High‐Performance Thickness Insensitive Perovskite Solar Cells with Enhanced Moisture Stability
High‐performance perovskite solar cells (PVSCs) with absorber layer thickness insensitive features are important for practical fabrication, however these features are difficult to be realized. There are very few reports of the fabrication of polycrystalline PVSCs with power conversion efficienies (P...
Saved in:
Published in | Advanced energy materials Vol. 8; no. 23 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
16.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High‐performance perovskite solar cells (PVSCs) with absorber layer thickness insensitive features are important for practical fabrication, however these features are difficult to be realized. There are very few reports of the fabrication of polycrystalline PVSCs with power conversion efficienies (PCE) insensitive to film thickness beyond 600 nm. The main reason lies in more serious recombination of the thick perovskite layer compared to the thin layer. Herein, this challenge is addressed by a simple hot casting method to formulate high‐quality perovskite film with enlarged grain size, high carrier mobility, and reduced defects. It is found that increasing the temperature to 70 °C can dramatically increase the film thickness and enlarge the perovskite crystal, therefore boost the efficiency from ≈16% to ≈19%. Notably, a record PCE of 19.54% is achieved with 850 nm thick perovskite film, which is among the highest efficiency for thick‐film PVSCs. The PCE remains steady around 19% when modifying the perovskite layer from 700 to 1150 nm. Moreover, these thick‐film PVSCs show good stability with 80% of its initial efficiency after 30 d in air with a humidity of 50%. Overall, this simple yet effective method has a great potential in the mass manufacture of PVSCs.
High‐performance thickness insensitive perovskite solar cells (PVSCs) with enhanced moisture stability are demonstrated via a simple hot casting method, which formulates high‐quality perovskite film with enlarged grain size, high carrier mobility, and reduced defects. A record power conversion efficiency of 19.54% is achieved with 850 nm thick perovskite film, which is among the highest efficiency for thick‐film PVSCs. |
---|---|
AbstractList | High‐performance perovskite solar cells (PVSCs) with absorber layer thickness insensitive features are important for practical fabrication, however these features are difficult to be realized. There are very few reports of the fabrication of polycrystalline PVSCs with power conversion efficienies (PCE) insensitive to film thickness beyond 600 nm. The main reason lies in more serious recombination of the thick perovskite layer compared to the thin layer. Herein, this challenge is addressed by a simple hot casting method to formulate high‐quality perovskite film with enlarged grain size, high carrier mobility, and reduced defects. It is found that increasing the temperature to 70 °C can dramatically increase the film thickness and enlarge the perovskite crystal, therefore boost the efficiency from ≈16% to ≈19%. Notably, a record PCE of 19.54% is achieved with 850 nm thick perovskite film, which is among the highest efficiency for thick‐film PVSCs. The PCE remains steady around 19% when modifying the perovskite layer from 700 to 1150 nm. Moreover, these thick‐film PVSCs show good stability with 80% of its initial efficiency after 30 d in air with a humidity of 50%. Overall, this simple yet effective method has a great potential in the mass manufacture of PVSCs. High‐performance perovskite solar cells (PVSCs) with absorber layer thickness insensitive features are important for practical fabrication, however these features are difficult to be realized. There are very few reports of the fabrication of polycrystalline PVSCs with power conversion efficienies (PCE) insensitive to film thickness beyond 600 nm. The main reason lies in more serious recombination of the thick perovskite layer compared to the thin layer. Herein, this challenge is addressed by a simple hot casting method to formulate high‐quality perovskite film with enlarged grain size, high carrier mobility, and reduced defects. It is found that increasing the temperature to 70 °C can dramatically increase the film thickness and enlarge the perovskite crystal, therefore boost the efficiency from ≈16% to ≈19%. Notably, a record PCE of 19.54% is achieved with 850 nm thick perovskite film, which is among the highest efficiency for thick‐film PVSCs. The PCE remains steady around 19% when modifying the perovskite layer from 700 to 1150 nm. Moreover, these thick‐film PVSCs show good stability with 80% of its initial efficiency after 30 d in air with a humidity of 50%. Overall, this simple yet effective method has a great potential in the mass manufacture of PVSCs. High‐performance thickness insensitive perovskite solar cells (PVSCs) with enhanced moisture stability are demonstrated via a simple hot casting method, which formulates high‐quality perovskite film with enlarged grain size, high carrier mobility, and reduced defects. A record power conversion efficiency of 19.54% is achieved with 850 nm thick perovskite film, which is among the highest efficiency for thick‐film PVSCs. |
Author | Li, Jun Yan, Jielin Zuo, Lijian Lian, Xiaomei Chen, Hongzheng Li, Chang‐Zhi Wu, Gang Zhang, Yingzhu Fu, Weifei Chen, Jiehuan |
Author_xml | – sequence: 1 givenname: Jiehuan surname: Chen fullname: Chen, Jiehuan organization: Zhejiang University – sequence: 2 givenname: Lijian surname: Zuo fullname: Zuo, Lijian organization: Zhejiang University – sequence: 3 givenname: Yingzhu surname: Zhang fullname: Zhang, Yingzhu organization: Zhejiang University – sequence: 4 givenname: Xiaomei surname: Lian fullname: Lian, Xiaomei organization: Zhejiang University – sequence: 5 givenname: Weifei surname: Fu fullname: Fu, Weifei organization: Zhejiang University – sequence: 6 givenname: Jielin surname: Yan fullname: Yan, Jielin organization: Zhejiang University – sequence: 7 givenname: Jun surname: Li fullname: Li, Jun organization: Zhejiang University – sequence: 8 givenname: Gang surname: Wu fullname: Wu, Gang email: wmang@zju.edu.cn organization: Zhejiang University – sequence: 9 givenname: Chang‐Zhi surname: Li fullname: Li, Chang‐Zhi email: czli@zju.edu.cn organization: Zhejiang University – sequence: 10 givenname: Hongzheng orcidid: 0000-0002-5922-9550 surname: Chen fullname: Chen, Hongzheng email: hzchen@zju.edu.cn organization: Zhejiang University |
BookMark | eNqFkM9OAjEQhxuDiYhcPW_iGZxu90_3SAgKCaiJel67bdctLC22BcLNR_AZfRKXYDAxMc5l5vB9M5nfOWppoyVClxj6GCC8ZlIv-yFgChAReoLaOMFRL6ERtI4zCc9Q17k5NBVlGAhpo5exeq0-3z8epC2NXTLNZfBUKb7Q0rlgop3UTnm1kUFDmI1bKC-DR1MzGwxlXbtgq3wVjHS1N0UwM8r5tW0QzwpVK7-7QKclq53sfvcOer4ZPQ3Hven97WQ4mPY4iRPaEwmUWSZKRkkZRSylmPJYpKKgZZJSiLkQZYoLATgNOaEFoWkSSWh-4pgBCNJBV4e9K2ve1tL5fG7WVjcn8xAoTUMgNG6o6EBxa5yzssy58swro71lqs4x5Ps4832c-THORuv_0lZWLZnd_S1kB2Grarn7h84Ho7vZj_sFoKGL7A |
CitedBy_id | crossref_primary_10_3390_coatings13040669 crossref_primary_10_1007_s40042_021_00271_3 crossref_primary_10_1021_acs_jpcc_3c06128 crossref_primary_10_1002_solr_202300604 crossref_primary_10_1039_D3RA03102K crossref_primary_10_1002_cssc_201902488 crossref_primary_10_1002_aisy_202200307 crossref_primary_10_1002_cjoc_201900317 crossref_primary_10_3390_coatings9110766 crossref_primary_10_1016_j_mtcomm_2023_107000 crossref_primary_10_1002_adom_202300272 crossref_primary_10_1088_1674_1056_28_4_048802 crossref_primary_10_1002_smtd_201900375 crossref_primary_10_1039_C8TA06925E crossref_primary_10_1039_D2EE01097F crossref_primary_10_1002_lpor_202401458 crossref_primary_10_1021_acsami_3c06717 crossref_primary_10_1021_acsaem_4c00640 crossref_primary_10_1016_j_optmat_2022_112575 crossref_primary_10_1021_acsami_9b19691 crossref_primary_10_1021_acsaem_0c03249 crossref_primary_10_1021_acsami_0c11731 crossref_primary_10_1002_adma_202101833 crossref_primary_10_1016_j_solmat_2019_04_007 crossref_primary_10_1016_j_synthmet_2020_116443 crossref_primary_10_1021_acsami_4c12010 crossref_primary_10_1039_D3EE03687A crossref_primary_10_1007_s11426_018_9435_6 crossref_primary_10_1039_C8EE02575D crossref_primary_10_1002_adfm_202422175 crossref_primary_10_1002_smsc_202200112 crossref_primary_10_1002_smll_202205128 crossref_primary_10_1063_5_0077075 crossref_primary_10_1007_s10854_021_05420_9 crossref_primary_10_3389_fchem_2022_842924 crossref_primary_10_1002_aenm_202003712 crossref_primary_10_1002_adfm_201808843 crossref_primary_10_1016_j_electacta_2024_145127 crossref_primary_10_1007_s40820_020_00494_2 crossref_primary_10_1016_j_synthmet_2019_06_011 crossref_primary_10_1002_adfm_201900092 crossref_primary_10_1007_s11705_019_1906_0 crossref_primary_10_1002_solr_202300554 crossref_primary_10_1021_acsami_1c09093 crossref_primary_10_1002_smtd_202200260 crossref_primary_10_1002_smtd_201900150 crossref_primary_10_1016_j_orgel_2022_106542 crossref_primary_10_1002_aenm_202302614 crossref_primary_10_1038_s41563_022_01395_y crossref_primary_10_1021_acsami_3c10338 crossref_primary_10_1039_D4TC01337A crossref_primary_10_1109_LED_2024_3403668 crossref_primary_10_1039_C9NR07377A crossref_primary_10_1039_C9TC03881G crossref_primary_10_1039_D1TA00036E crossref_primary_10_1021_acs_jpclett_4c00194 crossref_primary_10_1021_acsaem_1c04028 crossref_primary_10_1039_D1TC05047H crossref_primary_10_1016_j_cej_2025_161466 crossref_primary_10_1021_acsami_9b15820 crossref_primary_10_1021_acsami_0c08989 crossref_primary_10_1002_smsc_202300188 crossref_primary_10_1021_acsami_0c05632 crossref_primary_10_1016_j_jpowsour_2019_227584 crossref_primary_10_3390_app112411668 crossref_primary_10_1002_solr_202100114 crossref_primary_10_1016_j_cej_2020_127599 crossref_primary_10_1021_acsenergylett_0c00183 crossref_primary_10_1002_admi_202000950 crossref_primary_10_1007_s10854_020_03495_4 crossref_primary_10_3390_coatings14091113 crossref_primary_10_1002_ifm2_10 crossref_primary_10_1021_acsenergylett_1c01487 crossref_primary_10_1039_C8QO00788H crossref_primary_10_1002_adom_202202118 crossref_primary_10_1016_j_jallcom_2023_171583 crossref_primary_10_1039_D3MA00381G crossref_primary_10_1002_adfm_202104036 crossref_primary_10_1021_acs_jpcc_0c05357 crossref_primary_10_1002_adfm_201807024 crossref_primary_10_1016_j_solener_2021_02_041 crossref_primary_10_1039_D2TA00681B crossref_primary_10_1002_adfm_202310945 crossref_primary_10_1016_j_jallcom_2023_169361 crossref_primary_10_1016_j_rser_2022_112614 crossref_primary_10_1002_anie_201904945 crossref_primary_10_1002_macp_201900084 crossref_primary_10_1002_aenm_202203682 crossref_primary_10_1039_C9TA06009J crossref_primary_10_1002_adfm_202010385 crossref_primary_10_1016_j_isci_2019_11_007 crossref_primary_10_1002_sus2_36 crossref_primary_10_1039_D0TA08359C crossref_primary_10_1002_lpor_202402077 crossref_primary_10_1016_j_jcis_2025_02_148 crossref_primary_10_1016_j_apsusc_2023_158416 crossref_primary_10_1002_aenm_202300025 crossref_primary_10_1039_C9TA03022K crossref_primary_10_1002_cplu_202200021 crossref_primary_10_1002_solr_202200662 crossref_primary_10_1007_s40820_023_01046_0 crossref_primary_10_1002_ange_201904945 crossref_primary_10_1016_j_cej_2021_134235 crossref_primary_10_1002_smtd_202200624 crossref_primary_10_1016_j_nanoen_2019_103867 crossref_primary_10_3390_ma16052110 crossref_primary_10_1016_j_solener_2021_10_007 crossref_primary_10_1016_j_materresbull_2024_112707 crossref_primary_10_3390_coatings13111885 crossref_primary_10_1002_cjoc_202200349 crossref_primary_10_1038_s41467_020_15077_3 crossref_primary_10_1039_C8TA08499H crossref_primary_10_1007_s12598_023_02529_0 crossref_primary_10_1039_D2QM01376B crossref_primary_10_15541_jim20200495 crossref_primary_10_1039_D1TC03488J crossref_primary_10_1039_C8TA05636F crossref_primary_10_1016_j_apsusc_2021_149973 crossref_primary_10_1016_j_apsusc_2020_148583 crossref_primary_10_1002_solr_201900132 crossref_primary_10_1016_j_compchemeng_2024_108687 crossref_primary_10_1002_aenm_202201242 crossref_primary_10_1002_adma_202205309 crossref_primary_10_1016_j_jechem_2021_07_030 crossref_primary_10_1016_j_orgel_2019_01_017 crossref_primary_10_1002_adfm_202002503 crossref_primary_10_1002_adma_202105977 crossref_primary_10_1021_acsaem_9b01004 |
Cites_doi | 10.1126/science.1243982 10.1002/pip.2855 10.1038/s41467-017-02039-5 10.1002/adma.201703852 10.1002/adma.201606774 10.1039/C5EE03620H 10.1002/adma.201703879 10.1039/C6TC04944C 10.1038/nenergy.2017.38 10.1038/ncomms8747 10.1039/C6TA08655A 10.1038/ncomms6784 10.1002/adma.201600594 10.1039/C6TA00909C 10.1002/adma.201603923 10.1126/science.aan2301 10.1002/adfm.201603968 10.1039/C7TA00366H 10.1002/aenm.201601660 10.1016/j.cclet.2016.11.009 10.1039/C4TA02637C 10.1002/aenm.201700012 10.1039/C4EE03907F 10.1002/adma.201401685 10.1126/science.aaa5760 10.1039/C6EE01037G 10.1002/adfm.201505215 10.1021/acsami.6b12637 10.1002/smll.201700611 10.1002/adfm.201702180 10.1002/adma.201701073 10.1002/adma.201600969 10.1038/ncomms8081 10.1002/aenm.201602333 10.1021/acsami.5b06780 10.1038/nenergy.2016.142 10.1016/j.orgel.2015.02.023 10.1063/1.4890056 10.1021/acs.nanolett.6b04015 10.1002/adma.201400231 10.1126/science.aad1015 10.1002/adma.201604695 10.1002/aenm.201602159 10.1039/C6EE02373H 10.1016/j.mtener.2017.06.009 10.1021/acs.jpcc.6b06914 10.1016/j.cclet.2016.06.021 10.1039/C6TA02999J 10.1021/jacs.6b00039 10.1126/science.aaa0472 10.1038/nnano.2015.230 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201800438 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_201800438 AENM201800438 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51620105006; 61721005 – fundername: International Science and Technology Cooperation Program of China funderid: 2016YFE0102900 – fundername: Zhejiang Province Science and Technology Plan funderid: 2018C01047 – fundername: 973 Program funderid: 2014CB643503 – fundername: Fundamental Research Funds for the Central Universities funderid: 2016FZA4007 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS EJD G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3568-d60f99dfa83f44a7818c5d7db8f67805cddf71bd0172c38b38764e0832c1a00d3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:13:04 EDT 2025 Tue Jul 01 01:43:25 EDT 2025 Thu Apr 24 22:58:13 EDT 2025 Wed Jan 22 16:38:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3568-d60f99dfa83f44a7818c5d7db8f67805cddf71bd0172c38b38764e0832c1a00d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5922-9550 |
PQID | 2088720385 |
PQPubID | 886389 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2088720385 crossref_citationtrail_10_1002_aenm_201800438 crossref_primary_10_1002_aenm_201800438 wiley_primary_10_1002_aenm_201800438_AENM201800438 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 16, 2018 |
PublicationDateYYYYMMDD | 2018-08-16 |
PublicationDate_xml | – month: 08 year: 2018 text: August 16, 2018 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017 2016 2016 2017 2015 2017; 7 138 8 7 8 2 2016 2017 2017 2016 2017; 1 356 29 28 5 2017; 8 2017 2014 2018; 17 26 30 2015; 347 2017; 25 2014 2015; 5 6 2017; 27 2017; 13 2016 2017 2017 2017; 26 29 28 28 2017 2015; 7 347 2017 2017; 10 5 2013 2014 2016; 342 26 120 2015 2016 2017; 7 4 29 2017 2016 2016 2015; 7 9 4 350 2017 2014 2016; 5 5 26 2014 2014 2015; 2 2 21 2016 2016 2017; 28 4 29 2016; 9 2017 2015; 29 6 2016; 11 e_1_2_7_3_4 e_1_2_7_5_2 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_19_3 e_1_2_7_3_5 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_17_3 e_1_2_7_19_1 e_1_2_7_15_4 e_1_2_7_17_2 e_1_2_7_15_3 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_11_4 e_1_2_7_13_2 e_1_2_7_11_3 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_9_3 e_1_2_7_21_1 e_1_2_7_2_5 e_1_2_7_6_1 e_1_2_7_2_4 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_2_6 e_1_2_7_6_2 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_12_3 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_20_1 |
References_xml | – volume: 7 138 8 7 8 2 start-page: 1700012 2528 34446 1601660 1544 17038 year: 2017 2016 2016 2017 2015 2017 publication-title: Adv. Energy Mater. J. Am. Chem. Soc. ACS Appl. Mater. Interfaces Adv. Energy Mater. Energy Environ. Sci. Nat. Energy – volume: 27 start-page: 1702180 year: 2017 publication-title: Adv. Funct. Mater. – volume: 342 26 120 start-page: 341 6503 21248 year: 2013 2014 2016 publication-title: Science Adv. Mater. J. Phys. Chem. C – volume: 25 start-page: 3 year: 2017 publication-title: Prog. Photovoltaics: Res. Appl. – volume: 13 start-page: 1700611 year: 2017 publication-title: Small – volume: 29 6 start-page: 1606774 7747 year: 2017 2015 publication-title: Adv. Mater. Nat. Commun. – volume: 26 29 28 28 start-page: 2950 1603923 13 503 year: 2016 2017 2017 2017 publication-title: Adv. Funct. Mater. Adv. Mater. Chin. Chem. Lett. Chin. Chem. Lett. – volume: 7 9 4 350 start-page: 1602333 2262 5130 944 year: 2017 2016 2016 2015 publication-title: Adv. Energy Mater. Energy Environ. Sci. J. Mater. Chem. A Science – volume: 8 start-page: 1890 year: 2017 publication-title: Nat. Commun. – volume: 2 2 21 start-page: 81504 19873 19 year: 2014 2014 2015 publication-title: APL Mater. J. Mater. Chem. A Org. Electron. – volume: 5 6 start-page: 5784 7081 year: 2014 2015 publication-title: Nat. Commun. Nat. Commun. – volume: 9 start-page: 1486 year: 2016 publication-title: Energy Environ. Sci. – volume: 347 start-page: 967 year: 2015 publication-title: Science – volume: 1 356 29 28 5 start-page: 16142 1376 1703852 6734 11462 year: 2016 2017 2017 2016 2017 publication-title: Nat. Energy Science Adv. Mater. Adv. Mater. J. Mater. Chem. A – volume: 5 5 26 start-page: 205 5784 8119 year: 2017 2014 2016 publication-title: Mater. Today Energy Nat. Commun. Adv. Funct. Mater. – volume: 7 347 start-page: 1602159 522 year: 2017 2015 publication-title: Adv. Energy Mater. Science – volume: 7 4 29 start-page: 24008 17267 1604695 year: 2015 2016 2017 publication-title: ACS Appl. Mater. Interfaces J. Mater. Chem. A Adv. Mater. – volume: 28 4 29 start-page: 5214 9430 1701073 year: 2016 2016 2017 publication-title: Adv. Mater. J. Mater. Chem. A Adv. Mater. – volume: 17 26 30 start-page: 269 3748 1703879 year: 2017 2014 2018 publication-title: Nano Lett. Adv. Mater. Adv. Mater. – volume: 10 5 start-page: 145 842 year: 2017 2017 publication-title: Energy Environ. Sci. J. Mater. Chem. C – volume: 11 start-page: 75 year: 2016 publication-title: Nat. Nanotechnol. – ident: e_1_2_7_1_1 doi: 10.1126/science.1243982 – ident: e_1_2_7_4_1 doi: 10.1002/pip.2855 – ident: e_1_2_7_14_1 doi: 10.1038/s41467-017-02039-5 – ident: e_1_2_7_3_3 doi: 10.1002/adma.201703852 – ident: e_1_2_7_5_1 doi: 10.1002/adma.201606774 – ident: e_1_2_7_7_1 doi: 10.1039/C5EE03620H – ident: e_1_2_7_19_3 doi: 10.1002/adma.201703879 – ident: e_1_2_7_10_2 doi: 10.1039/C6TC04944C – ident: e_1_2_7_2_6 doi: 10.1038/nenergy.2017.38 – ident: e_1_2_7_5_2 doi: 10.1038/ncomms8747 – ident: e_1_2_7_12_2 doi: 10.1039/C6TA08655A – ident: e_1_2_7_8_1 doi: 10.1038/ncomms6784 – ident: e_1_2_7_9_1 doi: 10.1002/adma.201600594 – ident: e_1_2_7_15_3 doi: 10.1039/C6TA00909C – ident: e_1_2_7_11_2 doi: 10.1002/adma.201603923 – ident: e_1_2_7_3_2 doi: 10.1126/science.aan2301 – ident: e_1_2_7_17_3 doi: 10.1002/adfm.201603968 – ident: e_1_2_7_3_5 doi: 10.1039/C7TA00366H – ident: e_1_2_7_2_4 doi: 10.1002/aenm.201601660 – ident: e_1_2_7_11_4 doi: 10.1016/j.cclet.2016.11.009 – ident: e_1_2_7_6_2 doi: 10.1039/C4TA02637C – ident: e_1_2_7_2_1 doi: 10.1002/aenm.201700012 – ident: e_1_2_7_2_5 doi: 10.1039/C4EE03907F – ident: e_1_2_7_17_2 doi: 10.1038/ncomms6784 – ident: e_1_2_7_1_2 doi: 10.1002/adma.201401685 – ident: e_1_2_7_18_1 doi: 10.1126/science.aaa5760 – ident: e_1_2_7_15_2 doi: 10.1039/C6EE01037G – ident: e_1_2_7_11_1 doi: 10.1002/adfm.201505215 – ident: e_1_2_7_2_3 doi: 10.1021/acsami.6b12637 – ident: e_1_2_7_16_1 doi: 10.1002/smll.201700611 – ident: e_1_2_7_20_1 doi: 10.1002/adfm.201702180 – ident: e_1_2_7_9_3 doi: 10.1002/adma.201701073 – ident: e_1_2_7_3_4 doi: 10.1002/adma.201600969 – ident: e_1_2_7_8_2 doi: 10.1038/ncomms8081 – ident: e_1_2_7_15_1 doi: 10.1002/aenm.201602333 – ident: e_1_2_7_12_1 doi: 10.1021/acsami.5b06780 – ident: e_1_2_7_3_1 doi: 10.1038/nenergy.2016.142 – ident: e_1_2_7_6_3 doi: 10.1016/j.orgel.2015.02.023 – ident: e_1_2_7_6_1 doi: 10.1063/1.4890056 – ident: e_1_2_7_19_1 doi: 10.1021/acs.nanolett.6b04015 – ident: e_1_2_7_19_2 doi: 10.1002/adma.201400231 – ident: e_1_2_7_15_4 doi: 10.1126/science.aad1015 – ident: e_1_2_7_12_3 doi: 10.1002/adma.201604695 – ident: e_1_2_7_13_1 doi: 10.1002/aenm.201602159 – ident: e_1_2_7_10_1 doi: 10.1039/C6EE02373H – ident: e_1_2_7_17_1 doi: 10.1016/j.mtener.2017.06.009 – ident: e_1_2_7_1_3 doi: 10.1021/acs.jpcc.6b06914 – ident: e_1_2_7_11_3 doi: 10.1016/j.cclet.2016.06.021 – ident: e_1_2_7_9_2 doi: 10.1039/C6TA02999J – ident: e_1_2_7_2_2 doi: 10.1021/jacs.6b00039 – ident: e_1_2_7_13_2 doi: 10.1126/science.aaa0472 – ident: e_1_2_7_21_1 doi: 10.1038/nnano.2015.230 |
SSID | ssj0000491033 |
Score | 2.5985272 |
Snippet | High‐performance perovskite solar cells (PVSCs) with absorber layer thickness insensitive features are important for practical fabrication, however these... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Carrier mobility Crystal defects Efficiency Energy conversion Film thickness hot cast moisture stability morphology Perovskites Photovoltaic cells Solar cells Stability thick film perovskite solar cells thickness insensitive photovoltaics |
Title | High‐Performance Thickness Insensitive Perovskite Solar Cells with Enhanced Moisture Stability |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201800438 https://www.proquest.com/docview/2088720385 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gIHRHmIhYJ8QOJQGRLn5RxXZVGLuhVSt9LCJSS2o01ZEsRuOPTEP4DfyC9hHDuOV7x7iSJnkiieL573GKEn3Bc8D2REKOOUhCz3CQsjj1AeUF5EMmWFKhSencZH5-GrRbQYjb46WUvtpnjGL39ZV3IVrsIY8FVVyf4HZ-1DYQDOgb9wBA7D8Z94rJI0bLbCa6cEYL6s-PtuETtWvuO1ThACiubzWrlrD86URXtwKFcrU942rZc6F2DWAONVVAHU0C5xdivuO-lTBqSuGQR9V3_okCZgqj0quWwH5L1tG-0BuHDgaJ3Vb0B-Xi7bfvyk0l7ZRZU3H2TlOiZ81eia6LpJs5aC5CcxM-5L6Y7pDk39AswcnOniYyOKraD6aZ3XfWNzWatmAj7r4pmDROuj-JYy-jOt7v87PZ3Z69fQLgW7AxbO3cmL2cmZdduBQeV7QVe20X9e3wrUo8-3X7Kt6gz2i2sFdWrM_Ba6aewPPNFg2kMjWd9GN5yulHfQOwWr71--OYDCFlDYARQeAIU7QOEOUFgBCveAwj2gsAXUXXT-cjo_PCJmIw7CgyhmRMRemaaizFlQhmGegJLHI5GIgpWx2hODC1EmfiGUP4EHrAhAxIYSlHvK_dzzRHAP7dRNLe8jnKdSJGmapJyD-EgLJkKP-zHjIqBFGhdjRPo5y7jpUq82S1llur82zdQcZ3aOx-ippf-o-7P8lnK_Z0Fm_uE1XAUhS1V0fIxox5a_PCXbgsmDq9z0EF0ffpd9tLP51MpHoNluiscGbT8AV4CfJA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Performance+Thickness+Insensitive+Perovskite+Solar+Cells+with+Enhanced+Moisture+Stability&rft.jtitle=Advanced+energy+materials&rft.au=Chen%2C+Jiehuan&rft.au=Zuo%2C+Lijian&rft.au=Zhang%2C+Yingzhu&rft.au=Lian%2C+Xiaomei&rft.date=2018-08-16&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=8&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201800438&rft.externalDBID=10.1002%252Faenm.201800438&rft.externalDocID=AENM201800438 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |