Lithium Ion Breathable Electrodes with 3D Hierarchical Architecture for Ultrastable and High‐Capacity Lithium Storage
Transition‐metal oxides show genuine potential in replacing state‐of‐the‐art carbonaceous anode materials in lithium‐ or sodium‐ion batteries because of their much higher theoretical capacity. However, they usually undergo massive volume change, which leads to numerous problems in both material and...
Saved in:
Published in | Advanced functional materials Vol. 27; no. 29 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
04.08.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transition‐metal oxides show genuine potential in replacing state‐of‐the‐art carbonaceous anode materials in lithium‐ or sodium‐ion batteries because of their much higher theoretical capacity. However, they usually undergo massive volume change, which leads to numerous problems in both material and electrode levels, such as material pulverization, instable solid‐electrolyte interphase, and electrode failure. Here, it is demonstrated that lithium‐ion breathable hybrid electrodes with 3D architecture tackle all these problems, using a typical conversion‐type transition‐metal oxide, Fe3O4, of which nanoparticles are anchored onto 3D current collectors of Ni nanotube arrays (NTAs) and encapsulated by δ‐MnO2 layers (Ni/Fe3O4@MnO2). The δ‐MnO2 layers reversibly switch lithium insertion/extraction of internal Fe3O4 nanoparticles and protect them against pulverizing and detaching from NTA current collectors, securing exceptional integrity retention and efficient ion/electron transport. The Ni/Fe3O4@MnO2 electrodes exhibit superior cyclability and high‐capacity lithium storage (retaining ≈1450 mAh g−1, ≈96% of initial value at 1 C rate after 1000 cycles).
3D lithium‐ion breathable hybrid electrodes are successfully constructed by anchoring Fe3O4 nanoparticles onto highly conductive 3D current collectors of Ni nanotube arrays and encapsulating them with reversibly switching δ‐MnO2 layers. As a result of integrity retention and efficient ion/electron transport, the Ni/Fe3O4@MnO2 electrodes exhibit superior cyclability and high‐capacity lithium storage. |
---|---|
AbstractList | Transition‐metal oxides show genuine potential in replacing state‐of‐the‐art carbonaceous anode materials in lithium‐ or sodium‐ion batteries because of their much higher theoretical capacity. However, they usually undergo massive volume change, which leads to numerous problems in both material and electrode levels, such as material pulverization, instable solid‐electrolyte interphase, and electrode failure. Here, it is demonstrated that lithium‐ion breathable hybrid electrodes with 3D architecture tackle all these problems, using a typical conversion‐type transition‐metal oxide, Fe3O4, of which nanoparticles are anchored onto 3D current collectors of Ni nanotube arrays (NTAs) and encapsulated by δ‐MnO2 layers (Ni/Fe3O4@MnO2). The δ‐MnO2 layers reversibly switch lithium insertion/extraction of internal Fe3O4 nanoparticles and protect them against pulverizing and detaching from NTA current collectors, securing exceptional integrity retention and efficient ion/electron transport. The Ni/Fe3O4@MnO2 electrodes exhibit superior cyclability and high‐capacity lithium storage (retaining ≈1450 mAh g−1, ≈96% of initial value at 1 C rate after 1000 cycles).
3D lithium‐ion breathable hybrid electrodes are successfully constructed by anchoring Fe3O4 nanoparticles onto highly conductive 3D current collectors of Ni nanotube arrays and encapsulating them with reversibly switching δ‐MnO2 layers. As a result of integrity retention and efficient ion/electron transport, the Ni/Fe3O4@MnO2 electrodes exhibit superior cyclability and high‐capacity lithium storage. Transition‐metal oxides show genuine potential in replacing state‐of‐the‐art carbonaceous anode materials in lithium‐ or sodium‐ion batteries because of their much higher theoretical capacity. However, they usually undergo massive volume change, which leads to numerous problems in both material and electrode levels, such as material pulverization, instable solid‐electrolyte interphase, and electrode failure. Here, it is demonstrated that lithium‐ion breathable hybrid electrodes with 3D architecture tackle all these problems, using a typical conversion‐type transition‐metal oxide, Fe 3 O 4 , of which nanoparticles are anchored onto 3D current collectors of Ni nanotube arrays (NTAs) and encapsulated by δ‐MnO 2 layers (Ni/Fe 3 O 4 @MnO 2 ). The δ‐MnO 2 layers reversibly switch lithium insertion/extraction of internal Fe 3 O 4 nanoparticles and protect them against pulverizing and detaching from NTA current collectors, securing exceptional integrity retention and efficient ion/electron transport. The Ni/Fe 3 O 4 @MnO 2 electrodes exhibit superior cyclability and high‐capacity lithium storage (retaining ≈1450 mAh g −1 , ≈96% of initial value at 1 C rate after 1000 cycles). Transition-metal oxides show genuine potential in replacing state-of-the-art carbonaceous anode materials in lithium- or sodium-ion batteries because of their much higher theoretical capacity. However, they usually undergo massive volume change, which leads to numerous problems in both material and electrode levels, such as material pulverization, instable solid-electrolyte interphase, and electrode failure. Here, it is demonstrated that lithium-ion breathable hybrid electrodes with 3D architecture tackle all these problems, using a typical conversion-type transition-metal oxide, Fe3O4, of which nanoparticles are anchored onto 3D current collectors of Ni nanotube arrays (NTAs) and encapsulated by [delta]-MnO2 layers (Ni/Fe3O4@MnO2). The [delta]-MnO2 layers reversibly switch lithium insertion/extraction of internal Fe3O4 nanoparticles and protect them against pulverizing and detaching from NTA current collectors, securing exceptional integrity retention and efficient ion/electron transport. The Ni/Fe3O4@MnO2 electrodes exhibit superior cyclability and high-capacity lithium storage (retaining [asymp]1450 mAh g-1, [asymp]96% of initial value at 1 C rate after 1000 cycles). |
Author | Wen, Zi Jiang, Qing Lang, Xing‐You Zheng, Wei‐Tao Li, Ying‐Qi Li, Jian‐Chen |
Author_xml | – sequence: 1 givenname: Ying‐Qi surname: Li fullname: Li, Ying‐Qi organization: Jilin University – sequence: 2 givenname: Jian‐Chen surname: Li fullname: Li, Jian‐Chen organization: Jilin University – sequence: 3 givenname: Xing‐You surname: Lang fullname: Lang, Xing‐You email: xylang@jlu.edu.cn organization: Jilin University – sequence: 4 givenname: Zi surname: Wen fullname: Wen, Zi organization: Jilin University – sequence: 5 givenname: Wei‐Tao surname: Zheng fullname: Zheng, Wei‐Tao organization: Jilin University – sequence: 6 givenname: Qing surname: Jiang fullname: Jiang, Qing email: jiangq@jlu.edu.cn organization: Jilin University |
BookMark | eNqFkMtOAjEUhhuDiYBuXTdxPdjbXFgiiJBgXCiJu0mnF6ZkmGKnhLDzEXxGn8QiiomJcdWT5vvO5e-AVm1rBcAlRj2MELnmUq96BOEUIcbSE9DGCU4iikjWOtb4-Qx0mmaJApZS1gbbmfGl2azg1NbwxinuS15UCt5WSnhnpWrgNhCQjuDEKMedKI3gFRzsCx-YjVNQWwfnlXe88Z8yr2WgF-X769uQr7kwfge_5zx66_hCnYNTzatGXXy9XTAf3z4NJ9Hs4W46HMwiQeMkjQotCclShpTWWSZSJDLMFMsElTx8ZDpjUmtNaaxITApaSM37IkniIkEykSntgqtD37WzLxvV-HxpN64OI3PcJzFOCU5YoNiBEs42jVM6Dztzb2wdjjJVjlG-jzjfR5wfIw5a75e2dmbF3e5voX8QtqZSu3_ofDAa3_-4H7jTk6A |
CitedBy_id | crossref_primary_10_1016_j_rinp_2019_01_041 crossref_primary_10_1021_acsaem_8b00992 crossref_primary_10_1039_C8DT03148G crossref_primary_10_1002_adfm_201704330 crossref_primary_10_1021_acsami_9b23346 crossref_primary_10_1016_j_jhazmat_2020_122877 crossref_primary_10_1016_j_cej_2018_08_136 crossref_primary_10_1002_cey2_151 crossref_primary_10_1021_acssuschemeng_8b04037 crossref_primary_10_1039_C8TA06412A crossref_primary_10_1038_s41560_020_00702_8 crossref_primary_10_1002_anie_201707647 crossref_primary_10_1016_j_jpowsour_2019_227434 crossref_primary_10_1149_2_0491915jes crossref_primary_10_1016_j_jcis_2023_04_043 crossref_primary_10_1021_acsaem_1c02811 crossref_primary_10_1021_acsami_7b13763 crossref_primary_10_1021_acsnano_8b00168 crossref_primary_10_1016_j_jallcom_2019_152160 crossref_primary_10_1016_j_electacta_2018_05_080 crossref_primary_10_1016_j_jcis_2023_04_127 crossref_primary_10_1016_j_electacta_2019_04_004 crossref_primary_10_1016_j_electacta_2017_08_189 crossref_primary_10_1039_D1EE02764F crossref_primary_10_1016_j_solidstatesciences_2019_105930 crossref_primary_10_1134_S1087659622100042 crossref_primary_10_1016_j_jallcom_2019_153569 crossref_primary_10_1016_j_apsusc_2019_144882 crossref_primary_10_1002_smll_202404437 crossref_primary_10_1016_j_jallcom_2018_05_133 crossref_primary_10_1016_j_jallcom_2023_171827 crossref_primary_10_1088_1361_6528_ab1a83 crossref_primary_10_1002_smll_202203835 crossref_primary_10_1021_acs_nanolett_4c02887 crossref_primary_10_1039_D2NJ04721G crossref_primary_10_1016_j_cej_2017_12_072 crossref_primary_10_1016_j_matpr_2022_06_408 crossref_primary_10_1088_1361_6528_aaf17c crossref_primary_10_1002_aenm_201904281 crossref_primary_10_1021_acsenergylett_1c00627 crossref_primary_10_1021_acssuschemeng_8b05210 crossref_primary_10_1016_j_jallcom_2020_156039 crossref_primary_10_1002_celc_201800830 crossref_primary_10_1016_j_est_2023_108721 crossref_primary_10_1002_chem_201903893 crossref_primary_10_1021_acs_inorgchem_3c01105 crossref_primary_10_1002_anie_202306193 crossref_primary_10_1002_ente_201801048 crossref_primary_10_1002_smll_202103136 crossref_primary_10_1016_j_electacta_2019_01_127 crossref_primary_10_1002_ange_201707647 crossref_primary_10_1016_j_cej_2020_124229 crossref_primary_10_1016_j_chemosphere_2023_140432 crossref_primary_10_1016_j_jallcom_2019_03_081 crossref_primary_10_1021_acs_nanolett_0c05035 crossref_primary_10_1002_admi_201800332 crossref_primary_10_1016_j_ensm_2021_12_026 crossref_primary_10_1007_s10853_019_03823_y crossref_primary_10_1016_j_enchem_2022_100069 crossref_primary_10_1016_j_jcis_2022_02_134 crossref_primary_10_1016_j_jallcom_2020_153656 crossref_primary_10_1007_s41918_020_00070_7 crossref_primary_10_1002_adma_201903808 crossref_primary_10_1021_acs_jpcc_1c01544 crossref_primary_10_1002_adma_202407705 crossref_primary_10_1016_j_cej_2019_03_020 crossref_primary_10_1016_j_ceramint_2025_01_071 crossref_primary_10_1016_j_jcis_2018_10_060 crossref_primary_10_1002_adfm_202003838 crossref_primary_10_1016_j_ijhydene_2019_10_210 crossref_primary_10_1016_j_jelechem_2022_116508 crossref_primary_10_1007_s10853_020_04868_0 crossref_primary_10_1002_ange_202306193 crossref_primary_10_1149_2162_8777_ac774b crossref_primary_10_1007_s10854_019_01629_x crossref_primary_10_1016_j_ensm_2021_07_007 crossref_primary_10_1039_C9TA11782B crossref_primary_10_1002_advs_202408277 crossref_primary_10_1016_j_pnsc_2023_12_017 crossref_primary_10_1002_adfm_201800497 crossref_primary_10_1021_acs_jpcc_1c10931 crossref_primary_10_1016_j_est_2020_101737 crossref_primary_10_1016_j_jallcom_2021_159906 crossref_primary_10_1039_D2EE01793H crossref_primary_10_1021_acsaem_1c02007 crossref_primary_10_1002_aenm_202103689 crossref_primary_10_3389_fchem_2018_00366 crossref_primary_10_1002_celc_201801624 crossref_primary_10_1021_acs_energyfuels_9b03637 crossref_primary_10_1039_C8NJ05365K crossref_primary_10_1002_celc_201800610 crossref_primary_10_1016_j_jallcom_2020_157422 crossref_primary_10_1002_aenm_201801219 crossref_primary_10_1038_s41467_024_48021_w crossref_primary_10_1039_C7TA08284C |
Cites_doi | 10.1021/nn101754k 10.1038/nnano.2012.35 10.1038/nmat1672 10.1021/nl504427d 10.1038/nmat1368 10.1021/nn401059h 10.1016/j.nanoen.2015.12.024 10.1021/cm0497881 10.1002/adma.201300445 10.1149/2.044302jes 10.1002/adma.201004331 10.1002/adfm.201502265 10.1002/adma.201305095 10.1002/adfm.201002576 10.1002/adfm.200902295 10.1002/adma.201000717 10.1002/adma.201200469 10.1002/adfm.201200534 10.1002/adfm.201500634 10.1021/ja105296a 10.1038/nnano.2014.6 10.1038/35035045 10.1021/cm901452z 10.1038/nenergy.2016.71 10.1021/cr800344k 10.1039/C1EE02831F 10.1002/adfm.201400178 10.1002/smll.201302879 10.1002/asia.201501439 10.1002/adfm.201200691 10.1021/nn100740x 10.1002/aenm.201502318 10.1016/S0008-6223(98)00290-5 10.1002/adfm.200700494 10.1021/nl2034464 10.1039/C6TA04351H 10.1016/j.nanoen.2015.06.009 10.1021/cr3001884 10.1038/451652a 10.1021/nn200493r 10.1021/nl3046409 10.1038/nmat2725 10.1016/S1386-1425(03)00279-8 10.1039/c3ta10885f |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201700447 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Architecture |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201700447 ADFM201700447 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51422103; 51631004 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3567-bfd228740eff88c70c814e48c3daf888f84dfff335e252b3bdfa9c665b60d6d73 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 06:13:32 EDT 2025 Tue Jul 01 04:11:40 EDT 2025 Thu Apr 24 23:11:52 EDT 2025 Wed Jan 22 16:30:57 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3567-bfd228740eff88c70c814e48c3daf888f84dfff335e252b3bdfa9c665b60d6d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1925172164 |
PQPubID | 2045204 |
PageCount | 8 |
ParticipantIDs | proquest_journals_1925172164 crossref_citationtrail_10_1002_adfm_201700447 crossref_primary_10_1002_adfm_201700447 wiley_primary_10_1002_adfm_201700447_ADFM201700447 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 4, 2017 |
PublicationDateYYYYMMDD | 2017-08-04 |
PublicationDate_xml | – month: 08 year: 2017 text: August 4, 2017 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 17 2015; 15 2015; 16 2013; 25 2013; 1 2004; 60 2013; 23 2014; 26 2006; 5 2014; 24 2013; 7 2012; 12 2013; 160 2011; 5 2016; 11 2000; 407 2016; 4 2010; 22 2016; 6 2015; 25 2010; 20 2016; 1 2004; 16 2013; 13 1999; 37 2010; 132 2010; 110 2005; 4 2016; 20 2013; 113 2011; 21 2011; 23 2014; 9 2012; 24 2012; 7 2008; 451 2010; 4 2012; 5 2012; 22 2014; 10 2010; 9 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 25 start-page: 5384 year: 2015 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 1198 year: 2012 publication-title: Nano Lett. – volume: 16 start-page: 152 year: 2015 publication-title: Nano Energy – volume: 1 start-page: 8672 year: 2013 publication-title: J. Mater. Chem. A – volume: 5 start-page: 567 year: 2006 publication-title: Nat. Mater. – volume: 9 start-page: 187 year: 2014 publication-title: Nat. Nanotechnol. – volume: 60 start-page: 689 year: 2004 publication-title: Spectrochim. Acta, Part A – volume: 24 start-page: 1903 year: 2012 publication-title: Adv. Mater. – volume: 15 start-page: 738 year: 2015 publication-title: Nano Lett. – volume: 24 start-page: 4337 year: 2014 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 5835 year: 2010 publication-title: ACS Nano – volume: 11 start-page: 828 year: 2016 publication-title: Chem. Asian J. – volume: 26 start-page: 2440 year: 2014 publication-title: Adv. Mater. – volume: 4 start-page: 366 year: 2005 publication-title: Nat. Mater. – volume: 25 start-page: 3524 year: 2015 publication-title: Adv. Funct. Mater. – volume: 23 start-page: 2443 year: 2011 publication-title: Adv. Mater. – volume: 20 start-page: 305 year: 2016 publication-title: Nano Energy – volume: 5 start-page: 3333 year: 2011 publication-title: ACS Nano – volume: 5 start-page: 5252 year: 2012 publication-title: Energy Environ. Sci. – volume: 13 start-page: 818 year: 2013 publication-title: Nano Lett. – volume: 407 start-page: 496 year: 2000 publication-title: Nature – volume: 25 start-page: 2909 year: 2013 publication-title: Adv. Mater. – volume: 22 start-page: 587 year: 2010 publication-title: Chem. Mater. – volume: 132 start-page: 13978 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 3187 year: 2010 publication-title: ACS Nano – volume: 21 start-page: 2430 year: 2011 publication-title: Adv. Funct. Mater. – volume: 22 start-page: E170 year: 2010 publication-title: Adv. Mater. – volume: 17 start-page: 3870 year: 2007 publication-title: Adv. Funct. Mater. – volume: 20 start-page: 1680 year: 2010 publication-title: Adv. Funct. Mater. – volume: 22 start-page: 3290 year: 2012 publication-title: Adv. Funct. Mater. – volume: 160 start-page: A243 year: 2013 publication-title: J. Electrochem. Soc. – volume: 113 start-page: 5364 year: 2013 publication-title: Chem. Rev. – volume: 7 start-page: 4459 year: 2013 publication-title: ACS Nano – volume: 9 start-page: 353 year: 2010 publication-title: Nat. Mater. – volume: 37 start-page: 165 year: 1999 publication-title: Carbon – volume: 16 start-page: 3125 year: 2004 publication-title: Chem. Mater. – volume: 110 start-page: 1278 year: 2010 publication-title: Chem. Rev. – volume: 6 start-page: 1502318 year: 2016 publication-title: Adv. Energy Mater. – volume: 451 start-page: 652 year: 2008 publication-title: Nature – volume: 1 start-page: 16071 year: 2016 publication-title: Nat. Energy – volume: 4 start-page: 12487 year: 2016 publication-title: J. Mater. Chem. A – volume: 10 start-page: 1536 year: 2014 publication-title: Small – volume: 23 start-page: 947 year: 2013 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 310 year: 2012 publication-title: Nat. Nanotechnol. – ident: e_1_2_7_33_1 doi: 10.1021/nn101754k – ident: e_1_2_7_43_1 doi: 10.1038/nnano.2012.35 – ident: e_1_2_7_16_1 doi: 10.1038/nmat1672 – ident: e_1_2_7_22_1 doi: 10.1021/nl504427d – ident: e_1_2_7_1_1 doi: 10.1038/nmat1368 – ident: e_1_2_7_29_1 doi: 10.1021/nn401059h – ident: e_1_2_7_7_1 doi: 10.1016/j.nanoen.2015.12.024 – ident: e_1_2_7_28_1 doi: 10.1021/cm0497881 – ident: e_1_2_7_39_1 doi: 10.1002/adma.201300445 – ident: e_1_2_7_15_1 doi: 10.1149/2.044302jes – ident: e_1_2_7_17_1 doi: 10.1002/adma.201004331 – ident: e_1_2_7_20_1 doi: 10.1002/adfm.201502265 – ident: e_1_2_7_26_1 doi: 10.1002/adma.201305095 – ident: e_1_2_7_38_1 doi: 10.1002/adfm.201002576 – ident: e_1_2_7_25_1 doi: 10.1002/adfm.200902295 – ident: e_1_2_7_12_1 doi: 10.1002/adma.201000717 – ident: e_1_2_7_13_1 doi: 10.1002/adma.201200469 – ident: e_1_2_7_37_1 doi: 10.1002/adfm.201200534 – ident: e_1_2_7_8_1 doi: 10.1002/adfm.201500634 – ident: e_1_2_7_18_1 doi: 10.1021/ja105296a – ident: e_1_2_7_42_1 doi: 10.1038/nnano.2014.6 – ident: e_1_2_7_3_1 doi: 10.1038/35035045 – ident: e_1_2_7_14_1 doi: 10.1021/cm901452z – ident: e_1_2_7_21_1 doi: 10.1038/nenergy.2016.71 – ident: e_1_2_7_30_1 doi: 10.1021/cr800344k – ident: e_1_2_7_34_1 doi: 10.1039/C1EE02831F – ident: e_1_2_7_24_1 doi: 10.1002/adfm.201400178 – ident: e_1_2_7_40_1 doi: 10.1002/smll.201302879 – ident: e_1_2_7_41_1 doi: 10.1002/asia.201501439 – ident: e_1_2_7_2_1 doi: 10.1002/adfm.201200691 – ident: e_1_2_7_5_1 doi: 10.1021/nn100740x – ident: e_1_2_7_4_1 doi: 10.1002/aenm.201502318 – ident: e_1_2_7_9_1 doi: 10.1016/S0008-6223(98)00290-5 – ident: e_1_2_7_32_1 doi: 10.1002/adfm.200700494 – ident: e_1_2_7_27_1 doi: 10.1021/nl2034464 – ident: e_1_2_7_23_1 doi: 10.1039/C6TA04351H – ident: e_1_2_7_6_1 doi: 10.1016/j.nanoen.2015.06.009 – ident: e_1_2_7_11_1 doi: 10.1021/cr3001884 – ident: e_1_2_7_10_1 doi: 10.1038/451652a – ident: e_1_2_7_19_1 doi: 10.1021/nn200493r – ident: e_1_2_7_35_1 doi: 10.1021/nl3046409 – ident: e_1_2_7_44_1 doi: 10.1038/nmat2725 – ident: e_1_2_7_31_1 doi: 10.1016/S1386-1425(03)00279-8 – ident: e_1_2_7_36_1 doi: 10.1039/c3ta10885f |
SSID | ssj0017734 |
Score | 2.5349677 |
Snippet | Transition‐metal oxides show genuine potential in replacing state‐of‐the‐art carbonaceous anode materials in lithium‐ or sodium‐ion batteries because of their... Transition-metal oxides show genuine potential in replacing state-of-the-art carbonaceous anode materials in lithium- or sodium-ion batteries because of their... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Accumulators Architecture breathable electrodes Collectors Detaching Electrodes Electron transport Encapsulation Fe3O4 Grinding (comminution) hybrid electrodes Integrity Iron oxides Lithium Lithium batteries lithium ion batteries Materials science Metal oxides MnO2 Nanoparticles Rechargeable batteries Sodium-ion batteries |
Title | Lithium Ion Breathable Electrodes with 3D Hierarchical Architecture for Ultrastable and High‐Capacity Lithium Storage |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201700447 https://www.proquest.com/docview/1925172164 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQJziwIwoF-YDEKZDYjmOOZakKAg5Apd4ir1ABAdFUSJz4BL6RL8GTNGlBQkhwSyKPk3i8vLFn3iC0zYk3k4XhgSBOBix2LNgPiQqstUS6iBoTQ6Dw-QXvdNlpL-5NRPGX_BD1hhuMjGK-hgEu1WBvTBoqjYNIcuCXYwzCycFhC1DRZc0fFSVJeazMI3DwinoVa2NI9r6Kf12VxlBzErAWK057HsnqW0tHk7vdYa529es3Gsf__MwCmhvBUdwq-88imrLZEpqdIClcRi9n_fy2P3zAJ48ZPgCMeQvhVvi4TKBj7ADDZi6mR7jTh3DmIrsK1Dk-osAeGuPuff4sPRgFYZkZDC4mH2_vh3651t4WwNV7rnLfLW_sCuq2j68PO8EoXUOgaeynW-UMAfb80DonhE5CLSJmmdDUSP9AOMGMc47S2JKYKKqMk_ua81jx0HCT0FU0nT1mdg1h65S3cyg1TiimOJHKaMqppUwnlljRQEGlrlSPuMwhpcZ9WrIwkxQaNK0btIF26vJPJYvHjyWblfbT0WgepB4Fx2Aqc9ZApFDjL7WkraP2eX23_hehDTQD14WvIWui6fx5aDc9_snVVtHHPwGHnv9g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6V7QE4QMtDLIXWh0qcAontOObIa7XQXQ7AStyi-AWr0oDYrJB66k_ob-wvqSfZZAEJIcExlu0knrH9jT3zDcB3Qb2ZLI0IJHVZwGPHg92QqsBaSzMXMWNiDBTun4rugJ9cxrU3IcbCVPwQzYEbzoxyvcYJjgfSO1PW0Mw4DCVHgjnOkxn4iGm9S6vqrGGQipKkulgWEbp4RZc1b2NId562f7ovTcHmY8ha7jmdRVD111auJj-3x4Xa1r-fETm-63c-wcIEkZK9SoU-wwebL8H8I57CZXjoDYvr4fgXOb7NyT7CzGuMuCJHVQ4dY0cEz3MJOyTdIUY0lwlWsM_pLQXx6JgMbor7zONRbJzlhqCXyb8_fw_8jq29OUDq95wXXjOv7AoMOkcXB91gkrEh0Cz2K65yhiKBfmidk1InoZYRt1xqZjJfIJ3kxjnHWGxpTBVTxmW7WohYidAIk7BVaOW3uV0DYp3ypg5jxknFlaCZMpoJZhnXiaVWtiGo5ZXqCZ05ZtW4SSsiZprigKbNgLZhq6l_VxF5vFhzoxZ_OpnQo9QD4RitZcHbQEs5vtJLunfY6TdP629p9A1muxf9Xto7Pv3xBeawvHQ95BvQKu7HdtPDoUJ9LRX-P3g0A4o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61VKraA7SlVZenD5V6CiS245gjsKyWp6rCSnuL_IRVISDICqmn_gR-Y39JPckmu1SqkMoxlsdJ7LH9jT3zDcAXQYOZLK2IJPUq4qnn0VZMdeSco8onzNoUA4WPT0R_wA-G6XAmir_mh2gP3HBmVOs1TvAb6zenpKHKeowkR345zrOX8IqLWKJed7-3BFJJltX3yiJBD69k2NA2xnTzsfzjbWmKNWcRa7Xl9BZANR9be5r82BiXesP8_IvH8Tl_8w7mJ3iUbNcK9B5euOIDvJ1hKVyE-6NReTEaX5H964LsIMi8wHgrsldn0LHujuBpLmFd0h9hPHOVXgXbnN5RkICNyeCyvFUBjaKwKixBH5Pfvx52w35tgjFAmveclkEvz91HGPT2znb70SRfQ2RYGtZb7S1F-vzYeS-lyWIjE-64NMyqUCC95NZ7z1jqaEo109arLSNEqkVshc3YJ5grrgv3GYjzOhg6jFkvNdeCKm0NE8wxbjJHnexA1AxXbiZk5phT4zKvaZhpjh2atx3aga9t_ZuaxuOfNVea0c8n0_kuDzA4RVtZ8A7QahifaCXf7vaO26el_xFah9ffur38aP_kcBneYHHld8hXYK68HbvVgIVKvVap-x-HMQJC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium+Ion+Breathable+Electrodes+with+3D+Hierarchical+Architecture+for+Ultrastable+and+High%E2%80%90Capacity+Lithium+Storage&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Ying%E2%80%90Qi&rft.au=Li%2C+Jian%E2%80%90Chen&rft.au=Lang%2C+Xing%E2%80%90You&rft.au=Wen%2C+Zi&rft.date=2017-08-04&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=27&rft.issue=29&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201700447&rft.externalDBID=10.1002%252Fadfm.201700447&rft.externalDocID=ADFM201700447 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |