Lithium Ion Breathable Electrodes with 3D Hierarchical Architecture for Ultrastable and High‐Capacity Lithium Storage

Transition‐metal oxides show genuine potential in replacing state‐of‐the‐art carbonaceous anode materials in lithium‐ or sodium‐ion batteries because of their much higher theoretical capacity. However, they usually undergo massive volume change, which leads to numerous problems in both material and...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 27; no. 29
Main Authors Li, Ying‐Qi, Li, Jian‐Chen, Lang, Xing‐You, Wen, Zi, Zheng, Wei‐Tao, Jiang, Qing
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 04.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transition‐metal oxides show genuine potential in replacing state‐of‐the‐art carbonaceous anode materials in lithium‐ or sodium‐ion batteries because of their much higher theoretical capacity. However, they usually undergo massive volume change, which leads to numerous problems in both material and electrode levels, such as material pulverization, instable solid‐electrolyte interphase, and electrode failure. Here, it is demonstrated that lithium‐ion breathable hybrid electrodes with 3D architecture tackle all these problems, using a typical conversion‐type transition‐metal oxide, Fe3O4, of which nanoparticles are anchored onto 3D current collectors of Ni nanotube arrays (NTAs) and encapsulated by δ‐MnO2 layers (Ni/Fe3O4@MnO2). The δ‐MnO2 layers reversibly switch lithium insertion/extraction of internal Fe3O4 nanoparticles and protect them against pulverizing and detaching from NTA current collectors, securing exceptional integrity retention and efficient ion/electron transport. The Ni/Fe3O4@MnO2 electrodes exhibit superior cyclability and high‐capacity lithium storage (retaining ≈1450 mAh g−1, ≈96% of initial value at 1 C rate after 1000 cycles). 3D lithium‐ion breathable hybrid electrodes are successfully constructed by anchoring Fe3O4 nanoparticles onto highly conductive 3D current collectors of Ni nanotube arrays and encapsulating them with reversibly switching δ‐MnO2 layers. As a result of integrity retention and efficient ion/electron transport, the Ni/Fe3O4@MnO2 electrodes exhibit superior cyclability and high‐capacity lithium storage.
AbstractList Transition‐metal oxides show genuine potential in replacing state‐of‐the‐art carbonaceous anode materials in lithium‐ or sodium‐ion batteries because of their much higher theoretical capacity. However, they usually undergo massive volume change, which leads to numerous problems in both material and electrode levels, such as material pulverization, instable solid‐electrolyte interphase, and electrode failure. Here, it is demonstrated that lithium‐ion breathable hybrid electrodes with 3D architecture tackle all these problems, using a typical conversion‐type transition‐metal oxide, Fe3O4, of which nanoparticles are anchored onto 3D current collectors of Ni nanotube arrays (NTAs) and encapsulated by δ‐MnO2 layers (Ni/Fe3O4@MnO2). The δ‐MnO2 layers reversibly switch lithium insertion/extraction of internal Fe3O4 nanoparticles and protect them against pulverizing and detaching from NTA current collectors, securing exceptional integrity retention and efficient ion/electron transport. The Ni/Fe3O4@MnO2 electrodes exhibit superior cyclability and high‐capacity lithium storage (retaining ≈1450 mAh g−1, ≈96% of initial value at 1 C rate after 1000 cycles). 3D lithium‐ion breathable hybrid electrodes are successfully constructed by anchoring Fe3O4 nanoparticles onto highly conductive 3D current collectors of Ni nanotube arrays and encapsulating them with reversibly switching δ‐MnO2 layers. As a result of integrity retention and efficient ion/electron transport, the Ni/Fe3O4@MnO2 electrodes exhibit superior cyclability and high‐capacity lithium storage.
Transition‐metal oxides show genuine potential in replacing state‐of‐the‐art carbonaceous anode materials in lithium‐ or sodium‐ion batteries because of their much higher theoretical capacity. However, they usually undergo massive volume change, which leads to numerous problems in both material and electrode levels, such as material pulverization, instable solid‐electrolyte interphase, and electrode failure. Here, it is demonstrated that lithium‐ion breathable hybrid electrodes with 3D architecture tackle all these problems, using a typical conversion‐type transition‐metal oxide, Fe 3 O 4 , of which nanoparticles are anchored onto 3D current collectors of Ni nanotube arrays (NTAs) and encapsulated by δ‐MnO 2 layers (Ni/Fe 3 O 4 @MnO 2 ). The δ‐MnO 2 layers reversibly switch lithium insertion/extraction of internal Fe 3 O 4 nanoparticles and protect them against pulverizing and detaching from NTA current collectors, securing exceptional integrity retention and efficient ion/electron transport. The Ni/Fe 3 O 4 @MnO 2 electrodes exhibit superior cyclability and high‐capacity lithium storage (retaining ≈1450 mAh g −1 , ≈96% of initial value at 1 C rate after 1000 cycles).
Transition-metal oxides show genuine potential in replacing state-of-the-art carbonaceous anode materials in lithium- or sodium-ion batteries because of their much higher theoretical capacity. However, they usually undergo massive volume change, which leads to numerous problems in both material and electrode levels, such as material pulverization, instable solid-electrolyte interphase, and electrode failure. Here, it is demonstrated that lithium-ion breathable hybrid electrodes with 3D architecture tackle all these problems, using a typical conversion-type transition-metal oxide, Fe3O4, of which nanoparticles are anchored onto 3D current collectors of Ni nanotube arrays (NTAs) and encapsulated by [delta]-MnO2 layers (Ni/Fe3O4@MnO2). The [delta]-MnO2 layers reversibly switch lithium insertion/extraction of internal Fe3O4 nanoparticles and protect them against pulverizing and detaching from NTA current collectors, securing exceptional integrity retention and efficient ion/electron transport. The Ni/Fe3O4@MnO2 electrodes exhibit superior cyclability and high-capacity lithium storage (retaining [asymp]1450 mAh g-1, [asymp]96% of initial value at 1 C rate after 1000 cycles).
Author Wen, Zi
Jiang, Qing
Lang, Xing‐You
Zheng, Wei‐Tao
Li, Ying‐Qi
Li, Jian‐Chen
Author_xml – sequence: 1
  givenname: Ying‐Qi
  surname: Li
  fullname: Li, Ying‐Qi
  organization: Jilin University
– sequence: 2
  givenname: Jian‐Chen
  surname: Li
  fullname: Li, Jian‐Chen
  organization: Jilin University
– sequence: 3
  givenname: Xing‐You
  surname: Lang
  fullname: Lang, Xing‐You
  email: xylang@jlu.edu.cn
  organization: Jilin University
– sequence: 4
  givenname: Zi
  surname: Wen
  fullname: Wen, Zi
  organization: Jilin University
– sequence: 5
  givenname: Wei‐Tao
  surname: Zheng
  fullname: Zheng, Wei‐Tao
  organization: Jilin University
– sequence: 6
  givenname: Qing
  surname: Jiang
  fullname: Jiang, Qing
  email: jiangq@jlu.edu.cn
  organization: Jilin University
BookMark eNqFkMtOAjEUhhuDiYBuXTdxPdjbXFgiiJBgXCiJu0mnF6ZkmGKnhLDzEXxGn8QiiomJcdWT5vvO5e-AVm1rBcAlRj2MELnmUq96BOEUIcbSE9DGCU4iikjWOtb4-Qx0mmaJApZS1gbbmfGl2azg1NbwxinuS15UCt5WSnhnpWrgNhCQjuDEKMedKI3gFRzsCx-YjVNQWwfnlXe88Z8yr2WgF-X769uQr7kwfge_5zx66_hCnYNTzatGXXy9XTAf3z4NJ9Hs4W46HMwiQeMkjQotCclShpTWWSZSJDLMFMsElTx8ZDpjUmtNaaxITApaSM37IkniIkEykSntgqtD37WzLxvV-HxpN64OI3PcJzFOCU5YoNiBEs42jVM6Dztzb2wdjjJVjlG-jzjfR5wfIw5a75e2dmbF3e5voX8QtqZSu3_ofDAa3_-4H7jTk6A
CitedBy_id crossref_primary_10_1016_j_rinp_2019_01_041
crossref_primary_10_1021_acsaem_8b00992
crossref_primary_10_1039_C8DT03148G
crossref_primary_10_1002_adfm_201704330
crossref_primary_10_1021_acsami_9b23346
crossref_primary_10_1016_j_jhazmat_2020_122877
crossref_primary_10_1016_j_cej_2018_08_136
crossref_primary_10_1002_cey2_151
crossref_primary_10_1021_acssuschemeng_8b04037
crossref_primary_10_1039_C8TA06412A
crossref_primary_10_1038_s41560_020_00702_8
crossref_primary_10_1002_anie_201707647
crossref_primary_10_1016_j_jpowsour_2019_227434
crossref_primary_10_1149_2_0491915jes
crossref_primary_10_1016_j_jcis_2023_04_043
crossref_primary_10_1021_acsaem_1c02811
crossref_primary_10_1021_acsami_7b13763
crossref_primary_10_1021_acsnano_8b00168
crossref_primary_10_1016_j_jallcom_2019_152160
crossref_primary_10_1016_j_electacta_2018_05_080
crossref_primary_10_1016_j_jcis_2023_04_127
crossref_primary_10_1016_j_electacta_2019_04_004
crossref_primary_10_1016_j_electacta_2017_08_189
crossref_primary_10_1039_D1EE02764F
crossref_primary_10_1016_j_solidstatesciences_2019_105930
crossref_primary_10_1134_S1087659622100042
crossref_primary_10_1016_j_jallcom_2019_153569
crossref_primary_10_1016_j_apsusc_2019_144882
crossref_primary_10_1002_smll_202404437
crossref_primary_10_1016_j_jallcom_2018_05_133
crossref_primary_10_1016_j_jallcom_2023_171827
crossref_primary_10_1088_1361_6528_ab1a83
crossref_primary_10_1002_smll_202203835
crossref_primary_10_1021_acs_nanolett_4c02887
crossref_primary_10_1039_D2NJ04721G
crossref_primary_10_1016_j_cej_2017_12_072
crossref_primary_10_1016_j_matpr_2022_06_408
crossref_primary_10_1088_1361_6528_aaf17c
crossref_primary_10_1002_aenm_201904281
crossref_primary_10_1021_acsenergylett_1c00627
crossref_primary_10_1021_acssuschemeng_8b05210
crossref_primary_10_1016_j_jallcom_2020_156039
crossref_primary_10_1002_celc_201800830
crossref_primary_10_1016_j_est_2023_108721
crossref_primary_10_1002_chem_201903893
crossref_primary_10_1021_acs_inorgchem_3c01105
crossref_primary_10_1002_anie_202306193
crossref_primary_10_1002_ente_201801048
crossref_primary_10_1002_smll_202103136
crossref_primary_10_1016_j_electacta_2019_01_127
crossref_primary_10_1002_ange_201707647
crossref_primary_10_1016_j_cej_2020_124229
crossref_primary_10_1016_j_chemosphere_2023_140432
crossref_primary_10_1016_j_jallcom_2019_03_081
crossref_primary_10_1021_acs_nanolett_0c05035
crossref_primary_10_1002_admi_201800332
crossref_primary_10_1016_j_ensm_2021_12_026
crossref_primary_10_1007_s10853_019_03823_y
crossref_primary_10_1016_j_enchem_2022_100069
crossref_primary_10_1016_j_jcis_2022_02_134
crossref_primary_10_1016_j_jallcom_2020_153656
crossref_primary_10_1007_s41918_020_00070_7
crossref_primary_10_1002_adma_201903808
crossref_primary_10_1021_acs_jpcc_1c01544
crossref_primary_10_1002_adma_202407705
crossref_primary_10_1016_j_cej_2019_03_020
crossref_primary_10_1016_j_ceramint_2025_01_071
crossref_primary_10_1016_j_jcis_2018_10_060
crossref_primary_10_1002_adfm_202003838
crossref_primary_10_1016_j_ijhydene_2019_10_210
crossref_primary_10_1016_j_jelechem_2022_116508
crossref_primary_10_1007_s10853_020_04868_0
crossref_primary_10_1002_ange_202306193
crossref_primary_10_1149_2162_8777_ac774b
crossref_primary_10_1007_s10854_019_01629_x
crossref_primary_10_1016_j_ensm_2021_07_007
crossref_primary_10_1039_C9TA11782B
crossref_primary_10_1002_advs_202408277
crossref_primary_10_1016_j_pnsc_2023_12_017
crossref_primary_10_1002_adfm_201800497
crossref_primary_10_1021_acs_jpcc_1c10931
crossref_primary_10_1016_j_est_2020_101737
crossref_primary_10_1016_j_jallcom_2021_159906
crossref_primary_10_1039_D2EE01793H
crossref_primary_10_1021_acsaem_1c02007
crossref_primary_10_1002_aenm_202103689
crossref_primary_10_3389_fchem_2018_00366
crossref_primary_10_1002_celc_201801624
crossref_primary_10_1021_acs_energyfuels_9b03637
crossref_primary_10_1039_C8NJ05365K
crossref_primary_10_1002_celc_201800610
crossref_primary_10_1016_j_jallcom_2020_157422
crossref_primary_10_1002_aenm_201801219
crossref_primary_10_1038_s41467_024_48021_w
crossref_primary_10_1039_C7TA08284C
Cites_doi 10.1021/nn101754k
10.1038/nnano.2012.35
10.1038/nmat1672
10.1021/nl504427d
10.1038/nmat1368
10.1021/nn401059h
10.1016/j.nanoen.2015.12.024
10.1021/cm0497881
10.1002/adma.201300445
10.1149/2.044302jes
10.1002/adma.201004331
10.1002/adfm.201502265
10.1002/adma.201305095
10.1002/adfm.201002576
10.1002/adfm.200902295
10.1002/adma.201000717
10.1002/adma.201200469
10.1002/adfm.201200534
10.1002/adfm.201500634
10.1021/ja105296a
10.1038/nnano.2014.6
10.1038/35035045
10.1021/cm901452z
10.1038/nenergy.2016.71
10.1021/cr800344k
10.1039/C1EE02831F
10.1002/adfm.201400178
10.1002/smll.201302879
10.1002/asia.201501439
10.1002/adfm.201200691
10.1021/nn100740x
10.1002/aenm.201502318
10.1016/S0008-6223(98)00290-5
10.1002/adfm.200700494
10.1021/nl2034464
10.1039/C6TA04351H
10.1016/j.nanoen.2015.06.009
10.1021/cr3001884
10.1038/451652a
10.1021/nn200493r
10.1021/nl3046409
10.1038/nmat2725
10.1016/S1386-1425(03)00279-8
10.1039/c3ta10885f
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201700447
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201700447
ADFM201700447
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51422103; 51631004
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3567-bfd228740eff88c70c814e48c3daf888f84dfff335e252b3bdfa9c665b60d6d73
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 06:13:32 EDT 2025
Tue Jul 01 04:11:40 EDT 2025
Thu Apr 24 23:11:52 EDT 2025
Wed Jan 22 16:30:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3567-bfd228740eff88c70c814e48c3daf888f84dfff335e252b3bdfa9c665b60d6d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1925172164
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_1925172164
crossref_citationtrail_10_1002_adfm_201700447
crossref_primary_10_1002_adfm_201700447
wiley_primary_10_1002_adfm_201700447_ADFM201700447
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 4, 2017
PublicationDateYYYYMMDD 2017-08-04
PublicationDate_xml – month: 08
  year: 2017
  text: August 4, 2017
  day: 04
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 17
2015; 15
2015; 16
2013; 25
2013; 1
2004; 60
2013; 23
2014; 26
2006; 5
2014; 24
2013; 7
2012; 12
2013; 160
2011; 5
2016; 11
2000; 407
2016; 4
2010; 22
2016; 6
2015; 25
2010; 20
2016; 1
2004; 16
2013; 13
1999; 37
2010; 132
2010; 110
2005; 4
2016; 20
2013; 113
2011; 21
2011; 23
2014; 9
2012; 24
2012; 7
2008; 451
2010; 4
2012; 5
2012; 22
2014; 10
2010; 9
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 25
  start-page: 5384
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 1198
  year: 2012
  publication-title: Nano Lett.
– volume: 16
  start-page: 152
  year: 2015
  publication-title: Nano Energy
– volume: 1
  start-page: 8672
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 567
  year: 2006
  publication-title: Nat. Mater.
– volume: 9
  start-page: 187
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 60
  start-page: 689
  year: 2004
  publication-title: Spectrochim. Acta, Part A
– volume: 24
  start-page: 1903
  year: 2012
  publication-title: Adv. Mater.
– volume: 15
  start-page: 738
  year: 2015
  publication-title: Nano Lett.
– volume: 24
  start-page: 4337
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 5835
  year: 2010
  publication-title: ACS Nano
– volume: 11
  start-page: 828
  year: 2016
  publication-title: Chem. Asian J.
– volume: 26
  start-page: 2440
  year: 2014
  publication-title: Adv. Mater.
– volume: 4
  start-page: 366
  year: 2005
  publication-title: Nat. Mater.
– volume: 25
  start-page: 3524
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 23
  start-page: 2443
  year: 2011
  publication-title: Adv. Mater.
– volume: 20
  start-page: 305
  year: 2016
  publication-title: Nano Energy
– volume: 5
  start-page: 3333
  year: 2011
  publication-title: ACS Nano
– volume: 5
  start-page: 5252
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 818
  year: 2013
  publication-title: Nano Lett.
– volume: 407
  start-page: 496
  year: 2000
  publication-title: Nature
– volume: 25
  start-page: 2909
  year: 2013
  publication-title: Adv. Mater.
– volume: 22
  start-page: 587
  year: 2010
  publication-title: Chem. Mater.
– volume: 132
  start-page: 13978
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 3187
  year: 2010
  publication-title: ACS Nano
– volume: 21
  start-page: 2430
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 22
  start-page: E170
  year: 2010
  publication-title: Adv. Mater.
– volume: 17
  start-page: 3870
  year: 2007
  publication-title: Adv. Funct. Mater.
– volume: 20
  start-page: 1680
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 22
  start-page: 3290
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 160
  start-page: A243
  year: 2013
  publication-title: J. Electrochem. Soc.
– volume: 113
  start-page: 5364
  year: 2013
  publication-title: Chem. Rev.
– volume: 7
  start-page: 4459
  year: 2013
  publication-title: ACS Nano
– volume: 9
  start-page: 353
  year: 2010
  publication-title: Nat. Mater.
– volume: 37
  start-page: 165
  year: 1999
  publication-title: Carbon
– volume: 16
  start-page: 3125
  year: 2004
  publication-title: Chem. Mater.
– volume: 110
  start-page: 1278
  year: 2010
  publication-title: Chem. Rev.
– volume: 6
  start-page: 1502318
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 451
  start-page: 652
  year: 2008
  publication-title: Nature
– volume: 1
  start-page: 16071
  year: 2016
  publication-title: Nat. Energy
– volume: 4
  start-page: 12487
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 1536
  year: 2014
  publication-title: Small
– volume: 23
  start-page: 947
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 310
  year: 2012
  publication-title: Nat. Nanotechnol.
– ident: e_1_2_7_33_1
  doi: 10.1021/nn101754k
– ident: e_1_2_7_43_1
  doi: 10.1038/nnano.2012.35
– ident: e_1_2_7_16_1
  doi: 10.1038/nmat1672
– ident: e_1_2_7_22_1
  doi: 10.1021/nl504427d
– ident: e_1_2_7_1_1
  doi: 10.1038/nmat1368
– ident: e_1_2_7_29_1
  doi: 10.1021/nn401059h
– ident: e_1_2_7_7_1
  doi: 10.1016/j.nanoen.2015.12.024
– ident: e_1_2_7_28_1
  doi: 10.1021/cm0497881
– ident: e_1_2_7_39_1
  doi: 10.1002/adma.201300445
– ident: e_1_2_7_15_1
  doi: 10.1149/2.044302jes
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.201004331
– ident: e_1_2_7_20_1
  doi: 10.1002/adfm.201502265
– ident: e_1_2_7_26_1
  doi: 10.1002/adma.201305095
– ident: e_1_2_7_38_1
  doi: 10.1002/adfm.201002576
– ident: e_1_2_7_25_1
  doi: 10.1002/adfm.200902295
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.201000717
– ident: e_1_2_7_13_1
  doi: 10.1002/adma.201200469
– ident: e_1_2_7_37_1
  doi: 10.1002/adfm.201200534
– ident: e_1_2_7_8_1
  doi: 10.1002/adfm.201500634
– ident: e_1_2_7_18_1
  doi: 10.1021/ja105296a
– ident: e_1_2_7_42_1
  doi: 10.1038/nnano.2014.6
– ident: e_1_2_7_3_1
  doi: 10.1038/35035045
– ident: e_1_2_7_14_1
  doi: 10.1021/cm901452z
– ident: e_1_2_7_21_1
  doi: 10.1038/nenergy.2016.71
– ident: e_1_2_7_30_1
  doi: 10.1021/cr800344k
– ident: e_1_2_7_34_1
  doi: 10.1039/C1EE02831F
– ident: e_1_2_7_24_1
  doi: 10.1002/adfm.201400178
– ident: e_1_2_7_40_1
  doi: 10.1002/smll.201302879
– ident: e_1_2_7_41_1
  doi: 10.1002/asia.201501439
– ident: e_1_2_7_2_1
  doi: 10.1002/adfm.201200691
– ident: e_1_2_7_5_1
  doi: 10.1021/nn100740x
– ident: e_1_2_7_4_1
  doi: 10.1002/aenm.201502318
– ident: e_1_2_7_9_1
  doi: 10.1016/S0008-6223(98)00290-5
– ident: e_1_2_7_32_1
  doi: 10.1002/adfm.200700494
– ident: e_1_2_7_27_1
  doi: 10.1021/nl2034464
– ident: e_1_2_7_23_1
  doi: 10.1039/C6TA04351H
– ident: e_1_2_7_6_1
  doi: 10.1016/j.nanoen.2015.06.009
– ident: e_1_2_7_11_1
  doi: 10.1021/cr3001884
– ident: e_1_2_7_10_1
  doi: 10.1038/451652a
– ident: e_1_2_7_19_1
  doi: 10.1021/nn200493r
– ident: e_1_2_7_35_1
  doi: 10.1021/nl3046409
– ident: e_1_2_7_44_1
  doi: 10.1038/nmat2725
– ident: e_1_2_7_31_1
  doi: 10.1016/S1386-1425(03)00279-8
– ident: e_1_2_7_36_1
  doi: 10.1039/c3ta10885f
SSID ssj0017734
Score 2.5349677
Snippet Transition‐metal oxides show genuine potential in replacing state‐of‐the‐art carbonaceous anode materials in lithium‐ or sodium‐ion batteries because of their...
Transition-metal oxides show genuine potential in replacing state-of-the-art carbonaceous anode materials in lithium- or sodium-ion batteries because of their...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accumulators
Architecture
breathable electrodes
Collectors
Detaching
Electrodes
Electron transport
Encapsulation
Fe3O4
Grinding (comminution)
hybrid electrodes
Integrity
Iron oxides
Lithium
Lithium batteries
lithium ion batteries
Materials science
Metal oxides
MnO2
Nanoparticles
Rechargeable batteries
Sodium-ion batteries
Title Lithium Ion Breathable Electrodes with 3D Hierarchical Architecture for Ultrastable and High‐Capacity Lithium Storage
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201700447
https://www.proquest.com/docview/1925172164
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQJziwIwoF-YDEKZDYjmOOZakKAg5Apd4ir1ABAdFUSJz4BL6RL8GTNGlBQkhwSyKPk3i8vLFn3iC0zYk3k4XhgSBOBix2LNgPiQqstUS6iBoTQ6Dw-QXvdNlpL-5NRPGX_BD1hhuMjGK-hgEu1WBvTBoqjYNIcuCXYwzCycFhC1DRZc0fFSVJeazMI3DwinoVa2NI9r6Kf12VxlBzErAWK057HsnqW0tHk7vdYa529es3Gsf__MwCmhvBUdwq-88imrLZEpqdIClcRi9n_fy2P3zAJ48ZPgCMeQvhVvi4TKBj7ADDZi6mR7jTh3DmIrsK1Dk-osAeGuPuff4sPRgFYZkZDC4mH2_vh3651t4WwNV7rnLfLW_sCuq2j68PO8EoXUOgaeynW-UMAfb80DonhE5CLSJmmdDUSP9AOMGMc47S2JKYKKqMk_ua81jx0HCT0FU0nT1mdg1h65S3cyg1TiimOJHKaMqppUwnlljRQEGlrlSPuMwhpcZ9WrIwkxQaNK0btIF26vJPJYvHjyWblfbT0WgepB4Fx2Aqc9ZApFDjL7WkraP2eX23_hehDTQD14WvIWui6fx5aDc9_snVVtHHPwGHnv9g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6V7QE4QMtDLIXWh0qcAontOObIa7XQXQ7AStyi-AWr0oDYrJB66k_ob-wvqSfZZAEJIcExlu0knrH9jT3zDcB3Qb2ZLI0IJHVZwGPHg92QqsBaSzMXMWNiDBTun4rugJ9cxrU3IcbCVPwQzYEbzoxyvcYJjgfSO1PW0Mw4DCVHgjnOkxn4iGm9S6vqrGGQipKkulgWEbp4RZc1b2NId562f7ovTcHmY8ha7jmdRVD111auJj-3x4Xa1r-fETm-63c-wcIEkZK9SoU-wwebL8H8I57CZXjoDYvr4fgXOb7NyT7CzGuMuCJHVQ4dY0cEz3MJOyTdIUY0lwlWsM_pLQXx6JgMbor7zONRbJzlhqCXyb8_fw_8jq29OUDq95wXXjOv7AoMOkcXB91gkrEh0Cz2K65yhiKBfmidk1InoZYRt1xqZjJfIJ3kxjnHWGxpTBVTxmW7WohYidAIk7BVaOW3uV0DYp3ypg5jxknFlaCZMpoJZhnXiaVWtiGo5ZXqCZ05ZtW4SSsiZprigKbNgLZhq6l_VxF5vFhzoxZ_OpnQo9QD4RitZcHbQEs5vtJLunfY6TdP629p9A1muxf9Xto7Pv3xBeawvHQ95BvQKu7HdtPDoUJ9LRX-P3g0A4o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61VKraA7SlVZenD5V6CiS245gjsKyWp6rCSnuL_IRVISDICqmn_gR-Y39JPckmu1SqkMoxlsdJ7LH9jT3zDcAXQYOZLK2IJPUq4qnn0VZMdeSco8onzNoUA4WPT0R_wA-G6XAmir_mh2gP3HBmVOs1TvAb6zenpKHKeowkR345zrOX8IqLWKJed7-3BFJJltX3yiJBD69k2NA2xnTzsfzjbWmKNWcRa7Xl9BZANR9be5r82BiXesP8_IvH8Tl_8w7mJ3iUbNcK9B5euOIDvJ1hKVyE-6NReTEaX5H964LsIMi8wHgrsldn0LHujuBpLmFd0h9hPHOVXgXbnN5RkICNyeCyvFUBjaKwKixBH5Pfvx52w35tgjFAmveclkEvz91HGPT2znb70SRfQ2RYGtZb7S1F-vzYeS-lyWIjE-64NMyqUCC95NZ7z1jqaEo109arLSNEqkVshc3YJ5grrgv3GYjzOhg6jFkvNdeCKm0NE8wxbjJHnexA1AxXbiZk5phT4zKvaZhpjh2atx3aga9t_ZuaxuOfNVea0c8n0_kuDzA4RVtZ8A7QahifaCXf7vaO26el_xFah9ffur38aP_kcBneYHHld8hXYK68HbvVgIVKvVap-x-HMQJC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium+Ion+Breathable+Electrodes+with+3D+Hierarchical+Architecture+for+Ultrastable+and+High%E2%80%90Capacity+Lithium+Storage&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Ying%E2%80%90Qi&rft.au=Li%2C+Jian%E2%80%90Chen&rft.au=Lang%2C+Xing%E2%80%90You&rft.au=Wen%2C+Zi&rft.date=2017-08-04&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=27&rft.issue=29&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201700447&rft.externalDBID=10.1002%252Fadfm.201700447&rft.externalDocID=ADFM201700447
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon