Flexible and Multifunctional Silk Textiles with Biomimetic Leaf‐Like MXene/Silver Nanowire Nanostructures for Electromagnetic Interference Shielding, Humidity Monitoring, and Self‐Derived Hydrophobicity
Although flexible and multifunctional textiles are promising for wearable electronics and portable device applications, the main issue is to endow textiles with multifunctionalities while maintaining their innate flexible and porous features. Herein, a vacuum‐assisted layer‐by‐layer assembly techniq...
Saved in:
Published in | Advanced functional materials Vol. 29; no. 44 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although flexible and multifunctional textiles are promising for wearable electronics and portable device applications, the main issue is to endow textiles with multifunctionalities while maintaining their innate flexible and porous features. Herein, a vacuum‐assisted layer‐by‐layer assembly technique is demonstrated to conformally deposit electrically conductive substances on textiles for developing multifunctional and flexible textiles with superb electromagnetic interference (EMI) shielding performances, superhydrophobicity, and highly sensitive humidity response. The formed leaf‐like nanostructure is composed of silver nanowires (AgNWs) as the highly conductive skeleton (vein) and transition metal carbide/carbonitride (MXene) nanosheets as the lamina. The presence of MXene protects AgNWs from oxidation and enhances the combination of AgNWs with the fabric substrate, and the transformation of its functional groups leads to self‐derived hydrophobicity. The flexible and multifunctional textile exhibits a low sheet resistance of 0.8 Ω sq−1, outstanding EMI shielding efficiency of 54 dB in the X‐band at a small thickness of 120 µm, and highly sensitive humidity responses, while retaining its satisfactory porosity and permeability. The self‐derived hydrophobicity with a large contact angle of >140° is achieved by aging the hydrophilic MXene coated silk. The wearable multifunctional textiles are highly promising for applications in intelligent garments, humidity sensors, actuators, and EMI shielding.
A biomimetic leaf‐like nanostructure composed of a 1D AgNWs skeleton (vein) and 2D MXene as the lamina is fabricated via vacuum‐assisted layer‐by‐layer assembly for electromagnetic interference (EMI) shielding, humidity monitoring, and self‐derived hydrophobicity. The (MA1)10 silk presents an exceptional EMI shielding effectiveness of ≈90 dB at 12.4 GHz at a thickness of 480 µm, and the MXene‐coated textile induces a hydrophilic‐to‐hydrophobic transition, generating a large contact angle of >140°. |
---|---|
AbstractList | Although flexible and multifunctional textiles are promising for wearable electronics and portable device applications, the main issue is to endow textiles with multifunctionalities while maintaining their innate flexible and porous features. Herein, a vacuum‐assisted layer‐by‐layer assembly technique is demonstrated to conformally deposit electrically conductive substances on textiles for developing multifunctional and flexible textiles with superb electromagnetic interference (EMI) shielding performances, superhydrophobicity, and highly sensitive humidity response. The formed leaf‐like nanostructure is composed of silver nanowires (AgNWs) as the highly conductive skeleton (vein) and transition metal carbide/carbonitride (MXene) nanosheets as the lamina. The presence of MXene protects AgNWs from oxidation and enhances the combination of AgNWs with the fabric substrate, and the transformation of its functional groups leads to self‐derived hydrophobicity. The flexible and multifunctional textile exhibits a low sheet resistance of 0.8 Ω sq
−1
, outstanding EMI shielding efficiency of 54 dB in the X‐band at a small thickness of 120 µm, and highly sensitive humidity responses, while retaining its satisfactory porosity and permeability. The self‐derived hydrophobicity with a large contact angle of >140° is achieved by aging the hydrophilic MXene coated silk. The wearable multifunctional textiles are highly promising for applications in intelligent garments, humidity sensors, actuators, and EMI shielding. Although flexible and multifunctional textiles are promising for wearable electronics and portable device applications, the main issue is to endow textiles with multifunctionalities while maintaining their innate flexible and porous features. Herein, a vacuum‐assisted layer‐by‐layer assembly technique is demonstrated to conformally deposit electrically conductive substances on textiles for developing multifunctional and flexible textiles with superb electromagnetic interference (EMI) shielding performances, superhydrophobicity, and highly sensitive humidity response. The formed leaf‐like nanostructure is composed of silver nanowires (AgNWs) as the highly conductive skeleton (vein) and transition metal carbide/carbonitride (MXene) nanosheets as the lamina. The presence of MXene protects AgNWs from oxidation and enhances the combination of AgNWs with the fabric substrate, and the transformation of its functional groups leads to self‐derived hydrophobicity. The flexible and multifunctional textile exhibits a low sheet resistance of 0.8 Ω sq−1, outstanding EMI shielding efficiency of 54 dB in the X‐band at a small thickness of 120 µm, and highly sensitive humidity responses, while retaining its satisfactory porosity and permeability. The self‐derived hydrophobicity with a large contact angle of >140° is achieved by aging the hydrophilic MXene coated silk. The wearable multifunctional textiles are highly promising for applications in intelligent garments, humidity sensors, actuators, and EMI shielding. A biomimetic leaf‐like nanostructure composed of a 1D AgNWs skeleton (vein) and 2D MXene as the lamina is fabricated via vacuum‐assisted layer‐by‐layer assembly for electromagnetic interference (EMI) shielding, humidity monitoring, and self‐derived hydrophobicity. The (MA1)10 silk presents an exceptional EMI shielding effectiveness of ≈90 dB at 12.4 GHz at a thickness of 480 µm, and the MXene‐coated textile induces a hydrophilic‐to‐hydrophobic transition, generating a large contact angle of >140°. Although flexible and multifunctional textiles are promising for wearable electronics and portable device applications, the main issue is to endow textiles with multifunctionalities while maintaining their innate flexible and porous features. Herein, a vacuum‐assisted layer‐by‐layer assembly technique is demonstrated to conformally deposit electrically conductive substances on textiles for developing multifunctional and flexible textiles with superb electromagnetic interference (EMI) shielding performances, superhydrophobicity, and highly sensitive humidity response. The formed leaf‐like nanostructure is composed of silver nanowires (AgNWs) as the highly conductive skeleton (vein) and transition metal carbide/carbonitride (MXene) nanosheets as the lamina. The presence of MXene protects AgNWs from oxidation and enhances the combination of AgNWs with the fabric substrate, and the transformation of its functional groups leads to self‐derived hydrophobicity. The flexible and multifunctional textile exhibits a low sheet resistance of 0.8 Ω sq−1, outstanding EMI shielding efficiency of 54 dB in the X‐band at a small thickness of 120 µm, and highly sensitive humidity responses, while retaining its satisfactory porosity and permeability. The self‐derived hydrophobicity with a large contact angle of >140° is achieved by aging the hydrophilic MXene coated silk. The wearable multifunctional textiles are highly promising for applications in intelligent garments, humidity sensors, actuators, and EMI shielding. |
Author | Chen, Wei Zhang, Hao‐Bin Guan, Fanglan Yu, Zhong‐Zhen Liu, Liu‐Xin Wang, Qi‐Wei |
Author_xml | – sequence: 1 givenname: Liu‐Xin surname: Liu fullname: Liu, Liu‐Xin organization: Beijing University of Chemical Technology – sequence: 2 givenname: Wei surname: Chen fullname: Chen, Wei organization: Beijing University of Chemical Technology – sequence: 3 givenname: Hao‐Bin surname: Zhang fullname: Zhang, Hao‐Bin email: zhanghaobin@mail.buct.edu.cn organization: Beijing University of Chemical Technology – sequence: 4 givenname: Qi‐Wei surname: Wang fullname: Wang, Qi‐Wei organization: Beijing University of Chemical Technology – sequence: 5 givenname: Fanglan surname: Guan fullname: Guan, Fanglan organization: Beijing Institute of Fashion Technology – sequence: 6 givenname: Zhong‐Zhen orcidid: 0000-0001-8357-3362 surname: Yu fullname: Yu, Zhong‐Zhen email: yuzz@mail.buct.edu.cn organization: Beijing University of Chemical Technology |
BookMark | eNqFkc1uEzEUhUeoSLSFLWtLbElqz_8sS9uQSgksUqTuRh77urmtxw62p2l2PAJPxkPwJHgSVCQkxMpX1jnnXp3vJDky1kCSvGV0yihNz7hU_TSlrKEFa6oXyTErWTnJaFofPc_s9lVy4v09payqsvw4-THT8ISdBsKNJMtBB1SDEQGt4ZqsUD-QG3gKqMGTLYY1-YC2xx4CCrIArn5--77AByDLWzBwFvWP4MgnbuwWHewHH9wgwuBigLKOXGkQwdme35l9yLUJ4BQ4MALIao2gJZq792Q-9Cgx7MjSGgzW7T_HG1egx62X4PARJJnvpLObte1QRPXr5KXi2sOb3-9p8mV2dXMxnyw-f7y-OF9MRFaU1UTlGW9UGquSikPB0lzUhQQhaNeUpcxpxwStuqwDyUXRqYLSmjYsLaqqrishstPk3SF34-zXAXxo7-3gYmW-TTPalEUVKURVflAJZ713oNp4Ix-7DY6jbhltR3LtSK59Jhdt079sG4c9d7t_G5qDYRs57f6jbs8vZ8s_3l9ksLYG |
CitedBy_id | crossref_primary_10_1002_sstr_202100120 crossref_primary_10_1016_j_coco_2023_101732 crossref_primary_10_1039_D2NR05447G crossref_primary_10_1021_acsanm_3c05591 crossref_primary_10_1021_acsami_2c22143 crossref_primary_10_3390_nano9101399 crossref_primary_10_1016_j_apsusc_2025_162436 crossref_primary_10_1021_acs_chemmater_0c03392 crossref_primary_10_1007_s40820_023_01203_5 crossref_primary_10_1016_j_polymer_2024_127732 crossref_primary_10_1007_s42765_024_00498_2 crossref_primary_10_1016_j_carbon_2020_11_089 crossref_primary_10_1039_D1RA03392A crossref_primary_10_1002_adfm_202412307 crossref_primary_10_1016_j_ceramint_2021_12_261 crossref_primary_10_1021_acs_iecr_2c02090 crossref_primary_10_1016_j_cej_2022_135869 crossref_primary_10_1109_JSEN_2024_3376355 crossref_primary_10_1016_j_cej_2024_149461 crossref_primary_10_1021_acsami_1c12915 crossref_primary_10_1002_smsc_202000032 crossref_primary_10_1016_j_mtcomm_2025_111879 crossref_primary_10_1016_j_snb_2022_132696 crossref_primary_10_1021_acsami_0c15530 crossref_primary_10_1021_acsnano_1c01277 crossref_primary_10_1002_smll_202409033 crossref_primary_10_1002_adfm_202308426 crossref_primary_10_1007_s10853_021_06676_6 crossref_primary_10_1002_adfm_202415921 crossref_primary_10_1039_D4MH00631C crossref_primary_10_1016_j_carbpol_2022_119839 crossref_primary_10_1021_acsaelm_4c00304 crossref_primary_10_1016_j_carbon_2024_119660 crossref_primary_10_1021_acsaenm_3c00578 crossref_primary_10_1016_j_compositesb_2022_109618 crossref_primary_10_1039_D1MA01170G crossref_primary_10_1007_s42235_022_00181_5 crossref_primary_10_1016_j_ceramint_2021_12_235 crossref_primary_10_1039_D2TC02532A crossref_primary_10_1021_acsami_3c06767 crossref_primary_10_1002_app_53144 crossref_primary_10_1002_smtd_202300112 crossref_primary_10_1002_lpor_202300293 crossref_primary_10_1021_acs_iecr_3c03723 crossref_primary_10_1021_acsnano_4c09916 crossref_primary_10_1016_j_apmt_2022_101612 crossref_primary_10_1021_acsanm_2c00476 crossref_primary_10_1016_j_carbon_2021_12_075 crossref_primary_10_1016_j_compscitech_2022_109337 crossref_primary_10_1021_acsami_3c18996 crossref_primary_10_1039_D1TB01798E crossref_primary_10_1002_admt_202200027 crossref_primary_10_1021_acsanm_4c00462 crossref_primary_10_1039_D2TC04080H crossref_primary_10_1126_sciadv_abb5367 crossref_primary_10_1016_j_carbon_2023_118045 crossref_primary_10_1002_admt_202101540 crossref_primary_10_1007_s42114_022_00510_6 crossref_primary_10_1016_j_engreg_2023_11_002 crossref_primary_10_1088_1361_6528_ac1296 crossref_primary_10_1016_j_compositesa_2020_105956 crossref_primary_10_1021_acsami_1c22740 crossref_primary_10_1039_D4MH00774C crossref_primary_10_1016_j_compositesa_2020_105955 crossref_primary_10_1016_j_matlet_2022_131862 crossref_primary_10_1021_acsnano_0c01976 crossref_primary_10_1021_acsami_1c21778 crossref_primary_10_1002_adfm_202000883 crossref_primary_10_1016_j_sna_2024_115220 crossref_primary_10_34133_research_0542 crossref_primary_10_1002_smll_202410283 crossref_primary_10_1016_j_snb_2025_137533 crossref_primary_10_1021_acsami_1c07363 crossref_primary_10_1039_D0MA00005A crossref_primary_10_1016_j_cej_2023_141661 crossref_primary_10_1002_adma_202210085 crossref_primary_10_1016_j_jcis_2021_08_214 crossref_primary_10_1016_j_surfin_2023_102873 crossref_primary_10_1002_adfm_202421347 crossref_primary_10_1021_acsami_1c21836 crossref_primary_10_1039_D0TA07832H crossref_primary_10_1021_acsapm_3c00175 crossref_primary_10_1016_j_cej_2022_135662 crossref_primary_10_1039_D2TA04706C crossref_primary_10_1021_acs_iecr_1c00320 crossref_primary_10_1021_acsnano_1c00248 crossref_primary_10_1002_adfm_202406197 crossref_primary_10_1002_admt_202202029 crossref_primary_10_1002_smtd_202201651 crossref_primary_10_1002_adfm_202000869 crossref_primary_10_1039_D3TA06467K crossref_primary_10_1002_adma_202002159 crossref_primary_10_1007_s40820_022_00810_y crossref_primary_10_1016_j_compositesa_2021_106291 crossref_primary_10_1002_admi_202001893 crossref_primary_10_1007_s10570_021_03955_y crossref_primary_10_1007_s12598_020_01602_2 crossref_primary_10_1016_j_mseb_2024_117673 crossref_primary_10_1016_j_diamond_2020_107757 crossref_primary_10_1002_aisy_202000215 crossref_primary_10_1016_j_cej_2021_133074 crossref_primary_10_1007_s40820_021_00664_w crossref_primary_10_1002_admt_202201188 crossref_primary_10_1007_s11664_020_08352_y crossref_primary_10_1016_j_carbon_2020_12_084 crossref_primary_10_1021_acsami_2c12555 crossref_primary_10_1016_j_carbon_2023_118075 crossref_primary_10_1038_s41467_022_30894_4 crossref_primary_10_1016_j_compositesb_2021_109299 crossref_primary_10_1002_smll_202103734 crossref_primary_10_1007_s10570_025_06406_0 crossref_primary_10_1021_acsaelm_2c01733 crossref_primary_10_1039_D3TA02617E crossref_primary_10_1021_acsami_2c01345 crossref_primary_10_1039_D2TA02755K crossref_primary_10_1016_j_compositesa_2022_107232 crossref_primary_10_1039_D2CP03619C crossref_primary_10_1002_adfm_202009524 crossref_primary_10_1016_j_colsurfa_2025_136227 crossref_primary_10_1039_D0TC05480A crossref_primary_10_1186_s40691_023_00356_6 crossref_primary_10_1039_D2TC02524H crossref_primary_10_1021_acs_iecr_1c01632 crossref_primary_10_1002_app_55009 crossref_primary_10_1021_acsami_0c03544 crossref_primary_10_1021_acsnano_9b08832 crossref_primary_10_1002_adfm_202000712 crossref_primary_10_1039_D1TA05181D crossref_primary_10_1016_j_cej_2021_128639 crossref_primary_10_1021_acsanm_1c03280 crossref_primary_10_1002_admt_202100773 crossref_primary_10_1080_10667857_2021_1879528 crossref_primary_10_1021_acsanm_2c00315 crossref_primary_10_1002_adom_202301694 crossref_primary_10_1002_eom2_12209 crossref_primary_10_3390_polym16060760 crossref_primary_10_1021_acs_iecr_0c04005 crossref_primary_10_1016_j_carbon_2021_12_044 crossref_primary_10_1016_j_cej_2020_127363 crossref_primary_10_1016_j_mtcomm_2025_111748 crossref_primary_10_1007_s10971_021_05483_4 crossref_primary_10_1016_j_isci_2024_109481 crossref_primary_10_1002_qua_26626 crossref_primary_10_1002_pc_28627 crossref_primary_10_1021_acsami_2c01160 crossref_primary_10_1177_15280837221101650 crossref_primary_10_1039_D2NR02224A crossref_primary_10_1016_j_colsurfa_2022_129713 crossref_primary_10_1016_j_snb_2021_130150 crossref_primary_10_1021_acsami_1c07976 crossref_primary_10_1002_app_53882 crossref_primary_10_1039_D2NR05649F crossref_primary_10_1016_j_compositesb_2023_110863 crossref_primary_10_1557_s43578_023_01100_y crossref_primary_10_1016_j_isci_2021_103316 crossref_primary_10_1039_D2TC03821H crossref_primary_10_1002_admt_202301265 crossref_primary_10_1039_D2CC06009D crossref_primary_10_1002_smll_202401031 crossref_primary_10_1016_j_carbon_2023_02_044 crossref_primary_10_1016_j_compscitech_2022_109715 crossref_primary_10_1016_j_cplett_2022_139882 crossref_primary_10_1021_acsami_0c21833 crossref_primary_10_1186_s43074_023_00091_7 crossref_primary_10_3390_molecules27196767 crossref_primary_10_1002_smll_202309027 crossref_primary_10_1016_j_ceramint_2022_03_200 crossref_primary_10_1016_j_esr_2025_101656 crossref_primary_10_1016_j_jallcom_2022_167964 crossref_primary_10_1007_s10853_022_07344_z crossref_primary_10_1021_acsami_0c04482 crossref_primary_10_1016_j_matdes_2022_111207 crossref_primary_10_1016_j_carbon_2021_09_014 crossref_primary_10_3390_nano11123412 crossref_primary_10_3389_fchem_2023_1141259 crossref_primary_10_1002_smtd_202101049 crossref_primary_10_1016_j_compositesb_2020_108250 crossref_primary_10_1016_j_jcis_2024_12_066 crossref_primary_10_1002_adem_202301962 crossref_primary_10_1016_j_mtcomm_2024_110774 crossref_primary_10_1108_IJCST_05_2021_0061 crossref_primary_10_1016_j_compositesb_2021_108669 crossref_primary_10_1021_acs_chemrev_1c00502 crossref_primary_10_1021_acsanm_4c01940 crossref_primary_10_1016_j_cej_2020_126526 crossref_primary_10_1039_D0NR06671K crossref_primary_10_1021_acs_chemmater_2c03396 crossref_primary_10_1016_j_jallcom_2022_165998 crossref_primary_10_1007_s40820_021_00693_5 crossref_primary_10_1016_j_nantod_2022_101526 crossref_primary_10_1039_C9QM00681H crossref_primary_10_1021_acsami_1c19850 crossref_primary_10_1039_D0NR07433K crossref_primary_10_1016_j_cej_2024_151360 crossref_primary_10_1039_D0GC01539C crossref_primary_10_1038_s41467_022_33133_y crossref_primary_10_1002_aisy_202100074 crossref_primary_10_1016_j_cej_2024_156824 crossref_primary_10_1016_j_vacuum_2024_113769 crossref_primary_10_1002_adma_202405766 crossref_primary_10_1007_s40820_022_00901_w crossref_primary_10_1007_s42247_023_00515_x crossref_primary_10_1021_acsami_4c06905 crossref_primary_10_1016_j_colsurfa_2022_128897 crossref_primary_10_1016_j_ijbiomac_2024_135207 crossref_primary_10_1021_acsaelm_3c01359 crossref_primary_10_1063_5_0060344 crossref_primary_10_3390_polym14050945 crossref_primary_10_1002_adfm_202101302 crossref_primary_10_1016_j_compositesb_2021_108690 crossref_primary_10_1021_acsami_3c15754 crossref_primary_10_1007_s12274_022_4440_1 crossref_primary_10_1016_j_matdes_2024_113282 crossref_primary_10_1002_adfm_202007436 crossref_primary_10_1016_j_cej_2024_152696 crossref_primary_10_1016_j_cej_2025_160378 crossref_primary_10_1016_j_compscitech_2022_109720 crossref_primary_10_1016_j_indcrop_2024_118653 crossref_primary_10_1016_j_surfin_2024_104083 crossref_primary_10_1021_acsami_0c08868 crossref_primary_10_1007_s12274_022_4781_9 crossref_primary_10_1021_acsami_1c05222 crossref_primary_10_1016_j_snb_2024_136301 crossref_primary_10_1021_acsaem_9b02259 crossref_primary_10_1021_acsami_2c18759 crossref_primary_10_1016_j_cej_2023_142351 crossref_primary_10_1002_cnma_202200481 crossref_primary_10_1021_acsami_1c18828 crossref_primary_10_1016_j_jallcom_2022_166666 crossref_primary_10_1039_D3TA06789K crossref_primary_10_1039_D1NA00415H crossref_primary_10_1021_acsami_0c01182 crossref_primary_10_1007_s40820_024_01430_4 crossref_primary_10_1088_2053_1583_acd32a crossref_primary_10_1002_inf2_12412 crossref_primary_10_1002_aelm_202100578 crossref_primary_10_1016_j_cej_2025_161317 crossref_primary_10_1002_adfm_202301607 crossref_primary_10_1021_acsami_1c03692 crossref_primary_10_1002_adma_202109355 crossref_primary_10_1039_D2MA00151A crossref_primary_10_1007_s42114_024_00894_7 crossref_primary_10_1039_D2TC02856E crossref_primary_10_1016_j_chemosphere_2024_141234 crossref_primary_10_1016_j_cej_2023_143797 crossref_primary_10_1021_acsanm_4c05135 crossref_primary_10_1016_j_cej_2020_126898 crossref_primary_10_1007_s42823_020_00152_y crossref_primary_10_1039_D0TA09246K crossref_primary_10_1016_j_snb_2022_131438 crossref_primary_10_1016_j_carbon_2023_02_012 crossref_primary_10_1007_s10853_020_04780_7 crossref_primary_10_1007_s12274_020_2897_3 crossref_primary_10_1021_acsnano_0c01635 crossref_primary_10_1016_j_coco_2024_102077 crossref_primary_10_1016_j_ijbiomac_2022_11_228 crossref_primary_10_1016_j_jcis_2021_01_074 crossref_primary_10_1021_acsami_4c06735 crossref_primary_10_1016_j_carbon_2024_119860 crossref_primary_10_1007_s12274_022_4572_3 crossref_primary_10_1021_acsanm_0c00843 crossref_primary_10_1002_adfm_202204772 crossref_primary_10_1016_j_surfin_2024_104279 crossref_primary_10_1016_j_nanoen_2024_110376 crossref_primary_10_1002_adfm_202100640 crossref_primary_10_1021_acsami_2c03124 crossref_primary_10_1002_adfm_202406920 crossref_primary_10_1016_j_compositesb_2022_109652 crossref_primary_10_1021_acsami_0c14397 crossref_primary_10_1016_j_cej_2023_142576 crossref_primary_10_1021_acsami_0c13185 crossref_primary_10_1021_acsnano_0c02401 crossref_primary_10_1007_s10570_024_06138_7 crossref_primary_10_1007_s10854_020_03426_3 crossref_primary_10_1007_s42114_023_00774_6 crossref_primary_10_1016_j_cej_2022_134751 crossref_primary_10_1002_cey2_174 crossref_primary_10_1016_j_porgcoat_2020_105697 crossref_primary_10_1002_eng2_12384 crossref_primary_10_1016_j_heliyon_2024_e31118 crossref_primary_10_1007_s42114_023_00752_y crossref_primary_10_1002_adfm_202310774 crossref_primary_10_1016_j_jics_2023_100962 crossref_primary_10_1016_j_jpowsour_2024_234312 crossref_primary_10_1016_j_mser_2021_100627 crossref_primary_10_1016_j_snb_2024_135375 crossref_primary_10_1002_adfm_202214223 crossref_primary_10_1002_pol_20230184 crossref_primary_10_1016_j_progsolidstchem_2023_100392 crossref_primary_10_1039_D1TC04702G crossref_primary_10_1002_admi_201901449 crossref_primary_10_1016_j_coco_2024_102056 crossref_primary_10_1016_j_mattod_2022_10_022 crossref_primary_10_1016_j_colsurfa_2024_135108 crossref_primary_10_1177_15280837241279963 crossref_primary_10_1039_D0TA10991F crossref_primary_10_1016_j_cej_2021_129339 crossref_primary_10_1021_acsapm_3c00922 crossref_primary_10_3390_nano15010006 crossref_primary_10_1016_j_compositesa_2021_106643 crossref_primary_10_1016_j_synthmet_2023_117305 crossref_primary_10_1002_adma_202206101 crossref_primary_10_1039_D2CC06418A crossref_primary_10_15541_jim20230397 crossref_primary_10_1016_j_jphotobiol_2020_112012 crossref_primary_10_1016_j_porgcoat_2025_109131 crossref_primary_10_1021_acsanm_3c00574 crossref_primary_10_1016_j_compositesa_2020_106116 crossref_primary_10_1007_s42114_024_00839_0 crossref_primary_10_1016_j_cej_2022_137135 crossref_primary_10_1007_s42765_024_00403_x crossref_primary_10_1016_j_matt_2021_02_022 crossref_primary_10_1007_s40820_021_00767_4 crossref_primary_10_1016_j_arabjc_2022_104143 crossref_primary_10_1016_j_compositesa_2021_106649 crossref_primary_10_1002_adfm_202314425 crossref_primary_10_1016_j_ijbiomac_2023_127510 crossref_primary_10_1002_admt_202401497 crossref_primary_10_1039_D1TA08788F crossref_primary_10_1002_advs_202402767 crossref_primary_10_1021_acsami_0c07387 crossref_primary_10_3390_chemosensors11090483 crossref_primary_10_1016_j_compositesa_2024_108682 crossref_primary_10_1016_j_jcis_2021_08_190 crossref_primary_10_1021_acsnano_3c08739 crossref_primary_10_1016_j_coco_2021_100786 crossref_primary_10_1021_acsami_1c11056 crossref_primary_10_1021_acsnano_0c03013 crossref_primary_10_1002_smll_202300283 crossref_primary_10_1039_D3TA03415A crossref_primary_10_1016_j_chemosphere_2024_141838 crossref_primary_10_1007_s42765_022_00211_1 crossref_primary_10_1016_j_jcis_2023_11_187 crossref_primary_10_1021_acsami_2c04246 crossref_primary_10_1111_ina_13103 crossref_primary_10_1088_2515_7655_abf8f7 crossref_primary_10_3390_fib11030029 crossref_primary_10_1002_admt_202000240 crossref_primary_10_1002_admt_202301333 crossref_primary_10_1016_j_compositesa_2021_106555 crossref_primary_10_1007_s12274_022_4358_7 crossref_primary_10_1002_ente_202001076 crossref_primary_10_1016_j_compositesa_2021_106551 crossref_primary_10_1016_j_scib_2020_02_009 crossref_primary_10_1002_adfm_202418899 crossref_primary_10_1002_smll_202310191 crossref_primary_10_1016_j_carbpol_2020_116467 crossref_primary_10_1016_j_ijbiomac_2025_140493 crossref_primary_10_1002_smll_202302335 crossref_primary_10_1002_admi_202201818 crossref_primary_10_3390_cryst13121612 crossref_primary_10_1016_j_compositesa_2025_108860 crossref_primary_10_1038_s41467_024_49076_5 crossref_primary_10_1016_j_eurpolymj_2023_112029 crossref_primary_10_1016_j_mtphys_2024_101330 crossref_primary_10_1016_j_jcis_2022_08_176 crossref_primary_10_1177_15589250231199970 crossref_primary_10_1177_24723444241295415 crossref_primary_10_1016_j_carbon_2022_02_003 crossref_primary_10_1002_aelm_202101028 crossref_primary_10_1002_cnma_202400264 crossref_primary_10_3390_en15093399 crossref_primary_10_1002_smll_202208134 crossref_primary_10_1002_adma_202104878 crossref_primary_10_1016_j_compositesb_2021_108752 crossref_primary_10_1016_j_mtsust_2024_100671 crossref_primary_10_1016_j_compositesa_2025_108755 crossref_primary_10_1016_j_snb_2024_136605 crossref_primary_10_1007_s40820_022_00817_5 crossref_primary_10_1016_j_mtphys_2023_101100 crossref_primary_10_1002_adfm_202214880 crossref_primary_10_1007_s40820_024_01349_w crossref_primary_10_1016_j_jcis_2023_10_014 crossref_primary_10_1021_acsapm_4c01339 crossref_primary_10_1016_j_radphyschem_2024_112112 crossref_primary_10_1016_j_cej_2021_133751 crossref_primary_10_1021_acsami_3c08093 crossref_primary_10_1016_j_ceramint_2024_04_204 crossref_primary_10_1021_acsami_2c16111 crossref_primary_10_1109_JEDS_2021_3055214 crossref_primary_10_1016_j_compscitech_2020_108531 crossref_primary_10_1016_j_jcis_2021_07_085 crossref_primary_10_1016_j_carbon_2022_08_040 crossref_primary_10_4028_p_15m3g4 crossref_primary_10_1016_j_adna_2023_11_002 crossref_primary_10_1016_j_nanoen_2020_104926 crossref_primary_10_1021_acsnano_2c11267 crossref_primary_10_1039_D4TC00111G crossref_primary_10_3390_biomimetics8030293 crossref_primary_10_1002_aelm_202000429 crossref_primary_10_1016_j_compositesa_2021_106739 crossref_primary_10_1002_app_50597 crossref_primary_10_1016_j_carbon_2022_04_078 crossref_primary_10_1002_adfm_202301542 crossref_primary_10_1007_s12274_022_5368_1 crossref_primary_10_1016_j_snb_2022_131704 crossref_primary_10_1021_acsaelm_0c00545 crossref_primary_10_1002_adfm_202000398 crossref_primary_10_1002_admi_202200991 crossref_primary_10_1021_acsnano_2c04971 crossref_primary_10_1002_adfm_202304936 crossref_primary_10_1016_j_compscitech_2024_110659 crossref_primary_10_3389_fchem_2022_973115 crossref_primary_10_1002_adfm_202301549 crossref_primary_10_1016_j_carbon_2022_04_071 crossref_primary_10_1002_smll_202304327 crossref_primary_10_3390_app12168254 crossref_primary_10_1021_acssuschemeng_2c04229 crossref_primary_10_1016_j_colsurfa_2022_128299 crossref_primary_10_1088_2053_1591_acf7b4 crossref_primary_10_1002_adfm_202213419 crossref_primary_10_1016_j_apsusc_2023_157275 crossref_primary_10_1016_j_apsusc_2024_160607 crossref_primary_10_1007_s12274_022_4938_6 crossref_primary_10_1016_j_compositesb_2023_110874 crossref_primary_10_1039_D0NJ00672F crossref_primary_10_1016_j_ceramint_2022_04_187 crossref_primary_10_1016_j_compositesb_2023_110999 crossref_primary_10_1002_smll_202411735 crossref_primary_10_1002_admi_202101089 crossref_primary_10_1021_acsami_1c00256 crossref_primary_10_1007_s12274_022_5357_1 crossref_primary_10_1080_25740881_2022_2089581 crossref_primary_10_1021_acsami_2c07670 crossref_primary_10_1016_j_porgcoat_2024_108292 crossref_primary_10_1016_j_compositesa_2022_106928 crossref_primary_10_1016_j_snb_2024_135655 crossref_primary_10_1016_j_compositesa_2022_106883 crossref_primary_10_1016_j_compositesa_2022_106884 crossref_primary_10_1021_acsami_0c09020 crossref_primary_10_1088_2399_1984_ab92f5 crossref_primary_10_1021_acsomega_2c05204 crossref_primary_10_1016_j_compositesb_2021_109193 crossref_primary_10_1016_j_compositesa_2020_106088 crossref_primary_10_1016_j_cej_2022_135587 crossref_primary_10_1021_acsami_1c23303 crossref_primary_10_1016_j_cej_2022_135588 crossref_primary_10_1016_j_carbon_2021_07_099 crossref_primary_10_1039_D0TA11103A crossref_primary_10_1002_inf2_12295 crossref_primary_10_1002_advs_202101988 crossref_primary_10_1002_smll_202205853 crossref_primary_10_1007_s40820_021_00665_9 crossref_primary_10_1016_j_apsusc_2023_156962 crossref_primary_10_1039_D1TC00289A crossref_primary_10_1016_j_cej_2021_129864 crossref_primary_10_1016_j_compositesb_2022_110477 crossref_primary_10_1016_j_jmst_2022_06_031 crossref_primary_10_1016_j_surfin_2024_104628 crossref_primary_10_1007_s40820_022_00853_1 crossref_primary_10_3389_fchem_2020_00297 crossref_primary_10_1016_j_ccr_2023_215275 crossref_primary_10_1007_s10570_021_03765_2 crossref_primary_10_1021_acsaelm_2c01708 crossref_primary_10_1007_s11664_023_10404_y crossref_primary_10_1016_j_cej_2023_145091 crossref_primary_10_1007_s40820_023_01317_w crossref_primary_10_1016_j_cej_2022_137537 crossref_primary_10_1002_cnma_202000560 crossref_primary_10_3390_signals4010001 crossref_primary_10_1007_s12274_024_6488_6 crossref_primary_10_1002_adma_202107538 crossref_primary_10_1002_adma_202211642 crossref_primary_10_1557_s43577_021_00117_0 crossref_primary_10_1016_j_compscitech_2024_110603 crossref_primary_10_1016_j_coco_2022_101062 crossref_primary_10_15541_jim20230306 crossref_primary_10_1016_j_mtnano_2024_100555 crossref_primary_10_1016_j_apsusc_2021_152358 crossref_primary_10_1016_j_cej_2021_130729 crossref_primary_10_1016_j_colsurfa_2022_130163 crossref_primary_10_1016_j_cej_2024_156145 crossref_primary_10_1007_s12274_023_6154_4 crossref_primary_10_1016_j_ceramint_2022_07_201 crossref_primary_10_1021_acsami_1c23567 crossref_primary_10_1016_j_cej_2022_140957 crossref_primary_10_1002_adsr_202300014 crossref_primary_10_1016_j_compscitech_2020_108600 crossref_primary_10_1002_adma_202110608 crossref_primary_10_1021_acsanm_4c02109 crossref_primary_10_1002_adfm_202000475 crossref_primary_10_1021_acsanm_2c01282 crossref_primary_10_1007_s41127_023_00065_3 crossref_primary_10_1149_2754_2726_ac5ac6 crossref_primary_10_1039_C9TC06304H crossref_primary_10_1007_s10853_021_06248_8 crossref_primary_10_1016_j_cej_2022_136103 crossref_primary_10_1016_j_coco_2020_100508 crossref_primary_10_1177_00405175211066621 crossref_primary_10_1016_j_decarb_2023_100026 crossref_primary_10_1002_smll_202309803 crossref_primary_10_1016_j_ijbiomac_2023_125195 crossref_primary_10_1016_j_mtnano_2022_100214 crossref_primary_10_1002_adfm_201907451 crossref_primary_10_1007_s40820_024_01429_x crossref_primary_10_1088_1361_665X_ac102c crossref_primary_10_1002_adem_202500188 crossref_primary_10_1002_adfm_202405016 crossref_primary_10_1002_solr_202100878 crossref_primary_10_1016_j_indcrop_2024_118384 crossref_primary_10_1016_j_mtphys_2021_100527 crossref_primary_10_1021_acsnano_0c03391 crossref_primary_10_1021_acsami_2c00797 crossref_primary_10_1002_aenm_202401268 crossref_primary_10_1021_acsanm_2c04776 crossref_primary_10_1016_j_compositesa_2024_108067 crossref_primary_10_1039_D0TA01393E crossref_primary_10_1016_j_carbon_2021_10_080 crossref_primary_10_1016_j_carbon_2022_04_012 crossref_primary_10_1002_adpr_202300224 crossref_primary_10_1021_acsami_1c17170 crossref_primary_10_1007_s42765_023_00328_x crossref_primary_10_1016_j_diamond_2023_110499 crossref_primary_10_1016_j_microc_2024_112484 crossref_primary_10_1016_j_mtbio_2020_100065 crossref_primary_10_1021_acs_iecr_9b05461 crossref_primary_10_1021_acsnano_4c14128 crossref_primary_10_1016_j_cej_2023_147116 crossref_primary_10_1016_j_matdes_2020_109442 crossref_primary_10_1007_s11356_023_26501_8 crossref_primary_10_1021_acsami_0c11530 crossref_primary_10_1007_s40820_021_00645_z crossref_primary_10_1021_acsami_4c21321 crossref_primary_10_2478_ftee_2023_0018 crossref_primary_10_1186_s42252_024_00054_6 crossref_primary_10_1002_smll_202106129 crossref_primary_10_1039_D1RA02756E crossref_primary_10_1088_1361_6528_ac18a0 crossref_primary_10_1016_j_porgcoat_2025_109062 crossref_primary_10_1021_acsami_1c11638 crossref_primary_10_1007_s40820_021_00743_y crossref_primary_10_1016_j_snb_2022_133056 crossref_primary_10_1021_acsnano_9b07459 crossref_primary_10_1002_smll_202305250 crossref_primary_10_1039_D1TA09384C crossref_primary_10_1039_D3TA00442B crossref_primary_10_1016_j_compositesa_2020_106188 crossref_primary_10_1002_mame_202100365 crossref_primary_10_1021_acsmaterialslett_1c00618 crossref_primary_10_1016_j_colsurfa_2020_125047 crossref_primary_10_1016_j_carbon_2022_06_085 crossref_primary_10_12677_nat_2024_1412003 crossref_primary_10_1016_j_compositesa_2021_106472 crossref_primary_10_1016_j_compscitech_2019_107975 crossref_primary_10_1016_j_compscitech_2022_109372 crossref_primary_10_1039_D4AY01127A crossref_primary_10_1002_adfm_202107969 crossref_primary_10_1177_00405175211006216 crossref_primary_10_1021_acsami_2c09215 crossref_primary_10_1039_D0TA08515D crossref_primary_10_1016_j_colsurfa_2023_132211 crossref_primary_10_1016_j_matchemphys_2020_124137 crossref_primary_10_1016_j_carbon_2021_02_104 crossref_primary_10_1039_D0TA03048A crossref_primary_10_1007_s42765_023_00317_0 crossref_primary_10_1039_D1TA05873H crossref_primary_10_1016_j_mtchem_2022_100859 crossref_primary_10_1016_j_cej_2022_136388 crossref_primary_10_1002_sstr_202200102 crossref_primary_10_3390_chemosensors11010007 crossref_primary_10_1002_pc_28039 crossref_primary_10_1016_j_isci_2022_105001 crossref_primary_10_1016_j_cej_2021_128474 crossref_primary_10_1016_j_cej_2021_132605 crossref_primary_10_1016_j_cis_2023_103027 |
Cites_doi | 10.1021/acsami.8b18459 10.1002/admt.201800503 10.1016/j.polymer.2003.08.038 10.1002/adfm.201700415 10.1016/j.colsurfb.2005.11.016 10.1021/acsnano.5b08176 10.1002/adma.201304138 10.1039/C8NR00313K 10.1016/j.mser.2017.02.001 10.1021/acsami.7b16422 10.1021/acsnano.8b05739 10.1021/acsami.8b04775 10.1002/adma.201606679 10.1002/anie.201402513 10.1002/adfm.201806819 10.1002/adfm.201504197 10.1039/C7TC02074K 10.1021/acs.chemmater.8b03976 10.1016/j.cej.2018.11.051 10.1002/ppap.201400109 10.1002/anie.201507333 10.1002/adfm.201703801 10.1016/j.surfcoat.2013.03.028 10.1021/acsami.7b02326 10.1002/adma.201306136 10.1021/acsami.7b00471 10.1021/acsami.8b10217 10.1002/adma.201702076 10.1021/acsnano.7b04368 10.1126/science.aag2421 10.1021/acsnano.7b05264 10.1002/adma.201706807 10.1016/j.surfcoat.2018.10.002 10.1039/C8NR10489A 10.1002/adfm.201302344 10.1021/acs.chemmater.6b01275 10.1002/smll.201703034 10.1021/acsnano.8b03391 10.1002/adma.201702367 10.1021/jacs.5b12728 10.1002/aelm.201600255 10.1002/adma.201605848 10.1002/smll.201703934 10.1002/ppap.201100044 10.1016/j.eurpolymj.2010.02.005 10.1088/1748-3182/3/4/046007 10.1021/nl903949m 10.1002/adfm.201702807 10.1039/C8NR05170D 10.1002/adma.201703053 10.1016/j.pmatsci.2012.11.001 10.1038/nmat2430 10.1002/adfm.201803360 10.1021/acsnano.8b02477 10.1021/acsami.7b09184 10.1002/adom.201900267 10.1021/am508814g 10.1016/j.apsusc.2015.11.089 10.1021/acsnano.7b05921 10.1002/smll.201703848 10.1021/acs.nanolett.6b04613 10.1021/acsami.8b21671 10.1002/smll.201802479 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201905197 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201905197 ADFM201905197 |
Genre | article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: BHYC1707B – fundername: National Natural Science Foundation of China funderid: 51922020; 51673015; 51533001 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3567-f43a9f2190dfae5124c85decc0b966d40b1c07b3bedac5bf50080912577887cc3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sun Jul 13 04:27:49 EDT 2025 Thu Apr 24 23:04:14 EDT 2025 Tue Jul 01 04:12:03 EDT 2025 Wed Jan 22 16:39:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3567-f43a9f2190dfae5124c85decc0b966d40b1c07b3bedac5bf50080912577887cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8357-3362 |
PQID | 2309657905 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2309657905 crossref_citationtrail_10_1002_adfm_201905197 crossref_primary_10_1002_adfm_201905197 wiley_primary_10_1002_adfm_201905197_ADFM201905197 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 1, 2019 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: November 1, 2019 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 10 2013 2016 2008; 58 138 3 2017 2016; 9 26 2019; 11 2017; 27 2017 2016; 29 353 2019 2017 2019; 29 5 4 2016 2015 2013 2012 2006 2003 2010; 362 12 234 9 47 44 46 2018 2018; 30 10 2014; 26 2019 2017; 11 27 2017; 29 2019 2018; 7 12 2016 2018; 55 14 2018 2018 2017; 28 12 115 2017; 9 2016; 2 2018 2018 2017 2018 2017 2019 2016; 14 14 9 10 11 31 28 2017; 17 2019 2019 2018 2018; 359 11 28 14 2017; 11 2019; 357 2016 2017; 10 11 2009 2014; 8 24 2018; 12 2018; 10 2014; 53 2017 2015; 29 7 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_17_4 e_1_2_7_19_2 e_1_2_7_17_3 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_17_1 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_23_1 e_1_2_7_31_3 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_16_7 e_1_2_7_8_1 e_1_2_7_16_6 e_1_2_7_6_2 e_1_2_7_16_5 e_1_2_7_16_4 e_1_2_7_18_2 e_1_2_7_16_3 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_27_2 e_1_2_7_27_3 e_1_2_7_29_1 e_1_2_7_27_4 e_1_2_7_27_5 e_1_2_7_27_6 e_1_2_7_27_7 e_1_2_7_30_1 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_20_2 e_1_2_7_20_1 |
References_xml | – volume: 11 27 year: 2019 2017 publication-title: ACS Appl. Mater. Interfaces Adv. Funct. Mater. – volume: 53 start-page: 4877 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 29 7 start-page: 4336 year: 2017 2015 publication-title: Adv. Mater. ACS Appl. Mater. Interfaces – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 29 353 start-page: 1137 year: 2017 2016 publication-title: Adv. Mater. Science – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 26 start-page: 3344 year: 2014 publication-title: Adv. Mater. – volume: 10 start-page: 708 year: 2010 publication-title: Nano Lett. – volume: 29 5 4 start-page: 7853 year: 2019 2017 2019 publication-title: Adv. Funct. Mater. J. Mater. Chem. C Adv. Mater. Technol. – volume: 359 11 28 14 start-page: 1265 6080 year: 2019 2019 2018 2018 publication-title: Chem. Eng. J. Nanoscale Adv. Funct. Mater. Small – volume: 10 start-page: 6005 year: 2018 publication-title: Nanoscale – volume: 55 14 start-page: 6140 year: 2016 2018 publication-title: Angew. Chem., Int. Ed. Small – volume: 8 24 start-page: 512 492 year: 2009 2014 publication-title: Nat. Mater. Adv. Funct. Mater. – volume: 17 start-page: 1090 year: 2017 publication-title: Nano Lett. – volume: 58 138 3 start-page: 503 1727 year: 2013 2016 2008 publication-title: Prog. Mater. Sci. J. Am. Chem. Soc. Bioinspir. Biomim. – volume: 14 14 9 10 11 31 28 start-page: 454 3507 year: 2018 2018 2017 2018 2017 2019 2016 publication-title: Small Small ACS Appl. Mater. Interfaces Nanoscale ACS Nano Chem. Mater. Chem. Mater. – volume: 11 year: 2017 publication-title: ACS Nano – volume: 26 start-page: 992 year: 2014 publication-title: Adv. Mater. – volume: 30 10 start-page: 2026 year: 2018 2018 publication-title: Adv. Mater. ACS Appl. Mater. Interfaces – volume: 10 11 start-page: 3042 year: 2016 2017 publication-title: ACS Nano ACS Nano – volume: 9 26 start-page: 569 year: 2017 2016 publication-title: ACS Appl. Mater. Interfaces Adv. Funct. Mater. – volume: 362 12 234 9 47 44 46 start-page: 406 362 21 217 57 7241 900 year: 2016 2015 2013 2012 2006 2003 2010 publication-title: Appl. Surf. Sci. Plasma Processes Polym. Surf. Coat. Technol. Plasma Processes Polym. Colloids Surf., B Polymer Eur. Polym. J. – volume: 2 year: 2016 publication-title: Adv. Electron. Mater. – volume: 12 start-page: 5190 year: 2018 publication-title: ACS Nano – volume: 7 12 year: 2019 2018 publication-title: Adv. Opt. Mater. ACS Nano – volume: 11 start-page: 1680 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 8308 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 28 12 115 start-page: 9134 1 year: 2018 2018 2017 publication-title: Adv. Funct. Mater. ACS Nano Mater. Sci. Eng., R – volume: 357 start-page: 267 year: 2019 publication-title: Surf. Coat. Technol. – ident: e_1_2_7_13_1 doi: 10.1021/acsami.8b18459 – ident: e_1_2_7_2_3 doi: 10.1002/admt.201800503 – ident: e_1_2_7_27_6 doi: 10.1016/j.polymer.2003.08.038 – ident: e_1_2_7_10_1 doi: 10.1002/adfm.201700415 – ident: e_1_2_7_27_5 doi: 10.1016/j.colsurfb.2005.11.016 – ident: e_1_2_7_6_1 doi: 10.1021/acsnano.5b08176 – ident: e_1_2_7_15_1 doi: 10.1002/adma.201304138 – ident: e_1_2_7_8_1 doi: 10.1039/C8NR00313K – ident: e_1_2_7_3_3 doi: 10.1016/j.mser.2017.02.001 – ident: e_1_2_7_4_2 doi: 10.1021/acsami.7b16422 – ident: e_1_2_7_19_2 doi: 10.1021/acsnano.8b05739 – ident: e_1_2_7_26_1 doi: 10.1021/acsami.8b04775 – ident: e_1_2_7_11_1 doi: 10.1002/adma.201606679 – ident: e_1_2_7_29_1 doi: 10.1002/anie.201402513 – ident: e_1_2_7_2_1 doi: 10.1002/adfm.201806819 – ident: e_1_2_7_24_2 doi: 10.1002/adfm.201504197 – ident: e_1_2_7_2_2 doi: 10.1039/C7TC02074K – ident: e_1_2_7_16_6 doi: 10.1021/acs.chemmater.8b03976 – ident: e_1_2_7_17_1 doi: 10.1016/j.cej.2018.11.051 – ident: e_1_2_7_27_2 doi: 10.1002/ppap.201400109 – ident: e_1_2_7_1_1 doi: 10.1002/anie.201507333 – ident: e_1_2_7_3_1 doi: 10.1002/adfm.201703801 – ident: e_1_2_7_27_3 doi: 10.1016/j.surfcoat.2013.03.028 – ident: e_1_2_7_24_1 doi: 10.1021/acsami.7b02326 – ident: e_1_2_7_22_1 doi: 10.1002/adma.201306136 – ident: e_1_2_7_25_1 doi: 10.1021/acsami.7b00471 – ident: e_1_2_7_21_1 doi: 10.1021/acsami.8b10217 – ident: e_1_2_7_32_1 doi: 10.1002/adma.201702076 – ident: e_1_2_7_12_1 doi: 10.1021/acsnano.7b04368 – ident: e_1_2_7_18_2 doi: 10.1126/science.aag2421 – ident: e_1_2_7_16_5 doi: 10.1021/acsnano.7b05264 – ident: e_1_2_7_4_1 doi: 10.1002/adma.201706807 – ident: e_1_2_7_28_1 doi: 10.1016/j.surfcoat.2018.10.002 – ident: e_1_2_7_17_2 doi: 10.1039/C8NR10489A – ident: e_1_2_7_23_2 doi: 10.1002/adfm.201302344 – ident: e_1_2_7_16_7 doi: 10.1021/acs.chemmater.6b01275 – ident: e_1_2_7_1_2 doi: 10.1002/smll.201703034 – ident: e_1_2_7_3_2 doi: 10.1021/acsnano.8b03391 – ident: e_1_2_7_18_1 doi: 10.1002/adma.201702367 – ident: e_1_2_7_31_2 doi: 10.1021/jacs.5b12728 – ident: e_1_2_7_33_1 doi: 10.1002/aelm.201600255 – ident: e_1_2_7_9_1 doi: 10.1002/adma.201605848 – ident: e_1_2_7_16_2 doi: 10.1002/smll.201703934 – ident: e_1_2_7_27_4 doi: 10.1002/ppap.201100044 – ident: e_1_2_7_27_7 doi: 10.1016/j.eurpolymj.2010.02.005 – ident: e_1_2_7_31_3 doi: 10.1088/1748-3182/3/4/046007 – ident: e_1_2_7_7_1 doi: 10.1021/nl903949m – ident: e_1_2_7_20_2 doi: 10.1002/adfm.201702807 – ident: e_1_2_7_16_4 doi: 10.1039/C8NR05170D – ident: e_1_2_7_30_1 doi: 10.1002/adma.201703053 – ident: e_1_2_7_31_1 doi: 10.1016/j.pmatsci.2012.11.001 – ident: e_1_2_7_23_1 doi: 10.1038/nmat2430 – ident: e_1_2_7_17_3 doi: 10.1002/adfm.201803360 – ident: e_1_2_7_5_1 doi: 10.1021/acsnano.8b02477 – ident: e_1_2_7_16_3 doi: 10.1021/acsami.7b09184 – ident: e_1_2_7_19_1 doi: 10.1002/adom.201900267 – ident: e_1_2_7_30_2 doi: 10.1021/am508814g – ident: e_1_2_7_27_1 doi: 10.1016/j.apsusc.2015.11.089 – ident: e_1_2_7_6_2 doi: 10.1021/acsnano.7b05921 – ident: e_1_2_7_16_1 doi: 10.1002/smll.201703848 – ident: e_1_2_7_14_1 doi: 10.1021/acs.nanolett.6b04613 – ident: e_1_2_7_20_1 doi: 10.1021/acsami.8b21671 – ident: e_1_2_7_17_4 doi: 10.1002/smll.201802479 |
SSID | ssj0017734 |
Score | 2.704006 |
Snippet | Although flexible and multifunctional textiles are promising for wearable electronics and portable device applications, the main issue is to endow textiles... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Actuators Biomimetics Carbon nitride Contact angle Electric contacts electromagnetic interference shielding Electromagnetic shielding Functional groups Garments Humidity humidity sensitivity Hydrophobicity Materials science multifunctional textiles MXene sheets MXenes Nanostructure Nanowires Oxidation Porosity Portable equipment Silk Silver Substrates superhydrophobicity Textiles Transition metals Wearable technology |
Title | Flexible and Multifunctional Silk Textiles with Biomimetic Leaf‐Like MXene/Silver Nanowire Nanostructures for Electromagnetic Interference Shielding, Humidity Monitoring, and Self‐Derived Hydrophobicity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201905197 https://www.proquest.com/docview/2309657905 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQe4EDUB4ifckHJC5ss09v9piSRhFKOJBWym3lsb2wSrJbNS1Se-pP4Jf1R_SXMGNvtikSQoKbd-WnPDP-PPZ8Zux9AAJhQC_xlB-BFxsfVUr4kQehiSBTkSgEBQpPvojRWfx5lsw2ovgdP0TrcCPNsPaaFFzCqvtAGip1QZHkARFMZRROThe2CBV9bfmjgjR1x8oioAtewWzN2uiH3cfFH69KD1BzE7DaFWf4gsl1X91Fk_nR1SUcqZvfaBz_ZzAv2fMGjvK-k58d9sRUr9izDZLC1-xuSJyZsDBcVprbgF1aDJ0PkU_LxZyfooXHZlecvLr8uKyX5ZKCI_nYyOL-9ue4nBs-maFZ7WJ-VB6ORr0mlmSbcBy2V7jx5wih-Yl7mWcpv1W2Euu0bMISOb3dbc_LPnKUxFLjJoI7u3Rhf1Ifp2ZBrQ5wAD-M5qNrfVGff6-hVJj7DTsbnpx-GnnNKxCeihK04kUcyaxAw-rrQhrEJ7HqJRolzwfcqunYh0D5KURgtFQJFAmB4AxxW0oXJZWK3rKtqq7MO8algFSDEiKkWgTWo1Tay1QIaYFIS3WYt5aCXDUU6fRSxyJ35M5hTvOUt_PUYR_a_OeOHOSPOffXQpU3RmKV4-4vEwkxpHVYaKXjL7Xk_cFw0n7t_kuhPfaU0i6acp9t4QSbA4RVl3DItvuDyXh6aFXoF1p5Ioo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BOUAPvBEpBeaAxAU3fq7jY6GNAiQ90FTKzfI-DFYSu-oDCU78BH4ZP4Jfwsyu7bZICAlu9mq9a2tnZr8Z73wD8CKQgmDAKPGUH0kvNj6plPAjT4YmkpmKRCk4UXh2ICZH8btF0p0m5FwYxw_RB9xYM6y9ZgXngPTwgjW00CWnkgfMMJWl1-EGl_W2XtWHnkEqSFP3Y1kEfMQrWHS8jX44vPr81X3pAmxehqx2zxnfAdm9rTtqstw5P5M76utvRI7_9Tl34XaLSHHXidA9uGbq-7B5iafwAfwYM22mXBksao02Z5f3QxdGxMNqtcQ5GXma9xQ5sIuvq2ZdrTk_EqemKH9--z6tlgZnC7KsQ-pP-oNk1xsmSrYXjsb2nHx_JBSN-644z7r4WNtBbNyyzUxELt9tf5m9QhLGSpMfgc40ndhGfsdDs-JZ9-gDPhuNky_6pDn-1MhKUe-HcDTen7-ZeG0hCE9FCRnyMo6KrCTb6uuyMARRYjVKNAmfL8lb07EvA-WnMpJGFyqRZcI4OCPolvJZSaWiR7BRN7V5DFgImWqphAh5FEHjKJWOMhXKtCSwpQbgdWKQq5YlnYt1rHLH7xzmvE55v04DeNn3P3b8IH_sud1JVd7aidOcHMBMJEySNoDQisdfRsl398az_m7rXx56Djcn89k0n749eP8EbnG7S67chg1abPOUUNaZfGb16Bc0riUR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELagSAgOvCsCBXxA4sI23pc3eyykqwBJhWgr5bbyE1ZJdqM-kODUn9Bf1h_RX8KMvdmmSAgJbruWn_LM-PPY85mQ16HkAAMGaaBYLIPEMFApzuJARiaWuYq55RgoPNnjo8Pk4zSdrkXxe36IzuGGmuHsNSr4Utv-FWmo0BYjyUMkmMqzm-RWwtkA5Xr4pSOQCrPMnyvzEG94hdMVbSOL-tfLX1-WrrDmOmJ1S05xn4hVZ_1Nk9n26YncVj9_43H8n9E8IPdaPEp3vAA9JDdM_YjcXWMpfEwuCiTNlHNDRa2pi9jF1dA7Eel-NZ_RAzDx0OwxRbcufVc1i2qB0ZF0bIS9PDsfVzNDJ1Owq33ID9pDwao3SJPsPjyJ7Sns_ClgaLrrn-ZZiK-1q8R5Ldu4RIqPd7sDs7cURLHSsIug3jAduUTs476ZY6tDGMB3o-nohz5qlt8aWSnI_YQcFrsH70dB-wxEoOIUzLhNYpFbsKxMW2EAoCRqkGoQPSZhr6YTJkPFMhlLo4VKpU0RBecA3DK8KalUvEk26qY2TwkVXGZaKs4jrIVDPUplg1xFMrMAtVSPBCspKFXLkY5PdcxLz-4clThPZTdPPfKmy7_07CB_zLm1EqqytRLHJWz_cp4iRVqPRE46_lJLuTMsJt3fs38p9Irc_jwsyvGHvU_PyR1M9pGVW2QD5tq8AIh1Il86LfoF0vYjyQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+and+Multifunctional+Silk+Textiles+with+Biomimetic+Leaf%E2%80%90Like+MXene%2FSilver+Nanowire+Nanostructures+for+Electromagnetic+Interference+Shielding%2C+Humidity+Monitoring%2C+and+Self%E2%80%90Derived+Hydrophobicity&rft.jtitle=Advanced+functional+materials&rft.au=Liu%2C+Liu%E2%80%90Xin&rft.au=Chen%2C+Wei&rft.au=Zhang%2C+Hao%E2%80%90Bin&rft.au=Wang%2C+Qi%E2%80%90Wei&rft.date=2019-11-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=44&rft_id=info:doi/10.1002%2Fadfm.201905197&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201905197 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |