Flexible and Multifunctional Silk Textiles with Biomimetic Leaf‐Like MXene/Silver Nanowire Nanostructures for Electromagnetic Interference Shielding, Humidity Monitoring, and Self‐Derived Hydrophobicity

Although flexible and multifunctional textiles are promising for wearable electronics and portable device applications, the main issue is to endow textiles with multifunctionalities while maintaining their innate flexible and porous features. Herein, a vacuum‐assisted layer‐by‐layer assembly techniq...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 29; no. 44
Main Authors Liu, Liu‐Xin, Chen, Wei, Zhang, Hao‐Bin, Wang, Qi‐Wei, Guan, Fanglan, Yu, Zhong‐Zhen
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although flexible and multifunctional textiles are promising for wearable electronics and portable device applications, the main issue is to endow textiles with multifunctionalities while maintaining their innate flexible and porous features. Herein, a vacuum‐assisted layer‐by‐layer assembly technique is demonstrated to conformally deposit electrically conductive substances on textiles for developing multifunctional and flexible textiles with superb electromagnetic interference (EMI) shielding performances, superhydrophobicity, and highly sensitive humidity response. The formed leaf‐like nanostructure is composed of silver nanowires (AgNWs) as the highly conductive skeleton (vein) and transition metal carbide/carbonitride (MXene) nanosheets as the lamina. The presence of MXene protects AgNWs from oxidation and enhances the combination of AgNWs with the fabric substrate, and the transformation of its functional groups leads to self‐derived hydrophobicity. The flexible and multifunctional textile exhibits a low sheet resistance of 0.8 Ω sq−1, outstanding EMI shielding efficiency of 54 dB in the X‐band at a small thickness of 120 µm, and highly sensitive humidity responses, while retaining its satisfactory porosity and permeability. The self‐derived hydrophobicity with a large contact angle of >140° is achieved by aging the hydrophilic MXene coated silk. The wearable multifunctional textiles are highly promising for applications in intelligent garments, humidity sensors, actuators, and EMI shielding. A biomimetic leaf‐like nanostructure composed of a 1D AgNWs skeleton (vein) and 2D MXene as the lamina is fabricated via vacuum‐assisted layer‐by‐layer assembly for electromagnetic interference (EMI) shielding, humidity monitoring, and self‐derived hydrophobicity. The (MA1)10 silk presents an exceptional EMI shielding effectiveness of ≈90 dB at 12.4 GHz at a thickness of 480 µm, and the MXene‐coated textile induces a hydrophilic‐to‐hydrophobic transition, generating a large contact angle of >140°.
AbstractList Although flexible and multifunctional textiles are promising for wearable electronics and portable device applications, the main issue is to endow textiles with multifunctionalities while maintaining their innate flexible and porous features. Herein, a vacuum‐assisted layer‐by‐layer assembly technique is demonstrated to conformally deposit electrically conductive substances on textiles for developing multifunctional and flexible textiles with superb electromagnetic interference (EMI) shielding performances, superhydrophobicity, and highly sensitive humidity response. The formed leaf‐like nanostructure is composed of silver nanowires (AgNWs) as the highly conductive skeleton (vein) and transition metal carbide/carbonitride (MXene) nanosheets as the lamina. The presence of MXene protects AgNWs from oxidation and enhances the combination of AgNWs with the fabric substrate, and the transformation of its functional groups leads to self‐derived hydrophobicity. The flexible and multifunctional textile exhibits a low sheet resistance of 0.8 Ω sq −1 , outstanding EMI shielding efficiency of 54 dB in the X‐band at a small thickness of 120 µm, and highly sensitive humidity responses, while retaining its satisfactory porosity and permeability. The self‐derived hydrophobicity with a large contact angle of >140° is achieved by aging the hydrophilic MXene coated silk. The wearable multifunctional textiles are highly promising for applications in intelligent garments, humidity sensors, actuators, and EMI shielding.
Although flexible and multifunctional textiles are promising for wearable electronics and portable device applications, the main issue is to endow textiles with multifunctionalities while maintaining their innate flexible and porous features. Herein, a vacuum‐assisted layer‐by‐layer assembly technique is demonstrated to conformally deposit electrically conductive substances on textiles for developing multifunctional and flexible textiles with superb electromagnetic interference (EMI) shielding performances, superhydrophobicity, and highly sensitive humidity response. The formed leaf‐like nanostructure is composed of silver nanowires (AgNWs) as the highly conductive skeleton (vein) and transition metal carbide/carbonitride (MXene) nanosheets as the lamina. The presence of MXene protects AgNWs from oxidation and enhances the combination of AgNWs with the fabric substrate, and the transformation of its functional groups leads to self‐derived hydrophobicity. The flexible and multifunctional textile exhibits a low sheet resistance of 0.8 Ω sq−1, outstanding EMI shielding efficiency of 54 dB in the X‐band at a small thickness of 120 µm, and highly sensitive humidity responses, while retaining its satisfactory porosity and permeability. The self‐derived hydrophobicity with a large contact angle of >140° is achieved by aging the hydrophilic MXene coated silk. The wearable multifunctional textiles are highly promising for applications in intelligent garments, humidity sensors, actuators, and EMI shielding. A biomimetic leaf‐like nanostructure composed of a 1D AgNWs skeleton (vein) and 2D MXene as the lamina is fabricated via vacuum‐assisted layer‐by‐layer assembly for electromagnetic interference (EMI) shielding, humidity monitoring, and self‐derived hydrophobicity. The (MA1)10 silk presents an exceptional EMI shielding effectiveness of ≈90 dB at 12.4 GHz at a thickness of 480 µm, and the MXene‐coated textile induces a hydrophilic‐to‐hydrophobic transition, generating a large contact angle of >140°.
Although flexible and multifunctional textiles are promising for wearable electronics and portable device applications, the main issue is to endow textiles with multifunctionalities while maintaining their innate flexible and porous features. Herein, a vacuum‐assisted layer‐by‐layer assembly technique is demonstrated to conformally deposit electrically conductive substances on textiles for developing multifunctional and flexible textiles with superb electromagnetic interference (EMI) shielding performances, superhydrophobicity, and highly sensitive humidity response. The formed leaf‐like nanostructure is composed of silver nanowires (AgNWs) as the highly conductive skeleton (vein) and transition metal carbide/carbonitride (MXene) nanosheets as the lamina. The presence of MXene protects AgNWs from oxidation and enhances the combination of AgNWs with the fabric substrate, and the transformation of its functional groups leads to self‐derived hydrophobicity. The flexible and multifunctional textile exhibits a low sheet resistance of 0.8 Ω sq−1, outstanding EMI shielding efficiency of 54 dB in the X‐band at a small thickness of 120 µm, and highly sensitive humidity responses, while retaining its satisfactory porosity and permeability. The self‐derived hydrophobicity with a large contact angle of >140° is achieved by aging the hydrophilic MXene coated silk. The wearable multifunctional textiles are highly promising for applications in intelligent garments, humidity sensors, actuators, and EMI shielding.
Author Chen, Wei
Zhang, Hao‐Bin
Guan, Fanglan
Yu, Zhong‐Zhen
Liu, Liu‐Xin
Wang, Qi‐Wei
Author_xml – sequence: 1
  givenname: Liu‐Xin
  surname: Liu
  fullname: Liu, Liu‐Xin
  organization: Beijing University of Chemical Technology
– sequence: 2
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: Beijing University of Chemical Technology
– sequence: 3
  givenname: Hao‐Bin
  surname: Zhang
  fullname: Zhang, Hao‐Bin
  email: zhanghaobin@mail.buct.edu.cn
  organization: Beijing University of Chemical Technology
– sequence: 4
  givenname: Qi‐Wei
  surname: Wang
  fullname: Wang, Qi‐Wei
  organization: Beijing University of Chemical Technology
– sequence: 5
  givenname: Fanglan
  surname: Guan
  fullname: Guan, Fanglan
  organization: Beijing Institute of Fashion Technology
– sequence: 6
  givenname: Zhong‐Zhen
  orcidid: 0000-0001-8357-3362
  surname: Yu
  fullname: Yu, Zhong‐Zhen
  email: yuzz@mail.buct.edu.cn
  organization: Beijing University of Chemical Technology
BookMark eNqFkc1uEzEUhUeoSLSFLWtLbElqz_8sS9uQSgksUqTuRh77urmtxw62p2l2PAJPxkPwJHgSVCQkxMpX1jnnXp3vJDky1kCSvGV0yihNz7hU_TSlrKEFa6oXyTErWTnJaFofPc_s9lVy4v09payqsvw4-THT8ISdBsKNJMtBB1SDEQGt4ZqsUD-QG3gKqMGTLYY1-YC2xx4CCrIArn5--77AByDLWzBwFvWP4MgnbuwWHewHH9wgwuBigLKOXGkQwdme35l9yLUJ4BQ4MALIao2gJZq792Q-9Cgx7MjSGgzW7T_HG1egx62X4PARJJnvpLObte1QRPXr5KXi2sOb3-9p8mV2dXMxnyw-f7y-OF9MRFaU1UTlGW9UGquSikPB0lzUhQQhaNeUpcxpxwStuqwDyUXRqYLSmjYsLaqqrishstPk3SF34-zXAXxo7-3gYmW-TTPalEUVKURVflAJZ713oNp4Ix-7DY6jbhltR3LtSK59Jhdt079sG4c9d7t_G5qDYRs57f6jbs8vZ8s_3l9ksLYG
CitedBy_id crossref_primary_10_1002_sstr_202100120
crossref_primary_10_1016_j_coco_2023_101732
crossref_primary_10_1039_D2NR05447G
crossref_primary_10_1021_acsanm_3c05591
crossref_primary_10_1021_acsami_2c22143
crossref_primary_10_3390_nano9101399
crossref_primary_10_1016_j_apsusc_2025_162436
crossref_primary_10_1021_acs_chemmater_0c03392
crossref_primary_10_1007_s40820_023_01203_5
crossref_primary_10_1016_j_polymer_2024_127732
crossref_primary_10_1007_s42765_024_00498_2
crossref_primary_10_1016_j_carbon_2020_11_089
crossref_primary_10_1039_D1RA03392A
crossref_primary_10_1002_adfm_202412307
crossref_primary_10_1016_j_ceramint_2021_12_261
crossref_primary_10_1021_acs_iecr_2c02090
crossref_primary_10_1016_j_cej_2022_135869
crossref_primary_10_1109_JSEN_2024_3376355
crossref_primary_10_1016_j_cej_2024_149461
crossref_primary_10_1021_acsami_1c12915
crossref_primary_10_1002_smsc_202000032
crossref_primary_10_1016_j_mtcomm_2025_111879
crossref_primary_10_1016_j_snb_2022_132696
crossref_primary_10_1021_acsami_0c15530
crossref_primary_10_1021_acsnano_1c01277
crossref_primary_10_1002_smll_202409033
crossref_primary_10_1002_adfm_202308426
crossref_primary_10_1007_s10853_021_06676_6
crossref_primary_10_1002_adfm_202415921
crossref_primary_10_1039_D4MH00631C
crossref_primary_10_1016_j_carbpol_2022_119839
crossref_primary_10_1021_acsaelm_4c00304
crossref_primary_10_1016_j_carbon_2024_119660
crossref_primary_10_1021_acsaenm_3c00578
crossref_primary_10_1016_j_compositesb_2022_109618
crossref_primary_10_1039_D1MA01170G
crossref_primary_10_1007_s42235_022_00181_5
crossref_primary_10_1016_j_ceramint_2021_12_235
crossref_primary_10_1039_D2TC02532A
crossref_primary_10_1021_acsami_3c06767
crossref_primary_10_1002_app_53144
crossref_primary_10_1002_smtd_202300112
crossref_primary_10_1002_lpor_202300293
crossref_primary_10_1021_acs_iecr_3c03723
crossref_primary_10_1021_acsnano_4c09916
crossref_primary_10_1016_j_apmt_2022_101612
crossref_primary_10_1021_acsanm_2c00476
crossref_primary_10_1016_j_carbon_2021_12_075
crossref_primary_10_1016_j_compscitech_2022_109337
crossref_primary_10_1021_acsami_3c18996
crossref_primary_10_1039_D1TB01798E
crossref_primary_10_1002_admt_202200027
crossref_primary_10_1021_acsanm_4c00462
crossref_primary_10_1039_D2TC04080H
crossref_primary_10_1126_sciadv_abb5367
crossref_primary_10_1016_j_carbon_2023_118045
crossref_primary_10_1002_admt_202101540
crossref_primary_10_1007_s42114_022_00510_6
crossref_primary_10_1016_j_engreg_2023_11_002
crossref_primary_10_1088_1361_6528_ac1296
crossref_primary_10_1016_j_compositesa_2020_105956
crossref_primary_10_1021_acsami_1c22740
crossref_primary_10_1039_D4MH00774C
crossref_primary_10_1016_j_compositesa_2020_105955
crossref_primary_10_1016_j_matlet_2022_131862
crossref_primary_10_1021_acsnano_0c01976
crossref_primary_10_1021_acsami_1c21778
crossref_primary_10_1002_adfm_202000883
crossref_primary_10_1016_j_sna_2024_115220
crossref_primary_10_34133_research_0542
crossref_primary_10_1002_smll_202410283
crossref_primary_10_1016_j_snb_2025_137533
crossref_primary_10_1021_acsami_1c07363
crossref_primary_10_1039_D0MA00005A
crossref_primary_10_1016_j_cej_2023_141661
crossref_primary_10_1002_adma_202210085
crossref_primary_10_1016_j_jcis_2021_08_214
crossref_primary_10_1016_j_surfin_2023_102873
crossref_primary_10_1002_adfm_202421347
crossref_primary_10_1021_acsami_1c21836
crossref_primary_10_1039_D0TA07832H
crossref_primary_10_1021_acsapm_3c00175
crossref_primary_10_1016_j_cej_2022_135662
crossref_primary_10_1039_D2TA04706C
crossref_primary_10_1021_acs_iecr_1c00320
crossref_primary_10_1021_acsnano_1c00248
crossref_primary_10_1002_adfm_202406197
crossref_primary_10_1002_admt_202202029
crossref_primary_10_1002_smtd_202201651
crossref_primary_10_1002_adfm_202000869
crossref_primary_10_1039_D3TA06467K
crossref_primary_10_1002_adma_202002159
crossref_primary_10_1007_s40820_022_00810_y
crossref_primary_10_1016_j_compositesa_2021_106291
crossref_primary_10_1002_admi_202001893
crossref_primary_10_1007_s10570_021_03955_y
crossref_primary_10_1007_s12598_020_01602_2
crossref_primary_10_1016_j_mseb_2024_117673
crossref_primary_10_1016_j_diamond_2020_107757
crossref_primary_10_1002_aisy_202000215
crossref_primary_10_1016_j_cej_2021_133074
crossref_primary_10_1007_s40820_021_00664_w
crossref_primary_10_1002_admt_202201188
crossref_primary_10_1007_s11664_020_08352_y
crossref_primary_10_1016_j_carbon_2020_12_084
crossref_primary_10_1021_acsami_2c12555
crossref_primary_10_1016_j_carbon_2023_118075
crossref_primary_10_1038_s41467_022_30894_4
crossref_primary_10_1016_j_compositesb_2021_109299
crossref_primary_10_1002_smll_202103734
crossref_primary_10_1007_s10570_025_06406_0
crossref_primary_10_1021_acsaelm_2c01733
crossref_primary_10_1039_D3TA02617E
crossref_primary_10_1021_acsami_2c01345
crossref_primary_10_1039_D2TA02755K
crossref_primary_10_1016_j_compositesa_2022_107232
crossref_primary_10_1039_D2CP03619C
crossref_primary_10_1002_adfm_202009524
crossref_primary_10_1016_j_colsurfa_2025_136227
crossref_primary_10_1039_D0TC05480A
crossref_primary_10_1186_s40691_023_00356_6
crossref_primary_10_1039_D2TC02524H
crossref_primary_10_1021_acs_iecr_1c01632
crossref_primary_10_1002_app_55009
crossref_primary_10_1021_acsami_0c03544
crossref_primary_10_1021_acsnano_9b08832
crossref_primary_10_1002_adfm_202000712
crossref_primary_10_1039_D1TA05181D
crossref_primary_10_1016_j_cej_2021_128639
crossref_primary_10_1021_acsanm_1c03280
crossref_primary_10_1002_admt_202100773
crossref_primary_10_1080_10667857_2021_1879528
crossref_primary_10_1021_acsanm_2c00315
crossref_primary_10_1002_adom_202301694
crossref_primary_10_1002_eom2_12209
crossref_primary_10_3390_polym16060760
crossref_primary_10_1021_acs_iecr_0c04005
crossref_primary_10_1016_j_carbon_2021_12_044
crossref_primary_10_1016_j_cej_2020_127363
crossref_primary_10_1016_j_mtcomm_2025_111748
crossref_primary_10_1007_s10971_021_05483_4
crossref_primary_10_1016_j_isci_2024_109481
crossref_primary_10_1002_qua_26626
crossref_primary_10_1002_pc_28627
crossref_primary_10_1021_acsami_2c01160
crossref_primary_10_1177_15280837221101650
crossref_primary_10_1039_D2NR02224A
crossref_primary_10_1016_j_colsurfa_2022_129713
crossref_primary_10_1016_j_snb_2021_130150
crossref_primary_10_1021_acsami_1c07976
crossref_primary_10_1002_app_53882
crossref_primary_10_1039_D2NR05649F
crossref_primary_10_1016_j_compositesb_2023_110863
crossref_primary_10_1557_s43578_023_01100_y
crossref_primary_10_1016_j_isci_2021_103316
crossref_primary_10_1039_D2TC03821H
crossref_primary_10_1002_admt_202301265
crossref_primary_10_1039_D2CC06009D
crossref_primary_10_1002_smll_202401031
crossref_primary_10_1016_j_carbon_2023_02_044
crossref_primary_10_1016_j_compscitech_2022_109715
crossref_primary_10_1016_j_cplett_2022_139882
crossref_primary_10_1021_acsami_0c21833
crossref_primary_10_1186_s43074_023_00091_7
crossref_primary_10_3390_molecules27196767
crossref_primary_10_1002_smll_202309027
crossref_primary_10_1016_j_ceramint_2022_03_200
crossref_primary_10_1016_j_esr_2025_101656
crossref_primary_10_1016_j_jallcom_2022_167964
crossref_primary_10_1007_s10853_022_07344_z
crossref_primary_10_1021_acsami_0c04482
crossref_primary_10_1016_j_matdes_2022_111207
crossref_primary_10_1016_j_carbon_2021_09_014
crossref_primary_10_3390_nano11123412
crossref_primary_10_3389_fchem_2023_1141259
crossref_primary_10_1002_smtd_202101049
crossref_primary_10_1016_j_compositesb_2020_108250
crossref_primary_10_1016_j_jcis_2024_12_066
crossref_primary_10_1002_adem_202301962
crossref_primary_10_1016_j_mtcomm_2024_110774
crossref_primary_10_1108_IJCST_05_2021_0061
crossref_primary_10_1016_j_compositesb_2021_108669
crossref_primary_10_1021_acs_chemrev_1c00502
crossref_primary_10_1021_acsanm_4c01940
crossref_primary_10_1016_j_cej_2020_126526
crossref_primary_10_1039_D0NR06671K
crossref_primary_10_1021_acs_chemmater_2c03396
crossref_primary_10_1016_j_jallcom_2022_165998
crossref_primary_10_1007_s40820_021_00693_5
crossref_primary_10_1016_j_nantod_2022_101526
crossref_primary_10_1039_C9QM00681H
crossref_primary_10_1021_acsami_1c19850
crossref_primary_10_1039_D0NR07433K
crossref_primary_10_1016_j_cej_2024_151360
crossref_primary_10_1039_D0GC01539C
crossref_primary_10_1038_s41467_022_33133_y
crossref_primary_10_1002_aisy_202100074
crossref_primary_10_1016_j_cej_2024_156824
crossref_primary_10_1016_j_vacuum_2024_113769
crossref_primary_10_1002_adma_202405766
crossref_primary_10_1007_s40820_022_00901_w
crossref_primary_10_1007_s42247_023_00515_x
crossref_primary_10_1021_acsami_4c06905
crossref_primary_10_1016_j_colsurfa_2022_128897
crossref_primary_10_1016_j_ijbiomac_2024_135207
crossref_primary_10_1021_acsaelm_3c01359
crossref_primary_10_1063_5_0060344
crossref_primary_10_3390_polym14050945
crossref_primary_10_1002_adfm_202101302
crossref_primary_10_1016_j_compositesb_2021_108690
crossref_primary_10_1021_acsami_3c15754
crossref_primary_10_1007_s12274_022_4440_1
crossref_primary_10_1016_j_matdes_2024_113282
crossref_primary_10_1002_adfm_202007436
crossref_primary_10_1016_j_cej_2024_152696
crossref_primary_10_1016_j_cej_2025_160378
crossref_primary_10_1016_j_compscitech_2022_109720
crossref_primary_10_1016_j_indcrop_2024_118653
crossref_primary_10_1016_j_surfin_2024_104083
crossref_primary_10_1021_acsami_0c08868
crossref_primary_10_1007_s12274_022_4781_9
crossref_primary_10_1021_acsami_1c05222
crossref_primary_10_1016_j_snb_2024_136301
crossref_primary_10_1021_acsaem_9b02259
crossref_primary_10_1021_acsami_2c18759
crossref_primary_10_1016_j_cej_2023_142351
crossref_primary_10_1002_cnma_202200481
crossref_primary_10_1021_acsami_1c18828
crossref_primary_10_1016_j_jallcom_2022_166666
crossref_primary_10_1039_D3TA06789K
crossref_primary_10_1039_D1NA00415H
crossref_primary_10_1021_acsami_0c01182
crossref_primary_10_1007_s40820_024_01430_4
crossref_primary_10_1088_2053_1583_acd32a
crossref_primary_10_1002_inf2_12412
crossref_primary_10_1002_aelm_202100578
crossref_primary_10_1016_j_cej_2025_161317
crossref_primary_10_1002_adfm_202301607
crossref_primary_10_1021_acsami_1c03692
crossref_primary_10_1002_adma_202109355
crossref_primary_10_1039_D2MA00151A
crossref_primary_10_1007_s42114_024_00894_7
crossref_primary_10_1039_D2TC02856E
crossref_primary_10_1016_j_chemosphere_2024_141234
crossref_primary_10_1016_j_cej_2023_143797
crossref_primary_10_1021_acsanm_4c05135
crossref_primary_10_1016_j_cej_2020_126898
crossref_primary_10_1007_s42823_020_00152_y
crossref_primary_10_1039_D0TA09246K
crossref_primary_10_1016_j_snb_2022_131438
crossref_primary_10_1016_j_carbon_2023_02_012
crossref_primary_10_1007_s10853_020_04780_7
crossref_primary_10_1007_s12274_020_2897_3
crossref_primary_10_1021_acsnano_0c01635
crossref_primary_10_1016_j_coco_2024_102077
crossref_primary_10_1016_j_ijbiomac_2022_11_228
crossref_primary_10_1016_j_jcis_2021_01_074
crossref_primary_10_1021_acsami_4c06735
crossref_primary_10_1016_j_carbon_2024_119860
crossref_primary_10_1007_s12274_022_4572_3
crossref_primary_10_1021_acsanm_0c00843
crossref_primary_10_1002_adfm_202204772
crossref_primary_10_1016_j_surfin_2024_104279
crossref_primary_10_1016_j_nanoen_2024_110376
crossref_primary_10_1002_adfm_202100640
crossref_primary_10_1021_acsami_2c03124
crossref_primary_10_1002_adfm_202406920
crossref_primary_10_1016_j_compositesb_2022_109652
crossref_primary_10_1021_acsami_0c14397
crossref_primary_10_1016_j_cej_2023_142576
crossref_primary_10_1021_acsami_0c13185
crossref_primary_10_1021_acsnano_0c02401
crossref_primary_10_1007_s10570_024_06138_7
crossref_primary_10_1007_s10854_020_03426_3
crossref_primary_10_1007_s42114_023_00774_6
crossref_primary_10_1016_j_cej_2022_134751
crossref_primary_10_1002_cey2_174
crossref_primary_10_1016_j_porgcoat_2020_105697
crossref_primary_10_1002_eng2_12384
crossref_primary_10_1016_j_heliyon_2024_e31118
crossref_primary_10_1007_s42114_023_00752_y
crossref_primary_10_1002_adfm_202310774
crossref_primary_10_1016_j_jics_2023_100962
crossref_primary_10_1016_j_jpowsour_2024_234312
crossref_primary_10_1016_j_mser_2021_100627
crossref_primary_10_1016_j_snb_2024_135375
crossref_primary_10_1002_adfm_202214223
crossref_primary_10_1002_pol_20230184
crossref_primary_10_1016_j_progsolidstchem_2023_100392
crossref_primary_10_1039_D1TC04702G
crossref_primary_10_1002_admi_201901449
crossref_primary_10_1016_j_coco_2024_102056
crossref_primary_10_1016_j_mattod_2022_10_022
crossref_primary_10_1016_j_colsurfa_2024_135108
crossref_primary_10_1177_15280837241279963
crossref_primary_10_1039_D0TA10991F
crossref_primary_10_1016_j_cej_2021_129339
crossref_primary_10_1021_acsapm_3c00922
crossref_primary_10_3390_nano15010006
crossref_primary_10_1016_j_compositesa_2021_106643
crossref_primary_10_1016_j_synthmet_2023_117305
crossref_primary_10_1002_adma_202206101
crossref_primary_10_1039_D2CC06418A
crossref_primary_10_15541_jim20230397
crossref_primary_10_1016_j_jphotobiol_2020_112012
crossref_primary_10_1016_j_porgcoat_2025_109131
crossref_primary_10_1021_acsanm_3c00574
crossref_primary_10_1016_j_compositesa_2020_106116
crossref_primary_10_1007_s42114_024_00839_0
crossref_primary_10_1016_j_cej_2022_137135
crossref_primary_10_1007_s42765_024_00403_x
crossref_primary_10_1016_j_matt_2021_02_022
crossref_primary_10_1007_s40820_021_00767_4
crossref_primary_10_1016_j_arabjc_2022_104143
crossref_primary_10_1016_j_compositesa_2021_106649
crossref_primary_10_1002_adfm_202314425
crossref_primary_10_1016_j_ijbiomac_2023_127510
crossref_primary_10_1002_admt_202401497
crossref_primary_10_1039_D1TA08788F
crossref_primary_10_1002_advs_202402767
crossref_primary_10_1021_acsami_0c07387
crossref_primary_10_3390_chemosensors11090483
crossref_primary_10_1016_j_compositesa_2024_108682
crossref_primary_10_1016_j_jcis_2021_08_190
crossref_primary_10_1021_acsnano_3c08739
crossref_primary_10_1016_j_coco_2021_100786
crossref_primary_10_1021_acsami_1c11056
crossref_primary_10_1021_acsnano_0c03013
crossref_primary_10_1002_smll_202300283
crossref_primary_10_1039_D3TA03415A
crossref_primary_10_1016_j_chemosphere_2024_141838
crossref_primary_10_1007_s42765_022_00211_1
crossref_primary_10_1016_j_jcis_2023_11_187
crossref_primary_10_1021_acsami_2c04246
crossref_primary_10_1111_ina_13103
crossref_primary_10_1088_2515_7655_abf8f7
crossref_primary_10_3390_fib11030029
crossref_primary_10_1002_admt_202000240
crossref_primary_10_1002_admt_202301333
crossref_primary_10_1016_j_compositesa_2021_106555
crossref_primary_10_1007_s12274_022_4358_7
crossref_primary_10_1002_ente_202001076
crossref_primary_10_1016_j_compositesa_2021_106551
crossref_primary_10_1016_j_scib_2020_02_009
crossref_primary_10_1002_adfm_202418899
crossref_primary_10_1002_smll_202310191
crossref_primary_10_1016_j_carbpol_2020_116467
crossref_primary_10_1016_j_ijbiomac_2025_140493
crossref_primary_10_1002_smll_202302335
crossref_primary_10_1002_admi_202201818
crossref_primary_10_3390_cryst13121612
crossref_primary_10_1016_j_compositesa_2025_108860
crossref_primary_10_1038_s41467_024_49076_5
crossref_primary_10_1016_j_eurpolymj_2023_112029
crossref_primary_10_1016_j_mtphys_2024_101330
crossref_primary_10_1016_j_jcis_2022_08_176
crossref_primary_10_1177_15589250231199970
crossref_primary_10_1177_24723444241295415
crossref_primary_10_1016_j_carbon_2022_02_003
crossref_primary_10_1002_aelm_202101028
crossref_primary_10_1002_cnma_202400264
crossref_primary_10_3390_en15093399
crossref_primary_10_1002_smll_202208134
crossref_primary_10_1002_adma_202104878
crossref_primary_10_1016_j_compositesb_2021_108752
crossref_primary_10_1016_j_mtsust_2024_100671
crossref_primary_10_1016_j_compositesa_2025_108755
crossref_primary_10_1016_j_snb_2024_136605
crossref_primary_10_1007_s40820_022_00817_5
crossref_primary_10_1016_j_mtphys_2023_101100
crossref_primary_10_1002_adfm_202214880
crossref_primary_10_1007_s40820_024_01349_w
crossref_primary_10_1016_j_jcis_2023_10_014
crossref_primary_10_1021_acsapm_4c01339
crossref_primary_10_1016_j_radphyschem_2024_112112
crossref_primary_10_1016_j_cej_2021_133751
crossref_primary_10_1021_acsami_3c08093
crossref_primary_10_1016_j_ceramint_2024_04_204
crossref_primary_10_1021_acsami_2c16111
crossref_primary_10_1109_JEDS_2021_3055214
crossref_primary_10_1016_j_compscitech_2020_108531
crossref_primary_10_1016_j_jcis_2021_07_085
crossref_primary_10_1016_j_carbon_2022_08_040
crossref_primary_10_4028_p_15m3g4
crossref_primary_10_1016_j_adna_2023_11_002
crossref_primary_10_1016_j_nanoen_2020_104926
crossref_primary_10_1021_acsnano_2c11267
crossref_primary_10_1039_D4TC00111G
crossref_primary_10_3390_biomimetics8030293
crossref_primary_10_1002_aelm_202000429
crossref_primary_10_1016_j_compositesa_2021_106739
crossref_primary_10_1002_app_50597
crossref_primary_10_1016_j_carbon_2022_04_078
crossref_primary_10_1002_adfm_202301542
crossref_primary_10_1007_s12274_022_5368_1
crossref_primary_10_1016_j_snb_2022_131704
crossref_primary_10_1021_acsaelm_0c00545
crossref_primary_10_1002_adfm_202000398
crossref_primary_10_1002_admi_202200991
crossref_primary_10_1021_acsnano_2c04971
crossref_primary_10_1002_adfm_202304936
crossref_primary_10_1016_j_compscitech_2024_110659
crossref_primary_10_3389_fchem_2022_973115
crossref_primary_10_1002_adfm_202301549
crossref_primary_10_1016_j_carbon_2022_04_071
crossref_primary_10_1002_smll_202304327
crossref_primary_10_3390_app12168254
crossref_primary_10_1021_acssuschemeng_2c04229
crossref_primary_10_1016_j_colsurfa_2022_128299
crossref_primary_10_1088_2053_1591_acf7b4
crossref_primary_10_1002_adfm_202213419
crossref_primary_10_1016_j_apsusc_2023_157275
crossref_primary_10_1016_j_apsusc_2024_160607
crossref_primary_10_1007_s12274_022_4938_6
crossref_primary_10_1016_j_compositesb_2023_110874
crossref_primary_10_1039_D0NJ00672F
crossref_primary_10_1016_j_ceramint_2022_04_187
crossref_primary_10_1016_j_compositesb_2023_110999
crossref_primary_10_1002_smll_202411735
crossref_primary_10_1002_admi_202101089
crossref_primary_10_1021_acsami_1c00256
crossref_primary_10_1007_s12274_022_5357_1
crossref_primary_10_1080_25740881_2022_2089581
crossref_primary_10_1021_acsami_2c07670
crossref_primary_10_1016_j_porgcoat_2024_108292
crossref_primary_10_1016_j_compositesa_2022_106928
crossref_primary_10_1016_j_snb_2024_135655
crossref_primary_10_1016_j_compositesa_2022_106883
crossref_primary_10_1016_j_compositesa_2022_106884
crossref_primary_10_1021_acsami_0c09020
crossref_primary_10_1088_2399_1984_ab92f5
crossref_primary_10_1021_acsomega_2c05204
crossref_primary_10_1016_j_compositesb_2021_109193
crossref_primary_10_1016_j_compositesa_2020_106088
crossref_primary_10_1016_j_cej_2022_135587
crossref_primary_10_1021_acsami_1c23303
crossref_primary_10_1016_j_cej_2022_135588
crossref_primary_10_1016_j_carbon_2021_07_099
crossref_primary_10_1039_D0TA11103A
crossref_primary_10_1002_inf2_12295
crossref_primary_10_1002_advs_202101988
crossref_primary_10_1002_smll_202205853
crossref_primary_10_1007_s40820_021_00665_9
crossref_primary_10_1016_j_apsusc_2023_156962
crossref_primary_10_1039_D1TC00289A
crossref_primary_10_1016_j_cej_2021_129864
crossref_primary_10_1016_j_compositesb_2022_110477
crossref_primary_10_1016_j_jmst_2022_06_031
crossref_primary_10_1016_j_surfin_2024_104628
crossref_primary_10_1007_s40820_022_00853_1
crossref_primary_10_3389_fchem_2020_00297
crossref_primary_10_1016_j_ccr_2023_215275
crossref_primary_10_1007_s10570_021_03765_2
crossref_primary_10_1021_acsaelm_2c01708
crossref_primary_10_1007_s11664_023_10404_y
crossref_primary_10_1016_j_cej_2023_145091
crossref_primary_10_1007_s40820_023_01317_w
crossref_primary_10_1016_j_cej_2022_137537
crossref_primary_10_1002_cnma_202000560
crossref_primary_10_3390_signals4010001
crossref_primary_10_1007_s12274_024_6488_6
crossref_primary_10_1002_adma_202107538
crossref_primary_10_1002_adma_202211642
crossref_primary_10_1557_s43577_021_00117_0
crossref_primary_10_1016_j_compscitech_2024_110603
crossref_primary_10_1016_j_coco_2022_101062
crossref_primary_10_15541_jim20230306
crossref_primary_10_1016_j_mtnano_2024_100555
crossref_primary_10_1016_j_apsusc_2021_152358
crossref_primary_10_1016_j_cej_2021_130729
crossref_primary_10_1016_j_colsurfa_2022_130163
crossref_primary_10_1016_j_cej_2024_156145
crossref_primary_10_1007_s12274_023_6154_4
crossref_primary_10_1016_j_ceramint_2022_07_201
crossref_primary_10_1021_acsami_1c23567
crossref_primary_10_1016_j_cej_2022_140957
crossref_primary_10_1002_adsr_202300014
crossref_primary_10_1016_j_compscitech_2020_108600
crossref_primary_10_1002_adma_202110608
crossref_primary_10_1021_acsanm_4c02109
crossref_primary_10_1002_adfm_202000475
crossref_primary_10_1021_acsanm_2c01282
crossref_primary_10_1007_s41127_023_00065_3
crossref_primary_10_1149_2754_2726_ac5ac6
crossref_primary_10_1039_C9TC06304H
crossref_primary_10_1007_s10853_021_06248_8
crossref_primary_10_1016_j_cej_2022_136103
crossref_primary_10_1016_j_coco_2020_100508
crossref_primary_10_1177_00405175211066621
crossref_primary_10_1016_j_decarb_2023_100026
crossref_primary_10_1002_smll_202309803
crossref_primary_10_1016_j_ijbiomac_2023_125195
crossref_primary_10_1016_j_mtnano_2022_100214
crossref_primary_10_1002_adfm_201907451
crossref_primary_10_1007_s40820_024_01429_x
crossref_primary_10_1088_1361_665X_ac102c
crossref_primary_10_1002_adem_202500188
crossref_primary_10_1002_adfm_202405016
crossref_primary_10_1002_solr_202100878
crossref_primary_10_1016_j_indcrop_2024_118384
crossref_primary_10_1016_j_mtphys_2021_100527
crossref_primary_10_1021_acsnano_0c03391
crossref_primary_10_1021_acsami_2c00797
crossref_primary_10_1002_aenm_202401268
crossref_primary_10_1021_acsanm_2c04776
crossref_primary_10_1016_j_compositesa_2024_108067
crossref_primary_10_1039_D0TA01393E
crossref_primary_10_1016_j_carbon_2021_10_080
crossref_primary_10_1016_j_carbon_2022_04_012
crossref_primary_10_1002_adpr_202300224
crossref_primary_10_1021_acsami_1c17170
crossref_primary_10_1007_s42765_023_00328_x
crossref_primary_10_1016_j_diamond_2023_110499
crossref_primary_10_1016_j_microc_2024_112484
crossref_primary_10_1016_j_mtbio_2020_100065
crossref_primary_10_1021_acs_iecr_9b05461
crossref_primary_10_1021_acsnano_4c14128
crossref_primary_10_1016_j_cej_2023_147116
crossref_primary_10_1016_j_matdes_2020_109442
crossref_primary_10_1007_s11356_023_26501_8
crossref_primary_10_1021_acsami_0c11530
crossref_primary_10_1007_s40820_021_00645_z
crossref_primary_10_1021_acsami_4c21321
crossref_primary_10_2478_ftee_2023_0018
crossref_primary_10_1186_s42252_024_00054_6
crossref_primary_10_1002_smll_202106129
crossref_primary_10_1039_D1RA02756E
crossref_primary_10_1088_1361_6528_ac18a0
crossref_primary_10_1016_j_porgcoat_2025_109062
crossref_primary_10_1021_acsami_1c11638
crossref_primary_10_1007_s40820_021_00743_y
crossref_primary_10_1016_j_snb_2022_133056
crossref_primary_10_1021_acsnano_9b07459
crossref_primary_10_1002_smll_202305250
crossref_primary_10_1039_D1TA09384C
crossref_primary_10_1039_D3TA00442B
crossref_primary_10_1016_j_compositesa_2020_106188
crossref_primary_10_1002_mame_202100365
crossref_primary_10_1021_acsmaterialslett_1c00618
crossref_primary_10_1016_j_colsurfa_2020_125047
crossref_primary_10_1016_j_carbon_2022_06_085
crossref_primary_10_12677_nat_2024_1412003
crossref_primary_10_1016_j_compositesa_2021_106472
crossref_primary_10_1016_j_compscitech_2019_107975
crossref_primary_10_1016_j_compscitech_2022_109372
crossref_primary_10_1039_D4AY01127A
crossref_primary_10_1002_adfm_202107969
crossref_primary_10_1177_00405175211006216
crossref_primary_10_1021_acsami_2c09215
crossref_primary_10_1039_D0TA08515D
crossref_primary_10_1016_j_colsurfa_2023_132211
crossref_primary_10_1016_j_matchemphys_2020_124137
crossref_primary_10_1016_j_carbon_2021_02_104
crossref_primary_10_1039_D0TA03048A
crossref_primary_10_1007_s42765_023_00317_0
crossref_primary_10_1039_D1TA05873H
crossref_primary_10_1016_j_mtchem_2022_100859
crossref_primary_10_1016_j_cej_2022_136388
crossref_primary_10_1002_sstr_202200102
crossref_primary_10_3390_chemosensors11010007
crossref_primary_10_1002_pc_28039
crossref_primary_10_1016_j_isci_2022_105001
crossref_primary_10_1016_j_cej_2021_128474
crossref_primary_10_1016_j_cej_2021_132605
crossref_primary_10_1016_j_cis_2023_103027
Cites_doi 10.1021/acsami.8b18459
10.1002/admt.201800503
10.1016/j.polymer.2003.08.038
10.1002/adfm.201700415
10.1016/j.colsurfb.2005.11.016
10.1021/acsnano.5b08176
10.1002/adma.201304138
10.1039/C8NR00313K
10.1016/j.mser.2017.02.001
10.1021/acsami.7b16422
10.1021/acsnano.8b05739
10.1021/acsami.8b04775
10.1002/adma.201606679
10.1002/anie.201402513
10.1002/adfm.201806819
10.1002/adfm.201504197
10.1039/C7TC02074K
10.1021/acs.chemmater.8b03976
10.1016/j.cej.2018.11.051
10.1002/ppap.201400109
10.1002/anie.201507333
10.1002/adfm.201703801
10.1016/j.surfcoat.2013.03.028
10.1021/acsami.7b02326
10.1002/adma.201306136
10.1021/acsami.7b00471
10.1021/acsami.8b10217
10.1002/adma.201702076
10.1021/acsnano.7b04368
10.1126/science.aag2421
10.1021/acsnano.7b05264
10.1002/adma.201706807
10.1016/j.surfcoat.2018.10.002
10.1039/C8NR10489A
10.1002/adfm.201302344
10.1021/acs.chemmater.6b01275
10.1002/smll.201703034
10.1021/acsnano.8b03391
10.1002/adma.201702367
10.1021/jacs.5b12728
10.1002/aelm.201600255
10.1002/adma.201605848
10.1002/smll.201703934
10.1002/ppap.201100044
10.1016/j.eurpolymj.2010.02.005
10.1088/1748-3182/3/4/046007
10.1021/nl903949m
10.1002/adfm.201702807
10.1039/C8NR05170D
10.1002/adma.201703053
10.1016/j.pmatsci.2012.11.001
10.1038/nmat2430
10.1002/adfm.201803360
10.1021/acsnano.8b02477
10.1021/acsami.7b09184
10.1002/adom.201900267
10.1021/am508814g
10.1016/j.apsusc.2015.11.089
10.1021/acsnano.7b05921
10.1002/smll.201703848
10.1021/acs.nanolett.6b04613
10.1021/acsami.8b21671
10.1002/smll.201802479
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201905197
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201905197
ADFM201905197
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: BHYC1707B
– fundername: National Natural Science Foundation of China
  funderid: 51922020; 51673015; 51533001
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3567-f43a9f2190dfae5124c85decc0b966d40b1c07b3bedac5bf50080912577887cc3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sun Jul 13 04:27:49 EDT 2025
Thu Apr 24 23:04:14 EDT 2025
Tue Jul 01 04:12:03 EDT 2025
Wed Jan 22 16:39:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3567-f43a9f2190dfae5124c85decc0b966d40b1c07b3bedac5bf50080912577887cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8357-3362
PQID 2309657905
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_2309657905
crossref_citationtrail_10_1002_adfm_201905197
crossref_primary_10_1002_adfm_201905197
wiley_primary_10_1002_adfm_201905197_ADFM201905197
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 1, 2019
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 1, 2019
  day: 01
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 10
2013 2016 2008; 58 138 3
2017 2016; 9 26
2019; 11
2017; 27
2017 2016; 29 353
2019 2017 2019; 29 5 4
2016 2015 2013 2012 2006 2003 2010; 362 12 234 9 47 44 46
2018 2018; 30 10
2014; 26
2019 2017; 11 27
2017; 29
2019 2018; 7 12
2016 2018; 55 14
2018 2018 2017; 28 12 115
2017; 9
2016; 2
2018 2018 2017 2018 2017 2019 2016; 14 14 9 10 11 31 28
2017; 17
2019 2019 2018 2018; 359 11 28 14
2017; 11
2019; 357
2016 2017; 10 11
2009 2014; 8 24
2018; 12
2018; 10
2014; 53
2017 2015; 29 7
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_17_4
e_1_2_7_19_2
e_1_2_7_17_3
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_17_1
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_23_1
e_1_2_7_31_3
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_16_7
e_1_2_7_8_1
e_1_2_7_16_6
e_1_2_7_6_2
e_1_2_7_16_5
e_1_2_7_16_4
e_1_2_7_18_2
e_1_2_7_16_3
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_27_2
e_1_2_7_27_3
e_1_2_7_29_1
e_1_2_7_27_4
e_1_2_7_27_5
e_1_2_7_27_6
e_1_2_7_27_7
e_1_2_7_30_1
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_20_2
e_1_2_7_20_1
References_xml – volume: 11 27
  year: 2019 2017
  publication-title: ACS Appl. Mater. Interfaces Adv. Funct. Mater.
– volume: 53
  start-page: 4877
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 29 7
  start-page: 4336
  year: 2017 2015
  publication-title: Adv. Mater. ACS Appl. Mater. Interfaces
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 29 353
  start-page: 1137
  year: 2017 2016
  publication-title: Adv. Mater. Science
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 26
  start-page: 3344
  year: 2014
  publication-title: Adv. Mater.
– volume: 10
  start-page: 708
  year: 2010
  publication-title: Nano Lett.
– volume: 29 5 4
  start-page: 7853
  year: 2019 2017 2019
  publication-title: Adv. Funct. Mater. J. Mater. Chem. C Adv. Mater. Technol.
– volume: 359 11 28 14
  start-page: 1265 6080
  year: 2019 2019 2018 2018
  publication-title: Chem. Eng. J. Nanoscale Adv. Funct. Mater. Small
– volume: 10
  start-page: 6005
  year: 2018
  publication-title: Nanoscale
– volume: 55 14
  start-page: 6140
  year: 2016 2018
  publication-title: Angew. Chem., Int. Ed. Small
– volume: 8 24
  start-page: 512 492
  year: 2009 2014
  publication-title: Nat. Mater. Adv. Funct. Mater.
– volume: 17
  start-page: 1090
  year: 2017
  publication-title: Nano Lett.
– volume: 58 138 3
  start-page: 503 1727
  year: 2013 2016 2008
  publication-title: Prog. Mater. Sci. J. Am. Chem. Soc. Bioinspir. Biomim.
– volume: 14 14 9 10 11 31 28
  start-page: 454 3507
  year: 2018 2018 2017 2018 2017 2019 2016
  publication-title: Small Small ACS Appl. Mater. Interfaces Nanoscale ACS Nano Chem. Mater. Chem. Mater.
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 26
  start-page: 992
  year: 2014
  publication-title: Adv. Mater.
– volume: 30 10
  start-page: 2026
  year: 2018 2018
  publication-title: Adv. Mater. ACS Appl. Mater. Interfaces
– volume: 10 11
  start-page: 3042
  year: 2016 2017
  publication-title: ACS Nano ACS Nano
– volume: 9 26
  start-page: 569
  year: 2017 2016
  publication-title: ACS Appl. Mater. Interfaces Adv. Funct. Mater.
– volume: 362 12 234 9 47 44 46
  start-page: 406 362 21 217 57 7241 900
  year: 2016 2015 2013 2012 2006 2003 2010
  publication-title: Appl. Surf. Sci. Plasma Processes Polym. Surf. Coat. Technol. Plasma Processes Polym. Colloids Surf., B Polymer Eur. Polym. J.
– volume: 2
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 12
  start-page: 5190
  year: 2018
  publication-title: ACS Nano
– volume: 7 12
  year: 2019 2018
  publication-title: Adv. Opt. Mater. ACS Nano
– volume: 11
  start-page: 1680
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 8308
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28 12 115
  start-page: 9134 1
  year: 2018 2018 2017
  publication-title: Adv. Funct. Mater. ACS Nano Mater. Sci. Eng., R
– volume: 357
  start-page: 267
  year: 2019
  publication-title: Surf. Coat. Technol.
– ident: e_1_2_7_13_1
  doi: 10.1021/acsami.8b18459
– ident: e_1_2_7_2_3
  doi: 10.1002/admt.201800503
– ident: e_1_2_7_27_6
  doi: 10.1016/j.polymer.2003.08.038
– ident: e_1_2_7_10_1
  doi: 10.1002/adfm.201700415
– ident: e_1_2_7_27_5
  doi: 10.1016/j.colsurfb.2005.11.016
– ident: e_1_2_7_6_1
  doi: 10.1021/acsnano.5b08176
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.201304138
– ident: e_1_2_7_8_1
  doi: 10.1039/C8NR00313K
– ident: e_1_2_7_3_3
  doi: 10.1016/j.mser.2017.02.001
– ident: e_1_2_7_4_2
  doi: 10.1021/acsami.7b16422
– ident: e_1_2_7_19_2
  doi: 10.1021/acsnano.8b05739
– ident: e_1_2_7_26_1
  doi: 10.1021/acsami.8b04775
– ident: e_1_2_7_11_1
  doi: 10.1002/adma.201606679
– ident: e_1_2_7_29_1
  doi: 10.1002/anie.201402513
– ident: e_1_2_7_2_1
  doi: 10.1002/adfm.201806819
– ident: e_1_2_7_24_2
  doi: 10.1002/adfm.201504197
– ident: e_1_2_7_2_2
  doi: 10.1039/C7TC02074K
– ident: e_1_2_7_16_6
  doi: 10.1021/acs.chemmater.8b03976
– ident: e_1_2_7_17_1
  doi: 10.1016/j.cej.2018.11.051
– ident: e_1_2_7_27_2
  doi: 10.1002/ppap.201400109
– ident: e_1_2_7_1_1
  doi: 10.1002/anie.201507333
– ident: e_1_2_7_3_1
  doi: 10.1002/adfm.201703801
– ident: e_1_2_7_27_3
  doi: 10.1016/j.surfcoat.2013.03.028
– ident: e_1_2_7_24_1
  doi: 10.1021/acsami.7b02326
– ident: e_1_2_7_22_1
  doi: 10.1002/adma.201306136
– ident: e_1_2_7_25_1
  doi: 10.1021/acsami.7b00471
– ident: e_1_2_7_21_1
  doi: 10.1021/acsami.8b10217
– ident: e_1_2_7_32_1
  doi: 10.1002/adma.201702076
– ident: e_1_2_7_12_1
  doi: 10.1021/acsnano.7b04368
– ident: e_1_2_7_18_2
  doi: 10.1126/science.aag2421
– ident: e_1_2_7_16_5
  doi: 10.1021/acsnano.7b05264
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.201706807
– ident: e_1_2_7_28_1
  doi: 10.1016/j.surfcoat.2018.10.002
– ident: e_1_2_7_17_2
  doi: 10.1039/C8NR10489A
– ident: e_1_2_7_23_2
  doi: 10.1002/adfm.201302344
– ident: e_1_2_7_16_7
  doi: 10.1021/acs.chemmater.6b01275
– ident: e_1_2_7_1_2
  doi: 10.1002/smll.201703034
– ident: e_1_2_7_3_2
  doi: 10.1021/acsnano.8b03391
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.201702367
– ident: e_1_2_7_31_2
  doi: 10.1021/jacs.5b12728
– ident: e_1_2_7_33_1
  doi: 10.1002/aelm.201600255
– ident: e_1_2_7_9_1
  doi: 10.1002/adma.201605848
– ident: e_1_2_7_16_2
  doi: 10.1002/smll.201703934
– ident: e_1_2_7_27_4
  doi: 10.1002/ppap.201100044
– ident: e_1_2_7_27_7
  doi: 10.1016/j.eurpolymj.2010.02.005
– ident: e_1_2_7_31_3
  doi: 10.1088/1748-3182/3/4/046007
– ident: e_1_2_7_7_1
  doi: 10.1021/nl903949m
– ident: e_1_2_7_20_2
  doi: 10.1002/adfm.201702807
– ident: e_1_2_7_16_4
  doi: 10.1039/C8NR05170D
– ident: e_1_2_7_30_1
  doi: 10.1002/adma.201703053
– ident: e_1_2_7_31_1
  doi: 10.1016/j.pmatsci.2012.11.001
– ident: e_1_2_7_23_1
  doi: 10.1038/nmat2430
– ident: e_1_2_7_17_3
  doi: 10.1002/adfm.201803360
– ident: e_1_2_7_5_1
  doi: 10.1021/acsnano.8b02477
– ident: e_1_2_7_16_3
  doi: 10.1021/acsami.7b09184
– ident: e_1_2_7_19_1
  doi: 10.1002/adom.201900267
– ident: e_1_2_7_30_2
  doi: 10.1021/am508814g
– ident: e_1_2_7_27_1
  doi: 10.1016/j.apsusc.2015.11.089
– ident: e_1_2_7_6_2
  doi: 10.1021/acsnano.7b05921
– ident: e_1_2_7_16_1
  doi: 10.1002/smll.201703848
– ident: e_1_2_7_14_1
  doi: 10.1021/acs.nanolett.6b04613
– ident: e_1_2_7_20_1
  doi: 10.1021/acsami.8b21671
– ident: e_1_2_7_17_4
  doi: 10.1002/smll.201802479
SSID ssj0017734
Score 2.704006
Snippet Although flexible and multifunctional textiles are promising for wearable electronics and portable device applications, the main issue is to endow textiles...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Actuators
Biomimetics
Carbon nitride
Contact angle
Electric contacts
electromagnetic interference shielding
Electromagnetic shielding
Functional groups
Garments
Humidity
humidity sensitivity
Hydrophobicity
Materials science
multifunctional textiles
MXene sheets
MXenes
Nanostructure
Nanowires
Oxidation
Porosity
Portable equipment
Silk
Silver
Substrates
superhydrophobicity
Textiles
Transition metals
Wearable technology
Title Flexible and Multifunctional Silk Textiles with Biomimetic Leaf‐Like MXene/Silver Nanowire Nanostructures for Electromagnetic Interference Shielding, Humidity Monitoring, and Self‐Derived Hydrophobicity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201905197
https://www.proquest.com/docview/2309657905
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQe4EDUB4ifckHJC5ss09v9piSRhFKOJBWym3lsb2wSrJbNS1Se-pP4Jf1R_SXMGNvtikSQoKbd-WnPDP-PPZ8Zux9AAJhQC_xlB-BFxsfVUr4kQehiSBTkSgEBQpPvojRWfx5lsw2ovgdP0TrcCPNsPaaFFzCqvtAGip1QZHkARFMZRROThe2CBV9bfmjgjR1x8oioAtewWzN2uiH3cfFH69KD1BzE7DaFWf4gsl1X91Fk_nR1SUcqZvfaBz_ZzAv2fMGjvK-k58d9sRUr9izDZLC1-xuSJyZsDBcVprbgF1aDJ0PkU_LxZyfooXHZlecvLr8uKyX5ZKCI_nYyOL-9ue4nBs-maFZ7WJ-VB6ORr0mlmSbcBy2V7jx5wih-Yl7mWcpv1W2Euu0bMISOb3dbc_LPnKUxFLjJoI7u3Rhf1Ifp2ZBrQ5wAD-M5qNrfVGff6-hVJj7DTsbnpx-GnnNKxCeihK04kUcyaxAw-rrQhrEJ7HqJRolzwfcqunYh0D5KURgtFQJFAmB4AxxW0oXJZWK3rKtqq7MO8algFSDEiKkWgTWo1Tay1QIaYFIS3WYt5aCXDUU6fRSxyJ35M5hTvOUt_PUYR_a_OeOHOSPOffXQpU3RmKV4-4vEwkxpHVYaKXjL7Xk_cFw0n7t_kuhPfaU0i6acp9t4QSbA4RVl3DItvuDyXh6aFXoF1p5Ioo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BOUAPvBEpBeaAxAU3fq7jY6GNAiQ90FTKzfI-DFYSu-oDCU78BH4ZP4Jfwsyu7bZICAlu9mq9a2tnZr8Z73wD8CKQgmDAKPGUH0kvNj6plPAjT4YmkpmKRCk4UXh2ICZH8btF0p0m5FwYxw_RB9xYM6y9ZgXngPTwgjW00CWnkgfMMJWl1-EGl_W2XtWHnkEqSFP3Y1kEfMQrWHS8jX44vPr81X3pAmxehqx2zxnfAdm9rTtqstw5P5M76utvRI7_9Tl34XaLSHHXidA9uGbq-7B5iafwAfwYM22mXBksao02Z5f3QxdGxMNqtcQ5GXma9xQ5sIuvq2ZdrTk_EqemKH9--z6tlgZnC7KsQ-pP-oNk1xsmSrYXjsb2nHx_JBSN-644z7r4WNtBbNyyzUxELt9tf5m9QhLGSpMfgc40ndhGfsdDs-JZ9-gDPhuNky_6pDn-1MhKUe-HcDTen7-ZeG0hCE9FCRnyMo6KrCTb6uuyMARRYjVKNAmfL8lb07EvA-WnMpJGFyqRZcI4OCPolvJZSaWiR7BRN7V5DFgImWqphAh5FEHjKJWOMhXKtCSwpQbgdWKQq5YlnYt1rHLH7xzmvE55v04DeNn3P3b8IH_sud1JVd7aidOcHMBMJEySNoDQisdfRsl398az_m7rXx56Djcn89k0n749eP8EbnG7S67chg1abPOUUNaZfGb16Bc0riUR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELagSAgOvCsCBXxA4sI23pc3eyykqwBJhWgr5bbyE1ZJdqM-kODUn9Bf1h_RX8KMvdmmSAgJbruWn_LM-PPY85mQ16HkAAMGaaBYLIPEMFApzuJARiaWuYq55RgoPNnjo8Pk4zSdrkXxe36IzuGGmuHsNSr4Utv-FWmo0BYjyUMkmMqzm-RWwtkA5Xr4pSOQCrPMnyvzEG94hdMVbSOL-tfLX1-WrrDmOmJ1S05xn4hVZ_1Nk9n26YncVj9_43H8n9E8IPdaPEp3vAA9JDdM_YjcXWMpfEwuCiTNlHNDRa2pi9jF1dA7Eel-NZ_RAzDx0OwxRbcufVc1i2qB0ZF0bIS9PDsfVzNDJ1Owq33ID9pDwao3SJPsPjyJ7Sns_ClgaLrrn-ZZiK-1q8R5Ldu4RIqPd7sDs7cURLHSsIug3jAduUTs476ZY6tDGMB3o-nohz5qlt8aWSnI_YQcFrsH70dB-wxEoOIUzLhNYpFbsKxMW2EAoCRqkGoQPSZhr6YTJkPFMhlLo4VKpU0RBecA3DK8KalUvEk26qY2TwkVXGZaKs4jrIVDPUplg1xFMrMAtVSPBCspKFXLkY5PdcxLz-4clThPZTdPPfKmy7_07CB_zLm1EqqytRLHJWz_cp4iRVqPRE46_lJLuTMsJt3fs38p9Irc_jwsyvGHvU_PyR1M9pGVW2QD5tq8AIh1Il86LfoF0vYjyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+and+Multifunctional+Silk+Textiles+with+Biomimetic+Leaf%E2%80%90Like+MXene%2FSilver+Nanowire+Nanostructures+for+Electromagnetic+Interference+Shielding%2C+Humidity+Monitoring%2C+and+Self%E2%80%90Derived+Hydrophobicity&rft.jtitle=Advanced+functional+materials&rft.au=Liu%2C+Liu%E2%80%90Xin&rft.au=Chen%2C+Wei&rft.au=Zhang%2C+Hao%E2%80%90Bin&rft.au=Wang%2C+Qi%E2%80%90Wei&rft.date=2019-11-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=44&rft_id=info:doi/10.1002%2Fadfm.201905197&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201905197
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon