A Biologically Muscle‐Inspired Polyurethane with Super‐Tough, Thermal Reparable and Self‐Healing Capabilities for Stretchable Electronics

Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own not only excellent mechanical properties, but also additional features like high toughness and fast self‐healing. Here, a polyurethane (DA‐PU)...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 10
Main Authors Ying, Wu Bin, Wang, Guyue, Kong, Zhengyang, Yao, Chen Kai, Wang, Yubin, Hu, Han, Li, Fenglong, Chen, Chao, Tian, Ying, Zhang, Jiawei, Zhang, Ruoyu, Zhu, Jin
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own not only excellent mechanical properties, but also additional features like high toughness and fast self‐healing. Here, a polyurethane (DA‐PU) is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra‐chain and inter‐chain donor‐acceptor self‐assembly, which endow the polyurethane with toughness, self‐healing, and, more interestingly, thermal repair, like human muscle. In detail, DA‐PU exhibits an amazing mechanical performance with elongation at break of 1900% and toughness of 175.9 MJ m−3. Moreover, it shows remarkable anti‐fatigue and anti‐stress relaxation properties as manifested by cyclic tensile and stress relaxation tests, respectively. Even in case of large strain deformation or long‐time stretch, it can almost completely restore to original length by thermal repair at 60 °C in 60 s. The self‐healing speed of DA‐PU is gradually enhanced with the increasing temperature, and can be 1.0–6.15 µm min−1 from 60 to 80 °C. At last, a stretchable and self‐healable capacitive sensor is constructed and evaluated to prove that DA‐PU matrix can ensure the stability of electronics even after critical deformation and cut off. A highly desirable elastic matrix is preferred to own not only excellent mechanical properties, but also additional features high toughness and fast self‐healing. Here, a polyurethane is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra‐chain and inter‐chain donor‐acceptor self‐assembly, which endow the polyurethane with toughness, self‐healing, and thermal repair, like muscle.
AbstractList Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own not only excellent mechanical properties, but also additional features like high toughness and fast self‐healing. Here, a polyurethane (DA‐PU) is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra‐chain and inter‐chain donor‐acceptor self‐assembly, which endow the polyurethane with toughness, self‐healing, and, more interestingly, thermal repair, like human muscle. In detail, DA‐PU exhibits an amazing mechanical performance with elongation at break of 1900% and toughness of 175.9 MJ m −3 . Moreover, it shows remarkable anti‐fatigue and anti‐stress relaxation properties as manifested by cyclic tensile and stress relaxation tests, respectively. Even in case of large strain deformation or long‐time stretch, it can almost completely restore to original length by thermal repair at 60 °C in 60 s. The self‐healing speed of DA‐PU is gradually enhanced with the increasing temperature, and can be 1.0–6.15 µm min −1 from 60 to 80 °C. At last, a stretchable and self‐healable capacitive sensor is constructed and evaluated to prove that DA‐PU matrix can ensure the stability of electronics even after critical deformation and cut off.
Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own not only excellent mechanical properties, but also additional features like high toughness and fast self‐healing. Here, a polyurethane (DA‐PU) is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra‐chain and inter‐chain donor‐acceptor self‐assembly, which endow the polyurethane with toughness, self‐healing, and, more interestingly, thermal repair, like human muscle. In detail, DA‐PU exhibits an amazing mechanical performance with elongation at break of 1900% and toughness of 175.9 MJ m−3. Moreover, it shows remarkable anti‐fatigue and anti‐stress relaxation properties as manifested by cyclic tensile and stress relaxation tests, respectively. Even in case of large strain deformation or long‐time stretch, it can almost completely restore to original length by thermal repair at 60 °C in 60 s. The self‐healing speed of DA‐PU is gradually enhanced with the increasing temperature, and can be 1.0–6.15 µm min−1 from 60 to 80 °C. At last, a stretchable and self‐healable capacitive sensor is constructed and evaluated to prove that DA‐PU matrix can ensure the stability of electronics even after critical deformation and cut off. A highly desirable elastic matrix is preferred to own not only excellent mechanical properties, but also additional features high toughness and fast self‐healing. Here, a polyurethane is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra‐chain and inter‐chain donor‐acceptor self‐assembly, which endow the polyurethane with toughness, self‐healing, and thermal repair, like muscle.
Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own not only excellent mechanical properties, but also additional features like high toughness and fast self‐healing. Here, a polyurethane (DA‐PU) is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra‐chain and inter‐chain donor‐acceptor self‐assembly, which endow the polyurethane with toughness, self‐healing, and, more interestingly, thermal repair, like human muscle. In detail, DA‐PU exhibits an amazing mechanical performance with elongation at break of 1900% and toughness of 175.9 MJ m−3. Moreover, it shows remarkable anti‐fatigue and anti‐stress relaxation properties as manifested by cyclic tensile and stress relaxation tests, respectively. Even in case of large strain deformation or long‐time stretch, it can almost completely restore to original length by thermal repair at 60 °C in 60 s. The self‐healing speed of DA‐PU is gradually enhanced with the increasing temperature, and can be 1.0–6.15 µm min−1 from 60 to 80 °C. At last, a stretchable and self‐healable capacitive sensor is constructed and evaluated to prove that DA‐PU matrix can ensure the stability of electronics even after critical deformation and cut off.
Author Zhu, Jin
Zhang, Ruoyu
Wang, Yubin
Tian, Ying
Hu, Han
Li, Fenglong
Chen, Chao
Zhang, Jiawei
Ying, Wu Bin
Kong, Zhengyang
Yao, Chen Kai
Wang, Guyue
Author_xml – sequence: 1
  givenname: Wu Bin
  surname: Ying
  fullname: Ying, Wu Bin
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Guyue
  surname: Wang
  fullname: Wang, Guyue
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Zhengyang
  orcidid: 0000-0003-0846-2018
  surname: Kong
  fullname: Kong, Zhengyang
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Chen Kai
  surname: Yao
  fullname: Yao, Chen Kai
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Yubin
  surname: Wang
  fullname: Wang, Yubin
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Han
  orcidid: 0000-0003-2918-8329
  surname: Hu
  fullname: Hu, Han
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Fenglong
  surname: Li
  fullname: Li, Fenglong
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Chao
  surname: Chen
  fullname: Chen, Chao
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Ying
  surname: Tian
  fullname: Tian, Ying
  organization: Chinese Academy of Sciences
– sequence: 10
  givenname: Jiawei
  surname: Zhang
  fullname: Zhang, Jiawei
  organization: Chinese Academy of Sciences
– sequence: 11
  givenname: Ruoyu
  orcidid: 0000-0002-3502-8738
  surname: Zhang
  fullname: Zhang, Ruoyu
  email: zhangruoy@nimte.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 12
  givenname: Jin
  surname: Zhu
  fullname: Zhu, Jin
  organization: Chinese Academy of Sciences
BookMark eNqFkE9LHDEYxkOxULW99hzo1V3zb2Ynx-2qVVBaulvobchk3uxEssmYZJC9-Q3qZ_STOLpioSA9ve_h93seeA7Qng8eEPpMyZQSwo5VazZTRhghsirlO7RPS1pOOGHV3utPf39AByldE0JnMy720Z85_mqDC2urlXNbfDUk7eDh7v7Cp95GaPGP4LZDhNwpD_jW5g4vhx7iiKzCsO6O8KqDuFEO_4ReRdU4wMq3eAnOjMw5KGf9Gi9UrxrrbLaQsAkRL_OYqbtn_tSBzjF4q9NH9N4ol-DTyz1Ev85OV4vzyeX3bxeL-eVE86KUE1ZwKSvOKl5Q0ZSGSS4kAS5bKgsiRVO0LRhhqCJKEy2KcRVRlsAaKrjhFT9EX3a5fQw3A6RcX4ch-rGyZkIWnFNOZiM13VE6hpQimLqPdqPitqakfhq9fhq9fh19FMQ_grZZZRt8jsq6tzW5026tg-1_Sur5ydnVX_cRKO-dBw
CitedBy_id crossref_primary_10_1007_s00289_024_05610_5
crossref_primary_10_1016_j_polymer_2022_124863
crossref_primary_10_1039_D1TA06317K
crossref_primary_10_1016_j_porgcoat_2023_108153
crossref_primary_10_1126_sciadv_add8527
crossref_primary_10_1002_smll_202400740
crossref_primary_10_6023_A21120593
crossref_primary_10_1016_j_mtchem_2025_102580
crossref_primary_10_1002_smll_202408199
crossref_primary_10_1016_j_polymer_2022_125272
crossref_primary_10_1002_anie_202421099
crossref_primary_10_1021_acsami_2c20636
crossref_primary_10_1021_acsapm_4c00346
crossref_primary_10_1002_adfm_202307503
crossref_primary_10_1038_s41467_022_33936_z
crossref_primary_10_1016_j_cej_2021_133965
crossref_primary_10_1038_s41467_023_42838_7
crossref_primary_10_1021_acsami_3c00333
crossref_primary_10_1016_j_carbpol_2024_122271
crossref_primary_10_1021_acs_langmuir_4c01252
crossref_primary_10_1002_cssc_202202071
crossref_primary_10_1016_j_cej_2023_142700
crossref_primary_10_1016_j_cej_2023_142945
crossref_primary_10_1039_D1TB02710G
crossref_primary_10_1002_pat_6612
crossref_primary_10_1016_j_cej_2024_158459
crossref_primary_10_1002_smll_202402130
crossref_primary_10_1016_j_cej_2022_140268
crossref_primary_10_1021_acs_macromol_2c01076
crossref_primary_10_3390_ma15051664
crossref_primary_10_1021_acsami_3c18247
crossref_primary_10_1002_app_55957
crossref_primary_10_1021_acsami_2c07767
crossref_primary_10_1002_app_56378
crossref_primary_10_3390_molecules28010428
crossref_primary_10_1021_acs_macromol_4c01269
crossref_primary_10_1016_j_compscitech_2024_110457
crossref_primary_10_1016_j_eurpolymj_2022_111437
crossref_primary_10_1016_j_polymer_2024_127994
crossref_primary_10_1002_adfm_202402924
crossref_primary_10_1021_acsami_2c15356
crossref_primary_10_1002_adfm_202313842
crossref_primary_10_1039_D2TA09751F
crossref_primary_10_1002_adma_202312816
crossref_primary_10_1016_j_mtcomm_2024_108195
crossref_primary_10_1002_adma_202210092
crossref_primary_10_1021_acsami_4c06905
crossref_primary_10_1021_acsmacrolett_2c00204
crossref_primary_10_1016_j_eurpolymj_2023_111984
crossref_primary_10_1021_acsami_2c06662
crossref_primary_10_1016_j_apsusc_2023_159136
crossref_primary_10_1016_j_cej_2023_142887
crossref_primary_10_1016_j_cej_2023_146849
crossref_primary_10_1002_advs_202200441
crossref_primary_10_1002_ange_202421099
crossref_primary_10_1038_s41467_022_35434_8
crossref_primary_10_1038_s41467_023_35810_y
crossref_primary_10_1007_s12274_023_6397_0
crossref_primary_10_1016_j_porgcoat_2022_106705
crossref_primary_10_1002_adfm_202313957
crossref_primary_10_1557_s43578_024_01423_4
crossref_primary_10_1016_j_cej_2024_149850
crossref_primary_10_1002_admt_202201527
crossref_primary_10_1088_1755_1315_1322_1_012006
crossref_primary_10_1016_j_cej_2023_144263
crossref_primary_10_1016_j_cej_2024_149694
crossref_primary_10_1021_acssuschemeng_2c02877
crossref_primary_10_1002_advs_202207268
crossref_primary_10_1002_smll_202411040
crossref_primary_10_1016_j_mtchem_2022_101331
crossref_primary_10_1002_adfm_202208074
crossref_primary_10_1039_D2TA06884B
crossref_primary_10_1002_adfm_202214479
crossref_primary_10_1039_D2TA00802E
crossref_primary_10_1021_acsapm_3c01021
crossref_primary_10_1016_j_polymer_2022_125590
crossref_primary_10_1007_s10965_022_03112_4
crossref_primary_10_1016_j_coco_2024_102100
crossref_primary_10_1002_adhm_202303797
crossref_primary_10_2139_ssrn_3995243
crossref_primary_10_1002_app_53566
crossref_primary_10_1021_acsapm_3c01149
crossref_primary_10_1021_acsapm_4c00140
crossref_primary_10_1016_j_mtchem_2024_102427
crossref_primary_10_1002_advs_202400255
crossref_primary_10_1038_s41467_022_31553_4
crossref_primary_10_1016_j_polymer_2022_124896
crossref_primary_10_1039_D4TA05598E
crossref_primary_10_1016_j_polymer_2023_126579
crossref_primary_10_1021_acsnano_1c05952
crossref_primary_10_1016_j_cej_2024_148987
crossref_primary_10_1039_D1PY00327E
crossref_primary_10_1016_j_cej_2024_150541
crossref_primary_10_1016_j_compositesb_2025_112287
crossref_primary_10_1002_pat_5685
crossref_primary_10_1039_D1TA02514G
crossref_primary_10_1002_adfm_202106341
crossref_primary_10_1016_j_ijbiomac_2022_01_057
crossref_primary_10_1002_marc_202200486
crossref_primary_10_1002_marc_202400277
crossref_primary_10_1002_adfm_202303739
crossref_primary_10_1080_17452759_2021_1980283
crossref_primary_10_1002_adfm_202402380
crossref_primary_10_1039_D3TA05217F
crossref_primary_10_3390_nano13010124
crossref_primary_10_1016_j_porgcoat_2022_107163
crossref_primary_10_1002_pol_20240095
crossref_primary_10_1016_j_cej_2023_146536
crossref_primary_10_1039_D2QM00259K
crossref_primary_10_1039_D3QM00176H
crossref_primary_10_1021_acsami_4c11724
crossref_primary_10_1021_acssuschemeng_3c06981
crossref_primary_10_1016_j_jhazmat_2022_128392
crossref_primary_10_1021_acs_chemmater_1c03813
crossref_primary_10_1016_j_jwpe_2023_103999
crossref_primary_10_1039_D3PY00538K
crossref_primary_10_1002_smll_202410933
crossref_primary_10_1021_acsami_1c21987
crossref_primary_10_1016_j_isci_2021_103174
crossref_primary_10_1002_adfm_202501171
crossref_primary_10_1002_marc_202100643
crossref_primary_10_1021_acs_langmuir_2c00955
crossref_primary_10_1016_j_mtsust_2023_100550
crossref_primary_10_1002_mame_202200181
crossref_primary_10_1016_j_compositesb_2023_110876
crossref_primary_10_1002_marc_202300286
crossref_primary_10_1016_j_cej_2022_137077
crossref_primary_10_1016_j_jcis_2022_10_058
crossref_primary_10_1016_j_indcrop_2023_117905
crossref_primary_10_1021_acsapm_4c02212
crossref_primary_10_1039_D2TA02469A
crossref_primary_10_3389_felec_2024_1240603
crossref_primary_10_1002_adfm_202411786
crossref_primary_10_1021_acs_macromol_2c00563
crossref_primary_10_1038_s41467_023_40340_8
crossref_primary_10_1016_j_bioadv_2024_214048
crossref_primary_10_1016_j_colsurfa_2024_133323
crossref_primary_10_1016_j_eurpolymj_2024_113185
crossref_primary_10_1016_j_carbon_2023_118131
crossref_primary_10_1016_j_cej_2025_161024
crossref_primary_10_1016_j_cej_2023_148147
crossref_primary_10_1039_D4MA00289J
Cites_doi 10.1002/adfm.201907139
10.1016/j.polymer.2019.121943
10.1126/science.aam7588
10.1016/j.polymer.2020.122199
10.1016/j.cej.2020.124583
10.1021/acs.macromol.8b02414
10.1021/acs.langmuir.8b03820
10.1002/adfm.201908993
10.1002/adma.201606100
10.1002/adma.201801435
10.1063/1.1543144
10.1038/375303a0
10.1021/ja015817m
10.1002/adma.201904765
10.1021/acs.macromol.9b00503
10.1021/acs.macromol.6b01172
10.1016/j.polymer.2018.01.035
10.1016/j.cej.2019.123468
10.1038/s41467-019-11973-5
10.31635/ccschem.019.20190048
10.1021/ja9009666
10.1002/adfm.202003491
10.1021/acs.macromol.9b00410
10.1126/sciadv.aav3097
10.1007/s10118-019-2283-3
10.1002/adfm.201904532
10.1039/C6CC01861K
10.1039/D0CS00035C
10.1016/j.scib.2020.06.002
10.1016/j.polymer.2019.121912
10.1016/j.mtphys.2020.100219
10.1021/acsnano.0c04158
10.1039/C9TC05392A
10.1002/anie.201307756
10.1002/0471224510
10.1002/adma.201802556
10.1038/s41467-019-09130-z
10.1002/adfm.201808909
10.1016/j.porgcoat.2020.105717
10.1021/acs.macromol.5b01162
10.1002/adma.201705145
10.1038/nmat4090
10.3390/polym12061393
10.1002/mame.202000089
10.1002/ange.200453860
10.1021/acs.accounts.8b00497
10.1016/j.cej.2020.127691
10.1002/adfm.201800741
10.1073/pnas.2007032117
10.1038/s41928-019-0235-0
10.1021/jacs.8b10481
10.1002/adfm.201803111
10.1002/adma.201903762
10.1021/ja104446r
10.1002/adma.201901402
10.1002/adfm.201907109
10.1021/acsami.0c00443
10.1021/acs.chemmater.8b04624
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202009869
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202009869
ADFM202009869
Genre article
GrantInformation_xml – fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences
  funderid: 2018338
– fundername: Natural Science Foundation of Zhejiang Province
  funderid: LQ19E030005
– fundername: National Natural Science Foundation of China
  funderid: 51773218; 52003278
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3569-2539983283514b6f293490e39d195094b5ddef4f1a0ac0c45200466e2b143f383
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 07:11:34 EDT 2025
Tue Jul 01 04:12:23 EDT 2025
Thu Apr 24 23:09:23 EDT 2025
Wed Jan 22 16:31:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3569-2539983283514b6f293490e39d195094b5ddef4f1a0ac0c45200466e2b143f383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3502-8738
0000-0003-0846-2018
0000-0003-2918-8329
PQID 2495331307
PQPubID 2045204
PageCount 12
ParticipantIDs proquest_journals_2495331307
crossref_primary_10_1002_adfm_202009869
crossref_citationtrail_10_1002_adfm_202009869
wiley_primary_10_1002_adfm_202009869_ADFM202009869
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2016 2018 2019; 49 30 37
2018; 28
2003; 118
2020 2019 2019 2020; 30 7 1 30
2019; 31
2019; 52
2019; 30
2019 2019; 2 52
2019; 32
1995 2001; 375 123
2020; 305
2020; 14
2009 2014; 131 13
2020; 12
2020; 389
2020; 146
2002
2019; 185
2004 2014; 116 53
2019; 183
2019 2020; 31 49
2018 2019 2018 2016; 28 35 140 52
2020 2020 2019; 117 65 2019
2020; 190
2019 2020 2019; 29 30 10
2010 2015; 132 48
2018; 138
2020; 393
2019 2017; 52 29
2018 2019 2019 2020 2020; 359 10 30 12
2018; 30
2020 2019; 14 5
e_1_2_7_5_1
e_1_2_7_1_4
e_1_2_7_3_2
e_1_2_7_1_3
e_1_2_7_3_1
Yu Y. (e_1_2_7_4_3) 2019; 2019
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_11_4
e_1_2_7_13_2
e_1_2_7_11_3
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_3
e_1_2_7_8_2
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_16_3
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_8_5
e_1_2_7_8_4
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
References_xml – volume: 190
  year: 2020
  publication-title: Polymer
– volume: 116 53
  start-page: 3326 2038
  year: 2004 2014
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 185
  year: 2019
  publication-title: Polymer
– volume: 12
  start-page: 1393
  year: 2020
  publication-title: Polymers
– volume: 14
  start-page: 9066
  year: 2020
  publication-title: ACS Nano
– volume: 146
  year: 2020
  publication-title: Prog. Org. Coat.
– volume: 31 49
  start-page: 4466
  year: 2019 2020
  publication-title: Adv. Mater. Chem. Soc. Rev.
– volume: 49 30 37
  start-page: 5931 1152
  year: 2016 2018 2019
  publication-title: Macromolecules Adv. Mater. Chin. J. Polym. Sci.
– volume: 375 123
  start-page: 303 7560
  year: 1995 2001
  publication-title: Nature J. Am. Chem. Soc.
– volume: 52
  start-page: 5014
  year: 2019
  publication-title: Macromolecules
– volume: 28 35 140 52
  start-page: 478 7752
  year: 2018 2019 2018 2016
  publication-title: Adv. Funct. Mater. Langmuir J. Am. Chem. Soc. Chem. Commun.
– volume: 393
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 118
  start-page: 4331
  year: 2003
  publication-title: J. Chem. Phys.
– volume: 117 65 2019
  start-page: 1752
  year: 2020 2020 2019
  publication-title: Proc. Natl. Acad. Sci. USA Sci. Bull. Research
– volume: 138
  start-page: 242
  year: 2018
  publication-title: Polymer
– volume: 389
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 14 5
  year: 2020 2019
  publication-title: Mater. Today Phys. Sci. Adv.
– volume: 183
  year: 2019
  publication-title: Polymer
– volume: 131 13
  start-page: 8766 1055
  year: 2009 2014
  publication-title: J. Am. Chem. Soc. Nat. Mater.
– volume: 2 52
  start-page: 144 288
  year: 2019 2019
  publication-title: Nat. Electron. Acc. Chem. Res.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 52
  start-page: 3965
  year: 2019
  publication-title: Macromolecules
– year: 2002
– volume: 305
  year: 2020
  publication-title: Macromol. Mater. Eng.
– volume: 52 29
  start-page: 660
  year: 2019 2017
  publication-title: Macromolecules Adv. Mater.
– volume: 30 7 1 30
  start-page: 431
  year: 2020 2019 2019 2020
  publication-title: Adv. Funct. Mater. J. Mater. Chem. C CCS Chem. Adv. Funct. Mater.
– volume: 30
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2019
  publication-title: Adv. Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 31
  start-page: 2347
  year: 2019
  publication-title: Chem. Mater.
– volume: 29 30 10
  start-page: 4019
  year: 2019 2020 2019
  publication-title: Adv. Funct. Mater. Adv. Funct. Mater. Nat. Commun.
– volume: 359 10 30 12
  start-page: 72 1164
  year: 2018 2019 2019 2020 2020
  publication-title: Science Nat. Commun. Adv. Funct. Mater. ACS Appl. Mater. Interfaces Chem. Eng. J.
– volume: 132 48
  start-page: 6132
  year: 2010 2015
  publication-title: J. Am. Chem. Soc. Macromolecules
– ident: e_1_2_7_8_3
  doi: 10.1002/adfm.201907139
– ident: e_1_2_7_18_1
  doi: 10.1016/j.polymer.2019.121943
– ident: e_1_2_7_8_1
  doi: 10.1126/science.aam7588
– ident: e_1_2_7_28_1
  doi: 10.1016/j.polymer.2020.122199
– ident: e_1_2_7_34_1
  doi: 10.1016/j.cej.2020.124583
– ident: e_1_2_7_7_1
  doi: 10.1021/acs.macromol.8b02414
– ident: e_1_2_7_11_2
  doi: 10.1021/acs.langmuir.8b03820
– ident: e_1_2_7_2_2
  doi: 10.1002/adfm.201908993
– ident: e_1_2_7_7_2
  doi: 10.1002/adma.201606100
– ident: e_1_2_7_30_1
  doi: 10.1002/adma.201801435
– ident: e_1_2_7_19_1
  doi: 10.1063/1.1543144
– ident: e_1_2_7_13_1
  doi: 10.1038/375303a0
– ident: e_1_2_7_13_2
  doi: 10.1021/ja015817m
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.201904765
– ident: e_1_2_7_22_1
  doi: 10.1021/acs.macromol.9b00503
– ident: e_1_2_7_16_1
  doi: 10.1021/acs.macromol.6b01172
– ident: e_1_2_7_20_1
  doi: 10.1016/j.polymer.2018.01.035
– ident: e_1_2_7_26_1
  doi: 10.1016/j.cej.2019.123468
– ident: e_1_2_7_2_3
  doi: 10.1038/s41467-019-11973-5
– ident: e_1_2_7_1_3
  doi: 10.31635/ccschem.019.20190048
– ident: e_1_2_7_12_1
  doi: 10.1021/ja9009666
– ident: e_1_2_7_1_4
  doi: 10.1002/adfm.202003491
– ident: e_1_2_7_5_1
  doi: 10.1021/acs.macromol.9b00410
– ident: e_1_2_7_10_2
  doi: 10.1126/sciadv.aav3097
– ident: e_1_2_7_16_3
  doi: 10.1007/s10118-019-2283-3
– ident: e_1_2_7_1_1
  doi: 10.1002/adfm.201904532
– ident: e_1_2_7_11_4
  doi: 10.1039/C6CC01861K
– ident: e_1_2_7_3_2
  doi: 10.1039/D0CS00035C
– ident: e_1_2_7_4_2
  doi: 10.1016/j.scib.2020.06.002
– ident: e_1_2_7_33_1
  doi: 10.1016/j.polymer.2019.121912
– ident: e_1_2_7_10_1
  doi: 10.1016/j.mtphys.2020.100219
– ident: e_1_2_7_23_1
  doi: 10.1021/acsnano.0c04158
– ident: e_1_2_7_1_2
  doi: 10.1039/C9TC05392A
– volume: 2019
  start-page: 6906275
  year: 2019
  ident: e_1_2_7_4_3
  publication-title: Research
– ident: e_1_2_7_15_2
  doi: 10.1002/anie.201307756
– ident: e_1_2_7_21_1
  doi: 10.1002/0471224510
– ident: e_1_2_7_16_2
  doi: 10.1002/adma.201802556
– ident: e_1_2_7_8_2
  doi: 10.1038/s41467-019-09130-z
– ident: e_1_2_7_2_1
  doi: 10.1002/adfm.201808909
– ident: e_1_2_7_27_1
  doi: 10.1016/j.porgcoat.2020.105717
– ident: e_1_2_7_14_2
  doi: 10.1021/acs.macromol.5b01162
– ident: e_1_2_7_31_1
  doi: 10.1002/adma.201705145
– ident: e_1_2_7_12_2
  doi: 10.1038/nmat4090
– ident: e_1_2_7_25_1
  doi: 10.3390/polym12061393
– ident: e_1_2_7_29_1
  doi: 10.1002/mame.202000089
– ident: e_1_2_7_15_1
  doi: 10.1002/ange.200453860
– ident: e_1_2_7_6_2
  doi: 10.1021/acs.accounts.8b00497
– ident: e_1_2_7_8_5
  doi: 10.1016/j.cej.2020.127691
– ident: e_1_2_7_32_1
  doi: 10.1002/adfm.201800741
– ident: e_1_2_7_4_1
  doi: 10.1073/pnas.2007032117
– ident: e_1_2_7_6_1
  doi: 10.1038/s41928-019-0235-0
– ident: e_1_2_7_11_3
  doi: 10.1021/jacs.8b10481
– ident: e_1_2_7_11_1
  doi: 10.1002/adfm.201803111
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.201903762
– ident: e_1_2_7_14_1
  doi: 10.1021/ja104446r
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.201901402
– ident: e_1_2_7_35_1
  doi: 10.1002/adfm.201907109
– ident: e_1_2_7_8_4
  doi: 10.1021/acsami.0c00443
– ident: e_1_2_7_24_1
  doi: 10.1021/acs.chemmater.8b04624
SSID ssj0017734
Score 2.6557646
Snippet Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Deformation
donor‐acceptor self‐assembly
Elastomers
Electronics
Elongation
Healing
Materials science
Mechanical properties
Muscles
polyurethane
Polyurethane resins
Repair
self‐healing
Stability analysis
Stress relaxation
Stress relaxation tests
thermal repair
tough
Toughness
Title A Biologically Muscle‐Inspired Polyurethane with Super‐Tough, Thermal Reparable and Self‐Healing Capabilities for Stretchable Electronics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202009869
https://www.proquest.com/docview/2495331307
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDDwRpSXPCCxEIidxGnGCqgAUYQoSN0i27EXohS1zQAT_wB-I7-EO6cNBQkhwRjp8rLvzp_Pd98Rsh-oiGXMcE-HSnuhzRgGmrQXC5NYE0jDHZF251qc34eXvag3VcVf8UPUATe0DOev0cClGh5_kobKzGIlOUb3mwIr-DBhC1HRbc0fxeK4OlYWDBO8WG_C2ujz46-3f12VPqHmNGB1K057icjJt1aJJg9H5Ugd6edvNI7_-ZllsjiGo7RV6c8KmTHFKlmYIilcI68tWjWsxOnMn2inHILo-8vbRYGn9CajN_38qRwYDMIbioFd2i0fzQBE7rAH0CEFXQT_n1NA-3KAtVpUFhntmtyCDBZCwYvoCSzbLlMX9u4UoDTFA3PQKSd_VnfrGa6T-_bZ3cm5N27j4OkgEonHkfwWHEcTiwaUsAAwwsQ3QZJhC9okVBG4WBtaJn2pfR1GbtMuDFeA5SzsoDfIbNEvzCahfiwt04GN_SwJuRYqForLgAUy1lbZZoN4k2lM9ZjjHFtt5GnFzsxTHOi0HugGOajlHyt2jx8ldyZakY6tfJhyl5wLKCBuEO6m95enpK3Tdqe-2vrLTdtknmNajUuD2yGzo0FpdgEXjdQemWuddq66e84GPgD82Qp0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5RONAeCpRW3UKpD0i9EIidxNkcV5TVQllUlUXiFtmOfWkU0O7mQE99g_YZeRJmnE2ASqhSOUaa_Nkzns_jmW8AdiOd8IJbEZhYmyB2BadAkwlSaTNnI2WFJ9Ien8nRRXxymbTZhFQL0_BDdAE3sgy_XpOBU0D64J41VBWOSskpvN-X2QtYobbeflf1vWOQ4mnaHCxLTile_LLlbQzFweP7H_ule7D5ELJ6nzNcA91-bZNq8mO_nut98_MvIsdn_c46vF4gUjZoVGgDlmz1Bl494CnchN8D1vSspBktb9i4nqHo7a8_xxUd1NuCfbsqb-qppTi8ZRTbZef1tZ2iyITaAO0xVEd0ASVDwK-mVK7FVFWwc1s6lKFaKHwRO0TP7ZN1cfvOEE0zOjNHtfLyR13DntlbuBgeTQ5HwaKTQ2CiRGaBIP5bXDv6VDegpUOMEWehjbKCutBmsU5wlXWx4ypUJjRx4vft0gqNcM7hJvodLFdXlX0PLEyV4yZyaVhksTBSp1ILFfFIpcZp1-9B0M5jbhY059Rto8wbgmaR00Dn3UD34HMnf90QfDwpud2qRb4w9FkufH4uAoG0B8LP7z-ekg--DMfd1Yf_uekTrI4m49P89Pjs6xa8FJRl47PitmF5Pq3tR4RJc73jDeEOLjgM-w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkRAcyr_YUsAHJC6kjR3H2RxX3a5aYKuKttLeItuxL43S1e7mUE59g_KMPAkzzm66rYQqwTHS5M-e8Xwez3wD8CkxKS-5E5GVxkbSl5wCTTbKlMu9S7QTgUh7fKQOzuTXSTpZq-Jv-SG6gBtZRlivycCnpd-9IQ3VpadKcoru91X-EB5JFfdJr4c_OgIpnmXtubLilOHFJyvaxljs3r7_tlu6wZrriDW4nNEz0KuPbTNNzneahdmxP-_wOP7P3zyHzSUeZYNWgV7AA1e_hKdrLIWv4HrA2o6VNJ_VJRs3cxT9ffXrsKZjeley44vqspk5isI7RpFddtJM3QxFTqkJ0BeGyogOoGII9_WMirWYrkt24iqPMlQJhS9ie-i3Q6oubt4ZYmlGJ-aoVEF-v2vXM38NZ6P9072DaNnHIbJJqvJIEPstrhx9qhowyiPCkHnskrykHrS5NCmusV56rmNtYyvTsGtXThgEcx630G9go76o3VtgcaY9t4nP4jKXwiqTKSN0whOdWW98vwfRahoLuyQ5p14bVdHSM4uCBrroBroHnzv5aUvv8VfJ7ZVWFEsznxciZOciDMh6IML03vOUYjAcjburrX-56SM8Ph6Oiu-HR9_ewRNBKTYhJW4bNhazxr1HjLQwH4IZ_AEdLQuz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Biologically+Muscle%E2%80%90Inspired+Polyurethane+with+Super%E2%80%90Tough%2C+Thermal+Reparable+and+Self%E2%80%90Healing+Capabilities+for+Stretchable+Electronics&rft.jtitle=Advanced+functional+materials&rft.au=Wu+Bin+Ying&rft.au=Wang%2C+Guyue&rft.au=Kong%2C+Zhengyang&rft.au=Chen%2C+Kai+Yao&rft.date=2021-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=10&rft_id=info:doi/10.1002%2Fadfm.202009869&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon