A Biologically Muscle‐Inspired Polyurethane with Super‐Tough, Thermal Reparable and Self‐Healing Capabilities for Stretchable Electronics
Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own not only excellent mechanical properties, but also additional features like high toughness and fast self‐healing. Here, a polyurethane (DA‐PU)...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 10 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own not only excellent mechanical properties, but also additional features like high toughness and fast self‐healing. Here, a polyurethane (DA‐PU) is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra‐chain and inter‐chain donor‐acceptor self‐assembly, which endow the polyurethane with toughness, self‐healing, and, more interestingly, thermal repair, like human muscle. In detail, DA‐PU exhibits an amazing mechanical performance with elongation at break of 1900% and toughness of 175.9 MJ m−3. Moreover, it shows remarkable anti‐fatigue and anti‐stress relaxation properties as manifested by cyclic tensile and stress relaxation tests, respectively. Even in case of large strain deformation or long‐time stretch, it can almost completely restore to original length by thermal repair at 60 °C in 60 s. The self‐healing speed of DA‐PU is gradually enhanced with the increasing temperature, and can be 1.0–6.15 µm min−1 from 60 to 80 °C. At last, a stretchable and self‐healable capacitive sensor is constructed and evaluated to prove that DA‐PU matrix can ensure the stability of electronics even after critical deformation and cut off.
A highly desirable elastic matrix is preferred to own not only excellent mechanical properties, but also additional features high toughness and fast self‐healing. Here, a polyurethane is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra‐chain and inter‐chain donor‐acceptor self‐assembly, which endow the polyurethane with toughness, self‐healing, and thermal repair, like muscle. |
---|---|
AbstractList | Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own not only excellent mechanical properties, but also additional features like high toughness and fast self‐healing. Here, a polyurethane (DA‐PU) is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra‐chain and inter‐chain donor‐acceptor self‐assembly, which endow the polyurethane with toughness, self‐healing, and, more interestingly, thermal repair, like human muscle. In detail, DA‐PU exhibits an amazing mechanical performance with elongation at break of 1900% and toughness of 175.9 MJ m
−3
. Moreover, it shows remarkable anti‐fatigue and anti‐stress relaxation properties as manifested by cyclic tensile and stress relaxation tests, respectively. Even in case of large strain deformation or long‐time stretch, it can almost completely restore to original length by thermal repair at 60 °C in 60 s. The self‐healing speed of DA‐PU is gradually enhanced with the increasing temperature, and can be 1.0–6.15 µm min
−1
from 60 to 80 °C. At last, a stretchable and self‐healable capacitive sensor is constructed and evaluated to prove that DA‐PU matrix can ensure the stability of electronics even after critical deformation and cut off. Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own not only excellent mechanical properties, but also additional features like high toughness and fast self‐healing. Here, a polyurethane (DA‐PU) is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra‐chain and inter‐chain donor‐acceptor self‐assembly, which endow the polyurethane with toughness, self‐healing, and, more interestingly, thermal repair, like human muscle. In detail, DA‐PU exhibits an amazing mechanical performance with elongation at break of 1900% and toughness of 175.9 MJ m−3. Moreover, it shows remarkable anti‐fatigue and anti‐stress relaxation properties as manifested by cyclic tensile and stress relaxation tests, respectively. Even in case of large strain deformation or long‐time stretch, it can almost completely restore to original length by thermal repair at 60 °C in 60 s. The self‐healing speed of DA‐PU is gradually enhanced with the increasing temperature, and can be 1.0–6.15 µm min−1 from 60 to 80 °C. At last, a stretchable and self‐healable capacitive sensor is constructed and evaluated to prove that DA‐PU matrix can ensure the stability of electronics even after critical deformation and cut off. A highly desirable elastic matrix is preferred to own not only excellent mechanical properties, but also additional features high toughness and fast self‐healing. Here, a polyurethane is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra‐chain and inter‐chain donor‐acceptor self‐assembly, which endow the polyurethane with toughness, self‐healing, and thermal repair, like muscle. Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own not only excellent mechanical properties, but also additional features like high toughness and fast self‐healing. Here, a polyurethane (DA‐PU) is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra‐chain and inter‐chain donor‐acceptor self‐assembly, which endow the polyurethane with toughness, self‐healing, and, more interestingly, thermal repair, like human muscle. In detail, DA‐PU exhibits an amazing mechanical performance with elongation at break of 1900% and toughness of 175.9 MJ m−3. Moreover, it shows remarkable anti‐fatigue and anti‐stress relaxation properties as manifested by cyclic tensile and stress relaxation tests, respectively. Even in case of large strain deformation or long‐time stretch, it can almost completely restore to original length by thermal repair at 60 °C in 60 s. The self‐healing speed of DA‐PU is gradually enhanced with the increasing temperature, and can be 1.0–6.15 µm min−1 from 60 to 80 °C. At last, a stretchable and self‐healable capacitive sensor is constructed and evaluated to prove that DA‐PU matrix can ensure the stability of electronics even after critical deformation and cut off. |
Author | Zhu, Jin Zhang, Ruoyu Wang, Yubin Tian, Ying Hu, Han Li, Fenglong Chen, Chao Zhang, Jiawei Ying, Wu Bin Kong, Zhengyang Yao, Chen Kai Wang, Guyue |
Author_xml | – sequence: 1 givenname: Wu Bin surname: Ying fullname: Ying, Wu Bin organization: Chinese Academy of Sciences – sequence: 2 givenname: Guyue surname: Wang fullname: Wang, Guyue organization: Chinese Academy of Sciences – sequence: 3 givenname: Zhengyang orcidid: 0000-0003-0846-2018 surname: Kong fullname: Kong, Zhengyang organization: Chinese Academy of Sciences – sequence: 4 givenname: Chen Kai surname: Yao fullname: Yao, Chen Kai organization: Chinese Academy of Sciences – sequence: 5 givenname: Yubin surname: Wang fullname: Wang, Yubin organization: Chinese Academy of Sciences – sequence: 6 givenname: Han orcidid: 0000-0003-2918-8329 surname: Hu fullname: Hu, Han organization: Chinese Academy of Sciences – sequence: 7 givenname: Fenglong surname: Li fullname: Li, Fenglong organization: Chinese Academy of Sciences – sequence: 8 givenname: Chao surname: Chen fullname: Chen, Chao organization: Chinese Academy of Sciences – sequence: 9 givenname: Ying surname: Tian fullname: Tian, Ying organization: Chinese Academy of Sciences – sequence: 10 givenname: Jiawei surname: Zhang fullname: Zhang, Jiawei organization: Chinese Academy of Sciences – sequence: 11 givenname: Ruoyu orcidid: 0000-0002-3502-8738 surname: Zhang fullname: Zhang, Ruoyu email: zhangruoy@nimte.ac.cn organization: Chinese Academy of Sciences – sequence: 12 givenname: Jin surname: Zhu fullname: Zhu, Jin organization: Chinese Academy of Sciences |
BookMark | eNqFkE9LHDEYxkOxULW99hzo1V3zb2Ynx-2qVVBaulvobchk3uxEssmYZJC9-Q3qZ_STOLpioSA9ve_h93seeA7Qng8eEPpMyZQSwo5VazZTRhghsirlO7RPS1pOOGHV3utPf39AByldE0JnMy720Z85_mqDC2urlXNbfDUk7eDh7v7Cp95GaPGP4LZDhNwpD_jW5g4vhx7iiKzCsO6O8KqDuFEO_4ReRdU4wMq3eAnOjMw5KGf9Gi9UrxrrbLaQsAkRL_OYqbtn_tSBzjF4q9NH9N4ol-DTyz1Ev85OV4vzyeX3bxeL-eVE86KUE1ZwKSvOKl5Q0ZSGSS4kAS5bKgsiRVO0LRhhqCJKEy2KcRVRlsAaKrjhFT9EX3a5fQw3A6RcX4ch-rGyZkIWnFNOZiM13VE6hpQimLqPdqPitqakfhq9fhq9fh19FMQ_grZZZRt8jsq6tzW5026tg-1_Sur5ydnVX_cRKO-dBw |
CitedBy_id | crossref_primary_10_1007_s00289_024_05610_5 crossref_primary_10_1016_j_polymer_2022_124863 crossref_primary_10_1039_D1TA06317K crossref_primary_10_1016_j_porgcoat_2023_108153 crossref_primary_10_1126_sciadv_add8527 crossref_primary_10_1002_smll_202400740 crossref_primary_10_6023_A21120593 crossref_primary_10_1016_j_mtchem_2025_102580 crossref_primary_10_1002_smll_202408199 crossref_primary_10_1016_j_polymer_2022_125272 crossref_primary_10_1002_anie_202421099 crossref_primary_10_1021_acsami_2c20636 crossref_primary_10_1021_acsapm_4c00346 crossref_primary_10_1002_adfm_202307503 crossref_primary_10_1038_s41467_022_33936_z crossref_primary_10_1016_j_cej_2021_133965 crossref_primary_10_1038_s41467_023_42838_7 crossref_primary_10_1021_acsami_3c00333 crossref_primary_10_1016_j_carbpol_2024_122271 crossref_primary_10_1021_acs_langmuir_4c01252 crossref_primary_10_1002_cssc_202202071 crossref_primary_10_1016_j_cej_2023_142700 crossref_primary_10_1016_j_cej_2023_142945 crossref_primary_10_1039_D1TB02710G crossref_primary_10_1002_pat_6612 crossref_primary_10_1016_j_cej_2024_158459 crossref_primary_10_1002_smll_202402130 crossref_primary_10_1016_j_cej_2022_140268 crossref_primary_10_1021_acs_macromol_2c01076 crossref_primary_10_3390_ma15051664 crossref_primary_10_1021_acsami_3c18247 crossref_primary_10_1002_app_55957 crossref_primary_10_1021_acsami_2c07767 crossref_primary_10_1002_app_56378 crossref_primary_10_3390_molecules28010428 crossref_primary_10_1021_acs_macromol_4c01269 crossref_primary_10_1016_j_compscitech_2024_110457 crossref_primary_10_1016_j_eurpolymj_2022_111437 crossref_primary_10_1016_j_polymer_2024_127994 crossref_primary_10_1002_adfm_202402924 crossref_primary_10_1021_acsami_2c15356 crossref_primary_10_1002_adfm_202313842 crossref_primary_10_1039_D2TA09751F crossref_primary_10_1002_adma_202312816 crossref_primary_10_1016_j_mtcomm_2024_108195 crossref_primary_10_1002_adma_202210092 crossref_primary_10_1021_acsami_4c06905 crossref_primary_10_1021_acsmacrolett_2c00204 crossref_primary_10_1016_j_eurpolymj_2023_111984 crossref_primary_10_1021_acsami_2c06662 crossref_primary_10_1016_j_apsusc_2023_159136 crossref_primary_10_1016_j_cej_2023_142887 crossref_primary_10_1016_j_cej_2023_146849 crossref_primary_10_1002_advs_202200441 crossref_primary_10_1002_ange_202421099 crossref_primary_10_1038_s41467_022_35434_8 crossref_primary_10_1038_s41467_023_35810_y crossref_primary_10_1007_s12274_023_6397_0 crossref_primary_10_1016_j_porgcoat_2022_106705 crossref_primary_10_1002_adfm_202313957 crossref_primary_10_1557_s43578_024_01423_4 crossref_primary_10_1016_j_cej_2024_149850 crossref_primary_10_1002_admt_202201527 crossref_primary_10_1088_1755_1315_1322_1_012006 crossref_primary_10_1016_j_cej_2023_144263 crossref_primary_10_1016_j_cej_2024_149694 crossref_primary_10_1021_acssuschemeng_2c02877 crossref_primary_10_1002_advs_202207268 crossref_primary_10_1002_smll_202411040 crossref_primary_10_1016_j_mtchem_2022_101331 crossref_primary_10_1002_adfm_202208074 crossref_primary_10_1039_D2TA06884B crossref_primary_10_1002_adfm_202214479 crossref_primary_10_1039_D2TA00802E crossref_primary_10_1021_acsapm_3c01021 crossref_primary_10_1016_j_polymer_2022_125590 crossref_primary_10_1007_s10965_022_03112_4 crossref_primary_10_1016_j_coco_2024_102100 crossref_primary_10_1002_adhm_202303797 crossref_primary_10_2139_ssrn_3995243 crossref_primary_10_1002_app_53566 crossref_primary_10_1021_acsapm_3c01149 crossref_primary_10_1021_acsapm_4c00140 crossref_primary_10_1016_j_mtchem_2024_102427 crossref_primary_10_1002_advs_202400255 crossref_primary_10_1038_s41467_022_31553_4 crossref_primary_10_1016_j_polymer_2022_124896 crossref_primary_10_1039_D4TA05598E crossref_primary_10_1016_j_polymer_2023_126579 crossref_primary_10_1021_acsnano_1c05952 crossref_primary_10_1016_j_cej_2024_148987 crossref_primary_10_1039_D1PY00327E crossref_primary_10_1016_j_cej_2024_150541 crossref_primary_10_1016_j_compositesb_2025_112287 crossref_primary_10_1002_pat_5685 crossref_primary_10_1039_D1TA02514G crossref_primary_10_1002_adfm_202106341 crossref_primary_10_1016_j_ijbiomac_2022_01_057 crossref_primary_10_1002_marc_202200486 crossref_primary_10_1002_marc_202400277 crossref_primary_10_1002_adfm_202303739 crossref_primary_10_1080_17452759_2021_1980283 crossref_primary_10_1002_adfm_202402380 crossref_primary_10_1039_D3TA05217F crossref_primary_10_3390_nano13010124 crossref_primary_10_1016_j_porgcoat_2022_107163 crossref_primary_10_1002_pol_20240095 crossref_primary_10_1016_j_cej_2023_146536 crossref_primary_10_1039_D2QM00259K crossref_primary_10_1039_D3QM00176H crossref_primary_10_1021_acsami_4c11724 crossref_primary_10_1021_acssuschemeng_3c06981 crossref_primary_10_1016_j_jhazmat_2022_128392 crossref_primary_10_1021_acs_chemmater_1c03813 crossref_primary_10_1016_j_jwpe_2023_103999 crossref_primary_10_1039_D3PY00538K crossref_primary_10_1002_smll_202410933 crossref_primary_10_1021_acsami_1c21987 crossref_primary_10_1016_j_isci_2021_103174 crossref_primary_10_1002_adfm_202501171 crossref_primary_10_1002_marc_202100643 crossref_primary_10_1021_acs_langmuir_2c00955 crossref_primary_10_1016_j_mtsust_2023_100550 crossref_primary_10_1002_mame_202200181 crossref_primary_10_1016_j_compositesb_2023_110876 crossref_primary_10_1002_marc_202300286 crossref_primary_10_1016_j_cej_2022_137077 crossref_primary_10_1016_j_jcis_2022_10_058 crossref_primary_10_1016_j_indcrop_2023_117905 crossref_primary_10_1021_acsapm_4c02212 crossref_primary_10_1039_D2TA02469A crossref_primary_10_3389_felec_2024_1240603 crossref_primary_10_1002_adfm_202411786 crossref_primary_10_1021_acs_macromol_2c00563 crossref_primary_10_1038_s41467_023_40340_8 crossref_primary_10_1016_j_bioadv_2024_214048 crossref_primary_10_1016_j_colsurfa_2024_133323 crossref_primary_10_1016_j_eurpolymj_2024_113185 crossref_primary_10_1016_j_carbon_2023_118131 crossref_primary_10_1016_j_cej_2025_161024 crossref_primary_10_1016_j_cej_2023_148147 crossref_primary_10_1039_D4MA00289J |
Cites_doi | 10.1002/adfm.201907139 10.1016/j.polymer.2019.121943 10.1126/science.aam7588 10.1016/j.polymer.2020.122199 10.1016/j.cej.2020.124583 10.1021/acs.macromol.8b02414 10.1021/acs.langmuir.8b03820 10.1002/adfm.201908993 10.1002/adma.201606100 10.1002/adma.201801435 10.1063/1.1543144 10.1038/375303a0 10.1021/ja015817m 10.1002/adma.201904765 10.1021/acs.macromol.9b00503 10.1021/acs.macromol.6b01172 10.1016/j.polymer.2018.01.035 10.1016/j.cej.2019.123468 10.1038/s41467-019-11973-5 10.31635/ccschem.019.20190048 10.1021/ja9009666 10.1002/adfm.202003491 10.1021/acs.macromol.9b00410 10.1126/sciadv.aav3097 10.1007/s10118-019-2283-3 10.1002/adfm.201904532 10.1039/C6CC01861K 10.1039/D0CS00035C 10.1016/j.scib.2020.06.002 10.1016/j.polymer.2019.121912 10.1016/j.mtphys.2020.100219 10.1021/acsnano.0c04158 10.1039/C9TC05392A 10.1002/anie.201307756 10.1002/0471224510 10.1002/adma.201802556 10.1038/s41467-019-09130-z 10.1002/adfm.201808909 10.1016/j.porgcoat.2020.105717 10.1021/acs.macromol.5b01162 10.1002/adma.201705145 10.1038/nmat4090 10.3390/polym12061393 10.1002/mame.202000089 10.1002/ange.200453860 10.1021/acs.accounts.8b00497 10.1016/j.cej.2020.127691 10.1002/adfm.201800741 10.1073/pnas.2007032117 10.1038/s41928-019-0235-0 10.1021/jacs.8b10481 10.1002/adfm.201803111 10.1002/adma.201903762 10.1021/ja104446r 10.1002/adma.201901402 10.1002/adfm.201907109 10.1021/acsami.0c00443 10.1021/acs.chemmater.8b04624 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202009869 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202009869 ADFM202009869 |
Genre | article |
GrantInformation_xml | – fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences funderid: 2018338 – fundername: Natural Science Foundation of Zhejiang Province funderid: LQ19E030005 – fundername: National Natural Science Foundation of China funderid: 51773218; 52003278 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3569-2539983283514b6f293490e39d195094b5ddef4f1a0ac0c45200466e2b143f383 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 07:11:34 EDT 2025 Tue Jul 01 04:12:23 EDT 2025 Thu Apr 24 23:09:23 EDT 2025 Wed Jan 22 16:31:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3569-2539983283514b6f293490e39d195094b5ddef4f1a0ac0c45200466e2b143f383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3502-8738 0000-0003-0846-2018 0000-0003-2918-8329 |
PQID | 2495331307 |
PQPubID | 2045204 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2495331307 crossref_primary_10_1002_adfm_202009869 crossref_citationtrail_10_1002_adfm_202009869 wiley_primary_10_1002_adfm_202009869_ADFM202009869 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2016 2018 2019; 49 30 37 2018; 28 2003; 118 2020 2019 2019 2020; 30 7 1 30 2019; 31 2019; 52 2019; 30 2019 2019; 2 52 2019; 32 1995 2001; 375 123 2020; 305 2020; 14 2009 2014; 131 13 2020; 12 2020; 389 2020; 146 2002 2019; 185 2004 2014; 116 53 2019; 183 2019 2020; 31 49 2018 2019 2018 2016; 28 35 140 52 2020 2020 2019; 117 65 2019 2020; 190 2019 2020 2019; 29 30 10 2010 2015; 132 48 2018; 138 2020; 393 2019 2017; 52 29 2018 2019 2019 2020 2020; 359 10 30 12 2018; 30 2020 2019; 14 5 e_1_2_7_5_1 e_1_2_7_1_4 e_1_2_7_3_2 e_1_2_7_1_3 e_1_2_7_3_1 Yu Y. (e_1_2_7_4_3) 2019; 2019 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_11_4 e_1_2_7_13_2 e_1_2_7_11_3 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_3 e_1_2_7_8_2 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_16_3 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_8_5 e_1_2_7_8_4 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 |
References_xml | – volume: 190 year: 2020 publication-title: Polymer – volume: 116 53 start-page: 3326 2038 year: 2004 2014 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 185 year: 2019 publication-title: Polymer – volume: 12 start-page: 1393 year: 2020 publication-title: Polymers – volume: 14 start-page: 9066 year: 2020 publication-title: ACS Nano – volume: 146 year: 2020 publication-title: Prog. Org. Coat. – volume: 31 49 start-page: 4466 year: 2019 2020 publication-title: Adv. Mater. Chem. Soc. Rev. – volume: 49 30 37 start-page: 5931 1152 year: 2016 2018 2019 publication-title: Macromolecules Adv. Mater. Chin. J. Polym. Sci. – volume: 375 123 start-page: 303 7560 year: 1995 2001 publication-title: Nature J. Am. Chem. Soc. – volume: 52 start-page: 5014 year: 2019 publication-title: Macromolecules – volume: 28 35 140 52 start-page: 478 7752 year: 2018 2019 2018 2016 publication-title: Adv. Funct. Mater. Langmuir J. Am. Chem. Soc. Chem. Commun. – volume: 393 year: 2020 publication-title: Chem. Eng. J. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 118 start-page: 4331 year: 2003 publication-title: J. Chem. Phys. – volume: 117 65 2019 start-page: 1752 year: 2020 2020 2019 publication-title: Proc. Natl. Acad. Sci. USA Sci. Bull. Research – volume: 138 start-page: 242 year: 2018 publication-title: Polymer – volume: 389 year: 2020 publication-title: Chem. Eng. J. – volume: 14 5 year: 2020 2019 publication-title: Mater. Today Phys. Sci. Adv. – volume: 183 year: 2019 publication-title: Polymer – volume: 131 13 start-page: 8766 1055 year: 2009 2014 publication-title: J. Am. Chem. Soc. Nat. Mater. – volume: 2 52 start-page: 144 288 year: 2019 2019 publication-title: Nat. Electron. Acc. Chem. Res. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 52 start-page: 3965 year: 2019 publication-title: Macromolecules – year: 2002 – volume: 305 year: 2020 publication-title: Macromol. Mater. Eng. – volume: 52 29 start-page: 660 year: 2019 2017 publication-title: Macromolecules Adv. Mater. – volume: 30 7 1 30 start-page: 431 year: 2020 2019 2019 2020 publication-title: Adv. Funct. Mater. J. Mater. Chem. C CCS Chem. Adv. Funct. Mater. – volume: 30 year: 2019 publication-title: Adv. Funct. Mater. – volume: 32 year: 2019 publication-title: Adv. Mater. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 31 start-page: 2347 year: 2019 publication-title: Chem. Mater. – volume: 29 30 10 start-page: 4019 year: 2019 2020 2019 publication-title: Adv. Funct. Mater. Adv. Funct. Mater. Nat. Commun. – volume: 359 10 30 12 start-page: 72 1164 year: 2018 2019 2019 2020 2020 publication-title: Science Nat. Commun. Adv. Funct. Mater. ACS Appl. Mater. Interfaces Chem. Eng. J. – volume: 132 48 start-page: 6132 year: 2010 2015 publication-title: J. Am. Chem. Soc. Macromolecules – ident: e_1_2_7_8_3 doi: 10.1002/adfm.201907139 – ident: e_1_2_7_18_1 doi: 10.1016/j.polymer.2019.121943 – ident: e_1_2_7_8_1 doi: 10.1126/science.aam7588 – ident: e_1_2_7_28_1 doi: 10.1016/j.polymer.2020.122199 – ident: e_1_2_7_34_1 doi: 10.1016/j.cej.2020.124583 – ident: e_1_2_7_7_1 doi: 10.1021/acs.macromol.8b02414 – ident: e_1_2_7_11_2 doi: 10.1021/acs.langmuir.8b03820 – ident: e_1_2_7_2_2 doi: 10.1002/adfm.201908993 – ident: e_1_2_7_7_2 doi: 10.1002/adma.201606100 – ident: e_1_2_7_30_1 doi: 10.1002/adma.201801435 – ident: e_1_2_7_19_1 doi: 10.1063/1.1543144 – ident: e_1_2_7_13_1 doi: 10.1038/375303a0 – ident: e_1_2_7_13_2 doi: 10.1021/ja015817m – ident: e_1_2_7_3_1 doi: 10.1002/adma.201904765 – ident: e_1_2_7_22_1 doi: 10.1021/acs.macromol.9b00503 – ident: e_1_2_7_16_1 doi: 10.1021/acs.macromol.6b01172 – ident: e_1_2_7_20_1 doi: 10.1016/j.polymer.2018.01.035 – ident: e_1_2_7_26_1 doi: 10.1016/j.cej.2019.123468 – ident: e_1_2_7_2_3 doi: 10.1038/s41467-019-11973-5 – ident: e_1_2_7_1_3 doi: 10.31635/ccschem.019.20190048 – ident: e_1_2_7_12_1 doi: 10.1021/ja9009666 – ident: e_1_2_7_1_4 doi: 10.1002/adfm.202003491 – ident: e_1_2_7_5_1 doi: 10.1021/acs.macromol.9b00410 – ident: e_1_2_7_10_2 doi: 10.1126/sciadv.aav3097 – ident: e_1_2_7_16_3 doi: 10.1007/s10118-019-2283-3 – ident: e_1_2_7_1_1 doi: 10.1002/adfm.201904532 – ident: e_1_2_7_11_4 doi: 10.1039/C6CC01861K – ident: e_1_2_7_3_2 doi: 10.1039/D0CS00035C – ident: e_1_2_7_4_2 doi: 10.1016/j.scib.2020.06.002 – ident: e_1_2_7_33_1 doi: 10.1016/j.polymer.2019.121912 – ident: e_1_2_7_10_1 doi: 10.1016/j.mtphys.2020.100219 – ident: e_1_2_7_23_1 doi: 10.1021/acsnano.0c04158 – ident: e_1_2_7_1_2 doi: 10.1039/C9TC05392A – volume: 2019 start-page: 6906275 year: 2019 ident: e_1_2_7_4_3 publication-title: Research – ident: e_1_2_7_15_2 doi: 10.1002/anie.201307756 – ident: e_1_2_7_21_1 doi: 10.1002/0471224510 – ident: e_1_2_7_16_2 doi: 10.1002/adma.201802556 – ident: e_1_2_7_8_2 doi: 10.1038/s41467-019-09130-z – ident: e_1_2_7_2_1 doi: 10.1002/adfm.201808909 – ident: e_1_2_7_27_1 doi: 10.1016/j.porgcoat.2020.105717 – ident: e_1_2_7_14_2 doi: 10.1021/acs.macromol.5b01162 – ident: e_1_2_7_31_1 doi: 10.1002/adma.201705145 – ident: e_1_2_7_12_2 doi: 10.1038/nmat4090 – ident: e_1_2_7_25_1 doi: 10.3390/polym12061393 – ident: e_1_2_7_29_1 doi: 10.1002/mame.202000089 – ident: e_1_2_7_15_1 doi: 10.1002/ange.200453860 – ident: e_1_2_7_6_2 doi: 10.1021/acs.accounts.8b00497 – ident: e_1_2_7_8_5 doi: 10.1016/j.cej.2020.127691 – ident: e_1_2_7_32_1 doi: 10.1002/adfm.201800741 – ident: e_1_2_7_4_1 doi: 10.1073/pnas.2007032117 – ident: e_1_2_7_6_1 doi: 10.1038/s41928-019-0235-0 – ident: e_1_2_7_11_3 doi: 10.1021/jacs.8b10481 – ident: e_1_2_7_11_1 doi: 10.1002/adfm.201803111 – ident: e_1_2_7_17_1 doi: 10.1002/adma.201903762 – ident: e_1_2_7_14_1 doi: 10.1021/ja104446r – ident: e_1_2_7_9_1 doi: 10.1002/adma.201901402 – ident: e_1_2_7_35_1 doi: 10.1002/adfm.201907109 – ident: e_1_2_7_8_4 doi: 10.1021/acsami.0c00443 – ident: e_1_2_7_24_1 doi: 10.1021/acs.chemmater.8b04624 |
SSID | ssj0017734 |
Score | 2.6557646 |
Snippet | Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Deformation donor‐acceptor self‐assembly Elastomers Electronics Elongation Healing Materials science Mechanical properties Muscles polyurethane Polyurethane resins Repair self‐healing Stability analysis Stress relaxation Stress relaxation tests thermal repair tough Toughness |
Title | A Biologically Muscle‐Inspired Polyurethane with Super‐Tough, Thermal Reparable and Self‐Healing Capabilities for Stretchable Electronics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202009869 https://www.proquest.com/docview/2495331307 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDDwRpSXPCCxEIidxGnGCqgAUYQoSN0i27EXohS1zQAT_wB-I7-EO6cNBQkhwRjp8rLvzp_Pd98Rsh-oiGXMcE-HSnuhzRgGmrQXC5NYE0jDHZF251qc34eXvag3VcVf8UPUATe0DOev0cClGh5_kobKzGIlOUb3mwIr-DBhC1HRbc0fxeK4OlYWDBO8WG_C2ujz46-3f12VPqHmNGB1K057icjJt1aJJg9H5Ugd6edvNI7_-ZllsjiGo7RV6c8KmTHFKlmYIilcI68tWjWsxOnMn2inHILo-8vbRYGn9CajN_38qRwYDMIbioFd2i0fzQBE7rAH0CEFXQT_n1NA-3KAtVpUFhntmtyCDBZCwYvoCSzbLlMX9u4UoDTFA3PQKSd_VnfrGa6T-_bZ3cm5N27j4OkgEonHkfwWHEcTiwaUsAAwwsQ3QZJhC9okVBG4WBtaJn2pfR1GbtMuDFeA5SzsoDfIbNEvzCahfiwt04GN_SwJuRYqForLgAUy1lbZZoN4k2lM9ZjjHFtt5GnFzsxTHOi0HugGOajlHyt2jx8ldyZakY6tfJhyl5wLKCBuEO6m95enpK3Tdqe-2vrLTdtknmNajUuD2yGzo0FpdgEXjdQemWuddq66e84GPgD82Qp0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5RONAeCpRW3UKpD0i9EIidxNkcV5TVQllUlUXiFtmOfWkU0O7mQE99g_YZeRJmnE2ASqhSOUaa_Nkzns_jmW8AdiOd8IJbEZhYmyB2BadAkwlSaTNnI2WFJ9Ien8nRRXxymbTZhFQL0_BDdAE3sgy_XpOBU0D64J41VBWOSskpvN-X2QtYobbeflf1vWOQ4mnaHCxLTile_LLlbQzFweP7H_ule7D5ELJ6nzNcA91-bZNq8mO_nut98_MvIsdn_c46vF4gUjZoVGgDlmz1Bl494CnchN8D1vSspBktb9i4nqHo7a8_xxUd1NuCfbsqb-qppTi8ZRTbZef1tZ2iyITaAO0xVEd0ASVDwK-mVK7FVFWwc1s6lKFaKHwRO0TP7ZN1cfvOEE0zOjNHtfLyR13DntlbuBgeTQ5HwaKTQ2CiRGaBIP5bXDv6VDegpUOMEWehjbKCutBmsU5wlXWx4ypUJjRx4vft0gqNcM7hJvodLFdXlX0PLEyV4yZyaVhksTBSp1ILFfFIpcZp1-9B0M5jbhY059Rto8wbgmaR00Dn3UD34HMnf90QfDwpud2qRb4w9FkufH4uAoG0B8LP7z-ekg--DMfd1Yf_uekTrI4m49P89Pjs6xa8FJRl47PitmF5Pq3tR4RJc73jDeEOLjgM-w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkRAcyr_YUsAHJC6kjR3H2RxX3a5aYKuKttLeItuxL43S1e7mUE59g_KMPAkzzm66rYQqwTHS5M-e8Xwez3wD8CkxKS-5E5GVxkbSl5wCTTbKlMu9S7QTgUh7fKQOzuTXSTpZq-Jv-SG6gBtZRlivycCnpd-9IQ3VpadKcoru91X-EB5JFfdJr4c_OgIpnmXtubLilOHFJyvaxljs3r7_tlu6wZrriDW4nNEz0KuPbTNNzneahdmxP-_wOP7P3zyHzSUeZYNWgV7AA1e_hKdrLIWv4HrA2o6VNJ_VJRs3cxT9ffXrsKZjeley44vqspk5isI7RpFddtJM3QxFTqkJ0BeGyogOoGII9_WMirWYrkt24iqPMlQJhS9ie-i3Q6oubt4ZYmlGJ-aoVEF-v2vXM38NZ6P9072DaNnHIbJJqvJIEPstrhx9qhowyiPCkHnskrykHrS5NCmusV56rmNtYyvTsGtXThgEcx630G9go76o3VtgcaY9t4nP4jKXwiqTKSN0whOdWW98vwfRahoLuyQ5p14bVdHSM4uCBrroBroHnzv5aUvv8VfJ7ZVWFEsznxciZOciDMh6IML03vOUYjAcjburrX-56SM8Ph6Oiu-HR9_ewRNBKTYhJW4bNhazxr1HjLQwH4IZ_AEdLQuz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Biologically+Muscle%E2%80%90Inspired+Polyurethane+with+Super%E2%80%90Tough%2C+Thermal+Reparable+and+Self%E2%80%90Healing+Capabilities+for+Stretchable+Electronics&rft.jtitle=Advanced+functional+materials&rft.au=Wu+Bin+Ying&rft.au=Wang%2C+Guyue&rft.au=Kong%2C+Zhengyang&rft.au=Chen%2C+Kai+Yao&rft.date=2021-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=10&rft_id=info:doi/10.1002%2Fadfm.202009869&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |