Correlation between Li Plating Behavior and Surface Characteristics of Carbon Matrix toward Stable Li Metal Anodes
Carbonaceous materials are widely employed to host Li for stable and safe Li metal batteries while relatively little effort is devoted to tailoring the surface properties of carbon to facilitate uniform Li plating. Herein, the correlation between Li plating behavior and the surface characteristics o...
Saved in:
Published in | Advanced energy materials Vol. 9; no. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
03.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Carbonaceous materials are widely employed to host Li for stable and safe Li metal batteries while relatively little effort is devoted to tailoring the surface properties of carbon to facilitate uniform Li plating. Herein, the correlation between Li plating behavior and the surface characteristics of electrospun porous carbon nanofibers (PCNFs) is systemically elucidated through experiments and theoretical calculations. It is revealed that the neat carbon surface suffers from severe lattice mismatch with Li metal, hindering uniform Li plating. In contrast, open pores created on the PCNF surface serve as active sites for controlled initial nucleation of Li. The introduction of oxygenated functional groups further facilitates the nucleation of Li on PCNFs through the largely reduced nucleation energy barrier. The Li film uniformly deposited on PCNFs enables efficient use of the whole carbon surface, giving rise to enhanced cyclic stability of the electrode. When used as an anode in lithium–sulfur batteries, the modified electrode delivers an excellent energy density of 385 Wh kg−1 after 100 cycles. The fundamental correlation established in this study is universal to all types of carbonaceous materials and sheds new light on the rational design of high‐performance Li metal anodes by controlling the initial Li nucleation.
Electrospun porous carbon nanofibers are plated with lithium and the correlation between surface characteristics of the carbon matrix and plating behavior is elucidated. Experiments and theoretical calculations reveal positive contributions of open pores and oxygenated functional groups to uniform Li plating. The Li metal anode delivers an exceptional energy density of 385 Wh kg−1 after 100 cycles in Li–S batteries. |
---|---|
AbstractList | Carbonaceous materials are widely employed to host Li for stable and safe Li metal batteries while relatively little effort is devoted to tailoring the surface properties of carbon to facilitate uniform Li plating. Herein, the correlation between Li plating behavior and the surface characteristics of electrospun porous carbon nanofibers (PCNFs) is systemically elucidated through experiments and theoretical calculations. It is revealed that the neat carbon surface suffers from severe lattice mismatch with Li metal, hindering uniform Li plating. In contrast, open pores created on the PCNF surface serve as active sites for controlled initial nucleation of Li. The introduction of oxygenated functional groups further facilitates the nucleation of Li on PCNFs through the largely reduced nucleation energy barrier. The Li film uniformly deposited on PCNFs enables efficient use of the whole carbon surface, giving rise to enhanced cyclic stability of the electrode. When used as an anode in lithium–sulfur batteries, the modified electrode delivers an excellent energy density of 385 Wh kg−1 after 100 cycles. The fundamental correlation established in this study is universal to all types of carbonaceous materials and sheds new light on the rational design of high‐performance Li metal anodes by controlling the initial Li nucleation.
Electrospun porous carbon nanofibers are plated with lithium and the correlation between surface characteristics of the carbon matrix and plating behavior is elucidated. Experiments and theoretical calculations reveal positive contributions of open pores and oxygenated functional groups to uniform Li plating. The Li metal anode delivers an exceptional energy density of 385 Wh kg−1 after 100 cycles in Li–S batteries. Carbonaceous materials are widely employed to host Li for stable and safe Li metal batteries while relatively little effort is devoted to tailoring the surface properties of carbon to facilitate uniform Li plating. Herein, the correlation between Li plating behavior and the surface characteristics of electrospun porous carbon nanofibers (PCNFs) is systemically elucidated through experiments and theoretical calculations. It is revealed that the neat carbon surface suffers from severe lattice mismatch with Li metal, hindering uniform Li plating. In contrast, open pores created on the PCNF surface serve as active sites for controlled initial nucleation of Li. The introduction of oxygenated functional groups further facilitates the nucleation of Li on PCNFs through the largely reduced nucleation energy barrier. The Li film uniformly deposited on PCNFs enables efficient use of the whole carbon surface, giving rise to enhanced cyclic stability of the electrode. When used as an anode in lithium–sulfur batteries, the modified electrode delivers an excellent energy density of 385 Wh kg−1 after 100 cycles. The fundamental correlation established in this study is universal to all types of carbonaceous materials and sheds new light on the rational design of high‐performance Li metal anodes by controlling the initial Li nucleation. Carbonaceous materials are widely employed to host Li for stable and safe Li metal batteries while relatively little effort is devoted to tailoring the surface properties of carbon to facilitate uniform Li plating. Herein, the correlation between Li plating behavior and the surface characteristics of electrospun porous carbon nanofibers (PCNFs) is systemically elucidated through experiments and theoretical calculations. It is revealed that the neat carbon surface suffers from severe lattice mismatch with Li metal, hindering uniform Li plating. In contrast, open pores created on the PCNF surface serve as active sites for controlled initial nucleation of Li. The introduction of oxygenated functional groups further facilitates the nucleation of Li on PCNFs through the largely reduced nucleation energy barrier. The Li film uniformly deposited on PCNFs enables efficient use of the whole carbon surface, giving rise to enhanced cyclic stability of the electrode. When used as an anode in lithium–sulfur batteries, the modified electrode delivers an excellent energy density of 385 Wh kg −1 after 100 cycles. The fundamental correlation established in this study is universal to all types of carbonaceous materials and sheds new light on the rational design of high‐performance Li metal anodes by controlling the initial Li nucleation. |
Author | Yao, Shanshan Kim, Jang‐Kyo Ihsan‐Ul‐Haq, Muhammad Cui, Jiang Wu, Junxiong |
Author_xml | – sequence: 1 givenname: Jiang surname: Cui fullname: Cui, Jiang organization: The Hong Kong University of Science and Technology – sequence: 2 givenname: Shanshan surname: Yao fullname: Yao, Shanshan organization: The Hong Kong University of Science and Technology – sequence: 3 givenname: Muhammad surname: Ihsan‐Ul‐Haq fullname: Ihsan‐Ul‐Haq, Muhammad organization: The Hong Kong University of Science and Technology – sequence: 4 givenname: Junxiong surname: Wu fullname: Wu, Junxiong organization: The Hong Kong University of Science and Technology – sequence: 5 givenname: Jang‐Kyo orcidid: 0000-0002-5390-8763 surname: Kim fullname: Kim, Jang‐Kyo email: mejkkim@ust.hk organization: The Hong Kong University of Science and Technology |
BookMark | eNqFkM1rGzEQxUVIIa7ra8-CnO3qYy3ZR2dJk4KdFJKel1ntbKywkZyRHCf_fdd1cSEQOpf54P3ewPvMTkMMyNhXKSZSCPUNMDxNlJAzoay1J2wgjSzGZlaI0-Os1RkbpfQo-irmUmg9YFRGIuwg-xh4jXmHGPjS85_7U3jgF7iGFx-JQ2j43ZZacMjLNRC4jORT9i7x2PISqO4dVpDJv_Icd0C9PkPd4d5uhRk6vgixwfSFfWqhSzj624fs1_fL-_J6vLy9-lEulmOnp8aOnXHKSKcdCONsoe18ZqxtG4vGOallI8DWtSnAmVZPYTormla5wvSb1LUwesjOD74bis9bTLl6jFsK_ctKSaOsVHOje1VxUDmKKRG2lfP5TxyZwHeVFNU-4GofcHUMuMcm77AN-Segt4-B-QHY-Q7f_qOuFpc3q3_sbzgqkHc |
CitedBy_id | crossref_primary_10_1016_j_ensm_2019_09_007 crossref_primary_10_1002_celc_202400209 crossref_primary_10_1039_C9TA11311H crossref_primary_10_1002_eem2_12460 crossref_primary_10_1002_sstr_202000118 crossref_primary_10_1016_j_cej_2020_126508 crossref_primary_10_3390_batteries11010010 crossref_primary_10_1002_adfm_202409812 crossref_primary_10_1002_smll_201905620 crossref_primary_10_1002_smll_202003827 crossref_primary_10_1016_j_electacta_2022_141744 crossref_primary_10_1039_D1CC04822H crossref_primary_10_1039_D3TA01707A crossref_primary_10_1016_j_nanoen_2021_106132 crossref_primary_10_1016_j_jechem_2020_05_059 crossref_primary_10_1002_batt_202300246 crossref_primary_10_1002_smll_202311740 crossref_primary_10_1021_acsenergylett_1c00186 crossref_primary_10_1039_D2QI02280J crossref_primary_10_1016_j_ensm_2021_03_008 crossref_primary_10_1016_S1872_5805_22_60573_0 crossref_primary_10_1039_D1TA06742G crossref_primary_10_1016_j_mtcomm_2024_110530 crossref_primary_10_1016_j_electacta_2023_143259 crossref_primary_10_1039_D0NA00690D crossref_primary_10_1039_D3PY01265D crossref_primary_10_1039_D4GC02590C crossref_primary_10_1088_2053_1591_ab1a88 crossref_primary_10_1021_acsaem_1c02547 crossref_primary_10_1039_D0TA11643B crossref_primary_10_1039_D0TA00359J crossref_primary_10_1002_adma_202002193 crossref_primary_10_1016_j_ensm_2021_04_034 crossref_primary_10_1002_cey2_128 crossref_primary_10_1002_smll_202203273 crossref_primary_10_1002_eem2_12449 crossref_primary_10_1021_acsaem_1c00926 crossref_primary_10_1002_aenm_202302565 crossref_primary_10_1002_advs_202103879 crossref_primary_10_1002_aenm_202103904 crossref_primary_10_1016_j_nanoen_2021_106421 crossref_primary_10_1021_acsami_4c10070 crossref_primary_10_1039_D0EE02848G crossref_primary_10_1039_D1TA03447B crossref_primary_10_1021_acsami_0c12052 crossref_primary_10_1016_j_ensm_2021_02_015 crossref_primary_10_1039_D0TA10537F crossref_primary_10_1039_D4TA04834B crossref_primary_10_1002_aenm_202103123 crossref_primary_10_1021_acs_chemrev_0c01100 crossref_primary_10_1002_smll_202003815 crossref_primary_10_1016_j_ensm_2019_08_027 crossref_primary_10_1002_cey2_95 crossref_primary_10_1016_j_esci_2022_09_001 crossref_primary_10_1016_j_colsurfa_2022_129104 crossref_primary_10_1016_j_rser_2020_110308 crossref_primary_10_1021_acsaem_1c04035 crossref_primary_10_1039_D0TA05298A crossref_primary_10_1002_aenm_201901796 crossref_primary_10_1021_acsnano_2c09037 crossref_primary_10_1016_j_jechem_2022_03_039 crossref_primary_10_1016_j_jpowsour_2021_229464 crossref_primary_10_1002_adfm_202206778 crossref_primary_10_1016_j_electacta_2019_06_009 crossref_primary_10_1021_acsnano_2c07137 crossref_primary_10_1016_j_ensm_2019_08_016 crossref_primary_10_1039_D0TA10580E crossref_primary_10_1016_j_carbon_2020_06_073 crossref_primary_10_1021_acsami_4c00416 crossref_primary_10_1021_acsami_9b17727 crossref_primary_10_1039_D3DT04010K crossref_primary_10_1016_j_jechem_2021_04_045 crossref_primary_10_1002_advs_201901433 crossref_primary_10_1002_aenm_202201493 crossref_primary_10_1039_C9TA09373G crossref_primary_10_1039_D1EE01346G crossref_primary_10_1088_2053_1583_ab2efc crossref_primary_10_1016_j_ensm_2021_06_015 crossref_primary_10_1002_eom2_12517 crossref_primary_10_1002_adfm_201902499 crossref_primary_10_1016_j_jallcom_2020_155251 crossref_primary_10_1021_acs_nanolett_1c00534 crossref_primary_10_1002_adfm_202408013 crossref_primary_10_1002_adma_202109767 crossref_primary_10_1039_D0EE02651D crossref_primary_10_1002_chem_201905524 crossref_primary_10_1016_j_cej_2021_130914 crossref_primary_10_1002_adfm_201903229 crossref_primary_10_1016_j_ensm_2024_103247 crossref_primary_10_1007_s12598_021_01811_3 crossref_primary_10_1039_C9CC07092C crossref_primary_10_1021_acs_nanolett_3c02229 crossref_primary_10_1149_2_1011908jes crossref_primary_10_1021_acsami_9b09975 crossref_primary_10_1002_smll_202104469 crossref_primary_10_1021_acsami_9b10551 crossref_primary_10_1002_adsu_202200010 crossref_primary_10_1016_j_nanoen_2024_110255 crossref_primary_10_1002_adfm_202208374 crossref_primary_10_1016_j_nanoen_2024_109660 crossref_primary_10_1002_advs_202206995 crossref_primary_10_1016_j_ssi_2021_115636 crossref_primary_10_1039_D2TA02420A crossref_primary_10_1016_j_commatsci_2022_111637 crossref_primary_10_1016_j_nanoen_2021_106836 crossref_primary_10_1002_smll_202104876 crossref_primary_10_1039_D1NR05681F crossref_primary_10_1002_adma_201903808 crossref_primary_10_1002_aenm_202201190 crossref_primary_10_1021_acsnano_0c03042 crossref_primary_10_1080_14686996_2022_2050297 crossref_primary_10_1016_S1872_5805_23_60768_1 crossref_primary_10_1002_cey2_180 crossref_primary_10_1039_D2TA00324D crossref_primary_10_1002_aenm_201804000 crossref_primary_10_1016_j_jelechem_2022_116512 crossref_primary_10_1039_D1TA08646D crossref_primary_10_1002_adfm_202202013 |
Cites_doi | 10.1002/aenm.201700530 10.1016/j.joule.2017.06.004 10.1016/j.joule.2017.11.004 10.1016/j.jpowsour.2014.06.024 10.1038/ncomms15106 10.1016/j.carbon.2017.08.027 10.1016/j.apsusc.2011.09.007 10.1002/aenm.201702488 10.1021/acs.chemrev.7b00115 10.1016/j.joule.2018.02.001 10.1103/PhysRevB.75.045427 10.1002/aenm.201702267 10.1016/j.nanoen.2017.08.029 10.1002/aenm.201800710 10.1038/s41560-017-0047-2 10.1088/0953-8984/21/39/395502 10.1016/j.jpowsour.2017.08.081 10.1002/anie.201702099 10.1038/nnano.2014.152 10.1002/advs.201600445 10.1103/PhysRevB.16.1748 10.1016/j.electacta.2018.02.096 10.1038/natrevmats.2016.103 10.1016/j.nanoen.2015.11.013 10.1002/aenm.201602149 10.1038/srep27982 10.1039/C7TA05997C 10.1038/451652a 10.1103/PhysRevLett.77.3865 10.1038/nnano.2016.32 10.1038/nnano.2017.16 10.1038/nmat4821 10.1016/j.ensm.2017.05.004 10.1002/adma.201706216 10.1038/nenergy.2016.10 10.1149/1.1393349 10.1002/adma.201605531 10.1016/0008-6223(94)00144-O 10.1038/nenergy.2017.12 10.1016/j.carbon.2010.03.045 10.1007/s12274-017-1596-1 10.1038/s41560-017-0005-z 10.1016/j.ensm.2017.06.006 10.1073/pnas.1602473113 10.1002/jcc.20495 10.1002/adma.201506124 10.1016/j.nanoen.2013.12.011 10.1016/j.ensm.2017.06.003 10.1016/j.ensm.2017.03.010 10.1007/s12274-017-1461-2 10.1016/j.ensm.2016.04.001 10.1002/aenm.201702657 10.1039/C6TA03541H 10.1039/C8TA01715H 10.1016/j.ensm.2016.12.005 10.1103/PhysRevB.49.16223 10.1016/0008-6223(94)90075-2 10.1002/aenm.201801427 10.1002/adma.201700389 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201802777 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_201802777 AENM201802777 |
Genre | article |
GrantInformation_xml | – fundername: Research Grants Council funderid: 16212814; 16208718 – fundername: Innovation and Technology Commission funderid: ITS/001/17 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS EJD G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3567-c6c261c3ca06c743798677fd7e6cc131d0a7bb64ac6f35a584df2c466f313b063 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:07:51 EDT 2025 Tue Jul 01 01:43:27 EDT 2025 Thu Apr 24 22:54:12 EDT 2025 Wed Jan 22 16:20:44 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3567-c6c261c3ca06c743798677fd7e6cc131d0a7bb64ac6f35a584df2c466f313b063 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5390-8763 |
PQID | 2162712963 |
PQPubID | 886389 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2162712963 crossref_citationtrail_10_1002_aenm_201802777 crossref_primary_10_1002_aenm_201802777 wiley_primary_10_1002_aenm_201802777_AENM201802777 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 3, 2019 |
PublicationDateYYYYMMDD | 2019-01-03 |
PublicationDate_xml | – month: 01 year: 2019 text: January 3, 2019 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 40 2017; 5 2011; 258 2017; 7 2017; 8 2017; 1 2017; 2 2009; 21 2017; 4 2016; 19 1995; 33 2018; 268 1994; 49 2017; 29 2007; 75 2017; 9 2017; 117 2016; 11 1996; 77 2016; 4 2018; 6 2016; 6 2018; 8 2018; 3 2018; 2 2016; 1 2014; 4 2010; 48 2000; 147 2017; 16 1977; 16 2006; 27 2017; 10 1999; 59 2017; 12 2017; 56 2016; 113 2018; 30 2014; 9 2017; 365 2017; 123 2016; 28 2008; 451 2014; 268 1994; 32 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 Joubert D. (e_1_2_7_57_1) 1999; 59 |
References_xml | – volume: 2 start-page: 764 year: 2018 publication-title: Joule – volume: 4 start-page: 1600445 year: 2017 publication-title: Adv. Sci. – volume: 8 start-page: 1702488 year: 2018 publication-title: Adv. Energy Mater. – volume: 29 start-page: 1605531 year: 2017 publication-title: Adv. Mater. – volume: 7 start-page: 1602149 year: 2017 publication-title: Adv. Energy Mater. – volume: 123 start-page: 744 year: 2017 publication-title: Carbon – volume: 8 start-page: 10 year: 2017 publication-title: Energy Storage Mater. – volume: 75 start-page: 045427 year: 2007 publication-title: Phys. Rev. B – volume: 40 start-page: 258 year: 2017 publication-title: Nano Energy – volume: 268 start-page: 153 year: 2014 publication-title: J. Power Sources – volume: 365 start-page: 134 year: 2017 publication-title: J. Power Sources – volume: 2 start-page: 184 year: 2018 publication-title: Joule – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 4 start-page: 10964 year: 2016 publication-title: J. Mater. Chem. A – volume: 12 start-page: 194 year: 2017 publication-title: Nat. Nanotechnol. – volume: 113 start-page: 3735 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 6 start-page: 27982 year: 2016 publication-title: Sci. Rep. – volume: 28 start-page: 2888 year: 2016 publication-title: Adv. Mater. – volume: 3 start-page: 16 year: 2018 publication-title: Nat. Energy – volume: 2 start-page: 16103 year: 2017 publication-title: Nat. Rev. Mater. – volume: 19 start-page: 68 year: 2016 publication-title: Nano Energy – volume: 9 start-page: 134 year: 2017 publication-title: Energy Storage Mater. – volume: 9 start-page: 85 year: 2017 publication-title: Energy Storage Mater. – volume: 8 start-page: 1800710 year: 2018 publication-title: Adv. Energy Mater. – volume: 11 start-page: 626 year: 2016 publication-title: Nat. Nanotechnol. – volume: 16 start-page: 1748 year: 1977 publication-title: Phys. Rev. B – volume: 8 start-page: 15106 year: 2017 publication-title: Nat. Commun. – volume: 29 start-page: 1700389 year: 2017 publication-title: Adv. Mater. – volume: 7 start-page: 1700530 year: 2017 publication-title: Adv. Energy Mater. – volume: 1 start-page: 16010 year: 2016 publication-title: Nat. Energy – volume: 8 start-page: 110 year: 2017 publication-title: Energy Storage Mater. – volume: 10 start-page: 1356 year: 2017 publication-title: Nano Res. – volume: 8 start-page: 1702657 year: 2018 publication-title: Adv. Energy Mater. – volume: 258 start-page: 1651 year: 2011 publication-title: Appl. Surf. Sci. – volume: 117 start-page: 10403 year: 2017 publication-title: Chem. Rev. – volume: 32 start-page: 577 year: 1994 publication-title: Carbon – volume: 10 start-page: 4003 year: 2017 publication-title: Nano Res. – volume: 30 start-page: 1706216 year: 2018 publication-title: Adv. Mater. – volume: 7 start-page: 64 year: 2017 publication-title: Energy Storage Mater. – volume: 268 start-page: 1 year: 2018 publication-title: Electrochim. Acta – volume: 6 start-page: 16003 year: 2018 publication-title: J. Mater. Chem. A – volume: 4 start-page: 88 year: 2014 publication-title: Nano Energy – volume: 9 start-page: 618 year: 2014 publication-title: Nat. Nanotechnol. – volume: 56 start-page: 7764 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 21 start-page: 395502 year: 2009 publication-title: J. Phys.: Condens. Matter – volume: 59 start-page: 1758 year: 1999 publication-title: Phys. Rev. B – volume: 33 start-page: 587 year: 1995 publication-title: Carbon – volume: 1 start-page: 563 year: 2017 publication-title: Joule – volume: 27 start-page: 1787 year: 2006 publication-title: J. Comput. Chem. – volume: 49 start-page: 16223 year: 1994 publication-title: Phys. Rev. B – volume: 2 start-page: 17012 year: 2017 publication-title: Nat. Energy – volume: 8 start-page: 1801427 year: 2018 publication-title: Adv. Energy Mater. – volume: 16 start-page: 572 year: 2017 publication-title: Nat. Mater. – volume: 5 start-page: 19168 year: 2017 publication-title: J. Mater. Chem. A – volume: 147 start-page: 1274 year: 2000 publication-title: J. Electrochem. Soc. – volume: 48 start-page: 2573 year: 2010 publication-title: Carbon – volume: 2 start-page: 813 year: 2017 publication-title: Nat. Energy – volume: 451 start-page: 652 year: 2008 publication-title: Nature – volume: 4 start-page: 103 year: 2016 publication-title: Energy Storage Mater. – volume: 8 start-page: 1702267 year: 2018 publication-title: Adv. Energy Mater. – ident: e_1_2_7_20_1 doi: 10.1002/aenm.201700530 – ident: e_1_2_7_24_1 doi: 10.1016/j.joule.2017.06.004 – ident: e_1_2_7_25_1 doi: 10.1016/j.joule.2017.11.004 – ident: e_1_2_7_40_1 doi: 10.1016/j.jpowsour.2014.06.024 – ident: e_1_2_7_14_1 doi: 10.1038/ncomms15106 – ident: e_1_2_7_30_1 doi: 10.1016/j.carbon.2017.08.027 – ident: e_1_2_7_48_1 doi: 10.1016/j.apsusc.2011.09.007 – ident: e_1_2_7_37_1 doi: 10.1002/aenm.201702488 – ident: e_1_2_7_12_1 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_7_23_1 doi: 10.1016/j.joule.2018.02.001 – ident: e_1_2_7_47_1 doi: 10.1103/PhysRevB.75.045427 – volume: 59 start-page: 1758 year: 1999 ident: e_1_2_7_57_1 publication-title: Phys. Rev. B – ident: e_1_2_7_59_1 doi: 10.1002/aenm.201702267 – ident: e_1_2_7_8_1 doi: 10.1016/j.nanoen.2017.08.029 – ident: e_1_2_7_49_1 doi: 10.1002/aenm.201800710 – ident: e_1_2_7_13_1 doi: 10.1038/s41560-017-0047-2 – ident: e_1_2_7_55_1 doi: 10.1088/0953-8984/21/39/395502 – ident: e_1_2_7_9_1 doi: 10.1016/j.jpowsour.2017.08.081 – ident: e_1_2_7_45_1 doi: 10.1002/anie.201702099 – ident: e_1_2_7_26_1 doi: 10.1038/nnano.2014.152 – ident: e_1_2_7_19_1 doi: 10.1002/advs.201600445 – ident: e_1_2_7_60_1 doi: 10.1103/PhysRevB.16.1748 – ident: e_1_2_7_4_1 doi: 10.1016/j.electacta.2018.02.096 – ident: e_1_2_7_16_1 doi: 10.1038/natrevmats.2016.103 – ident: e_1_2_7_52_1 doi: 10.1016/j.nanoen.2015.11.013 – ident: e_1_2_7_38_1 doi: 10.1002/aenm.201602149 – ident: e_1_2_7_51_1 doi: 10.1038/srep27982 – ident: e_1_2_7_21_1 doi: 10.1039/C7TA05997C – ident: e_1_2_7_1_1 doi: 10.1038/451652a – ident: e_1_2_7_54_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_7_29_1 doi: 10.1038/nnano.2016.32 – ident: e_1_2_7_11_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_7_17_1 doi: 10.1038/nmat4821 – ident: e_1_2_7_5_1 doi: 10.1016/j.ensm.2017.05.004 – ident: e_1_2_7_27_1 doi: 10.1002/adma.201706216 – ident: e_1_2_7_31_1 doi: 10.1038/nenergy.2016.10 – ident: e_1_2_7_10_1 doi: 10.1149/1.1393349 – ident: e_1_2_7_18_1 doi: 10.1002/adma.201605531 – ident: e_1_2_7_39_1 doi: 10.1016/0008-6223(94)00144-O – ident: e_1_2_7_15_1 doi: 10.1038/nenergy.2017.12 – ident: e_1_2_7_42_1 doi: 10.1016/j.carbon.2010.03.045 – ident: e_1_2_7_34_1 doi: 10.1007/s12274-017-1596-1 – ident: e_1_2_7_43_1 doi: 10.1038/s41560-017-0005-z – ident: e_1_2_7_36_1 doi: 10.1016/j.ensm.2017.06.006 – ident: e_1_2_7_46_1 doi: 10.1073/pnas.1602473113 – ident: e_1_2_7_58_1 doi: 10.1002/jcc.20495 – ident: e_1_2_7_44_1 doi: 10.1002/adma.201506124 – ident: e_1_2_7_33_1 doi: 10.1016/j.nanoen.2013.12.011 – ident: e_1_2_7_7_1 doi: 10.1016/j.ensm.2017.06.003 – ident: e_1_2_7_32_1 doi: 10.1016/j.ensm.2017.03.010 – ident: e_1_2_7_28_1 doi: 10.1007/s12274-017-1461-2 – ident: e_1_2_7_3_1 doi: 10.1016/j.ensm.2016.04.001 – ident: e_1_2_7_6_1 doi: 10.1002/aenm.201702657 – ident: e_1_2_7_35_1 doi: 10.1039/C6TA03541H – ident: e_1_2_7_50_1 doi: 10.1039/C8TA01715H – ident: e_1_2_7_2_1 doi: 10.1016/j.ensm.2016.12.005 – ident: e_1_2_7_56_1 doi: 10.1103/PhysRevB.49.16223 – ident: e_1_2_7_41_1 doi: 10.1016/0008-6223(94)90075-2 – ident: e_1_2_7_53_1 doi: 10.1002/aenm.201801427 – ident: e_1_2_7_22_1 doi: 10.1002/adma.201700389 |
SSID | ssj0000491033 |
Score | 2.5763433 |
Snippet | Carbonaceous materials are widely employed to host Li for stable and safe Li metal batteries while relatively little effort is devoted to tailoring the surface... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Active control Anodes Carbon Carbon fibers Carbonaceous materials controlled nucleation Correlation analysis DFT calculations Electrodes Flux density Functional groups Li metal anodes Lithium sulfur batteries Li–S batteries Nanofibers Nucleation Plating porous carbon nanofibers Surface properties Surface stability |
Title | Correlation between Li Plating Behavior and Surface Characteristics of Carbon Matrix toward Stable Li Metal Anodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201802777 https://www.proquest.com/docview/2162712963 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLY6uLDDNAbTugHyYRKnbHGcOOmx6kAVariUStwix0koEqRbaSS0v2p_4t6zHZPyc-OSpq7jyn6f_Z5f3vtMyFewCCQSWXoC1J0XykHiJVIEHjJ9M5FI5ufoh0xPxXgWnpxH573en07UUrPKv6nfj-aVvEaqUAZyxSzZ_5CsaxQK4B7kC1eQMFz_ScYjPFrDBLO5gKvJJR5EpIOZLfehiZKcNstKwiQe3WNo1vlZyxxaSJGt_xaMUQykRSsUk6qgubTEhMlhvShsvGFLWtuGD5QmfxBsX9Np916j0aECJ4DAC7e6SO2bnc5BRc47yJzfyNoFXsyu3O1Y_tI-22Yur69l4XRIY1JK6lvo-0XXdYHZUhi-1VltwTbwRGIdnGW3zHA4tUv04AESja52muyBIjDEsrKskW0AWe5ie1rMGuO2qxk9X9cQBB-dpu73N2QTPtAk3xz-SCdT59eDHRfzuc7raHvXcoX6wff1P1m3he42ON1tkrZzzt6Td3aDQocGbdukV9YfyNsObeUOWXZwRy3u6OSSWtzRFncUcEct7ug93NFFRQ3uqMEdNbijBnfYnMYdNbjbJbPjo7PR2LNnd3iKR6B7lVCwN1dcSV-oGEkvkTixKuJSKMU4K3wZ57kIpRIVjySYwUUVqFDAN8ZzsJs_ko16UZefCJWhrwrGBQ_9KuQqTqSfs6gQ-EZ3IKKwT7x2FDNlie3xfJWrzFByBxmOeuZGvU8OXf2fhtLlyZp7rVAyO-1vsoCJIAYrWfA-CbSgXmglWwPO59c89IVs3c2fPbKxWjblPhjDq_zA4u8vdi-rGQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Correlation+between+Li+Plating+Behavior+and+Surface+Characteristics+of+Carbon+Matrix+toward+Stable+Li+Metal+Anodes&rft.jtitle=Advanced+energy+materials&rft.au=Cui%2C+Jiang&rft.au=Yao%2C+Shanshan&rft.au=Ihsan%E2%80%90Ul%E2%80%90Haq%2C+Muhammad&rft.au=Wu%2C+Junxiong&rft.date=2019-01-03&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=9&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201802777&rft.externalDBID=10.1002%252Faenm.201802777&rft.externalDocID=AENM201802777 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |