Interlayer Engineering of Molybdenum Trioxide toward High‐Capacity and Stable Sodium Ion Half/Full Batteries

Orthorhombic molybdenum trioxide (MoO3) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with multiple valence states and intriguing layered structure. However, MoO3 still suffers from the low rate capability and poor cycle induced by pul...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 30; no. 28
Main Authors Wang, Bo, Ang, Edison Huixiang, Yang, Yang, Zhang, Yufei, Geng, Hongbo, Ye, Minghui, Li, Cheng Chao
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Orthorhombic molybdenum trioxide (MoO3) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with multiple valence states and intriguing layered structure. However, MoO3 still suffers from the low rate capability and poor cycle induced by pulverization during de/sodiation. An ingenious two‐step synthesis strategy to fine tune the layer structure of MoO3 targeting stable and fast sodium ionic diffusion channels is reported here. By integrating partially reduction and organic molecule intercalation methodologies, the interlayer spacing of MoO3 is remarkably enlarged to 10.40 Å and the layer structural integration are reinforced by dimercapto groups of bismuththiol molecules. Comprehensive characterizations and density functional theory calculations prove that the intercalated bismuththiol (DMcT) molecules substantially enhanced electronic conductivity and effectively shield the electrostatic interaction between Na+ and the MoO3 host by conjugated double bond, resulting in improved Na+ insertion/extraction kinetics. Benefiting from these features, the newly devised layered MoO3 electrode achieves excellent long‐term cycling stability and outstanding rate performance. These achievements are of vital significance for the preparation of sodium‐ion battery anode materials with high‐rate capability and long cycling life using intercalation chemistry. Partial reduction and organic molecule intercalation methodologies are developed to fine tune the layer structure of MoO3 targeting stable and fast Na+ diffusion kinetics. Bismuththiol not only expands the diffusion channels for facilitating Na+ diffusion, but also maintains the structural stability as interlayer pillars. In particular, it effectively shields the electrostatic interaction between Na+ and the MoO3 host by a conjugated double bond, resulting in improved Na+ insertion/extraction kinetics.
AbstractList Orthorhombic molybdenum trioxide (MoO 3 ) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with multiple valence states and intriguing layered structure. However, MoO 3 still suffers from the low rate capability and poor cycle induced by pulverization during de/sodiation. An ingenious two‐step synthesis strategy to fine tune the layer structure of MoO 3 targeting stable and fast sodium ionic diffusion channels is reported here. By integrating partially reduction and organic molecule intercalation methodologies, the interlayer spacing of MoO 3 is remarkably enlarged to 10.40 Å and the layer structural integration are reinforced by dimercapto groups of bismuththiol molecules. Comprehensive characterizations and density functional theory calculations prove that the intercalated bismuththiol (DMcT) molecules substantially enhanced electronic conductivity and effectively shield the electrostatic interaction between Na + and the MoO 3 host by conjugated double bond, resulting in improved Na + insertion/extraction kinetics. Benefiting from these features, the newly devised layered MoO 3 electrode achieves excellent long‐term cycling stability and outstanding rate performance. These achievements are of vital significance for the preparation of sodium‐ion battery anode materials with high‐rate capability and long cycling life using intercalation chemistry.
Orthorhombic molybdenum trioxide (MoO3) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with multiple valence states and intriguing layered structure. However, MoO3 still suffers from the low rate capability and poor cycle induced by pulverization during de/sodiation. An ingenious two‐step synthesis strategy to fine tune the layer structure of MoO3 targeting stable and fast sodium ionic diffusion channels is reported here. By integrating partially reduction and organic molecule intercalation methodologies, the interlayer spacing of MoO3 is remarkably enlarged to 10.40 Å and the layer structural integration are reinforced by dimercapto groups of bismuththiol molecules. Comprehensive characterizations and density functional theory calculations prove that the intercalated bismuththiol (DMcT) molecules substantially enhanced electronic conductivity and effectively shield the electrostatic interaction between Na+ and the MoO3 host by conjugated double bond, resulting in improved Na+ insertion/extraction kinetics. Benefiting from these features, the newly devised layered MoO3 electrode achieves excellent long‐term cycling stability and outstanding rate performance. These achievements are of vital significance for the preparation of sodium‐ion battery anode materials with high‐rate capability and long cycling life using intercalation chemistry. Partial reduction and organic molecule intercalation methodologies are developed to fine tune the layer structure of MoO3 targeting stable and fast Na+ diffusion kinetics. Bismuththiol not only expands the diffusion channels for facilitating Na+ diffusion, but also maintains the structural stability as interlayer pillars. In particular, it effectively shields the electrostatic interaction between Na+ and the MoO3 host by a conjugated double bond, resulting in improved Na+ insertion/extraction kinetics.
Orthorhombic molybdenum trioxide (MoO3) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with multiple valence states and intriguing layered structure. However, MoO3 still suffers from the low rate capability and poor cycle induced by pulverization during de/sodiation. An ingenious two‐step synthesis strategy to fine tune the layer structure of MoO3 targeting stable and fast sodium ionic diffusion channels is reported here. By integrating partially reduction and organic molecule intercalation methodologies, the interlayer spacing of MoO3 is remarkably enlarged to 10.40 Å and the layer structural integration are reinforced by dimercapto groups of bismuththiol molecules. Comprehensive characterizations and density functional theory calculations prove that the intercalated bismuththiol (DMcT) molecules substantially enhanced electronic conductivity and effectively shield the electrostatic interaction between Na+ and the MoO3 host by conjugated double bond, resulting in improved Na+ insertion/extraction kinetics. Benefiting from these features, the newly devised layered MoO3 electrode achieves excellent long‐term cycling stability and outstanding rate performance. These achievements are of vital significance for the preparation of sodium‐ion battery anode materials with high‐rate capability and long cycling life using intercalation chemistry.
Author Wang, Bo
Zhang, Yufei
Geng, Hongbo
Ye, Minghui
Ang, Edison Huixiang
Yang, Yang
Li, Cheng Chao
Author_xml – sequence: 1
  givenname: Bo
  surname: Wang
  fullname: Wang, Bo
  organization: Guangdong University of Technology
– sequence: 2
  givenname: Edison Huixiang
  surname: Ang
  fullname: Ang, Edison Huixiang
  organization: Nanyang Technological University
– sequence: 3
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
  organization: Guangdong University of Technology
– sequence: 4
  givenname: Yufei
  surname: Zhang
  fullname: Zhang, Yufei
  organization: Guangdong University of Technology
– sequence: 5
  givenname: Hongbo
  surname: Geng
  fullname: Geng, Hongbo
  organization: Guangdong University of Technology
– sequence: 6
  givenname: Minghui
  surname: Ye
  fullname: Ye, Minghui
  organization: Guangdong University of Technology
– sequence: 7
  givenname: Cheng Chao
  orcidid: 0000-0003-2434-760X
  surname: Li
  fullname: Li, Cheng Chao
  email: licc@gdut.edu.cn
  organization: Guangdong University of Technology
BookMark eNqFkEFPAjEUhBuDiaBePTfxDLTd3XY5IoKQaDyIibfNo_sWa0qL3SW4N3-Cv9Ff4hIMJibG05vDfDN50yEt5x0ScsFZjzMm-pAXq55ggjGuWHpE2lxy2Y2YSFsHzZ9OSKcsX3YeFcVt4mauwmChxkDHbmkcYjBuSX1B77ytFzm6zYrOg_FvJkda-S2EnE7N8vnz_WMEa9Cmqim4nD5UsLBIH3xuGmLmHZ2CLfqTjbX0CqqmxWB5Ro4LsCWef99T8jgZz0fT7u39zWw0vO3qKJFpV0sVJ1oJGScQ5XGqUbNBAoqpPAKUqCRfpImWgqcMFG8EEzxBpVnEFhJ1dEou97nr4F83WFbZi98E11RmIhY8klylvHH19i4dfFkGLLJ1MCsIdcZZtts0222aHTZtgPgX0LwPlfGuCmDs39hgj22Nxfqfkmx4Pbn7Yb8AjMCOvg
CitedBy_id crossref_primary_10_3390_nano14141189
crossref_primary_10_3390_ma14040766
crossref_primary_10_1016_j_diamond_2024_111595
crossref_primary_10_1021_acs_chemrev_3c00389
crossref_primary_10_1021_acs_jpcc_0c10237
crossref_primary_10_1021_acs_energyfuels_1c02352
crossref_primary_10_1002_smll_202407783
crossref_primary_10_1002_anie_202401051
crossref_primary_10_1002_asia_202000522
crossref_primary_10_1002_ange_202214258
crossref_primary_10_1016_j_cej_2023_148370
crossref_primary_10_1016_j_cej_2025_159678
crossref_primary_10_1002_smll_202105303
crossref_primary_10_1002_aenm_202003065
crossref_primary_10_1002_er_7679
crossref_primary_10_1016_j_cej_2022_139907
crossref_primary_10_1007_s42864_021_00093_7
crossref_primary_10_1016_j_foodchem_2022_133723
crossref_primary_10_1039_D3EE04141G
crossref_primary_10_1021_acsami_1c18755
crossref_primary_10_1021_acs_nanolett_4c02601
crossref_primary_10_1016_j_cej_2024_151151
crossref_primary_10_1002_ange_202401051
crossref_primary_10_1021_acsnano_2c07399
crossref_primary_10_1016_j_jcis_2022_10_072
crossref_primary_10_1016_j_cej_2021_128892
crossref_primary_10_1016_j_electacta_2020_136832
crossref_primary_10_1016_j_electacta_2021_138635
crossref_primary_10_1016_j_jechem_2020_07_035
crossref_primary_10_1002_adfm_202311471
crossref_primary_10_1002_adma_202210871
crossref_primary_10_1021_acsami_0c21645
crossref_primary_10_3389_fenrg_2020_00211
crossref_primary_10_1002_celc_202200059
crossref_primary_10_1002_eom2_12452
crossref_primary_10_1039_D0TA12417F
crossref_primary_10_1002_smll_202200595
crossref_primary_10_1039_D3SE00195D
crossref_primary_10_1088_2399_1984_abc103
crossref_primary_10_1016_j_ccr_2024_215725
crossref_primary_10_33961_jecst_2021_00920
crossref_primary_10_1021_acsnano_2c11699
crossref_primary_10_1002_ente_202100644
crossref_primary_10_1039_D0QM00656D
crossref_primary_10_1021_acsami_2c15359
crossref_primary_10_1016_j_cej_2021_128861
crossref_primary_10_1021_acsami_2c08690
crossref_primary_10_1016_j_jallcom_2024_173661
crossref_primary_10_3389_fenrg_2020_00200
crossref_primary_10_1002_cssc_202201200
crossref_primary_10_1002_cssc_202201442
crossref_primary_10_1016_j_mseb_2023_116304
crossref_primary_10_1016_j_cej_2023_146801
crossref_primary_10_1002_adma_202412104
crossref_primary_10_1016_j_compositesb_2023_110557
crossref_primary_10_1360_SSC_2023_0058
crossref_primary_10_1039_D3CS01043K
crossref_primary_10_1002_adfm_202007358
crossref_primary_10_1021_acsami_3c11398
crossref_primary_10_1002_smll_202107514
crossref_primary_10_1016_j_cej_2021_133215
crossref_primary_10_1016_j_jechem_2021_01_023
crossref_primary_10_1039_D4NJ00389F
crossref_primary_10_1002_anie_202214258
crossref_primary_10_1016_j_apsusc_2024_159826
crossref_primary_10_1016_j_apsusc_2023_158638
Cites_doi 10.1126/science.1212741
10.1039/C9TA05767F
10.1002/adma.200701708
10.1002/smll.201600101
10.1002/adfm.201402833
10.1039/C9TA07302G
10.1039/C8EE01651H
10.1002/ente.201500160
10.1149/2.0031514jes
10.1021/acsnano.8b02721
10.1002/adma.201706317
10.1039/C6TA01497F
10.1039/C5EE02806J
10.1002/aenm.201703217
10.1103/PhysRevB.59.1758
10.1021/ja4132399
10.1021/am404724u
10.1039/C8TA11854J
10.1016/j.nanoen.2016.07.017
10.1016/0927-0256(96)00008-0
10.1039/C8NR03372B
10.1103/PhysRevLett.77.3865
10.1016/j.electacta.2011.11.041
10.1038/nmat3309
10.1039/C6CS00776G
10.1002/aenm.201803342
10.1002/adma.201804378
10.1002/smtd.201800533
10.1039/C6TA01342B
10.1021/acsami.8b16324
10.1039/C9EE00956F
10.1002/aenm.201300139
10.1002/aenm.201601283
10.1021/am504310k
10.1002/adma.201800658
10.1103/PhysRevB.54.11169
10.1002/smtd.201800119
10.1038/s41467-017-02088-w
10.1039/C5QI00242G
10.1021/acsenergylett.8b01423
10.1016/j.joule.2018.07.008
10.1039/c1jm11447f
10.1002/smll.201804539
10.1002/smll.201902420
10.1021/cr100290v
10.1002/chem.201600224
10.1016/j.ceramint.2016.12.018
10.1039/C9TA08049J
10.1002/adma.201800762
10.1002/anie.201403734
10.1039/C6TA02561G
10.1002/aenm.201700403
10.1002/adma.201701968
10.1002/adfm.201807377
10.1039/C6EE03173K
10.1039/C7TA07111F
10.1002/adma.201700176
10.1039/C5TA05444C
10.1063/1.3382344
10.1039/b812769g
10.1002/adma.201203999
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202001708
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202001708
ADFM202001708
Genre article
GrantInformation_xml – fundername: Pearl River Talent Program of Guangdong Province
  funderid: 2017GC010030
– fundername: Guangdong University of Technology
  funderid: 220413198
– fundername: Guangdong Province Universities
– fundername: Colleges Pearl River Scholar
– fundername: Natural Science Foundation of Guangdong Providence
  funderid: 2018A030310571
– fundername: National Natural Science Foundation of China
  funderid: 51771058; 51801030
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3568-c6745c72645a3d48cec095a707d3ae6e761b85c62180a71c620215e7c030b6ec3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 04:14:11 EDT 2025
Tue Jul 01 04:12:14 EDT 2025
Thu Apr 24 23:08:34 EDT 2025
Wed Jan 22 16:34:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3568-c6745c72645a3d48cec095a707d3ae6e761b85c62180a71c620215e7c030b6ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2434-760X
PQID 2421361781
PQPubID 2045204
PageCount 11
ParticipantIDs proquest_journals_2421361781
crossref_primary_10_1002_adfm_202001708
crossref_citationtrail_10_1002_adfm_202001708
wiley_primary_10_1002_adfm_202001708_ADFM202001708
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 162
2017; 5
2019; 7
2012; 60
2011; 334
2017; 7
2019; 9
2013; 3
2013; 25
2019; 3
2015; 3
2019; 11
2019; 12
2017; 43
2019; 15
2017; 46
2008
2017; 29
2012; 11
2014; 136
1996; 54
2011; 111
2016; 12
1996; 77
2016; 4
2018; 9
2018; 8
2015; 25
2018; 3
2018; 2
2016; 3
2017; 10
1999; 59
2010; 132
2019; 29
2011; 21
2018; 30
2008; 20
2018; 12
2018; 11
2018; 10
2016; 27
2014; 6
2016; 9
1996; 6
2014; 53
2016; 22
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 53
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 3843
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 21
  start-page: 9332
  year: 2011
  publication-title: J. Mater. Chem.
– start-page: 4891
  year: 2008
  publication-title: Chem. Commun.
– volume: 43
  start-page: 3769
  year: 2017
  publication-title: Ceram. Int.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 1186
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 1264
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 20
  start-page: 2166
  year: 2008
  publication-title: Adv. Mater.
– volume: 2
  year: 2018
  publication-title: Small Methods
– volume: 60
  start-page: 269
  year: 2012
  publication-title: Electrochim. Acta
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 136
  start-page: 2986
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 2602
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 25
  start-page: 1180
  year: 2013
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1690
  year: 2018
  publication-title: Joule
– volume: 10
  start-page: 107
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 46
  start-page: 3529
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 162
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 11
  start-page: 512
  year: 2012
  publication-title: Nat. Mater.
– volume: 3
  start-page: 1108
  year: 2015
  publication-title: Energy Technol.
– volume: 12
  start-page: 2559
  year: 2016
  publication-title: Small
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 452
  year: 2016
  publication-title: Inorg. Chem. Front.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 4
  start-page: 5505
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 1
  year: 2018
  publication-title: Nat. Commun.
– volume: 27
  start-page: 447
  year: 2016
  publication-title: Nano Energy
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 15
  year: 2019
  publication-title: Small
– volume: 4
  start-page: 5402
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 1125
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 59
  start-page: 1758
  year: 1999
  publication-title: Phys. Rev. B
– volume: 25
  start-page: 481
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 12
  start-page: 7018
  year: 2018
  publication-title: ACS Nano
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 11
  start-page: 3157
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 9466
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 334
  start-page: 928
  year: 2011
  publication-title: Science
– volume: 22
  start-page: 7248
  year: 2016
  publication-title: Chem. ‐ Eur. J.
– volume: 6
  start-page: 15
  year: 1996
  publication-title: Comput. Mater. Sci.
– volume: 12
  start-page: 2273
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 6
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 111
  start-page: 3577
  year: 2011
  publication-title: Chem. Rev.
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
– ident: e_1_2_6_2_1
  doi: 10.1126/science.1212741
– ident: e_1_2_6_29_1
  doi: 10.1039/C9TA05767F
– ident: e_1_2_6_36_1
  doi: 10.1002/adma.200701708
– ident: e_1_2_6_41_1
  doi: 10.1002/smll.201600101
– ident: e_1_2_6_44_1
  doi: 10.1002/adfm.201402833
– ident: e_1_2_6_40_1
  doi: 10.1039/C9TA07302G
– ident: e_1_2_6_31_1
  doi: 10.1039/C8EE01651H
– ident: e_1_2_6_47_1
  doi: 10.1002/ente.201500160
– ident: e_1_2_6_18_1
  doi: 10.1149/2.0031514jes
– ident: e_1_2_6_6_1
  doi: 10.1021/acsnano.8b02721
– ident: e_1_2_6_14_1
  doi: 10.1002/adma.201706317
– ident: e_1_2_6_32_1
  doi: 10.1039/C6TA01497F
– ident: e_1_2_6_19_1
  doi: 10.1039/C5EE02806J
– ident: e_1_2_6_10_1
  doi: 10.1002/aenm.201703217
– ident: e_1_2_6_57_1
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_2_6_25_1
  doi: 10.1021/ja4132399
– ident: e_1_2_6_33_1
  doi: 10.1021/am404724u
– ident: e_1_2_6_49_1
  doi: 10.1039/C8TA11854J
– ident: e_1_2_6_22_1
  doi: 10.1016/j.nanoen.2016.07.017
– ident: e_1_2_6_58_1
  doi: 10.1016/0927-0256(96)00008-0
– ident: e_1_2_6_21_1
  doi: 10.1039/C8NR03372B
– ident: e_1_2_6_60_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_6_55_1
  doi: 10.1016/j.electacta.2011.11.041
– ident: e_1_2_6_7_1
  doi: 10.1038/nmat3309
– ident: e_1_2_6_8_1
  doi: 10.1039/C6CS00776G
– ident: e_1_2_6_12_1
  doi: 10.1002/aenm.201803342
– ident: e_1_2_6_3_1
  doi: 10.1002/adma.201804378
– ident: e_1_2_6_45_1
  doi: 10.1002/smtd.201800533
– ident: e_1_2_6_51_1
  doi: 10.1039/C6TA01342B
– ident: e_1_2_6_50_1
  doi: 10.1021/acsami.8b16324
– ident: e_1_2_6_26_1
  doi: 10.1039/C9EE00956F
– ident: e_1_2_6_43_1
  doi: 10.1002/aenm.201300139
– ident: e_1_2_6_53_1
  doi: 10.1002/aenm.201601283
– ident: e_1_2_6_42_1
  doi: 10.1021/am504310k
– ident: e_1_2_6_13_1
  doi: 10.1002/adma.201800658
– ident: e_1_2_6_59_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_6_15_1
  doi: 10.1002/smtd.201800119
– ident: e_1_2_6_35_1
  doi: 10.1038/s41467-017-02088-w
– ident: e_1_2_6_24_1
  doi: 10.1039/C5QI00242G
– ident: e_1_2_6_27_1
  doi: 10.1021/acsenergylett.8b01423
– ident: e_1_2_6_17_1
  doi: 10.1016/j.joule.2018.07.008
– ident: e_1_2_6_37_1
  doi: 10.1039/c1jm11447f
– ident: e_1_2_6_54_1
  doi: 10.1002/smll.201804539
– ident: e_1_2_6_4_1
  doi: 10.1002/smll.201902420
– ident: e_1_2_6_1_1
  doi: 10.1021/cr100290v
– ident: e_1_2_6_48_1
  doi: 10.1002/chem.201600224
– ident: e_1_2_6_46_1
  doi: 10.1016/j.ceramint.2016.12.018
– ident: e_1_2_6_30_1
  doi: 10.1039/C9TA08049J
– ident: e_1_2_6_28_1
  doi: 10.1002/adma.201800762
– ident: e_1_2_6_11_1
  doi: 10.1002/anie.201403734
– ident: e_1_2_6_23_1
  doi: 10.1039/C6TA02561G
– ident: e_1_2_6_9_1
  doi: 10.1002/aenm.201700403
– ident: e_1_2_6_56_1
  doi: 10.1002/adma.201701968
– ident: e_1_2_6_16_1
  doi: 10.1002/adfm.201807377
– ident: e_1_2_6_5_1
  doi: 10.1039/C6EE03173K
– ident: e_1_2_6_38_1
  doi: 10.1039/C7TA07111F
– ident: e_1_2_6_20_1
  doi: 10.1002/adma.201700176
– ident: e_1_2_6_52_1
  doi: 10.1039/C5TA05444C
– ident: e_1_2_6_61_1
  doi: 10.1063/1.3382344
– ident: e_1_2_6_39_1
  doi: 10.1039/b812769g
– ident: e_1_2_6_34_1
  doi: 10.1002/adma.201203999
SSID ssj0017734
Score 2.5721018
Snippet Orthorhombic molybdenum trioxide (MoO3) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with...
Orthorhombic molybdenum trioxide (MoO 3 ) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anodes
bismuththiol
Cycles
Density functional theory
Diffusion layers
Diffusion rate
Electrode materials
Feature extraction
high capacity
Intercalation
interlayer engineering
Interlayers
Ion diffusion
Materials science
Molybdenum
Molybdenum oxides
Molybdenum trioxide
Organic chemistry
Rechargeable batteries
Sodium-ion batteries
Valence
Title Interlayer Engineering of Molybdenum Trioxide toward High‐Capacity and Stable Sodium Ion Half/Full Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202001708
https://www.proquest.com/docview/2421361781
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA4yL3rwW5zOkYPgqVvTj6Q7js0xxXpwG-xW8lUYllb2AerJn-Bv9JeYpGu3CSLoLaVJafImeZ8kz_sEgCshkXBiLCyi_IvlMelbLT-wLYFdSV2JODWS-eED7o-8u7E_Xoviz_Uhyg03PTLMfK0HOGWz5ko0lIpYR5I7RgFGR_tqwpZGRY-lfhQiJD9WxkgTvNC4UG20neZm8U2vtIKa64DVeJzePqDFv-ZEk6fGYs4a_O2bjON_KnMA9pZwFLbz_nMItmR6BHbXRAqPQWo2DROqsDlcewGzGIZZ8sqEJtPD4XSSvUyEhHPDw4WaP_L5_tFRvpgroA9pKqACtiyRcJCJiSpxm6WwT5PY6APDXOdTLdtPwKh3M-z0reUtDRZ3fRxYHBPP50QBK5-6wgu45Aq2UWIT4VKJJcGIBT7HCkvYlCCV0DBDEq6mF4Yld09BJc1SeQagTRyGYsZEiwYeZTFFInalWiAGxLEFCarAKqwU8aWEub5JI4ly8WUn0u0Yle1YBddl_udcvOPHnLXC6NFyEM8ifVru6hBKVAWOsd4vX4na3V5YPp3_pdAF2NHpnBBcA5X5dCEvFeyZszrYbnfD-0HddPEvSzv7uA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ05T8MwFMefoAzAwI0opwckpkCcw07HqqUqRxmgSGyRr0gVUYJKKwETH4HPyCfBdppQkBASbDnsyPH1_raffwY4lApLLyHSodq-OAFXodMII9eRxFfMV1gwi8zvXZHubXB-F5behGYvTMGHqCbcTMuw_bVp4GZC-uSTGspkYraSexYBE83CnDnW2-Dz29cVQQpTWiwsE2xcvPBdyW10vZOv8b_apU-xOS1Zrc3pLAMvU1u4mtwfj0f8WLx8Azn-63dWYGmiSFGzqEKrMKOyNVic4hSuQ2bnDVOm5TmaeoHyBPXy9JlL40-P-sNB_jSQCo2sKy4yLiTvr28tbY6F1vqIZRJpbctThW5yOdAxzvIMdVmaWEQwKlCfeuS-Abed036r60wOanCEH5LIEYQGoaBaW4XMl0EklNDKjVGXSp8poijBPAoF0XLCZRTrC6M0FBW6h-FECX8TalmeqS1ALvU4TjiXDRYFjCcMy8RXeowYUc-VNKqDUxZTLCYUc3OYRhoX_GUvNvkYV_lYh6Mq_EPB7_gx5G5Z6vGkHT_GZsHcN7socR08W3y_fCVutju96m77L5EOYL7b713Gl2dXFzuwYJ4X_sG7UBsNx2pPq6AR37f1_AMcmv5A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcPOkH0wbs4nZoHwafOppekexTnmJeJqIO9ldwKw9KKbqA--RH8jH4Sk3TrpiCCvvWSlDS3809y8gvAgVRYegmRDtX2xQm4Cp1GGLmOJL5ivsKCWWR-54q0u8F5L-xN7eIv-BDlhJtpGba_Ng38QSZHE2gok4nZSe5ZAkw0C3MBcRvm8IbmTQmQwpQW68oEGw8v3BtjG13v6Gv8r2ZpojWnFas1Oa1lYOPEFp4m9_XhgNfF6zeO43_-ZgWWRnoUHRcVaBVmVLYGi1OUwnXI7KxhyrQ4R1MvUJ6gTp6-cGm86dHdYz9_7kuFBtYRFxkHko-39xNtjIVW-ohlEmlly1OFbnPZ1zHO8gy1WZpYQDAqQJ963L4B3dbp3UnbGR3T4Ag_JJEjCA1CQbWyCpkvg0gooXUboy6VPlNEUYJ5FAqixYTLKNYXRmcoKnT_wokS_iZUsjxTW4Bc6nGccC4bLAoYTxiWia_0CDGinitpVAVnXEqxGDHMzVEaaVzQl73Y5GNc5mMVDsvwDwW948eQtXGhx6NW_BSb5XLf7KHEVfBs6f3ylfi42eqUd9t_ibQP89fNVnx5dnWxAwvmceEcXIPK4HGodrUEGvA9W8s_AR7P_O8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interlayer+Engineering+of+Molybdenum+Trioxide+toward+High%E2%80%90Capacity+and+Stable+Sodium+Ion+Half%2FFull+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Bo&rft.au=Ang%2C+Edison+Huixiang&rft.au=Yang%2C+Yang&rft.au=Zhang%2C+Yufei&rft.date=2020-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=28&rft_id=info:doi/10.1002%2Fadfm.202001708&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon