion conductivity achieved on the designed structure guides uniform Li deposition, improving the Li utilization and cycling stability of the anode.
Rational structure design of the current collector along with further engineering of the solid‐electrolyte interphases (SEI) layer is one of the most promising strategies to achieve uniform Li deposition and inhibit uncontrolled growth of Li dendrites. Here, a Li2S layer as an artificial SEI with high compositional uniformity and high lithium ion conductivity is in situ generated on the surface of the 3D porous Cu current collector to regulate homogeneous Li plating/stripping. Both simulations and experiments demonstrate that the Li2S protective layer can passivate the porous Cu skeleton and balance the transport rate of lithium ions and electrons, thereby alleviating the agglomerated Li deposition at the top of the electrode or at the defect area of the SEI layer. As a result, the modified current collector exhibits long‐term cycling of 500 cycles at 1 mA cm−2 and stable electrodeposition capabilities of 4 mAh cm−2 at an ultrahigh current density of 4 mA cm−2. Furthermore, full batteries (LiFePO4 as cathode) paired with this designed 3D anode with only ≈200% extra lithium show superior stability and rate performance than the batteries paired with lithium foil (≈3000% extra lithium). These explorations provide new strategies for developing high‐performance Li metal anodes.
Rational structure design of the current collector along with further engineering of the solid‐electrolyte interphases (SEI) layer is one of the most promising strategies to achieve uniform Li deposition and inhibit uncontrolled growth of Li dendrites. Here, a Li 2 S layer as an artificial SEI with high compositional uniformity and high lithium ion conductivity is in situ generated on the surface of the 3D porous Cu current collector to regulate homogeneous Li plating/stripping. Both simulations and experiments demonstrate that the Li 2 S protective layer can passivate the porous Cu skeleton and balance the transport rate of lithium ions and electrons, thereby alleviating the agglomerated Li deposition at the top of the electrode or at the defect area of the SEI layer. As a result, the modified current collector exhibits long‐term cycling of 500 cycles at 1 mA cm −2 and stable electrodeposition capabilities of 4 mAh cm −2 at an ultrahigh current density of 4 mA cm −2 . Furthermore, full batteries (LiFePO 4 as cathode) paired with this designed 3D anode with only ≈200% extra lithium show superior stability and rate performance than the batteries paired with lithium foil (≈3000% extra lithium). These explorations provide new strategies for developing high‐performance Li metal anodes.
Author Gu, Xiaokang
Yang, Shubin
Li, Bin
Liu, Wei
Zhai, Pengbo
Zuo, Jinghan
Yang, Weiwei
Xiao, Jing
Wei, Yi
Cui, Shiqiang
Gong, Yongji
Author_xml – sequence: 1
  givenname: Pengbo
  surname: Zhai
  fullname: Zhai, Pengbo
  organization: Beihang University
– sequence: 2
  givenname: Yi
  surname: Wei
  fullname: Wei, Yi
  organization: Beihang University
– sequence: 3
  givenname: Jing
  surname: Xiao
  fullname: Xiao, Jing
  organization: Beihang University
– sequence: 4
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  organization: Beihang University
– sequence: 5
  givenname: Jinghan
  surname: Zuo
  fullname: Zuo, Jinghan
  organization: Beihang University
– sequence: 6
  givenname: Xiaokang
  surname: Gu
  fullname: Gu, Xiaokang
  organization: Beihang University
– sequence: 7
  givenname: Weiwei
  surname: Yang
  fullname: Yang, Weiwei
  organization: Beihang University
– sequence: 8
  givenname: Shiqiang
  surname: Cui
  fullname: Cui, Shiqiang
  organization: Beihang University
– sequence: 9
  givenname: Bin
  surname: Li
  fullname: Li, Bin
  organization: Beihang University
– sequence: 10
  givenname: Shubin
  surname: Yang
  fullname: Yang, Shubin
  organization: Beihang University
– sequence: 11
  givenname: Yongji
  orcidid: 0000-0003-1432-6813
  surname: Gong
  fullname: Gong, Yongji
  email: yongjigong@buaa.edu.cn
  organization: Beihang University
BookMark eNqFkE9rGzEQxUVwIG6aa86Cnu2MVmtl92gc1zE4TcHJedFqR7bMWnIkLcW3XnPLZ8wnqVyXBAohc5k_vN88eF9IzzqLhFwyGDKA7Eqi3Q4zYCVwzssT0meC5QNR5NB7m3l2Ri5C2ECqvGRJ2SfPc0uXJnZ0hha9jMZZ6jQd-2i0UUa2dOla07z-fpm2qKJ37T4induIfreWAQNNAL-hE2ebTkVjV3SppNaubQLVztNbs1on-if6tG2lVUgXJq5Nt03XO4zJYWxdg-ErOdWyDXjxr5-Tx-_Th8ntYHE_m0_Gi4HiI1EORteZVgg15lAA17VupOa1qAuJmYSCFddQi3QAUZeqELmuR6wB3UCWM9A15-fk2_HvzrunDkOsNq7zNllWGReZEMCKg2p4VCnvQvCoq503W-n3FYPqkHh1SLx6SzwB-X-AMvFvntFL036MlUfsl2lx_4lJNZ7-uHtn_wBkaJx9
CitedBy_id crossref_primary_10_26599_NRE_2023_9120048
crossref_primary_10_1002_ange_202013993
crossref_primary_10_1002_advs_202103930
crossref_primary_10_1039_D1QM00352F
crossref_primary_10_1002_adfm_202409812
crossref_primary_10_1039_D3QM00029J
crossref_primary_10_1039_D1TA00419K
crossref_primary_10_1016_j_cej_2022_137401
crossref_primary_10_1007_s12274_024_6592_7
crossref_primary_10_1016_j_cej_2021_132510
crossref_primary_10_1002_asia_202001414
crossref_primary_10_1016_j_cej_2021_132479
crossref_primary_10_1002_adfm_202206405
crossref_primary_10_1016_j_surfcoat_2024_130617
crossref_primary_10_1002_eem2_12614
crossref_primary_10_1016_j_ensm_2021_04_042
crossref_primary_10_1002_batt_202300246
crossref_primary_10_1039_D1CC02829D
crossref_primary_10_1021_acs_jpcc_2c03215
crossref_primary_10_1039_D3QI01290E
crossref_primary_10_1002_adfm_202103309
crossref_primary_10_1002_eom2_12269
crossref_primary_10_1016_j_electacta_2021_139646
crossref_primary_10_1002_inf2_12189
crossref_primary_10_1021_acs_nanolett_1c02521
crossref_primary_10_1039_D4TA02002B
crossref_primary_10_1002_adfm_202009917
crossref_primary_10_1002_smll_202205571
crossref_primary_10_1016_j_apsusc_2022_153785
crossref_primary_10_1002_asia_202300453
crossref_primary_10_1021_acsaem_1c00926
crossref_primary_10_1039_D1TA01150B
crossref_primary_10_1021_acs_jpcc_1c07779
crossref_primary_10_1016_j_cej_2024_148914
crossref_primary_10_1002_aenm_202001257
crossref_primary_10_1002_eem2_12243
crossref_primary_10_1016_j_mtener_2022_100949
crossref_primary_10_1021_acsami_1c11733
crossref_primary_10_1016_j_ensm_2022_03_014
crossref_primary_10_1002_aenm_202200730
crossref_primary_10_1002_smll_202104390
crossref_primary_10_1002_smll_202408771
crossref_primary_10_1016_j_ensm_2023_103079
crossref_primary_10_1021_acsami_2c02631
crossref_primary_10_1002_ange_202115649
crossref_primary_10_3389_fenrg_2022_837071
crossref_primary_10_1016_j_electacta_2022_141245
crossref_primary_10_1002_batt_202200394
crossref_primary_10_1021_acs_energyfuels_1c02008
crossref_primary_10_1002_smll_202306829
crossref_primary_10_1002_ente_202100087
crossref_primary_10_1002_adfm_202104930
crossref_primary_10_1007_s40820_024_01341_4
crossref_primary_10_1002_anie_202115649
crossref_primary_10_1002_adfm_202106676
crossref_primary_10_1177_09506608251318467
crossref_primary_10_1021_acsnano_4c18473
crossref_primary_10_1021_acssuschemeng_1c03904
crossref_primary_10_1021_acsaem_2c00573
crossref_primary_10_1002_adma_202210130
crossref_primary_10_1002_ente_202100871
crossref_primary_10_1002_aenm_202302862
crossref_primary_10_1039_D0CC03864D
crossref_primary_10_1016_j_jechem_2022_09_025
crossref_primary_10_1021_acsami_0c17406
crossref_primary_10_1007_s12613_022_2442_3
crossref_primary_10_1016_j_jpcs_2024_112078
crossref_primary_10_1016_j_ensm_2021_11_033
crossref_primary_10_1021_acsami_0c16430
crossref_primary_10_1002_ange_202317016
crossref_primary_10_59761_RCR5126
crossref_primary_10_1002_cssc_202400281
crossref_primary_10_1039_D3TA07229K
crossref_primary_10_1016_j_cej_2022_139903
crossref_primary_10_1016_j_ensm_2021_06_015
crossref_primary_10_1016_j_ensm_2022_12_003
crossref_primary_10_1016_j_est_2024_113683
crossref_primary_10_1002_adma_202106897
crossref_primary_10_1002_smll_202208095
crossref_primary_10_1016_j_electacta_2022_141490
crossref_primary_10_1002_anie_202013993
crossref_primary_10_1016_j_jechem_2022_06_046
crossref_primary_10_1016_j_cej_2024_157200
crossref_primary_10_1021_acsnano_0c06133
crossref_primary_10_1002_adma_202411757
crossref_primary_10_1002_aenm_202200568
crossref_primary_10_1002_adma_202002559
crossref_primary_10_1002_aenm_202203687
crossref_primary_10_1016_j_jpowsour_2021_229840
crossref_primary_10_1002_adma_202211203
crossref_primary_10_1016_j_cej_2023_147077
crossref_primary_10_1007_s41918_022_00147_5
crossref_primary_10_1002_aenm_202003239
crossref_primary_10_1002_adfm_202006380
crossref_primary_10_1093_oxfmat_itab013
crossref_primary_10_1002_smtd_202400408
crossref_primary_10_1016_j_jallcom_2023_169953
crossref_primary_10_1016_j_ensm_2021_03_010
crossref_primary_10_1021_acsaem_0c02740
crossref_primary_10_1002_smll_202207902
crossref_primary_10_1021_acsami_2c21558
crossref_primary_10_1016_j_cej_2021_132971
crossref_primary_10_1002_aenm_202202321
crossref_primary_10_1016_j_pmatsci_2022_100996
crossref_primary_10_1002_adfm_202412923
crossref_primary_10_1016_j_jiec_2022_01_003
crossref_primary_10_1002_adfm_202402951
crossref_primary_10_1002_eem2_12393
crossref_primary_10_3390_nano11102476
crossref_primary_10_1002_adfm_202214987
crossref_primary_10_1002_adma_202415258
crossref_primary_10_1016_j_electacta_2022_141035
crossref_primary_10_1002_smsc_202100110
crossref_primary_10_1016_j_ensm_2021_11_009
crossref_primary_10_1002_anie_202317016
crossref_primary_10_1002_adfm_202417923
crossref_primary_10_1007_s40843_023_2575_3
crossref_primary_10_1016_j_jcis_2023_12_187
crossref_primary_10_1039_D1SE01739J
crossref_primary_10_1007_s42864_020_00046_6
crossref_primary_10_1039_D3CS00495C
crossref_primary_10_1016_j_cej_2024_153227
crossref_primary_10_1002_adfm_202202771
crossref_primary_10_1021_acsapm_2c02234
crossref_primary_10_1002_adfm_202200474
crossref_primary_10_1016_j_jechem_2021_09_024
Cites_doi 10.1103/PhysRevE.78.056704
10.1002/adma.201806541
10.1021/jp303120d
10.1021/cm503447u
10.1038/nnano.2016.32
10.1126/sciadv.aao3170
10.1021/jacs.6b08730
10.1002/adfm.201700348
10.1002/adma.201706216
10.1149/1.2358854
10.1038/ncomms8436
10.1016/j.solidstatesciences.2006.01.013
10.1038/ncomms9058
10.1021/ja305366r
10.1021/acs.nanolett.6b01581
10.1002/aenm.201900858
10.1039/C4CP05865H
10.1021/ja312241y
10.1016/j.joule.2018.02.001
10.1002/aelm.201500246
10.1002/advs.201500213
10.1016/j.electacta.2012.07.118
10.1016/j.ensm.2018.10.015
10.1038/nnano.2014.152
10.1103/PhysRevLett.55.5
10.1002/adma.201806470
10.1073/pnas.1803634115
10.1002/adma.201504117
10.1021/acsnano.8b06051
10.1038/s41560-018-0237-6
10.1002/aenm.201802918
10.1038/s41467-019-09932-1
10.1002/adma.201601409
10.1002/anie.201304762
10.1039/c3cs60177c
10.1002/adma.201801745
10.1021/nl503125u
10.1021/acs.nanolett.8b00183
10.1021/acs.chemrev.7b00115
10.1021/jp112202s
10.1038/s41560-019-0464-5
10.1038/451652a
10.1002/aenm.201800914
10.1002/aenm.201703152
10.1002/ange.201906612
10.1021/jacs.7b01763
10.1021/acsami.6b09031
10.1039/C8TA02810A
10.1038/nnano.2017.16
10.1038/nenergy.2016.114
10.1021/acscentsci.6b00389
10.1016/j.jpowsour.2016.01.078
10.1126/science.1096566
10.1002/aenm.201804019
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201903339
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_201903339
AENM201903339
Genre article
GrantInformation_xml – fundername: National Key Technologies R&D Program of China
  funderid: 2018YFA0306900
– fundername: National Natural Science Foundation of China
  funderid: 51872012
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
AAESR
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
~S-
31~
AAHHS
AANHP
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3569-572fce0be40803fbfdaf3b6b8ae2a081870b63b606b9c864fb51d0fd02410fb33
ISSN 1614-6832
IngestDate Fri Jul 25 12:16:24 EDT 2025
Tue Jul 01 01:43:33 EDT 2025
Thu Apr 24 23:12:25 EDT 2025
Sun Jul 06 04:45:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3569-572fce0be40803fbfdaf3b6b8ae2a081870b63b606b9c864fb51d0fd02410fb33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1432-6813
PQID 2362660183
PQPubID 886389
PageCount 9
ParticipantIDs proquest_journals_2362660183
crossref_primary_10_1002_aenm_201903339
crossref_citationtrail_10_1002_aenm_201903339
wiley_primary_10_1002_aenm_201903339_AENM201903339
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2012; 83
2011; 115
2019; 9
2019; 4
2015; 6
2015; 17
2017; 3
2019; 31
2017; 27
2019; 10
2013; 42
2016; 309
2006; 8
2019; 19
2008; 78
2006; 153
2016; 16
2004; 304
2017; 117
2017; 139
2016; 11
2018; 6
2018; 18
2018; 8
2018; 3
2016; 1
2015; 27
2018; 2
2016; 2
2012; 134
2016; 3
2018; 115
2017; 12
2013; 52
2014; 14
2013; 135
2018; 30
2016; 138
2014; 9
1985; 55
2018; 12
2016; 28
2008; 451
2012; 116
2016; 8
2019; 131
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 764
  year: 2018
  publication-title: Joule
– volume: 8
  start-page: 640
  year: 2006
  publication-title: Solid State Sci.
– volume: 28
  start-page: 2155
  year: 2016
  publication-title: Adv. Mater.
– volume: 3
  start-page: 889
  year: 2018
  publication-title: Nat. Energy
– volume: 83
  start-page: 78
  year: 2012
  publication-title: Electrochim. Acta
– volume: 55
  start-page: 5
  year: 1985
  publication-title: Phys. Rev. Lett.
– volume: 19
  start-page: 24
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 153
  year: 2006
  publication-title: J. Electrochem. Soc.
– volume: 12
  start-page: 194
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 116
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 115
  start-page: 7044
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 131
  year: 2019
  publication-title: Angew. Chem.
– volume: 117
  year: 2017
  publication-title: Chem. Rev.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 14
  start-page: 6016
  year: 2014
  publication-title: Nano Lett.
– volume: 6
  start-page: 9899
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 304
  start-page: 711
  year: 2004
  publication-title: Science
– volume: 18
  start-page: 2067
  year: 2018
  publication-title: Nano Lett.
– volume: 2
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 11
  start-page: 626
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 10
  start-page: 1896
  year: 2019
  publication-title: Nat. Commun.
– volume: 4
  start-page: 796
  year: 2019
  publication-title: Nat. Energy
– volume: 115
  start-page: 5676
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 28
  start-page: 6932
  year: 2016
  publication-title: Adv. Mater.
– volume: 42
  start-page: 9011
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 139
  start-page: 5916
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 2780
  year: 2015
  publication-title: Chem. Mater.
– volume: 17
  start-page: 8670
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 9
  start-page: 618
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 134
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 8058
  year: 2015
  publication-title: Nat. Commun.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 7436
  year: 2015
  publication-title: Nat. Commun.
– volume: 78
  year: 2008
  publication-title: Phys. Rev. E
– volume: 16
  start-page: 4431
  year: 2016
  publication-title: Nano Lett.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 309
  start-page: 221
  year: 2016
  publication-title: J. Power Sources
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 52
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 135
  year: 2017
  publication-title: ACS Cent. Sci.
– volume: 451
  start-page: 652
  year: 2008
  publication-title: Nature
– volume: 135
  start-page: 4450
  year: 2013
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_5_54_1
  doi: 10.1103/PhysRevE.78.056704
– ident: e_1_2_5_35_1
  doi: 10.1002/adma.201806541
– ident: e_1_2_5_42_1
  doi: 10.1021/jp303120d
– ident: e_1_2_5_14_1
  doi: 10.1021/cm503447u
– ident: e_1_2_5_28_1
  doi: 10.1038/nnano.2016.32
– ident: e_1_2_5_11_1
  doi: 10.1126/sciadv.aao3170
– ident: e_1_2_5_19_1
  doi: 10.1021/jacs.6b08730
– ident: e_1_2_5_25_1
  doi: 10.1002/adfm.201700348
– ident: e_1_2_5_29_1
  doi: 10.1002/adma.201706216
– ident: e_1_2_5_45_1
  doi: 10.1149/1.2358854
– ident: e_1_2_5_9_1
  doi: 10.1038/ncomms8436
– ident: e_1_2_5_44_1
  doi: 10.1016/j.solidstatesciences.2006.01.013
– ident: e_1_2_5_20_1
  doi: 10.1038/ncomms9058
– ident: e_1_2_5_38_1
  doi: 10.1021/ja305366r
– ident: e_1_2_5_23_1
  doi: 10.1021/acs.nanolett.6b01581
– ident: e_1_2_5_41_1
  doi: 10.1002/aenm.201900858
– ident: e_1_2_5_47_1
  doi: 10.1039/C4CP05865H
– ident: e_1_2_5_8_1
  doi: 10.1021/ja312241y
– ident: e_1_2_5_32_1
  doi: 10.1016/j.joule.2018.02.001
– ident: e_1_2_5_10_1
  doi: 10.1002/aelm.201500246
– ident: e_1_2_5_48_1
  doi: 10.1002/advs.201500213
– ident: e_1_2_5_12_1
  doi: 10.1016/j.electacta.2012.07.118
– ident: e_1_2_5_53_1
  doi: 10.1016/j.ensm.2018.10.015
– ident: e_1_2_5_16_1
  doi: 10.1038/nnano.2014.152
– ident: e_1_2_5_40_1
  doi: 10.1103/PhysRevLett.55.5
– ident: e_1_2_5_36_1
  doi: 10.1002/adma.201806470
– ident: e_1_2_5_52_1
  doi: 10.1073/pnas.1803634115
– ident: e_1_2_5_17_1
  doi: 10.1002/adma.201504117
– ident: e_1_2_5_46_1
  doi: 10.1021/acsnano.8b06051
– ident: e_1_2_5_49_1
  doi: 10.1038/s41560-018-0237-6
– ident: e_1_2_5_13_1
  doi: 10.1002/aenm.201802918
– ident: e_1_2_5_31_1
  doi: 10.1038/s41467-019-09932-1
– ident: e_1_2_5_21_1
  doi: 10.1002/adma.201601409
– ident: e_1_2_5_4_1
  doi: 10.1002/anie.201304762
– ident: e_1_2_5_6_1
  doi: 10.1039/c3cs60177c
– ident: e_1_2_5_50_1
  doi: 10.1002/adma.201801745
– ident: e_1_2_5_15_1
  doi: 10.1021/nl503125u
– ident: e_1_2_5_33_1
  doi: 10.1021/acs.nanolett.8b00183
– ident: e_1_2_5_3_1
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_5_39_1
  doi: 10.1021/jp112202s
– ident: e_1_2_5_7_1
  doi: 10.1038/s41560-019-0464-5
– ident: e_1_2_5_1_1
  doi: 10.1038/451652a
– ident: e_1_2_5_22_1
  doi: 10.1002/aenm.201800914
– ident: e_1_2_5_30_1
  doi: 10.1002/aenm.201703152
– ident: e_1_2_5_51_1
  doi: 10.1002/ange.201906612
– ident: e_1_2_5_26_1
  doi: 10.1021/jacs.7b01763
– ident: e_1_2_5_27_1
  doi: 10.1021/acsami.6b09031
– ident: e_1_2_5_24_1
  doi: 10.1039/C8TA02810A
– ident: e_1_2_5_2_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_5_5_1
  doi: 10.1038/nenergy.2016.114
– ident: e_1_2_5_34_1
  doi: 10.1021/acscentsci.6b00389
– ident: e_1_2_5_37_1
  doi: 10.1016/j.jpowsour.2016.01.078
– ident: e_1_2_5_43_1
  doi: 10.1126/science.1096566
– ident: e_1_2_5_18_1
  doi: 10.1002/aenm.201804019
SSID ssj0000491033
Score 2.6086497
Snippet Rational structure design of the current collector along with further engineering of the solid‐electrolyte interphases (SEI) layer is one of the most promising...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 3D current collector
Anodes
artificial SEI layer
Electrolytes
Foils
high ionic conductivity
in situ generation
Lithium
Lithium ions
uniform Li deposition
Title In Situ Generation of Artificial Solid‐Electrolyte Interphases on 3D Conducting Scaffolds for High‐Performance Lithium‐Metal Anodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201903339
https://www.proquest.com/docview/2362660183
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd4ED4qcoDOQDEqdAEjtucoxo0YbWCWmbVE5RnNgsUkmmkRy2E1dunPnz-Et4thPHRUUMLlH7ajtp3mf7Pfu9zwi9lCKKSkYCLw858SiMgB6PwJArkyIOaCnyRG-0r47ZwRl9v47Wk8kPJ2qpa_nr4npnXsn_aBVkoFeVJfsPmrWNggA-g37hChqG6410fAh9s2q7njt6sP3SSx3_o5bCT5oNPNQQz7A0R95srto-YPLiHOYwvV9AFir3T3G_aobuIpey2ZSaq0GHgtg2PjiJBkdVe151n-1vK6EyK9O6KfvAxIHddogzECbREIxk83acVevKBAvXn3gzbhZp4cdqEKyr3OwTDdOtCiSqOh0mKCp3_QKcVd_GgpghFwwEj8X9KqdwZYbIyY7TvoPHeOfwb-hkc1ErjgEwdQgxTEnbPNu_zX82KtEwOIeZqp_Z-rfQXgguSDhFe-lidXRiV_DAtwqghPLoh78wsIL64Zvth9i2ekZXxnWItEVzeg_d7V0RnBpc3UcTUT9AdxyCyofo22GNFcLwiDDcSDwiDGuE_fz63cEWdrCFoQJZ4BFb2GILA46wwhbUdlCFe1SBVOMJGzw9QmfvlqdvD7z-8A6vIBFLvGgeykL4XFDwSYjksswl4YzHuQhzxaM49zkDgc84DAuMSh4FpS9LsBkDX3JCHqNp3dTiCcKUFQUVc0JiOac0FImfFKQQiSRRKRmNZsgbXm5W9Mz26oCVTbZbozP0ypa_MJwufyy5P-gq6_v9lyxUDE7Mh7lwhkKtv7-0kqXL45X99vTGd3-Gbo8dZh9N28tOPAcTuOUveiz-Anu_r98
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Generation+of+Artificial+Solid%E2%80%90Electrolyte+Interphases+on+3D+Conducting+Scaffolds+for+High%E2%80%90Performance+Lithium%E2%80%90Metal+Anodes&rft.jtitle=Advanced+energy+materials&rft.au=Zhai%2C+Pengbo&rft.au=Wei%2C+Yi&rft.au=Xiao%2C+Jing&rft.au=Liu%2C+Wei&rft.date=2020-02-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=8&rft_id=info:doi/10.1002%2Faenm.201903339&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_201903339
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon