High‐Performance Thickness Insensitive Perovskite Solar Cells with Enhanced Moisture Stability

High‐performance perovskite solar cells (PVSCs) with absorber layer thickness insensitive features are important for practical fabrication, however these features are difficult to be realized. There are very few reports of the fabrication of polycrystalline PVSCs with power conversion efficienies (P...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 8; no. 23
Main Authors Chen, Jiehuan, Zuo, Lijian, Zhang, Yingzhu, Lian, Xiaomei, Fu, Weifei, Yan, Jielin, Li, Jun, Wu, Gang, Li, Chang‐Zhi, Chen, Hongzheng
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 16.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High‐performance perovskite solar cells (PVSCs) with absorber layer thickness insensitive features are important for practical fabrication, however these features are difficult to be realized. There are very few reports of the fabrication of polycrystalline PVSCs with power conversion efficienies (PCE) insensitive to film thickness beyond 600 nm. The main reason lies in more serious recombination of the thick perovskite layer compared to the thin layer. Herein, this challenge is addressed by a simple hot casting method to formulate high‐quality perovskite film with enlarged grain size, high carrier mobility, and reduced defects. It is found that increasing the temperature to 70 °C can dramatically increase the film thickness and enlarge the perovskite crystal, therefore boost the efficiency from ≈16% to ≈19%. Notably, a record PCE of 19.54% is achieved with 850 nm thick perovskite film, which is among the highest efficiency for thick‐film PVSCs. The PCE remains steady around 19% when modifying the perovskite layer from 700 to 1150 nm. Moreover, these thick‐film PVSCs show good stability with 80% of its initial efficiency after 30 d in air with a humidity of 50%. Overall, this simple yet effective method has a great potential in the mass manufacture of PVSCs. High‐performance thickness insensitive perovskite solar cells (PVSCs) with enhanced moisture stability are demonstrated via a simple hot casting method, which formulates high‐quality perovskite film with enlarged grain size, high carrier mobility, and reduced defects. A record power conversion efficiency of 19.54% is achieved with 850 nm thick perovskite film, which is among the highest efficiency for thick‐film PVSCs.
AbstractList High‐performance perovskite solar cells (PVSCs) with absorber layer thickness insensitive features are important for practical fabrication, however these features are difficult to be realized. There are very few reports of the fabrication of polycrystalline PVSCs with power conversion efficienies (PCE) insensitive to film thickness beyond 600 nm. The main reason lies in more serious recombination of the thick perovskite layer compared to the thin layer. Herein, this challenge is addressed by a simple hot casting method to formulate high‐quality perovskite film with enlarged grain size, high carrier mobility, and reduced defects. It is found that increasing the temperature to 70 °C can dramatically increase the film thickness and enlarge the perovskite crystal, therefore boost the efficiency from ≈16% to ≈19%. Notably, a record PCE of 19.54% is achieved with 850 nm thick perovskite film, which is among the highest efficiency for thick‐film PVSCs. The PCE remains steady around 19% when modifying the perovskite layer from 700 to 1150 nm. Moreover, these thick‐film PVSCs show good stability with 80% of its initial efficiency after 30 d in air with a humidity of 50%. Overall, this simple yet effective method has a great potential in the mass manufacture of PVSCs.
High‐performance perovskite solar cells (PVSCs) with absorber layer thickness insensitive features are important for practical fabrication, however these features are difficult to be realized. There are very few reports of the fabrication of polycrystalline PVSCs with power conversion efficienies (PCE) insensitive to film thickness beyond 600 nm. The main reason lies in more serious recombination of the thick perovskite layer compared to the thin layer. Herein, this challenge is addressed by a simple hot casting method to formulate high‐quality perovskite film with enlarged grain size, high carrier mobility, and reduced defects. It is found that increasing the temperature to 70 °C can dramatically increase the film thickness and enlarge the perovskite crystal, therefore boost the efficiency from ≈16% to ≈19%. Notably, a record PCE of 19.54% is achieved with 850 nm thick perovskite film, which is among the highest efficiency for thick‐film PVSCs. The PCE remains steady around 19% when modifying the perovskite layer from 700 to 1150 nm. Moreover, these thick‐film PVSCs show good stability with 80% of its initial efficiency after 30 d in air with a humidity of 50%. Overall, this simple yet effective method has a great potential in the mass manufacture of PVSCs. High‐performance thickness insensitive perovskite solar cells (PVSCs) with enhanced moisture stability are demonstrated via a simple hot casting method, which formulates high‐quality perovskite film with enlarged grain size, high carrier mobility, and reduced defects. A record power conversion efficiency of 19.54% is achieved with 850 nm thick perovskite film, which is among the highest efficiency for thick‐film PVSCs.
Author Li, Jun
Yan, Jielin
Zuo, Lijian
Lian, Xiaomei
Chen, Hongzheng
Li, Chang‐Zhi
Wu, Gang
Zhang, Yingzhu
Fu, Weifei
Chen, Jiehuan
Author_xml – sequence: 1
  givenname: Jiehuan
  surname: Chen
  fullname: Chen, Jiehuan
  organization: Zhejiang University
– sequence: 2
  givenname: Lijian
  surname: Zuo
  fullname: Zuo, Lijian
  organization: Zhejiang University
– sequence: 3
  givenname: Yingzhu
  surname: Zhang
  fullname: Zhang, Yingzhu
  organization: Zhejiang University
– sequence: 4
  givenname: Xiaomei
  surname: Lian
  fullname: Lian, Xiaomei
  organization: Zhejiang University
– sequence: 5
  givenname: Weifei
  surname: Fu
  fullname: Fu, Weifei
  organization: Zhejiang University
– sequence: 6
  givenname: Jielin
  surname: Yan
  fullname: Yan, Jielin
  organization: Zhejiang University
– sequence: 7
  givenname: Jun
  surname: Li
  fullname: Li, Jun
  organization: Zhejiang University
– sequence: 8
  givenname: Gang
  surname: Wu
  fullname: Wu, Gang
  email: wmang@zju.edu.cn
  organization: Zhejiang University
– sequence: 9
  givenname: Chang‐Zhi
  surname: Li
  fullname: Li, Chang‐Zhi
  email: czli@zju.edu.cn
  organization: Zhejiang University
– sequence: 10
  givenname: Hongzheng
  orcidid: 0000-0002-5922-9550
  surname: Chen
  fullname: Chen, Hongzheng
  email: hzchen@zju.edu.cn
  organization: Zhejiang University
BookMark eNqFkM9OAjEQhxuDiYhcPW_iGZxu90_3SAgKCaiJel67bdctLC22BcLNR_AZfRKXYDAxMc5l5vB9M5nfOWppoyVClxj6GCC8ZlIv-yFgChAReoLaOMFRL6ERtI4zCc9Q17k5NBVlGAhpo5exeq0-3z8epC2NXTLNZfBUKb7Q0rlgop3UTnm1kUFDmI1bKC-DR1MzGwxlXbtgq3wVjHS1N0UwM8r5tW0QzwpVK7-7QKclq53sfvcOer4ZPQ3Hven97WQ4mPY4iRPaEwmUWSZKRkkZRSylmPJYpKKgZZJSiLkQZYoLATgNOaEFoWkSSWh-4pgBCNJBV4e9K2ve1tL5fG7WVjcn8xAoTUMgNG6o6EBxa5yzssy58swro71lqs4x5Ps4832c-THORuv_0lZWLZnd_S1kB2Grarn7h84Ho7vZj_sFoKGL7A
CitedBy_id crossref_primary_10_3390_coatings13040669
crossref_primary_10_1007_s40042_021_00271_3
crossref_primary_10_1021_acs_jpcc_3c06128
crossref_primary_10_1002_solr_202300604
crossref_primary_10_1039_D3RA03102K
crossref_primary_10_1002_cssc_201902488
crossref_primary_10_1002_aisy_202200307
crossref_primary_10_1002_cjoc_201900317
crossref_primary_10_3390_coatings9110766
crossref_primary_10_1016_j_mtcomm_2023_107000
crossref_primary_10_1002_adom_202300272
crossref_primary_10_1088_1674_1056_28_4_048802
crossref_primary_10_1002_smtd_201900375
crossref_primary_10_1039_C8TA06925E
crossref_primary_10_1039_D2EE01097F
crossref_primary_10_1002_lpor_202401458
crossref_primary_10_1021_acsami_3c06717
crossref_primary_10_1021_acsaem_4c00640
crossref_primary_10_1016_j_optmat_2022_112575
crossref_primary_10_1021_acsami_9b19691
crossref_primary_10_1021_acsaem_0c03249
crossref_primary_10_1021_acsami_0c11731
crossref_primary_10_1002_adma_202101833
crossref_primary_10_1016_j_solmat_2019_04_007
crossref_primary_10_1016_j_synthmet_2020_116443
crossref_primary_10_1021_acsami_4c12010
crossref_primary_10_1039_D3EE03687A
crossref_primary_10_1007_s11426_018_9435_6
crossref_primary_10_1039_C8EE02575D
crossref_primary_10_1002_adfm_202422175
crossref_primary_10_1002_smsc_202200112
crossref_primary_10_1002_smll_202205128
crossref_primary_10_1063_5_0077075
crossref_primary_10_1007_s10854_021_05420_9
crossref_primary_10_3389_fchem_2022_842924
crossref_primary_10_1002_aenm_202003712
crossref_primary_10_1002_adfm_201808843
crossref_primary_10_1016_j_electacta_2024_145127
crossref_primary_10_1007_s40820_020_00494_2
crossref_primary_10_1016_j_synthmet_2019_06_011
crossref_primary_10_1002_adfm_201900092
crossref_primary_10_1007_s11705_019_1906_0
crossref_primary_10_1002_solr_202300554
crossref_primary_10_1021_acsami_1c09093
crossref_primary_10_1002_smtd_202200260
crossref_primary_10_1002_smtd_201900150
crossref_primary_10_1016_j_orgel_2022_106542
crossref_primary_10_1002_aenm_202302614
crossref_primary_10_1038_s41563_022_01395_y
crossref_primary_10_1021_acsami_3c10338
crossref_primary_10_1039_D4TC01337A
crossref_primary_10_1109_LED_2024_3403668
crossref_primary_10_1039_C9NR07377A
crossref_primary_10_1039_C9TC03881G
crossref_primary_10_1039_D1TA00036E
crossref_primary_10_1021_acs_jpclett_4c00194
crossref_primary_10_1021_acsaem_1c04028
crossref_primary_10_1039_D1TC05047H
crossref_primary_10_1016_j_cej_2025_161466
crossref_primary_10_1021_acsami_9b15820
crossref_primary_10_1021_acsami_0c08989
crossref_primary_10_1002_smsc_202300188
crossref_primary_10_1021_acsami_0c05632
crossref_primary_10_1016_j_jpowsour_2019_227584
crossref_primary_10_3390_app112411668
crossref_primary_10_1002_solr_202100114
crossref_primary_10_1016_j_cej_2020_127599
crossref_primary_10_1021_acsenergylett_0c00183
crossref_primary_10_1002_admi_202000950
crossref_primary_10_1007_s10854_020_03495_4
crossref_primary_10_3390_coatings14091113
crossref_primary_10_1002_ifm2_10
crossref_primary_10_1021_acsenergylett_1c01487
crossref_primary_10_1039_C8QO00788H
crossref_primary_10_1002_adom_202202118
crossref_primary_10_1016_j_jallcom_2023_171583
crossref_primary_10_1039_D3MA00381G
crossref_primary_10_1002_adfm_202104036
crossref_primary_10_1021_acs_jpcc_0c05357
crossref_primary_10_1002_adfm_201807024
crossref_primary_10_1016_j_solener_2021_02_041
crossref_primary_10_1039_D2TA00681B
crossref_primary_10_1002_adfm_202310945
crossref_primary_10_1016_j_jallcom_2023_169361
crossref_primary_10_1016_j_rser_2022_112614
crossref_primary_10_1002_anie_201904945
crossref_primary_10_1002_macp_201900084
crossref_primary_10_1002_aenm_202203682
crossref_primary_10_1039_C9TA06009J
crossref_primary_10_1002_adfm_202010385
crossref_primary_10_1016_j_isci_2019_11_007
crossref_primary_10_1002_sus2_36
crossref_primary_10_1039_D0TA08359C
crossref_primary_10_1002_lpor_202402077
crossref_primary_10_1016_j_jcis_2025_02_148
crossref_primary_10_1016_j_apsusc_2023_158416
crossref_primary_10_1002_aenm_202300025
crossref_primary_10_1039_C9TA03022K
crossref_primary_10_1002_cplu_202200021
crossref_primary_10_1002_solr_202200662
crossref_primary_10_1007_s40820_023_01046_0
crossref_primary_10_1002_ange_201904945
crossref_primary_10_1016_j_cej_2021_134235
crossref_primary_10_1002_smtd_202200624
crossref_primary_10_1016_j_nanoen_2019_103867
crossref_primary_10_3390_ma16052110
crossref_primary_10_1016_j_solener_2021_10_007
crossref_primary_10_1016_j_materresbull_2024_112707
crossref_primary_10_3390_coatings13111885
crossref_primary_10_1002_cjoc_202200349
crossref_primary_10_1038_s41467_020_15077_3
crossref_primary_10_1039_C8TA08499H
crossref_primary_10_1007_s12598_023_02529_0
crossref_primary_10_1039_D2QM01376B
crossref_primary_10_15541_jim20200495
crossref_primary_10_1039_D1TC03488J
crossref_primary_10_1039_C8TA05636F
crossref_primary_10_1016_j_apsusc_2021_149973
crossref_primary_10_1016_j_apsusc_2020_148583
crossref_primary_10_1002_solr_201900132
crossref_primary_10_1016_j_compchemeng_2024_108687
crossref_primary_10_1002_aenm_202201242
crossref_primary_10_1002_adma_202205309
crossref_primary_10_1016_j_jechem_2021_07_030
crossref_primary_10_1016_j_orgel_2019_01_017
crossref_primary_10_1002_adfm_202002503
crossref_primary_10_1002_adma_202105977
crossref_primary_10_1021_acsaem_9b01004
Cites_doi 10.1126/science.1243982
10.1002/pip.2855
10.1038/s41467-017-02039-5
10.1002/adma.201703852
10.1002/adma.201606774
10.1039/C5EE03620H
10.1002/adma.201703879
10.1039/C6TC04944C
10.1038/nenergy.2017.38
10.1038/ncomms8747
10.1039/C6TA08655A
10.1038/ncomms6784
10.1002/adma.201600594
10.1039/C6TA00909C
10.1002/adma.201603923
10.1126/science.aan2301
10.1002/adfm.201603968
10.1039/C7TA00366H
10.1002/aenm.201601660
10.1016/j.cclet.2016.11.009
10.1039/C4TA02637C
10.1002/aenm.201700012
10.1039/C4EE03907F
10.1002/adma.201401685
10.1126/science.aaa5760
10.1039/C6EE01037G
10.1002/adfm.201505215
10.1021/acsami.6b12637
10.1002/smll.201700611
10.1002/adfm.201702180
10.1002/adma.201701073
10.1002/adma.201600969
10.1038/ncomms8081
10.1002/aenm.201602333
10.1021/acsami.5b06780
10.1038/nenergy.2016.142
10.1016/j.orgel.2015.02.023
10.1063/1.4890056
10.1021/acs.nanolett.6b04015
10.1002/adma.201400231
10.1126/science.aad1015
10.1002/adma.201604695
10.1002/aenm.201602159
10.1039/C6EE02373H
10.1016/j.mtener.2017.06.009
10.1021/acs.jpcc.6b06914
10.1016/j.cclet.2016.06.021
10.1039/C6TA02999J
10.1021/jacs.6b00039
10.1126/science.aaa0472
10.1038/nnano.2015.230
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201800438
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_201800438
AENM201800438
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51620105006; 61721005
– fundername: International Science and Technology Cooperation Program of China
  funderid: 2016YFE0102900
– fundername: Zhejiang Province Science and Technology Plan
  funderid: 2018C01047
– fundername: 973 Program
  funderid: 2014CB643503
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2016FZA4007
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
EJD
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3568-d60f99dfa83f44a7818c5d7db8f67805cddf71bd0172c38b38764e0832c1a00d3
ISSN 1614-6832
IngestDate Fri Jul 25 12:13:04 EDT 2025
Tue Jul 01 01:43:25 EDT 2025
Thu Apr 24 22:58:13 EDT 2025
Wed Jan 22 16:38:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3568-d60f99dfa83f44a7818c5d7db8f67805cddf71bd0172c38b38764e0832c1a00d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5922-9550
PQID 2088720385
PQPubID 886389
PageCount 10
ParticipantIDs proquest_journals_2088720385
crossref_citationtrail_10_1002_aenm_201800438
crossref_primary_10_1002_aenm_201800438
wiley_primary_10_1002_aenm_201800438_AENM201800438
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 16, 2018
PublicationDateYYYYMMDD 2018-08-16
PublicationDate_xml – month: 08
  year: 2018
  text: August 16, 2018
  day: 16
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017 2016 2016 2017 2015 2017; 7 138 8 7 8 2
2016 2017 2017 2016 2017; 1 356 29 28 5
2017; 8
2017 2014 2018; 17 26 30
2015; 347
2017; 25
2014 2015; 5 6
2017; 27
2017; 13
2016 2017 2017 2017; 26 29 28 28
2017 2015; 7 347
2017 2017; 10 5
2013 2014 2016; 342 26 120
2015 2016 2017; 7 4 29
2017 2016 2016 2015; 7 9 4 350
2017 2014 2016; 5 5 26
2014 2014 2015; 2 2 21
2016 2016 2017; 28 4 29
2016; 9
2017 2015; 29 6
2016; 11
e_1_2_7_3_4
e_1_2_7_5_2
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_19_3
e_1_2_7_3_5
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_17_3
e_1_2_7_19_1
e_1_2_7_15_4
e_1_2_7_17_2
e_1_2_7_15_3
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_11_4
e_1_2_7_13_2
e_1_2_7_11_3
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_9_3
e_1_2_7_21_1
e_1_2_7_2_5
e_1_2_7_6_1
e_1_2_7_2_4
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_3
e_1_2_7_8_1
e_1_2_7_2_6
e_1_2_7_6_2
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_12_3
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_20_1
References_xml – volume: 7 138 8 7 8 2
  start-page: 1700012 2528 34446 1601660 1544 17038
  year: 2017 2016 2016 2017 2015 2017
  publication-title: Adv. Energy Mater. J. Am. Chem. Soc. ACS Appl. Mater. Interfaces Adv. Energy Mater. Energy Environ. Sci. Nat. Energy
– volume: 27
  start-page: 1702180
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 342 26 120
  start-page: 341 6503 21248
  year: 2013 2014 2016
  publication-title: Science Adv. Mater. J. Phys. Chem. C
– volume: 25
  start-page: 3
  year: 2017
  publication-title: Prog. Photovoltaics: Res. Appl.
– volume: 13
  start-page: 1700611
  year: 2017
  publication-title: Small
– volume: 29 6
  start-page: 1606774 7747
  year: 2017 2015
  publication-title: Adv. Mater. Nat. Commun.
– volume: 26 29 28 28
  start-page: 2950 1603923 13 503
  year: 2016 2017 2017 2017
  publication-title: Adv. Funct. Mater. Adv. Mater. Chin. Chem. Lett. Chin. Chem. Lett.
– volume: 7 9 4 350
  start-page: 1602333 2262 5130 944
  year: 2017 2016 2016 2015
  publication-title: Adv. Energy Mater. Energy Environ. Sci. J. Mater. Chem. A Science
– volume: 8
  start-page: 1890
  year: 2017
  publication-title: Nat. Commun.
– volume: 2 2 21
  start-page: 81504 19873 19
  year: 2014 2014 2015
  publication-title: APL Mater. J. Mater. Chem. A Org. Electron.
– volume: 5 6
  start-page: 5784 7081
  year: 2014 2015
  publication-title: Nat. Commun. Nat. Commun.
– volume: 9
  start-page: 1486
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 347
  start-page: 967
  year: 2015
  publication-title: Science
– volume: 1 356 29 28 5
  start-page: 16142 1376 1703852 6734 11462
  year: 2016 2017 2017 2016 2017
  publication-title: Nat. Energy Science Adv. Mater. Adv. Mater. J. Mater. Chem. A
– volume: 5 5 26
  start-page: 205 5784 8119
  year: 2017 2014 2016
  publication-title: Mater. Today Energy Nat. Commun. Adv. Funct. Mater.
– volume: 7 347
  start-page: 1602159 522
  year: 2017 2015
  publication-title: Adv. Energy Mater. Science
– volume: 7 4 29
  start-page: 24008 17267 1604695
  year: 2015 2016 2017
  publication-title: ACS Appl. Mater. Interfaces J. Mater. Chem. A Adv. Mater.
– volume: 28 4 29
  start-page: 5214 9430 1701073
  year: 2016 2016 2017
  publication-title: Adv. Mater. J. Mater. Chem. A Adv. Mater.
– volume: 17 26 30
  start-page: 269 3748 1703879
  year: 2017 2014 2018
  publication-title: Nano Lett. Adv. Mater. Adv. Mater.
– volume: 10 5
  start-page: 145 842
  year: 2017 2017
  publication-title: Energy Environ. Sci. J. Mater. Chem. C
– volume: 11
  start-page: 75
  year: 2016
  publication-title: Nat. Nanotechnol.
– ident: e_1_2_7_1_1
  doi: 10.1126/science.1243982
– ident: e_1_2_7_4_1
  doi: 10.1002/pip.2855
– ident: e_1_2_7_14_1
  doi: 10.1038/s41467-017-02039-5
– ident: e_1_2_7_3_3
  doi: 10.1002/adma.201703852
– ident: e_1_2_7_5_1
  doi: 10.1002/adma.201606774
– ident: e_1_2_7_7_1
  doi: 10.1039/C5EE03620H
– ident: e_1_2_7_19_3
  doi: 10.1002/adma.201703879
– ident: e_1_2_7_10_2
  doi: 10.1039/C6TC04944C
– ident: e_1_2_7_2_6
  doi: 10.1038/nenergy.2017.38
– ident: e_1_2_7_5_2
  doi: 10.1038/ncomms8747
– ident: e_1_2_7_12_2
  doi: 10.1039/C6TA08655A
– ident: e_1_2_7_8_1
  doi: 10.1038/ncomms6784
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.201600594
– ident: e_1_2_7_15_3
  doi: 10.1039/C6TA00909C
– ident: e_1_2_7_11_2
  doi: 10.1002/adma.201603923
– ident: e_1_2_7_3_2
  doi: 10.1126/science.aan2301
– ident: e_1_2_7_17_3
  doi: 10.1002/adfm.201603968
– ident: e_1_2_7_3_5
  doi: 10.1039/C7TA00366H
– ident: e_1_2_7_2_4
  doi: 10.1002/aenm.201601660
– ident: e_1_2_7_11_4
  doi: 10.1016/j.cclet.2016.11.009
– ident: e_1_2_7_6_2
  doi: 10.1039/C4TA02637C
– ident: e_1_2_7_2_1
  doi: 10.1002/aenm.201700012
– ident: e_1_2_7_2_5
  doi: 10.1039/C4EE03907F
– ident: e_1_2_7_17_2
  doi: 10.1038/ncomms6784
– ident: e_1_2_7_1_2
  doi: 10.1002/adma.201401685
– ident: e_1_2_7_18_1
  doi: 10.1126/science.aaa5760
– ident: e_1_2_7_15_2
  doi: 10.1039/C6EE01037G
– ident: e_1_2_7_11_1
  doi: 10.1002/adfm.201505215
– ident: e_1_2_7_2_3
  doi: 10.1021/acsami.6b12637
– ident: e_1_2_7_16_1
  doi: 10.1002/smll.201700611
– ident: e_1_2_7_20_1
  doi: 10.1002/adfm.201702180
– ident: e_1_2_7_9_3
  doi: 10.1002/adma.201701073
– ident: e_1_2_7_3_4
  doi: 10.1002/adma.201600969
– ident: e_1_2_7_8_2
  doi: 10.1038/ncomms8081
– ident: e_1_2_7_15_1
  doi: 10.1002/aenm.201602333
– ident: e_1_2_7_12_1
  doi: 10.1021/acsami.5b06780
– ident: e_1_2_7_3_1
  doi: 10.1038/nenergy.2016.142
– ident: e_1_2_7_6_3
  doi: 10.1016/j.orgel.2015.02.023
– ident: e_1_2_7_6_1
  doi: 10.1063/1.4890056
– ident: e_1_2_7_19_1
  doi: 10.1021/acs.nanolett.6b04015
– ident: e_1_2_7_19_2
  doi: 10.1002/adma.201400231
– ident: e_1_2_7_15_4
  doi: 10.1126/science.aad1015
– ident: e_1_2_7_12_3
  doi: 10.1002/adma.201604695
– ident: e_1_2_7_13_1
  doi: 10.1002/aenm.201602159
– ident: e_1_2_7_10_1
  doi: 10.1039/C6EE02373H
– ident: e_1_2_7_17_1
  doi: 10.1016/j.mtener.2017.06.009
– ident: e_1_2_7_1_3
  doi: 10.1021/acs.jpcc.6b06914
– ident: e_1_2_7_11_3
  doi: 10.1016/j.cclet.2016.06.021
– ident: e_1_2_7_9_2
  doi: 10.1039/C6TA02999J
– ident: e_1_2_7_2_2
  doi: 10.1021/jacs.6b00039
– ident: e_1_2_7_13_2
  doi: 10.1126/science.aaa0472
– ident: e_1_2_7_21_1
  doi: 10.1038/nnano.2015.230
SSID ssj0000491033
Score 2.5985272
Snippet High‐performance perovskite solar cells (PVSCs) with absorber layer thickness insensitive features are important for practical fabrication, however these...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Carrier mobility
Crystal defects
Efficiency
Energy conversion
Film thickness
hot cast
moisture stability
morphology
Perovskites
Photovoltaic cells
Solar cells
Stability
thick film perovskite solar cells
thickness insensitive photovoltaics
Title High‐Performance Thickness Insensitive Perovskite Solar Cells with Enhanced Moisture Stability
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201800438
https://www.proquest.com/docview/2088720385
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gIHRHmIhYJ8QOJQGRLn5RxXZVGLuhVSt9LCJSS2o01ZEsRuOPTEP4DfyC9hHDuOV7x7iSJnkiieL573GKEn3Bc8D2REKOOUhCz3CQsjj1AeUF5EMmWFKhSencZH5-GrRbQYjb46WUvtpnjGL39ZV3IVrsIY8FVVyf4HZ-1DYQDOgb9wBA7D8Z94rJI0bLbCa6cEYL6s-PtuETtWvuO1ThACiubzWrlrD86URXtwKFcrU942rZc6F2DWAONVVAHU0C5xdivuO-lTBqSuGQR9V3_okCZgqj0quWwH5L1tG-0BuHDgaJ3Vb0B-Xi7bfvyk0l7ZRZU3H2TlOiZ81eia6LpJs5aC5CcxM-5L6Y7pDk39AswcnOniYyOKraD6aZ3XfWNzWatmAj7r4pmDROuj-JYy-jOt7v87PZ3Z69fQLgW7AxbO3cmL2cmZdduBQeV7QVe20X9e3wrUo8-3X7Kt6gz2i2sFdWrM_Ba6aewPPNFg2kMjWd9GN5yulHfQOwWr71--OYDCFlDYARQeAIU7QOEOUFgBCveAwj2gsAXUXXT-cjo_PCJmIw7CgyhmRMRemaaizFlQhmGegJLHI5GIgpWx2hODC1EmfiGUP4EHrAhAxIYSlHvK_dzzRHAP7dRNLe8jnKdSJGmapJyD-EgLJkKP-zHjIqBFGhdjRPo5y7jpUq82S1llur82zdQcZ3aOx-ippf-o-7P8lnK_Z0Fm_uE1XAUhS1V0fIxox5a_PCXbgsmDq9z0EF0ffpd9tLP51MpHoNluiscGbT8AV4CfJA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Performance+Thickness+Insensitive+Perovskite+Solar+Cells+with+Enhanced+Moisture+Stability&rft.jtitle=Advanced+energy+materials&rft.au=Chen%2C+Jiehuan&rft.au=Zuo%2C+Lijian&rft.au=Zhang%2C+Yingzhu&rft.au=Lian%2C+Xiaomei&rft.date=2018-08-16&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=8&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201800438&rft.externalDBID=10.1002%252Faenm.201800438&rft.externalDocID=AENM201800438
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon