Interlayer Engineering of Molybdenum Trioxide toward High‐Capacity and Stable Sodium Ion Half/Full Batteries
Orthorhombic molybdenum trioxide (MoO3) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with multiple valence states and intriguing layered structure. However, MoO3 still suffers from the low rate capability and poor cycle induced by pul...
Saved in:
Published in | Advanced functional materials Vol. 30; no. 28 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Orthorhombic molybdenum trioxide (MoO3) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with multiple valence states and intriguing layered structure. However, MoO3 still suffers from the low rate capability and poor cycle induced by pulverization during de/sodiation. An ingenious two‐step synthesis strategy to fine tune the layer structure of MoO3 targeting stable and fast sodium ionic diffusion channels is reported here. By integrating partially reduction and organic molecule intercalation methodologies, the interlayer spacing of MoO3 is remarkably enlarged to 10.40 Å and the layer structural integration are reinforced by dimercapto groups of bismuththiol molecules. Comprehensive characterizations and density functional theory calculations prove that the intercalated bismuththiol (DMcT) molecules substantially enhanced electronic conductivity and effectively shield the electrostatic interaction between Na+ and the MoO3 host by conjugated double bond, resulting in improved Na+ insertion/extraction kinetics. Benefiting from these features, the newly devised layered MoO3 electrode achieves excellent long‐term cycling stability and outstanding rate performance. These achievements are of vital significance for the preparation of sodium‐ion battery anode materials with high‐rate capability and long cycling life using intercalation chemistry.
Partial reduction and organic molecule intercalation methodologies are developed to fine tune the layer structure of MoO3 targeting stable and fast Na+ diffusion kinetics. Bismuththiol not only expands the diffusion channels for facilitating Na+ diffusion, but also maintains the structural stability as interlayer pillars. In particular, it effectively shields the electrostatic interaction between Na+ and the MoO3 host by a conjugated double bond, resulting in improved Na+ insertion/extraction kinetics. |
---|---|
AbstractList | Orthorhombic molybdenum trioxide (MoO
3
) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with multiple valence states and intriguing layered structure. However, MoO
3
still suffers from the low rate capability and poor cycle induced by pulverization during de/sodiation. An ingenious two‐step synthesis strategy to fine tune the layer structure of MoO
3
targeting stable and fast sodium ionic diffusion channels is reported here. By integrating partially reduction and organic molecule intercalation methodologies, the interlayer spacing of MoO
3
is remarkably enlarged to 10.40 Å and the layer structural integration are reinforced by dimercapto groups of bismuththiol molecules. Comprehensive characterizations and density functional theory calculations prove that the intercalated bismuththiol (DMcT) molecules substantially enhanced electronic conductivity and effectively shield the electrostatic interaction between Na
+
and the MoO
3
host by conjugated double bond, resulting in improved Na
+
insertion/extraction kinetics. Benefiting from these features, the newly devised layered MoO
3
electrode achieves excellent long‐term cycling stability and outstanding rate performance. These achievements are of vital significance for the preparation of sodium‐ion battery anode materials with high‐rate capability and long cycling life using intercalation chemistry. Orthorhombic molybdenum trioxide (MoO3) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with multiple valence states and intriguing layered structure. However, MoO3 still suffers from the low rate capability and poor cycle induced by pulverization during de/sodiation. An ingenious two‐step synthesis strategy to fine tune the layer structure of MoO3 targeting stable and fast sodium ionic diffusion channels is reported here. By integrating partially reduction and organic molecule intercalation methodologies, the interlayer spacing of MoO3 is remarkably enlarged to 10.40 Å and the layer structural integration are reinforced by dimercapto groups of bismuththiol molecules. Comprehensive characterizations and density functional theory calculations prove that the intercalated bismuththiol (DMcT) molecules substantially enhanced electronic conductivity and effectively shield the electrostatic interaction between Na+ and the MoO3 host by conjugated double bond, resulting in improved Na+ insertion/extraction kinetics. Benefiting from these features, the newly devised layered MoO3 electrode achieves excellent long‐term cycling stability and outstanding rate performance. These achievements are of vital significance for the preparation of sodium‐ion battery anode materials with high‐rate capability and long cycling life using intercalation chemistry. Partial reduction and organic molecule intercalation methodologies are developed to fine tune the layer structure of MoO3 targeting stable and fast Na+ diffusion kinetics. Bismuththiol not only expands the diffusion channels for facilitating Na+ diffusion, but also maintains the structural stability as interlayer pillars. In particular, it effectively shields the electrostatic interaction between Na+ and the MoO3 host by a conjugated double bond, resulting in improved Na+ insertion/extraction kinetics. Orthorhombic molybdenum trioxide (MoO3) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with multiple valence states and intriguing layered structure. However, MoO3 still suffers from the low rate capability and poor cycle induced by pulverization during de/sodiation. An ingenious two‐step synthesis strategy to fine tune the layer structure of MoO3 targeting stable and fast sodium ionic diffusion channels is reported here. By integrating partially reduction and organic molecule intercalation methodologies, the interlayer spacing of MoO3 is remarkably enlarged to 10.40 Å and the layer structural integration are reinforced by dimercapto groups of bismuththiol molecules. Comprehensive characterizations and density functional theory calculations prove that the intercalated bismuththiol (DMcT) molecules substantially enhanced electronic conductivity and effectively shield the electrostatic interaction between Na+ and the MoO3 host by conjugated double bond, resulting in improved Na+ insertion/extraction kinetics. Benefiting from these features, the newly devised layered MoO3 electrode achieves excellent long‐term cycling stability and outstanding rate performance. These achievements are of vital significance for the preparation of sodium‐ion battery anode materials with high‐rate capability and long cycling life using intercalation chemistry. |
Author | Wang, Bo Zhang, Yufei Geng, Hongbo Ye, Minghui Ang, Edison Huixiang Yang, Yang Li, Cheng Chao |
Author_xml | – sequence: 1 givenname: Bo surname: Wang fullname: Wang, Bo organization: Guangdong University of Technology – sequence: 2 givenname: Edison Huixiang surname: Ang fullname: Ang, Edison Huixiang organization: Nanyang Technological University – sequence: 3 givenname: Yang surname: Yang fullname: Yang, Yang organization: Guangdong University of Technology – sequence: 4 givenname: Yufei surname: Zhang fullname: Zhang, Yufei organization: Guangdong University of Technology – sequence: 5 givenname: Hongbo surname: Geng fullname: Geng, Hongbo organization: Guangdong University of Technology – sequence: 6 givenname: Minghui surname: Ye fullname: Ye, Minghui organization: Guangdong University of Technology – sequence: 7 givenname: Cheng Chao orcidid: 0000-0003-2434-760X surname: Li fullname: Li, Cheng Chao email: licc@gdut.edu.cn organization: Guangdong University of Technology |
BookMark | eNqFkEFPAjEUhBuDiaBePTfxDLTd3XY5IoKQaDyIibfNo_sWa0qL3SW4N3-Cv9Ff4hIMJibG05vDfDN50yEt5x0ScsFZjzMm-pAXq55ggjGuWHpE2lxy2Y2YSFsHzZ9OSKcsX3YeFcVt4mauwmChxkDHbmkcYjBuSX1B77ytFzm6zYrOg_FvJkda-S2EnE7N8vnz_WMEa9Cmqim4nD5UsLBIH3xuGmLmHZ2CLfqTjbX0CqqmxWB5Ro4LsCWef99T8jgZz0fT7u39zWw0vO3qKJFpV0sVJ1oJGScQ5XGqUbNBAoqpPAKUqCRfpImWgqcMFG8EEzxBpVnEFhJ1dEou97nr4F83WFbZi98E11RmIhY8klylvHH19i4dfFkGLLJ1MCsIdcZZtts0222aHTZtgPgX0LwPlfGuCmDs39hgj22Nxfqfkmx4Pbn7Yb8AjMCOvg |
CitedBy_id | crossref_primary_10_3390_nano14141189 crossref_primary_10_3390_ma14040766 crossref_primary_10_1016_j_diamond_2024_111595 crossref_primary_10_1021_acs_chemrev_3c00389 crossref_primary_10_1021_acs_jpcc_0c10237 crossref_primary_10_1021_acs_energyfuels_1c02352 crossref_primary_10_1002_smll_202407783 crossref_primary_10_1002_anie_202401051 crossref_primary_10_1002_asia_202000522 crossref_primary_10_1002_ange_202214258 crossref_primary_10_1016_j_cej_2023_148370 crossref_primary_10_1016_j_cej_2025_159678 crossref_primary_10_1002_smll_202105303 crossref_primary_10_1002_aenm_202003065 crossref_primary_10_1002_er_7679 crossref_primary_10_1016_j_cej_2022_139907 crossref_primary_10_1007_s42864_021_00093_7 crossref_primary_10_1016_j_foodchem_2022_133723 crossref_primary_10_1039_D3EE04141G crossref_primary_10_1021_acsami_1c18755 crossref_primary_10_1021_acs_nanolett_4c02601 crossref_primary_10_1016_j_cej_2024_151151 crossref_primary_10_1002_ange_202401051 crossref_primary_10_1021_acsnano_2c07399 crossref_primary_10_1016_j_jcis_2022_10_072 crossref_primary_10_1016_j_cej_2021_128892 crossref_primary_10_1016_j_electacta_2020_136832 crossref_primary_10_1016_j_electacta_2021_138635 crossref_primary_10_1016_j_jechem_2020_07_035 crossref_primary_10_1002_adfm_202311471 crossref_primary_10_1002_adma_202210871 crossref_primary_10_1021_acsami_0c21645 crossref_primary_10_3389_fenrg_2020_00211 crossref_primary_10_1002_celc_202200059 crossref_primary_10_1002_eom2_12452 crossref_primary_10_1039_D0TA12417F crossref_primary_10_1002_smll_202200595 crossref_primary_10_1039_D3SE00195D crossref_primary_10_1088_2399_1984_abc103 crossref_primary_10_1016_j_ccr_2024_215725 crossref_primary_10_33961_jecst_2021_00920 crossref_primary_10_1021_acsnano_2c11699 crossref_primary_10_1002_ente_202100644 crossref_primary_10_1039_D0QM00656D crossref_primary_10_1021_acsami_2c15359 crossref_primary_10_1016_j_cej_2021_128861 crossref_primary_10_1021_acsami_2c08690 crossref_primary_10_1016_j_jallcom_2024_173661 crossref_primary_10_3389_fenrg_2020_00200 crossref_primary_10_1002_cssc_202201200 crossref_primary_10_1002_cssc_202201442 crossref_primary_10_1016_j_mseb_2023_116304 crossref_primary_10_1016_j_cej_2023_146801 crossref_primary_10_1002_adma_202412104 crossref_primary_10_1016_j_compositesb_2023_110557 crossref_primary_10_1360_SSC_2023_0058 crossref_primary_10_1039_D3CS01043K crossref_primary_10_1002_adfm_202007358 crossref_primary_10_1021_acsami_3c11398 crossref_primary_10_1002_smll_202107514 crossref_primary_10_1016_j_cej_2021_133215 crossref_primary_10_1016_j_jechem_2021_01_023 crossref_primary_10_1039_D4NJ00389F crossref_primary_10_1002_anie_202214258 crossref_primary_10_1016_j_apsusc_2024_159826 crossref_primary_10_1016_j_apsusc_2023_158638 |
Cites_doi | 10.1126/science.1212741 10.1039/C9TA05767F 10.1002/adma.200701708 10.1002/smll.201600101 10.1002/adfm.201402833 10.1039/C9TA07302G 10.1039/C8EE01651H 10.1002/ente.201500160 10.1149/2.0031514jes 10.1021/acsnano.8b02721 10.1002/adma.201706317 10.1039/C6TA01497F 10.1039/C5EE02806J 10.1002/aenm.201703217 10.1103/PhysRevB.59.1758 10.1021/ja4132399 10.1021/am404724u 10.1039/C8TA11854J 10.1016/j.nanoen.2016.07.017 10.1016/0927-0256(96)00008-0 10.1039/C8NR03372B 10.1103/PhysRevLett.77.3865 10.1016/j.electacta.2011.11.041 10.1038/nmat3309 10.1039/C6CS00776G 10.1002/aenm.201803342 10.1002/adma.201804378 10.1002/smtd.201800533 10.1039/C6TA01342B 10.1021/acsami.8b16324 10.1039/C9EE00956F 10.1002/aenm.201300139 10.1002/aenm.201601283 10.1021/am504310k 10.1002/adma.201800658 10.1103/PhysRevB.54.11169 10.1002/smtd.201800119 10.1038/s41467-017-02088-w 10.1039/C5QI00242G 10.1021/acsenergylett.8b01423 10.1016/j.joule.2018.07.008 10.1039/c1jm11447f 10.1002/smll.201804539 10.1002/smll.201902420 10.1021/cr100290v 10.1002/chem.201600224 10.1016/j.ceramint.2016.12.018 10.1039/C9TA08049J 10.1002/adma.201800762 10.1002/anie.201403734 10.1039/C6TA02561G 10.1002/aenm.201700403 10.1002/adma.201701968 10.1002/adfm.201807377 10.1039/C6EE03173K 10.1039/C7TA07111F 10.1002/adma.201700176 10.1039/C5TA05444C 10.1063/1.3382344 10.1039/b812769g 10.1002/adma.201203999 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202001708 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202001708 ADFM202001708 |
Genre | article |
GrantInformation_xml | – fundername: Pearl River Talent Program of Guangdong Province funderid: 2017GC010030 – fundername: Guangdong University of Technology funderid: 220413198 – fundername: Guangdong Province Universities – fundername: Colleges Pearl River Scholar – fundername: Natural Science Foundation of Guangdong Providence funderid: 2018A030310571 – fundername: National Natural Science Foundation of China funderid: 51771058; 51801030 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3568-c6745c72645a3d48cec095a707d3ae6e761b85c62180a71c620215e7c030b6ec3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 04:14:11 EDT 2025 Tue Jul 01 04:12:14 EDT 2025 Thu Apr 24 23:08:34 EDT 2025 Wed Jan 22 16:34:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3568-c6745c72645a3d48cec095a707d3ae6e761b85c62180a71c620215e7c030b6ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2434-760X |
PQID | 2421361781 |
PQPubID | 2045204 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2421361781 crossref_primary_10_1002_adfm_202001708 crossref_citationtrail_10_1002_adfm_202001708 wiley_primary_10_1002_adfm_202001708_ADFM202001708 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 162 2017; 5 2019; 7 2012; 60 2011; 334 2017; 7 2019; 9 2013; 3 2013; 25 2019; 3 2015; 3 2019; 11 2019; 12 2017; 43 2019; 15 2017; 46 2008 2017; 29 2012; 11 2014; 136 1996; 54 2011; 111 2016; 12 1996; 77 2016; 4 2018; 9 2018; 8 2015; 25 2018; 3 2018; 2 2016; 3 2017; 10 1999; 59 2010; 132 2019; 29 2011; 21 2018; 30 2008; 20 2018; 12 2018; 11 2018; 10 2016; 27 2014; 6 2016; 9 1996; 6 2014; 53 2016; 22 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 53 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 3843 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 21 start-page: 9332 year: 2011 publication-title: J. Mater. Chem. – start-page: 4891 year: 2008 publication-title: Chem. Commun. – volume: 43 start-page: 3769 year: 2017 publication-title: Ceram. Int. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 3 start-page: 1186 year: 2013 publication-title: Adv. Energy Mater. – volume: 9 start-page: 1264 year: 2016 publication-title: Energy Environ. Sci. – volume: 20 start-page: 2166 year: 2008 publication-title: Adv. Mater. – volume: 2 year: 2018 publication-title: Small Methods – volume: 60 start-page: 269 year: 2012 publication-title: Electrochim. Acta – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 136 start-page: 2986 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 54 year: 1996 publication-title: Phys. Rev. B – volume: 3 start-page: 2602 year: 2018 publication-title: ACS Energy Lett. – volume: 25 start-page: 1180 year: 2013 publication-title: Adv. Mater. – volume: 2 start-page: 1690 year: 2018 publication-title: Joule – volume: 10 start-page: 107 year: 2017 publication-title: Energy Environ. Sci. – volume: 46 start-page: 3529 year: 2017 publication-title: Chem. Soc. Rev. – volume: 162 year: 2015 publication-title: J. Electrochem. Soc. – volume: 11 start-page: 512 year: 2012 publication-title: Nat. Mater. – volume: 3 start-page: 1108 year: 2015 publication-title: Energy Technol. – volume: 12 start-page: 2559 year: 2016 publication-title: Small – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 3 start-page: 452 year: 2016 publication-title: Inorg. Chem. Front. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 4 start-page: 5505 year: 2016 publication-title: J. Mater. Chem. A – volume: 9 start-page: 1 year: 2018 publication-title: Nat. Commun. – volume: 27 start-page: 447 year: 2016 publication-title: Nano Energy – volume: 10 year: 2018 publication-title: Nanoscale – volume: 15 year: 2019 publication-title: Small – volume: 4 start-page: 5402 year: 2016 publication-title: J. Mater. Chem. A – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 6 start-page: 1125 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 59 start-page: 1758 year: 1999 publication-title: Phys. Rev. B – volume: 25 start-page: 481 year: 2015 publication-title: Adv. Funct. Mater. – volume: 3 year: 2019 publication-title: Small Methods – volume: 12 start-page: 7018 year: 2018 publication-title: ACS Nano – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 11 start-page: 3157 year: 2018 publication-title: Energy Environ. Sci. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 4 start-page: 9466 year: 2016 publication-title: J. Mater. Chem. A – volume: 334 start-page: 928 year: 2011 publication-title: Science – volume: 22 start-page: 7248 year: 2016 publication-title: Chem. ‐ Eur. J. – volume: 6 start-page: 15 year: 1996 publication-title: Comput. Mater. Sci. – volume: 12 start-page: 2273 year: 2019 publication-title: Energy Environ. Sci. – volume: 6 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 111 start-page: 3577 year: 2011 publication-title: Chem. Rev. – volume: 132 year: 2010 publication-title: J. Chem. Phys. – ident: e_1_2_6_2_1 doi: 10.1126/science.1212741 – ident: e_1_2_6_29_1 doi: 10.1039/C9TA05767F – ident: e_1_2_6_36_1 doi: 10.1002/adma.200701708 – ident: e_1_2_6_41_1 doi: 10.1002/smll.201600101 – ident: e_1_2_6_44_1 doi: 10.1002/adfm.201402833 – ident: e_1_2_6_40_1 doi: 10.1039/C9TA07302G – ident: e_1_2_6_31_1 doi: 10.1039/C8EE01651H – ident: e_1_2_6_47_1 doi: 10.1002/ente.201500160 – ident: e_1_2_6_18_1 doi: 10.1149/2.0031514jes – ident: e_1_2_6_6_1 doi: 10.1021/acsnano.8b02721 – ident: e_1_2_6_14_1 doi: 10.1002/adma.201706317 – ident: e_1_2_6_32_1 doi: 10.1039/C6TA01497F – ident: e_1_2_6_19_1 doi: 10.1039/C5EE02806J – ident: e_1_2_6_10_1 doi: 10.1002/aenm.201703217 – ident: e_1_2_6_57_1 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_2_6_25_1 doi: 10.1021/ja4132399 – ident: e_1_2_6_33_1 doi: 10.1021/am404724u – ident: e_1_2_6_49_1 doi: 10.1039/C8TA11854J – ident: e_1_2_6_22_1 doi: 10.1016/j.nanoen.2016.07.017 – ident: e_1_2_6_58_1 doi: 10.1016/0927-0256(96)00008-0 – ident: e_1_2_6_21_1 doi: 10.1039/C8NR03372B – ident: e_1_2_6_60_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_6_55_1 doi: 10.1016/j.electacta.2011.11.041 – ident: e_1_2_6_7_1 doi: 10.1038/nmat3309 – ident: e_1_2_6_8_1 doi: 10.1039/C6CS00776G – ident: e_1_2_6_12_1 doi: 10.1002/aenm.201803342 – ident: e_1_2_6_3_1 doi: 10.1002/adma.201804378 – ident: e_1_2_6_45_1 doi: 10.1002/smtd.201800533 – ident: e_1_2_6_51_1 doi: 10.1039/C6TA01342B – ident: e_1_2_6_50_1 doi: 10.1021/acsami.8b16324 – ident: e_1_2_6_26_1 doi: 10.1039/C9EE00956F – ident: e_1_2_6_43_1 doi: 10.1002/aenm.201300139 – ident: e_1_2_6_53_1 doi: 10.1002/aenm.201601283 – ident: e_1_2_6_42_1 doi: 10.1021/am504310k – ident: e_1_2_6_13_1 doi: 10.1002/adma.201800658 – ident: e_1_2_6_59_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_6_15_1 doi: 10.1002/smtd.201800119 – ident: e_1_2_6_35_1 doi: 10.1038/s41467-017-02088-w – ident: e_1_2_6_24_1 doi: 10.1039/C5QI00242G – ident: e_1_2_6_27_1 doi: 10.1021/acsenergylett.8b01423 – ident: e_1_2_6_17_1 doi: 10.1016/j.joule.2018.07.008 – ident: e_1_2_6_37_1 doi: 10.1039/c1jm11447f – ident: e_1_2_6_54_1 doi: 10.1002/smll.201804539 – ident: e_1_2_6_4_1 doi: 10.1002/smll.201902420 – ident: e_1_2_6_1_1 doi: 10.1021/cr100290v – ident: e_1_2_6_48_1 doi: 10.1002/chem.201600224 – ident: e_1_2_6_46_1 doi: 10.1016/j.ceramint.2016.12.018 – ident: e_1_2_6_30_1 doi: 10.1039/C9TA08049J – ident: e_1_2_6_28_1 doi: 10.1002/adma.201800762 – ident: e_1_2_6_11_1 doi: 10.1002/anie.201403734 – ident: e_1_2_6_23_1 doi: 10.1039/C6TA02561G – ident: e_1_2_6_9_1 doi: 10.1002/aenm.201700403 – ident: e_1_2_6_56_1 doi: 10.1002/adma.201701968 – ident: e_1_2_6_16_1 doi: 10.1002/adfm.201807377 – ident: e_1_2_6_5_1 doi: 10.1039/C6EE03173K – ident: e_1_2_6_38_1 doi: 10.1039/C7TA07111F – ident: e_1_2_6_20_1 doi: 10.1002/adma.201700176 – ident: e_1_2_6_52_1 doi: 10.1039/C5TA05444C – ident: e_1_2_6_61_1 doi: 10.1063/1.3382344 – ident: e_1_2_6_39_1 doi: 10.1039/b812769g – ident: e_1_2_6_34_1 doi: 10.1002/adma.201203999 |
SSID | ssj0017734 |
Score | 2.5721018 |
Snippet | Orthorhombic molybdenum trioxide (MoO3) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with... Orthorhombic molybdenum trioxide (MoO 3 ) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anodes bismuththiol Cycles Density functional theory Diffusion layers Diffusion rate Electrode materials Feature extraction high capacity Intercalation interlayer engineering Interlayers Ion diffusion Materials science Molybdenum Molybdenum oxides Molybdenum trioxide Organic chemistry Rechargeable batteries Sodium-ion batteries Valence |
Title | Interlayer Engineering of Molybdenum Trioxide toward High‐Capacity and Stable Sodium Ion Half/Full Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202001708 https://www.proquest.com/docview/2421361781 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA4yL3rwW5zOkYPgqVvTj6Q7js0xxXpwG-xW8lUYllb2AerJn-Bv9JeYpGu3CSLoLaVJafImeZ8kz_sEgCshkXBiLCyi_IvlMelbLT-wLYFdSV2JODWS-eED7o-8u7E_Xoviz_Uhyg03PTLMfK0HOGWz5ko0lIpYR5I7RgFGR_tqwpZGRY-lfhQiJD9WxkgTvNC4UG20neZm8U2vtIKa64DVeJzePqDFv-ZEk6fGYs4a_O2bjON_KnMA9pZwFLbz_nMItmR6BHbXRAqPQWo2DROqsDlcewGzGIZZ8sqEJtPD4XSSvUyEhHPDw4WaP_L5_tFRvpgroA9pKqACtiyRcJCJiSpxm6WwT5PY6APDXOdTLdtPwKh3M-z0reUtDRZ3fRxYHBPP50QBK5-6wgu45Aq2UWIT4VKJJcGIBT7HCkvYlCCV0DBDEq6mF4Yld09BJc1SeQagTRyGYsZEiwYeZTFFInalWiAGxLEFCarAKqwU8aWEub5JI4ly8WUn0u0Yle1YBddl_udcvOPHnLXC6NFyEM8ifVru6hBKVAWOsd4vX4na3V5YPp3_pdAF2NHpnBBcA5X5dCEvFeyZszrYbnfD-0HddPEvSzv7uA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ05T8MwFMefoAzAwI0opwckpkCcw07HqqUqRxmgSGyRr0gVUYJKKwETH4HPyCfBdppQkBASbDnsyPH1_raffwY4lApLLyHSodq-OAFXodMII9eRxFfMV1gwi8zvXZHubXB-F5behGYvTMGHqCbcTMuw_bVp4GZC-uSTGspkYraSexYBE83CnDnW2-Dz29cVQQpTWiwsE2xcvPBdyW10vZOv8b_apU-xOS1Zrc3pLAMvU1u4mtwfj0f8WLx8Azn-63dWYGmiSFGzqEKrMKOyNVic4hSuQ2bnDVOm5TmaeoHyBPXy9JlL40-P-sNB_jSQCo2sKy4yLiTvr28tbY6F1vqIZRJpbctThW5yOdAxzvIMdVmaWEQwKlCfeuS-Abed036r60wOanCEH5LIEYQGoaBaW4XMl0EklNDKjVGXSp8poijBPAoF0XLCZRTrC6M0FBW6h-FECX8TalmeqS1ALvU4TjiXDRYFjCcMy8RXeowYUc-VNKqDUxZTLCYUc3OYRhoX_GUvNvkYV_lYh6Mq_EPB7_gx5G5Z6vGkHT_GZsHcN7socR08W3y_fCVutju96m77L5EOYL7b713Gl2dXFzuwYJ4X_sG7UBsNx2pPq6AR37f1_AMcmv5A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcPOkH0wbs4nZoHwafOppekexTnmJeJqIO9ldwKw9KKbqA--RH8jH4Sk3TrpiCCvvWSlDS3809y8gvAgVRYegmRDtX2xQm4Cp1GGLmOJL5ivsKCWWR-54q0u8F5L-xN7eIv-BDlhJtpGba_Ng38QSZHE2gok4nZSe5ZAkw0C3MBcRvm8IbmTQmQwpQW68oEGw8v3BtjG13v6Gv8r2ZpojWnFas1Oa1lYOPEFp4m9_XhgNfF6zeO43_-ZgWWRnoUHRcVaBVmVLYGi1OUwnXI7KxhyrQ4R1MvUJ6gTp6-cGm86dHdYz9_7kuFBtYRFxkHko-39xNtjIVW-ohlEmlly1OFbnPZ1zHO8gy1WZpYQDAqQJ963L4B3dbp3UnbGR3T4Ag_JJEjCA1CQbWyCpkvg0gooXUboy6VPlNEUYJ5FAqixYTLKNYXRmcoKnT_wokS_iZUsjxTW4Bc6nGccC4bLAoYTxiWia_0CDGinitpVAVnXEqxGDHMzVEaaVzQl73Y5GNc5mMVDsvwDwW948eQtXGhx6NW_BSb5XLf7KHEVfBs6f3ylfi42eqUd9t_ibQP89fNVnx5dnWxAwvmceEcXIPK4HGodrUEGvA9W8s_AR7P_O8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interlayer+Engineering+of+Molybdenum+Trioxide+toward+High%E2%80%90Capacity+and+Stable+Sodium+Ion+Half%2FFull+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Bo&rft.au=Ang%2C+Edison+Huixiang&rft.au=Yang%2C+Yang&rft.au=Zhang%2C+Yufei&rft.date=2020-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=28&rft_id=info:doi/10.1002%2Fadfm.202001708&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |