Correlation between Li Plating Behavior and Surface Characteristics of Carbon Matrix toward Stable Li Metal Anodes

Carbonaceous materials are widely employed to host Li for stable and safe Li metal batteries while relatively little effort is devoted to tailoring the surface properties of carbon to facilitate uniform Li plating. Herein, the correlation between Li plating behavior and the surface characteristics o...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 9; no. 1
Main Authors Cui, Jiang, Yao, Shanshan, Ihsan‐Ul‐Haq, Muhammad, Wu, Junxiong, Kim, Jang‐Kyo
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 03.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Carbonaceous materials are widely employed to host Li for stable and safe Li metal batteries while relatively little effort is devoted to tailoring the surface properties of carbon to facilitate uniform Li plating. Herein, the correlation between Li plating behavior and the surface characteristics of electrospun porous carbon nanofibers (PCNFs) is systemically elucidated through experiments and theoretical calculations. It is revealed that the neat carbon surface suffers from severe lattice mismatch with Li metal, hindering uniform Li plating. In contrast, open pores created on the PCNF surface serve as active sites for controlled initial nucleation of Li. The introduction of oxygenated functional groups further facilitates the nucleation of Li on PCNFs through the largely reduced nucleation energy barrier. The Li film uniformly deposited on PCNFs enables efficient use of the whole carbon surface, giving rise to enhanced cyclic stability of the electrode. When used as an anode in lithium–sulfur batteries, the modified electrode delivers an excellent energy density of 385 Wh kg−1 after 100 cycles. The fundamental correlation established in this study is universal to all types of carbonaceous materials and sheds new light on the rational design of high‐performance Li metal anodes by controlling the initial Li nucleation. Electrospun porous carbon nanofibers are plated with lithium and the correlation between surface characteristics of the carbon matrix and plating behavior is elucidated. Experiments and theoretical calculations reveal positive contributions of open pores and oxygenated functional groups to uniform Li plating. The Li metal anode delivers an exceptional energy density of 385 Wh kg−1 after 100 cycles in Li–S batteries.
AbstractList Carbonaceous materials are widely employed to host Li for stable and safe Li metal batteries while relatively little effort is devoted to tailoring the surface properties of carbon to facilitate uniform Li plating. Herein, the correlation between Li plating behavior and the surface characteristics of electrospun porous carbon nanofibers (PCNFs) is systemically elucidated through experiments and theoretical calculations. It is revealed that the neat carbon surface suffers from severe lattice mismatch with Li metal, hindering uniform Li plating. In contrast, open pores created on the PCNF surface serve as active sites for controlled initial nucleation of Li. The introduction of oxygenated functional groups further facilitates the nucleation of Li on PCNFs through the largely reduced nucleation energy barrier. The Li film uniformly deposited on PCNFs enables efficient use of the whole carbon surface, giving rise to enhanced cyclic stability of the electrode. When used as an anode in lithium–sulfur batteries, the modified electrode delivers an excellent energy density of 385 Wh kg−1 after 100 cycles. The fundamental correlation established in this study is universal to all types of carbonaceous materials and sheds new light on the rational design of high‐performance Li metal anodes by controlling the initial Li nucleation. Electrospun porous carbon nanofibers are plated with lithium and the correlation between surface characteristics of the carbon matrix and plating behavior is elucidated. Experiments and theoretical calculations reveal positive contributions of open pores and oxygenated functional groups to uniform Li plating. The Li metal anode delivers an exceptional energy density of 385 Wh kg−1 after 100 cycles in Li–S batteries.
Carbonaceous materials are widely employed to host Li for stable and safe Li metal batteries while relatively little effort is devoted to tailoring the surface properties of carbon to facilitate uniform Li plating. Herein, the correlation between Li plating behavior and the surface characteristics of electrospun porous carbon nanofibers (PCNFs) is systemically elucidated through experiments and theoretical calculations. It is revealed that the neat carbon surface suffers from severe lattice mismatch with Li metal, hindering uniform Li plating. In contrast, open pores created on the PCNF surface serve as active sites for controlled initial nucleation of Li. The introduction of oxygenated functional groups further facilitates the nucleation of Li on PCNFs through the largely reduced nucleation energy barrier. The Li film uniformly deposited on PCNFs enables efficient use of the whole carbon surface, giving rise to enhanced cyclic stability of the electrode. When used as an anode in lithium–sulfur batteries, the modified electrode delivers an excellent energy density of 385 Wh kg−1 after 100 cycles. The fundamental correlation established in this study is universal to all types of carbonaceous materials and sheds new light on the rational design of high‐performance Li metal anodes by controlling the initial Li nucleation.
Carbonaceous materials are widely employed to host Li for stable and safe Li metal batteries while relatively little effort is devoted to tailoring the surface properties of carbon to facilitate uniform Li plating. Herein, the correlation between Li plating behavior and the surface characteristics of electrospun porous carbon nanofibers (PCNFs) is systemically elucidated through experiments and theoretical calculations. It is revealed that the neat carbon surface suffers from severe lattice mismatch with Li metal, hindering uniform Li plating. In contrast, open pores created on the PCNF surface serve as active sites for controlled initial nucleation of Li. The introduction of oxygenated functional groups further facilitates the nucleation of Li on PCNFs through the largely reduced nucleation energy barrier. The Li film uniformly deposited on PCNFs enables efficient use of the whole carbon surface, giving rise to enhanced cyclic stability of the electrode. When used as an anode in lithium–sulfur batteries, the modified electrode delivers an excellent energy density of 385 Wh kg −1 after 100 cycles. The fundamental correlation established in this study is universal to all types of carbonaceous materials and sheds new light on the rational design of high‐performance Li metal anodes by controlling the initial Li nucleation.
Author Yao, Shanshan
Kim, Jang‐Kyo
Ihsan‐Ul‐Haq, Muhammad
Cui, Jiang
Wu, Junxiong
Author_xml – sequence: 1
  givenname: Jiang
  surname: Cui
  fullname: Cui, Jiang
  organization: The Hong Kong University of Science and Technology
– sequence: 2
  givenname: Shanshan
  surname: Yao
  fullname: Yao, Shanshan
  organization: The Hong Kong University of Science and Technology
– sequence: 3
  givenname: Muhammad
  surname: Ihsan‐Ul‐Haq
  fullname: Ihsan‐Ul‐Haq, Muhammad
  organization: The Hong Kong University of Science and Technology
– sequence: 4
  givenname: Junxiong
  surname: Wu
  fullname: Wu, Junxiong
  organization: The Hong Kong University of Science and Technology
– sequence: 5
  givenname: Jang‐Kyo
  orcidid: 0000-0002-5390-8763
  surname: Kim
  fullname: Kim, Jang‐Kyo
  email: mejkkim@ust.hk
  organization: The Hong Kong University of Science and Technology
BookMark eNqFkM1rGzEQxUVIIa7ra8-CnO3qYy3ZR2dJk4KdFJKel1ntbKywkZyRHCf_fdd1cSEQOpf54P3ewPvMTkMMyNhXKSZSCPUNMDxNlJAzoay1J2wgjSzGZlaI0-Os1RkbpfQo-irmUmg9YFRGIuwg-xh4jXmHGPjS85_7U3jgF7iGFx-JQ2j43ZZacMjLNRC4jORT9i7x2PISqO4dVpDJv_Icd0C9PkPd4d5uhRk6vgixwfSFfWqhSzj624fs1_fL-_J6vLy9-lEulmOnp8aOnXHKSKcdCONsoe18ZqxtG4vGOallI8DWtSnAmVZPYTormla5wvSb1LUwesjOD74bis9bTLl6jFsK_ctKSaOsVHOje1VxUDmKKRG2lfP5TxyZwHeVFNU-4GofcHUMuMcm77AN-Segt4-B-QHY-Q7f_qOuFpc3q3_sbzgqkHc
CitedBy_id crossref_primary_10_1016_j_ensm_2019_09_007
crossref_primary_10_1002_celc_202400209
crossref_primary_10_1039_C9TA11311H
crossref_primary_10_1002_eem2_12460
crossref_primary_10_1002_sstr_202000118
crossref_primary_10_1016_j_cej_2020_126508
crossref_primary_10_3390_batteries11010010
crossref_primary_10_1002_adfm_202409812
crossref_primary_10_1002_smll_201905620
crossref_primary_10_1002_smll_202003827
crossref_primary_10_1016_j_electacta_2022_141744
crossref_primary_10_1039_D1CC04822H
crossref_primary_10_1039_D3TA01707A
crossref_primary_10_1016_j_nanoen_2021_106132
crossref_primary_10_1016_j_jechem_2020_05_059
crossref_primary_10_1002_batt_202300246
crossref_primary_10_1002_smll_202311740
crossref_primary_10_1021_acsenergylett_1c00186
crossref_primary_10_1039_D2QI02280J
crossref_primary_10_1016_j_ensm_2021_03_008
crossref_primary_10_1016_S1872_5805_22_60573_0
crossref_primary_10_1039_D1TA06742G
crossref_primary_10_1016_j_mtcomm_2024_110530
crossref_primary_10_1016_j_electacta_2023_143259
crossref_primary_10_1039_D0NA00690D
crossref_primary_10_1039_D3PY01265D
crossref_primary_10_1039_D4GC02590C
crossref_primary_10_1088_2053_1591_ab1a88
crossref_primary_10_1021_acsaem_1c02547
crossref_primary_10_1039_D0TA11643B
crossref_primary_10_1039_D0TA00359J
crossref_primary_10_1002_adma_202002193
crossref_primary_10_1016_j_ensm_2021_04_034
crossref_primary_10_1002_cey2_128
crossref_primary_10_1002_smll_202203273
crossref_primary_10_1002_eem2_12449
crossref_primary_10_1021_acsaem_1c00926
crossref_primary_10_1002_aenm_202302565
crossref_primary_10_1002_advs_202103879
crossref_primary_10_1002_aenm_202103904
crossref_primary_10_1016_j_nanoen_2021_106421
crossref_primary_10_1021_acsami_4c10070
crossref_primary_10_1039_D0EE02848G
crossref_primary_10_1039_D1TA03447B
crossref_primary_10_1021_acsami_0c12052
crossref_primary_10_1016_j_ensm_2021_02_015
crossref_primary_10_1039_D0TA10537F
crossref_primary_10_1039_D4TA04834B
crossref_primary_10_1002_aenm_202103123
crossref_primary_10_1021_acs_chemrev_0c01100
crossref_primary_10_1002_smll_202003815
crossref_primary_10_1016_j_ensm_2019_08_027
crossref_primary_10_1002_cey2_95
crossref_primary_10_1016_j_esci_2022_09_001
crossref_primary_10_1016_j_colsurfa_2022_129104
crossref_primary_10_1016_j_rser_2020_110308
crossref_primary_10_1021_acsaem_1c04035
crossref_primary_10_1039_D0TA05298A
crossref_primary_10_1002_aenm_201901796
crossref_primary_10_1021_acsnano_2c09037
crossref_primary_10_1016_j_jechem_2022_03_039
crossref_primary_10_1016_j_jpowsour_2021_229464
crossref_primary_10_1002_adfm_202206778
crossref_primary_10_1016_j_electacta_2019_06_009
crossref_primary_10_1021_acsnano_2c07137
crossref_primary_10_1016_j_ensm_2019_08_016
crossref_primary_10_1039_D0TA10580E
crossref_primary_10_1016_j_carbon_2020_06_073
crossref_primary_10_1021_acsami_4c00416
crossref_primary_10_1021_acsami_9b17727
crossref_primary_10_1039_D3DT04010K
crossref_primary_10_1016_j_jechem_2021_04_045
crossref_primary_10_1002_advs_201901433
crossref_primary_10_1002_aenm_202201493
crossref_primary_10_1039_C9TA09373G
crossref_primary_10_1039_D1EE01346G
crossref_primary_10_1088_2053_1583_ab2efc
crossref_primary_10_1016_j_ensm_2021_06_015
crossref_primary_10_1002_eom2_12517
crossref_primary_10_1002_adfm_201902499
crossref_primary_10_1016_j_jallcom_2020_155251
crossref_primary_10_1021_acs_nanolett_1c00534
crossref_primary_10_1002_adfm_202408013
crossref_primary_10_1002_adma_202109767
crossref_primary_10_1039_D0EE02651D
crossref_primary_10_1002_chem_201905524
crossref_primary_10_1016_j_cej_2021_130914
crossref_primary_10_1002_adfm_201903229
crossref_primary_10_1016_j_ensm_2024_103247
crossref_primary_10_1007_s12598_021_01811_3
crossref_primary_10_1039_C9CC07092C
crossref_primary_10_1021_acs_nanolett_3c02229
crossref_primary_10_1149_2_1011908jes
crossref_primary_10_1021_acsami_9b09975
crossref_primary_10_1002_smll_202104469
crossref_primary_10_1021_acsami_9b10551
crossref_primary_10_1002_adsu_202200010
crossref_primary_10_1016_j_nanoen_2024_110255
crossref_primary_10_1002_adfm_202208374
crossref_primary_10_1016_j_nanoen_2024_109660
crossref_primary_10_1002_advs_202206995
crossref_primary_10_1016_j_ssi_2021_115636
crossref_primary_10_1039_D2TA02420A
crossref_primary_10_1016_j_commatsci_2022_111637
crossref_primary_10_1016_j_nanoen_2021_106836
crossref_primary_10_1002_smll_202104876
crossref_primary_10_1039_D1NR05681F
crossref_primary_10_1002_adma_201903808
crossref_primary_10_1002_aenm_202201190
crossref_primary_10_1021_acsnano_0c03042
crossref_primary_10_1080_14686996_2022_2050297
crossref_primary_10_1016_S1872_5805_23_60768_1
crossref_primary_10_1002_cey2_180
crossref_primary_10_1039_D2TA00324D
crossref_primary_10_1002_aenm_201804000
crossref_primary_10_1016_j_jelechem_2022_116512
crossref_primary_10_1039_D1TA08646D
crossref_primary_10_1002_adfm_202202013
Cites_doi 10.1002/aenm.201700530
10.1016/j.joule.2017.06.004
10.1016/j.joule.2017.11.004
10.1016/j.jpowsour.2014.06.024
10.1038/ncomms15106
10.1016/j.carbon.2017.08.027
10.1016/j.apsusc.2011.09.007
10.1002/aenm.201702488
10.1021/acs.chemrev.7b00115
10.1016/j.joule.2018.02.001
10.1103/PhysRevB.75.045427
10.1002/aenm.201702267
10.1016/j.nanoen.2017.08.029
10.1002/aenm.201800710
10.1038/s41560-017-0047-2
10.1088/0953-8984/21/39/395502
10.1016/j.jpowsour.2017.08.081
10.1002/anie.201702099
10.1038/nnano.2014.152
10.1002/advs.201600445
10.1103/PhysRevB.16.1748
10.1016/j.electacta.2018.02.096
10.1038/natrevmats.2016.103
10.1016/j.nanoen.2015.11.013
10.1002/aenm.201602149
10.1038/srep27982
10.1039/C7TA05997C
10.1038/451652a
10.1103/PhysRevLett.77.3865
10.1038/nnano.2016.32
10.1038/nnano.2017.16
10.1038/nmat4821
10.1016/j.ensm.2017.05.004
10.1002/adma.201706216
10.1038/nenergy.2016.10
10.1149/1.1393349
10.1002/adma.201605531
10.1016/0008-6223(94)00144-O
10.1038/nenergy.2017.12
10.1016/j.carbon.2010.03.045
10.1007/s12274-017-1596-1
10.1038/s41560-017-0005-z
10.1016/j.ensm.2017.06.006
10.1073/pnas.1602473113
10.1002/jcc.20495
10.1002/adma.201506124
10.1016/j.nanoen.2013.12.011
10.1016/j.ensm.2017.06.003
10.1016/j.ensm.2017.03.010
10.1007/s12274-017-1461-2
10.1016/j.ensm.2016.04.001
10.1002/aenm.201702657
10.1039/C6TA03541H
10.1039/C8TA01715H
10.1016/j.ensm.2016.12.005
10.1103/PhysRevB.49.16223
10.1016/0008-6223(94)90075-2
10.1002/aenm.201801427
10.1002/adma.201700389
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201802777
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_201802777
AENM201802777
Genre article
GrantInformation_xml – fundername: Research Grants Council
  funderid: 16212814; 16208718
– fundername: Innovation and Technology Commission
  funderid: ITS/001/17
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
EJD
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3567-c6c261c3ca06c743798677fd7e6cc131d0a7bb64ac6f35a584df2c466f313b063
ISSN 1614-6832
IngestDate Fri Jul 25 12:07:51 EDT 2025
Tue Jul 01 01:43:27 EDT 2025
Thu Apr 24 22:54:12 EDT 2025
Wed Jan 22 16:20:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3567-c6c261c3ca06c743798677fd7e6cc131d0a7bb64ac6f35a584df2c466f313b063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5390-8763
PQID 2162712963
PQPubID 886389
PageCount 11
ParticipantIDs proquest_journals_2162712963
crossref_citationtrail_10_1002_aenm_201802777
crossref_primary_10_1002_aenm_201802777
wiley_primary_10_1002_aenm_201802777_AENM201802777
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 3, 2019
PublicationDateYYYYMMDD 2019-01-03
PublicationDate_xml – month: 01
  year: 2019
  text: January 3, 2019
  day: 03
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 40
2017; 5
2011; 258
2017; 7
2017; 8
2017; 1
2017; 2
2009; 21
2017; 4
2016; 19
1995; 33
2018; 268
1994; 49
2017; 29
2007; 75
2017; 9
2017; 117
2016; 11
1996; 77
2016; 4
2018; 6
2016; 6
2018; 8
2018; 3
2018; 2
2016; 1
2014; 4
2010; 48
2000; 147
2017; 16
1977; 16
2006; 27
2017; 10
1999; 59
2017; 12
2017; 56
2016; 113
2018; 30
2014; 9
2017; 365
2017; 123
2016; 28
2008; 451
2014; 268
1994; 32
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
Joubert D. (e_1_2_7_57_1) 1999; 59
References_xml – volume: 2
  start-page: 764
  year: 2018
  publication-title: Joule
– volume: 4
  start-page: 1600445
  year: 2017
  publication-title: Adv. Sci.
– volume: 8
  start-page: 1702488
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 1605531
  year: 2017
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1602149
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 123
  start-page: 744
  year: 2017
  publication-title: Carbon
– volume: 8
  start-page: 10
  year: 2017
  publication-title: Energy Storage Mater.
– volume: 75
  start-page: 045427
  year: 2007
  publication-title: Phys. Rev. B
– volume: 40
  start-page: 258
  year: 2017
  publication-title: Nano Energy
– volume: 268
  start-page: 153
  year: 2014
  publication-title: J. Power Sources
– volume: 365
  start-page: 134
  year: 2017
  publication-title: J. Power Sources
– volume: 2
  start-page: 184
  year: 2018
  publication-title: Joule
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 4
  start-page: 10964
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 194
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 113
  start-page: 3735
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 6
  start-page: 27982
  year: 2016
  publication-title: Sci. Rep.
– volume: 28
  start-page: 2888
  year: 2016
  publication-title: Adv. Mater.
– volume: 3
  start-page: 16
  year: 2018
  publication-title: Nat. Energy
– volume: 2
  start-page: 16103
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 19
  start-page: 68
  year: 2016
  publication-title: Nano Energy
– volume: 9
  start-page: 134
  year: 2017
  publication-title: Energy Storage Mater.
– volume: 9
  start-page: 85
  year: 2017
  publication-title: Energy Storage Mater.
– volume: 8
  start-page: 1800710
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 626
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 16
  start-page: 1748
  year: 1977
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 15106
  year: 2017
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1700389
  year: 2017
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1700530
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 16010
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  start-page: 110
  year: 2017
  publication-title: Energy Storage Mater.
– volume: 10
  start-page: 1356
  year: 2017
  publication-title: Nano Res.
– volume: 8
  start-page: 1702657
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 258
  start-page: 1651
  year: 2011
  publication-title: Appl. Surf. Sci.
– volume: 117
  start-page: 10403
  year: 2017
  publication-title: Chem. Rev.
– volume: 32
  start-page: 577
  year: 1994
  publication-title: Carbon
– volume: 10
  start-page: 4003
  year: 2017
  publication-title: Nano Res.
– volume: 30
  start-page: 1706216
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  start-page: 64
  year: 2017
  publication-title: Energy Storage Mater.
– volume: 268
  start-page: 1
  year: 2018
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 16003
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 88
  year: 2014
  publication-title: Nano Energy
– volume: 9
  start-page: 618
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 56
  start-page: 7764
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 21
  start-page: 395502
  year: 2009
  publication-title: J. Phys.: Condens. Matter
– volume: 59
  start-page: 1758
  year: 1999
  publication-title: Phys. Rev. B
– volume: 33
  start-page: 587
  year: 1995
  publication-title: Carbon
– volume: 1
  start-page: 563
  year: 2017
  publication-title: Joule
– volume: 27
  start-page: 1787
  year: 2006
  publication-title: J. Comput. Chem.
– volume: 49
  start-page: 16223
  year: 1994
  publication-title: Phys. Rev. B
– volume: 2
  start-page: 17012
  year: 2017
  publication-title: Nat. Energy
– volume: 8
  start-page: 1801427
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 16
  start-page: 572
  year: 2017
  publication-title: Nat. Mater.
– volume: 5
  start-page: 19168
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 147
  start-page: 1274
  year: 2000
  publication-title: J. Electrochem. Soc.
– volume: 48
  start-page: 2573
  year: 2010
  publication-title: Carbon
– volume: 2
  start-page: 813
  year: 2017
  publication-title: Nat. Energy
– volume: 451
  start-page: 652
  year: 2008
  publication-title: Nature
– volume: 4
  start-page: 103
  year: 2016
  publication-title: Energy Storage Mater.
– volume: 8
  start-page: 1702267
  year: 2018
  publication-title: Adv. Energy Mater.
– ident: e_1_2_7_20_1
  doi: 10.1002/aenm.201700530
– ident: e_1_2_7_24_1
  doi: 10.1016/j.joule.2017.06.004
– ident: e_1_2_7_25_1
  doi: 10.1016/j.joule.2017.11.004
– ident: e_1_2_7_40_1
  doi: 10.1016/j.jpowsour.2014.06.024
– ident: e_1_2_7_14_1
  doi: 10.1038/ncomms15106
– ident: e_1_2_7_30_1
  doi: 10.1016/j.carbon.2017.08.027
– ident: e_1_2_7_48_1
  doi: 10.1016/j.apsusc.2011.09.007
– ident: e_1_2_7_37_1
  doi: 10.1002/aenm.201702488
– ident: e_1_2_7_12_1
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_7_23_1
  doi: 10.1016/j.joule.2018.02.001
– ident: e_1_2_7_47_1
  doi: 10.1103/PhysRevB.75.045427
– volume: 59
  start-page: 1758
  year: 1999
  ident: e_1_2_7_57_1
  publication-title: Phys. Rev. B
– ident: e_1_2_7_59_1
  doi: 10.1002/aenm.201702267
– ident: e_1_2_7_8_1
  doi: 10.1016/j.nanoen.2017.08.029
– ident: e_1_2_7_49_1
  doi: 10.1002/aenm.201800710
– ident: e_1_2_7_13_1
  doi: 10.1038/s41560-017-0047-2
– ident: e_1_2_7_55_1
  doi: 10.1088/0953-8984/21/39/395502
– ident: e_1_2_7_9_1
  doi: 10.1016/j.jpowsour.2017.08.081
– ident: e_1_2_7_45_1
  doi: 10.1002/anie.201702099
– ident: e_1_2_7_26_1
  doi: 10.1038/nnano.2014.152
– ident: e_1_2_7_19_1
  doi: 10.1002/advs.201600445
– ident: e_1_2_7_60_1
  doi: 10.1103/PhysRevB.16.1748
– ident: e_1_2_7_4_1
  doi: 10.1016/j.electacta.2018.02.096
– ident: e_1_2_7_16_1
  doi: 10.1038/natrevmats.2016.103
– ident: e_1_2_7_52_1
  doi: 10.1016/j.nanoen.2015.11.013
– ident: e_1_2_7_38_1
  doi: 10.1002/aenm.201602149
– ident: e_1_2_7_51_1
  doi: 10.1038/srep27982
– ident: e_1_2_7_21_1
  doi: 10.1039/C7TA05997C
– ident: e_1_2_7_1_1
  doi: 10.1038/451652a
– ident: e_1_2_7_54_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_7_29_1
  doi: 10.1038/nnano.2016.32
– ident: e_1_2_7_11_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_7_17_1
  doi: 10.1038/nmat4821
– ident: e_1_2_7_5_1
  doi: 10.1016/j.ensm.2017.05.004
– ident: e_1_2_7_27_1
  doi: 10.1002/adma.201706216
– ident: e_1_2_7_31_1
  doi: 10.1038/nenergy.2016.10
– ident: e_1_2_7_10_1
  doi: 10.1149/1.1393349
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.201605531
– ident: e_1_2_7_39_1
  doi: 10.1016/0008-6223(94)00144-O
– ident: e_1_2_7_15_1
  doi: 10.1038/nenergy.2017.12
– ident: e_1_2_7_42_1
  doi: 10.1016/j.carbon.2010.03.045
– ident: e_1_2_7_34_1
  doi: 10.1007/s12274-017-1596-1
– ident: e_1_2_7_43_1
  doi: 10.1038/s41560-017-0005-z
– ident: e_1_2_7_36_1
  doi: 10.1016/j.ensm.2017.06.006
– ident: e_1_2_7_46_1
  doi: 10.1073/pnas.1602473113
– ident: e_1_2_7_58_1
  doi: 10.1002/jcc.20495
– ident: e_1_2_7_44_1
  doi: 10.1002/adma.201506124
– ident: e_1_2_7_33_1
  doi: 10.1016/j.nanoen.2013.12.011
– ident: e_1_2_7_7_1
  doi: 10.1016/j.ensm.2017.06.003
– ident: e_1_2_7_32_1
  doi: 10.1016/j.ensm.2017.03.010
– ident: e_1_2_7_28_1
  doi: 10.1007/s12274-017-1461-2
– ident: e_1_2_7_3_1
  doi: 10.1016/j.ensm.2016.04.001
– ident: e_1_2_7_6_1
  doi: 10.1002/aenm.201702657
– ident: e_1_2_7_35_1
  doi: 10.1039/C6TA03541H
– ident: e_1_2_7_50_1
  doi: 10.1039/C8TA01715H
– ident: e_1_2_7_2_1
  doi: 10.1016/j.ensm.2016.12.005
– ident: e_1_2_7_56_1
  doi: 10.1103/PhysRevB.49.16223
– ident: e_1_2_7_41_1
  doi: 10.1016/0008-6223(94)90075-2
– ident: e_1_2_7_53_1
  doi: 10.1002/aenm.201801427
– ident: e_1_2_7_22_1
  doi: 10.1002/adma.201700389
SSID ssj0000491033
Score 2.5763433
Snippet Carbonaceous materials are widely employed to host Li for stable and safe Li metal batteries while relatively little effort is devoted to tailoring the surface...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Active control
Anodes
Carbon
Carbon fibers
Carbonaceous materials
controlled nucleation
Correlation analysis
DFT calculations
Electrodes
Flux density
Functional groups
Li metal anodes
Lithium sulfur batteries
Li–S batteries
Nanofibers
Nucleation
Plating
porous carbon nanofibers
Surface properties
Surface stability
Title Correlation between Li Plating Behavior and Surface Characteristics of Carbon Matrix toward Stable Li Metal Anodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201802777
https://www.proquest.com/docview/2162712963
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLY6uLDDNAbTugHyYRKnbHGcOOmx6kAVariUStwix0koEqRbaSS0v2p_4t6zHZPyc-OSpq7jyn6f_Z5f3vtMyFewCCQSWXoC1J0XykHiJVIEHjJ9M5FI5ufoh0xPxXgWnpxH573en07UUrPKv6nfj-aVvEaqUAZyxSzZ_5CsaxQK4B7kC1eQMFz_ScYjPFrDBLO5gKvJJR5EpIOZLfehiZKcNstKwiQe3WNo1vlZyxxaSJGt_xaMUQykRSsUk6qgubTEhMlhvShsvGFLWtuGD5QmfxBsX9Np916j0aECJ4DAC7e6SO2bnc5BRc47yJzfyNoFXsyu3O1Y_tI-22Yur69l4XRIY1JK6lvo-0XXdYHZUhi-1VltwTbwRGIdnGW3zHA4tUv04AESja52muyBIjDEsrKskW0AWe5ie1rMGuO2qxk9X9cQBB-dpu73N2QTPtAk3xz-SCdT59eDHRfzuc7raHvXcoX6wff1P1m3he42ON1tkrZzzt6Td3aDQocGbdukV9YfyNsObeUOWXZwRy3u6OSSWtzRFncUcEct7ug93NFFRQ3uqMEdNbijBnfYnMYdNbjbJbPjo7PR2LNnd3iKR6B7lVCwN1dcSV-oGEkvkTixKuJSKMU4K3wZ57kIpRIVjySYwUUVqFDAN8ZzsJs_ko16UZefCJWhrwrGBQ_9KuQqTqSfs6gQ-EZ3IKKwT7x2FDNlie3xfJWrzFByBxmOeuZGvU8OXf2fhtLlyZp7rVAyO-1vsoCJIAYrWfA-CbSgXmglWwPO59c89IVs3c2fPbKxWjblPhjDq_zA4u8vdi-rGQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlation+between+Li+Plating+Behavior+and+Surface+Characteristics+of+Carbon+Matrix+toward+Stable+Li+Metal+Anodes&rft.jtitle=Advanced+energy+materials&rft.au=Cui%2C+Jiang&rft.au=Yao%2C+Shanshan&rft.au=Ihsan%E2%80%90Ul%E2%80%90Haq%2C+Muhammad&rft.au=Wu%2C+Junxiong&rft.date=2019-01-03&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=9&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201802777&rft.externalDBID=10.1002%252Faenm.201802777&rft.externalDocID=AENM201802777
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon