Carbonized‐MOF as a Sulfur Host for Aluminum–Sulfur Batteries with Enhanced Capacity and Cycling Life
The rechargeable aluminum–sulfur (Al–S) battery is a promising next generation electrochemical energy storage system owing to its high theoretical capacity of 1672 mAh g−1 and in combining low‐cost and naturally abundant elements, Al and S. However, to date, its poor reversibility and low lifespan h...
Saved in:
Published in | Advanced functional materials Vol. 29; no. 7 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
14.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rechargeable aluminum–sulfur (Al–S) battery is a promising next generation electrochemical energy storage system owing to its high theoretical capacity of 1672 mAh g−1 and in combining low‐cost and naturally abundant elements, Al and S. However, to date, its poor reversibility and low lifespan have limited its practical application. In this paper, a composite cathode is reported for Al–S batteries based on S anchored on a carbonized HKUST‐1 matrix (S@HKUST‐1‐C). The S@HKUST‐1‐C composite maintains a reversible capacity of 600 mAh g−1 at the 75th cycle and a reversible capacity of 460 mAh g−1 at the 500th cycle under a current density of 1 A g−1, with a Coulombic efficiency of around 95%. X‐ray diffraction and Auger spectrum results reveal that the Cu in HKUST‐1 forms S–Cu ionic clusters. This serves to facilitate the electrochemical reaction and improve the reversibility of S during charge/discharge. Additionally, Cu increases the electron conductivity at the carbon matrix/S interface to significantly decrease the kinetic barrier for the conversion of sulfur species during battery operation.
A composite of sulfur anchored on a carbonized HKUST‐1 matrix is developed to serve as a cathode for Al–S batteries, which maintain a reversible capacity of 460 mAh g−1 at the 500th cycle under the current density of 1 A g−1 with a Coulombic efficiency > 95% owing to the decreased kinetic barrier during the electrochemical conversion of sulfur. |
---|---|
AbstractList | The rechargeable aluminum–sulfur (Al–S) battery is a promising next generation electrochemical energy storage system owing to its high theoretical capacity of 1672 mAh g−1 and in combining low‐cost and naturally abundant elements, Al and S. However, to date, its poor reversibility and low lifespan have limited its practical application. In this paper, a composite cathode is reported for Al–S batteries based on S anchored on a carbonized HKUST‐1 matrix (S@HKUST‐1‐C). The S@HKUST‐1‐C composite maintains a reversible capacity of 600 mAh g−1 at the 75th cycle and a reversible capacity of 460 mAh g−1 at the 500th cycle under a current density of 1 A g−1, with a Coulombic efficiency of around 95%. X‐ray diffraction and Auger spectrum results reveal that the Cu in HKUST‐1 forms S–Cu ionic clusters. This serves to facilitate the electrochemical reaction and improve the reversibility of S during charge/discharge. Additionally, Cu increases the electron conductivity at the carbon matrix/S interface to significantly decrease the kinetic barrier for the conversion of sulfur species during battery operation.
A composite of sulfur anchored on a carbonized HKUST‐1 matrix is developed to serve as a cathode for Al–S batteries, which maintain a reversible capacity of 460 mAh g−1 at the 500th cycle under the current density of 1 A g−1 with a Coulombic efficiency > 95% owing to the decreased kinetic barrier during the electrochemical conversion of sulfur. The rechargeable aluminum–sulfur (Al–S) battery is a promising next generation electrochemical energy storage system owing to its high theoretical capacity of 1672 mAh g −1 and in combining low‐cost and naturally abundant elements, Al and S. However, to date, its poor reversibility and low lifespan have limited its practical application. In this paper, a composite cathode is reported for Al–S batteries based on S anchored on a carbonized HKUST‐1 matrix (S@HKUST‐1‐C). The S@HKUST‐1‐C composite maintains a reversible capacity of 600 mAh g −1 at the 75th cycle and a reversible capacity of 460 mAh g −1 at the 500th cycle under a current density of 1 A g −1 , with a Coulombic efficiency of around 95%. X‐ray diffraction and Auger spectrum results reveal that the Cu in HKUST‐1 forms S–Cu ionic clusters. This serves to facilitate the electrochemical reaction and improve the reversibility of S during charge/discharge. Additionally, Cu increases the electron conductivity at the carbon matrix/S interface to significantly decrease the kinetic barrier for the conversion of sulfur species during battery operation. The rechargeable aluminum–sulfur (Al–S) battery is a promising next generation electrochemical energy storage system owing to its high theoretical capacity of 1672 mAh g−1 and in combining low‐cost and naturally abundant elements, Al and S. However, to date, its poor reversibility and low lifespan have limited its practical application. In this paper, a composite cathode is reported for Al–S batteries based on S anchored on a carbonized HKUST‐1 matrix (S@HKUST‐1‐C). The S@HKUST‐1‐C composite maintains a reversible capacity of 600 mAh g−1 at the 75th cycle and a reversible capacity of 460 mAh g−1 at the 500th cycle under a current density of 1 A g−1, with a Coulombic efficiency of around 95%. X‐ray diffraction and Auger spectrum results reveal that the Cu in HKUST‐1 forms S–Cu ionic clusters. This serves to facilitate the electrochemical reaction and improve the reversibility of S during charge/discharge. Additionally, Cu increases the electron conductivity at the carbon matrix/S interface to significantly decrease the kinetic barrier for the conversion of sulfur species during battery operation. |
Author | Jin, Hongchang Wan, Li‐Jun Hu, Zhiqiu Ji, Hengxing Qi, Zhikai Guo, Yue |
Author_xml | – sequence: 1 givenname: Yue surname: Guo fullname: Guo, Yue organization: University of Science and Technology of China – sequence: 2 givenname: Hongchang surname: Jin fullname: Jin, Hongchang organization: University of Science and Technology of China – sequence: 3 givenname: Zhikai orcidid: 0000-0002-0985-8316 surname: Qi fullname: Qi, Zhikai organization: University of Science and Technology of China – sequence: 4 givenname: Zhiqiu surname: Hu fullname: Hu, Zhiqiu organization: University of Science and Technology of China – sequence: 5 givenname: Hengxing orcidid: 0000-0003-2851-9878 surname: Ji fullname: Ji, Hengxing email: jihengx@ustc.edu.cn organization: University of Science and Technology of China – sequence: 6 givenname: Li‐Jun surname: Wan fullname: Wan, Li‐Jun organization: Chinese Academy of Sciences |
BookMark | eNqFkM9Kw0AQxhepYFu9el7wnLqbZHfTY62tFVp6UMFbmCS7dkuyqbsJpZ76CIJv2CcxpaWCIJ5mhvl-8-froJYpjUTompIeJcS_hUwVPZ_QiAgu-BlqU065FxA_ap1y-nqBOs4tCaFCBGEb6SHYpDT6Q2a77edsPsbgMOCnOle1xZPSVViVFg_yutCmLnbbr2PrDqpKWi0dXutqgUdmASaVGR7CClJdbTCYptikuTZveKqVvETnCnInr46xi17Go-fhxJvOHx6Hg6mXBoxzL8wIBx8yrlQqgUVCMkYDKcMwARH6TAR9RlWfkiTkjLJUgJIRNJ9FfpJyAkEX3Rzmrmz5XktXxcuytqZZGftURCwIOPEbVXhQpbZ0zkoVN0dDpUtTWdB5TEm8NzXemxqfTG2w3i9sZXUBdvM30D8Aa53LzT_qeHA_nv2w35MMjhM |
CitedBy_id | crossref_primary_10_1007_s10008_024_05861_2 crossref_primary_10_1016_j_electacta_2023_143360 crossref_primary_10_1016_j_ccr_2022_214856 crossref_primary_10_1002_cctc_202301291 crossref_primary_10_1002_ange_201906306 crossref_primary_10_1039_C9NR07809F crossref_primary_10_1021_acs_jpcc_0c01358 crossref_primary_10_1016_j_ensm_2022_06_055 crossref_primary_10_1016_j_cej_2020_127792 crossref_primary_10_1002_adma_202104557 crossref_primary_10_1002_inf2_12291 crossref_primary_10_1073_pnas_2312091120 crossref_primary_10_1002_aenm_202003689 crossref_primary_10_1002_aenm_201903750 crossref_primary_10_1016_j_mtchem_2024_102055 crossref_primary_10_1002_adfm_202423454 crossref_primary_10_1016_j_apsusc_2024_162201 crossref_primary_10_1021_acsnano_4c13092 crossref_primary_10_1039_D4QI02314E crossref_primary_10_1002_anie_202202696 crossref_primary_10_1021_acs_chemrev_0c01257 crossref_primary_10_1007_s40843_021_1913_4 crossref_primary_10_1002_adfm_202305674 crossref_primary_10_1002_adma_202205489 crossref_primary_10_1016_j_nanoen_2020_104621 crossref_primary_10_1002_asia_201901714 crossref_primary_10_1016_j_ensm_2023_01_002 crossref_primary_10_1016_j_ensm_2023_102922 crossref_primary_10_1021_acsenergylett_4c00871 crossref_primary_10_1016_j_jcis_2023_07_203 crossref_primary_10_1021_acsanm_4c03305 crossref_primary_10_1002_ange_202202696 crossref_primary_10_1002_aesr_202100157 crossref_primary_10_1016_j_ensm_2020_05_029 crossref_primary_10_1002_adfm_202405358 crossref_primary_10_1039_D4CS00929K crossref_primary_10_1002_aenm_202100770 crossref_primary_10_1002_ange_202318204 crossref_primary_10_1039_D0MA01019G crossref_primary_10_1039_D0QI00841A crossref_primary_10_1039_D1TA01422F crossref_primary_10_1002_adfm_202204364 crossref_primary_10_1002_aenm_202100769 crossref_primary_10_1016_j_jechem_2021_04_054 crossref_primary_10_54227_mlab_20220055 crossref_primary_10_1039_C9EE00862D crossref_primary_10_1002_adma_202200102 crossref_primary_10_1021_acsenergylett_2c02493 crossref_primary_10_1016_j_ensm_2019_10_022 crossref_primary_10_1021_acsnano_0c02831 crossref_primary_10_1002_adfm_202309345 crossref_primary_10_1016_j_ensm_2020_09_013 crossref_primary_10_1021_acsnano_0c08652 crossref_primary_10_1002_batt_202100355 crossref_primary_10_1002_smll_202304515 crossref_primary_10_1007_s13391_019_00170_7 crossref_primary_10_1002_adfm_202205562 crossref_primary_10_1002_aenm_202302464 crossref_primary_10_1002_adma_202102026 crossref_primary_10_1016_j_jpowsour_2024_235837 crossref_primary_10_1016_j_surfin_2024_105690 crossref_primary_10_1002_sus2_263 crossref_primary_10_1016_j_envres_2023_115322 crossref_primary_10_1039_D0QI01302A crossref_primary_10_3390_ma13020425 crossref_primary_10_1039_D3TA07839F crossref_primary_10_1039_D0MA00546K crossref_primary_10_1002_adma_202204636 crossref_primary_10_1039_D4QI02117G crossref_primary_10_1039_D1CC04337D crossref_primary_10_1021_acsmaterialslett_3c01043 crossref_primary_10_1039_C9SE00762H crossref_primary_10_1016_j_ccr_2019_05_006 crossref_primary_10_1088_2399_1984_abb09d crossref_primary_10_1002_adfm_202214405 crossref_primary_10_1016_j_cej_2020_126377 crossref_primary_10_1016_j_ijhydene_2020_11_076 crossref_primary_10_1002_adma_202008414 crossref_primary_10_1016_j_enchem_2020_100049 crossref_primary_10_1016_j_jechem_2020_06_047 crossref_primary_10_1016_j_jpowsour_2021_229839 crossref_primary_10_1002_anie_202318204 crossref_primary_10_1039_D1QM01267C crossref_primary_10_1115_1_4045784 crossref_primary_10_1016_j_cej_2025_159924 crossref_primary_10_1016_j_ensm_2022_08_030 crossref_primary_10_1016_j_jallcom_2022_168450 crossref_primary_10_1039_D2TA02217F crossref_primary_10_1021_acs_chemrev_3c00919 crossref_primary_10_1080_1536383X_2020_1806249 crossref_primary_10_1016_j_jssc_2021_122191 crossref_primary_10_1007_s40820_022_00915_4 crossref_primary_10_1002_smll_202201362 crossref_primary_10_1016_j_jcis_2025_03_015 crossref_primary_10_1039_C9NJ05405G crossref_primary_10_1002_anie_201906306 crossref_primary_10_1038_s42004_022_00693_5 crossref_primary_10_1002_adfm_202004084 crossref_primary_10_1021_acs_chemmater_2c00248 crossref_primary_10_1039_D0NA01019G crossref_primary_10_1016_j_coelec_2023_101222 crossref_primary_10_1016_j_mtadv_2019_100046 crossref_primary_10_1016_j_cej_2024_158528 crossref_primary_10_1039_D1CC05783A crossref_primary_10_1002_slct_201903842 crossref_primary_10_1002_tcr_202200181 crossref_primary_10_1021_acsmaterialslett_0c00208 crossref_primary_10_1016_j_jechem_2021_02_028 crossref_primary_10_1021_acsmaterialslett_2c00306 crossref_primary_10_1021_acsomega_3c05500 crossref_primary_10_1002_adfm_202307486 crossref_primary_10_1021_accountsmr_3c00167 crossref_primary_10_1039_D2TA02049A crossref_primary_10_1021_acsomega_0c06067 crossref_primary_10_1002_tcr_202300268 crossref_primary_10_1039_D2CC04067K |
Cites_doi | 10.1002/sia.6239 10.1039/c1cc15779e 10.1126/sciadv.aao7233 10.1021/ja309435f 10.1038/nature14340 10.1002/adfm.201304156 10.1021/acsami.6b10366 10.1103/PhysRevB.61.14095 10.1016/j.jpowsour.2016.02.062 10.1201/b17118 10.1002/aenm.201700561 10.1021/am300951f 10.1002/adma.201704166 10.1016/j.chempr.2017.12.029 10.1002/adma.201602958 10.1021/jp500593d 10.1002/anie.201711328 10.1149/2.0871707jes 10.1021/acs.nanolett.5b00112 10.1002/anie.201603531 10.1002/adma.201304126 10.1126/science.283.5405.1148 10.1016/j.jpowsour.2015.02.131 10.1002/smtd.201700217 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201807676 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201807676 ADFM201807676 |
Genre | article |
GrantInformation_xml | – fundername: Chinese Academy of Sciences – fundername: iChEM – fundername: USTC – fundername: Fundamental Research Funds for the Central Universities funderid: WK2060140003 – fundername: National Natural Science Foundation of China funderid: 51761145046 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAHHS AANHP AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3566-4d06a2ad6ffcea587e5513ee44ba742573951f910b46515c7afe8a30182bc60a3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 06:04:08 EDT 2025 Thu Apr 24 23:07:49 EDT 2025 Tue Jul 01 04:11:55 EDT 2025 Wed Aug 20 07:26:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3566-4d06a2ad6ffcea587e5513ee44ba742573951f910b46515c7afe8a30182bc60a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0985-8316 0000-0003-2851-9878 |
PQID | 2178533602 |
PQPubID | 2045204 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2178533602 crossref_citationtrail_10_1002_adfm_201807676 crossref_primary_10_1002_adfm_201807676 wiley_primary_10_1002_adfm_201807676_ADFM201807676 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 14, 2019 |
PublicationDateYYYYMMDD | 2019-02-14 |
PublicationDate_xml | – month: 02 year: 2019 text: February 14, 2019 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014; 118 2015; 283 2017; 7 2017; 1 2017; 3 2018; 4 2012; 135 2015; 520 2017; 49 2000; 61 1999; 283 2014; 24 2018; 30 2016; 313 2017; 164 2014 2011; 47 2016; 28 2015 2014; 15 26 2012; 4 2016; 8 2016; 55 2018; 57 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_2 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_23_1 e_1_2_7_11_1 e_1_2_7_22_1 e_1_2_7_10_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 283 start-page: 1148 year: 1999 publication-title: Science – volume: 313 start-page: 9 year: 2016 publication-title: J. Power Sources – volume: 164 start-page: A1499 year: 2017 publication-title: J. Electrochem. Soc. – volume: 61 start-page: 14095 year: 2000 publication-title: Phys. Rev. B – volume: 1 start-page: 1700217 year: 2017 publication-title: Small Methods – volume: 47 start-page: 12610 year: 2011 publication-title: Chem. Commun. – volume: 28 start-page: 9218 year: 2016 publication-title: Adv. Mater. – volume: 4 start-page: 4246 year: 2012 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: eaao7233 year: 2017 publication-title: Sci. Adv. – volume: 30 start-page: 1704166 year: 2018 publication-title: Adv. Mater. – volume: 520 start-page: 324 year: 2015 publication-title: Nature – volume: 4 start-page: 586 year: 2018 publication-title: Chem – volume: 118 start-page: 5203 year: 2014 publication-title: J. Phys. Chem. C – volume: 283 start-page: 416 year: 2015 publication-title: J. Power Sources – volume: 15 26 start-page: 1796 1261 year: 2015 2014 publication-title: Nano Lett. Adv. Mater. – volume: 55 start-page: 9898 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 49 start-page: 1325 year: 2017 publication-title: Surf. Interface Anal. – volume: 24 start-page: 4156 year: 2014 publication-title: Adv. Funct. Mater. – year: 2014 – volume: 135 start-page: 763 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1700561 year: 2017 publication-title: Adv. Energy Mater. – volume: 57 start-page: 1898 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 30248 year: 2016 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_7_23_1 doi: 10.1002/sia.6239 – ident: e_1_2_7_2_1 doi: 10.1039/c1cc15779e – ident: e_1_2_7_6_1 doi: 10.1126/sciadv.aao7233 – ident: e_1_2_7_20_1 doi: 10.1021/ja309435f – ident: e_1_2_7_1_1 doi: 10.1038/nature14340 – ident: e_1_2_7_15_1 doi: 10.1002/adfm.201304156 – ident: e_1_2_7_16_1 doi: 10.1021/acsami.6b10366 – ident: e_1_2_7_19_1 doi: 10.1103/PhysRevB.61.14095 – ident: e_1_2_7_4_1 doi: 10.1016/j.jpowsour.2016.02.062 – ident: e_1_2_7_21_1 doi: 10.1201/b17118 – ident: e_1_2_7_22_1 doi: 10.1002/aenm.201700561 – ident: e_1_2_7_14_1 doi: 10.1021/am300951f – ident: e_1_2_7_8_1 doi: 10.1002/adma.201704166 – ident: e_1_2_7_9_1 doi: 10.1016/j.chempr.2017.12.029 – ident: e_1_2_7_3_1 doi: 10.1002/adma.201602958 – ident: e_1_2_7_5_1 doi: 10.1021/jp500593d – ident: e_1_2_7_13_1 doi: 10.1002/anie.201711328 – ident: e_1_2_7_17_1 doi: 10.1149/2.0871707jes – ident: e_1_2_7_7_1 doi: 10.1021/acs.nanolett.5b00112 – ident: e_1_2_7_11_1 doi: 10.1002/anie.201603531 – ident: e_1_2_7_7_2 doi: 10.1002/adma.201304126 – ident: e_1_2_7_18_1 doi: 10.1126/science.283.5405.1148 – ident: e_1_2_7_10_1 doi: 10.1016/j.jpowsour.2015.02.131 – ident: e_1_2_7_12_1 doi: 10.1002/smtd.201700217 |
SSID | ssj0017734 |
Score | 2.5878408 |
Snippet | The rechargeable aluminum–sulfur (Al–S) battery is a promising next generation electrochemical energy storage system owing to its high theoretical capacity of... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Aluminum aluminum sulfur batteries Augers Cu‐polysulfide ionic clusters Electron conductivity Energy storage HKUST‐1 Materials science MOFs Rechargeable batteries Sulfur X-ray diffraction |
Title | Carbonized‐MOF as a Sulfur Host for Aluminum–Sulfur Batteries with Enhanced Capacity and Cycling Life |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201807676 https://www.proquest.com/docview/2178533602 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YvejBtxFFsgcTT4W-6JYj4RFiQBORhFszu90qEYsBepATP8HEf8gvcbYtBUyMiaaXbrrbtDs7M9_szn5LyHUZLA66KTU_kEyzQaAddHAs26YwhGMColS1otu5c1o9-7Zf7q_t4k_4IbIJN6UZsb1WCg58UlqRhoIfqJ3khouROFOc2yphS6Gih4w_ymAsWVZ2DJXgZfSXrI26WdpsvumVVlBzHbDGHqd5QGD5rUmiyUsxmvKimH2jcfzPzxyS_RSO0moyfo7IlgyPyd4aSeEJGdRgzFHzZ9JfzD86900KEwq0Gw2DaExbo8mUIvClVbRygzB6Xcw_00cJdSdG4lRN9tJG-BxnG9Aa-meB4J9CiIV3tTfzibYHgTwlvWbjsdbS0gMaNGEhDNRsX3fABN8JAiGh7DKpjouR0rY5MGUMLMRvAQISHp-4LhgE0kXxY0zDhaODdUa2w1EozwlF2FP2XYF-1FdLscCZjxeCN1ZBRK2zHNGWAvJEyl6uDtEYegnvsumpLvSyLsyRm6z-W8Lb8WPN_FLeXqq_Ew8DNcQxlqObOWLGgvvlLV613uxkpYu_NLoku3hfUSnhhp0n29NxJK8Q8Ux5gexU6512txCP7i_YafoQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHIADO6KsPiBxCmSrXY5VoSrQgsQicYtsx4GKElDbHODEJyDxh3wJM9lYJIQEysmJHSX2zPiNPX4DsFWVnpK2a6wwMsLypUY7yFGWfVc7mrsSUSrt6HZOeOvSP7qqFtGEdBYm44coF9xIM1J7TQpOC9K7H6yhMozoKLlTQ1dc8FEYp7TeRJ-_f1YySDlCZBvL3KEQL-eq4G203d2v7b_OSx9g8zNkTeec5gyo4muzUJPbnWSodvTTNyLHf_3OLEzniJTVMxGagxETz8PUJ57CBeg2ZF-h8j-Z8O35pXPaZHLAJDtPelHSZ637wZAh9mV1NHTdOLl7e37NH2XsneiMM1rvZQfxTRpwwBo4RWvE_0zGWHik45nXrN2NzCJcNg8uGi0rz9FgaQ-RoOWHNpeuDHkUaSOrNWEoY4wxvq-kIHvgIYSLEJOoNOm6FjIyNZQAdGuU5rb0lmAsvo_NMjBEPtWwpnEqDWk3VioR4oX4TewhqLZFBaxihAKdE5hTHo1ekFEvuwF1YVB2YQW2y_oPGXXHjzXXigEPchUeBOirIZTxuO1WwE1H7pe3BPX9Zqcsrfyl0SZMtC467aB9eHK8CpN4f48ixB1_DcaG_cSsIwAaqo1UxN8BnGv8mA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5RkKpy4NEWEV7dA1JPBr-ymxyjBCs8AogWKTdrvA-IAIOS-AAnfgIS_5BfwqztmFCpqlTk09q7lr2zM_vN7uw3ANt1DBJ0fe0oo4UToiQ7yGksh770JPeRUKrd0e0d8-55eNCv96dO8Rf8ENWCm9WM3F5bBb9TZveNNBSVsSfJvQZ54oJ_grmQu02bvKFzVhFIeUIU-8rcsxFeXn9C2-j6u-_bv5-W3rDmNGLNp5xoEXDysUWkydVONk525MMfPI4f-ZslWCjxKGsVA2gZZnT6FeanWAq_waCNw4RU_0Grl8en3knEcMSQ_cquTTZk3dvRmBHyZS0yc4M0u3l5fC4fFdyd5Iozu9rL9tLLPNyAtWmCloT-GaZUuLeHMy_Y0cDo73Ae7f1ud50yQ4MjA8KBTqhcjj4qbozUWG8IbfPFaB2GCQprDQICcIYQSZKnXJcCjW6Q_MmpSSR3MViB2fQ21avACPfUVUPSRKrsXiwmQtFF6E00CVK7ogbORECxLOnLbRaN67ggXvZj24Vx1YU1-FnVvyuIO_5ac2Mi77hU4FFMnhoBmYC7fg38XHD_eEvc6kS9qrT2P41-wOfTThQf7R8frsMXut204eFeuAGz42GmNwn9jJOtfIC_AqVi-0c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbonized%E2%80%90MOF+as+a+Sulfur+Host+for+Aluminum%E2%80%93Sulfur+Batteries+with+Enhanced+Capacity+and+Cycling+Life&rft.jtitle=Advanced+functional+materials&rft.au=Guo%2C+Yue&rft.au=Jin%2C+Hongchang&rft.au=Qi%2C+Zhikai&rft.au=Hu%2C+Zhiqiu&rft.date=2019-02-14&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201807676&rft.externalDBID=10.1002%252Fadfm.201807676&rft.externalDocID=ADFM201807676 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |