Carbonized‐MOF as a Sulfur Host for Aluminum–Sulfur Batteries with Enhanced Capacity and Cycling Life

The rechargeable aluminum–sulfur (Al–S) battery is a promising next generation electrochemical energy storage system owing to its high theoretical capacity of 1672 mAh g−1 and in combining low‐cost and naturally abundant elements, Al and S. However, to date, its poor reversibility and low lifespan h...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 29; no. 7
Main Authors Guo, Yue, Jin, Hongchang, Qi, Zhikai, Hu, Zhiqiu, Ji, Hengxing, Wan, Li‐Jun
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 14.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rechargeable aluminum–sulfur (Al–S) battery is a promising next generation electrochemical energy storage system owing to its high theoretical capacity of 1672 mAh g−1 and in combining low‐cost and naturally abundant elements, Al and S. However, to date, its poor reversibility and low lifespan have limited its practical application. In this paper, a composite cathode is reported for Al–S batteries based on S anchored on a carbonized HKUST‐1 matrix (S@HKUST‐1‐C). The S@HKUST‐1‐C composite maintains a reversible capacity of 600 mAh g−1 at the 75th cycle and a reversible capacity of 460 mAh g−1 at the 500th cycle under a current density of 1 A g−1, with a Coulombic efficiency of around 95%. X‐ray diffraction and Auger spectrum results reveal that the Cu in HKUST‐1 forms S–Cu ionic clusters. This serves to facilitate the electrochemical reaction and improve the reversibility of S during charge/discharge. Additionally, Cu increases the electron conductivity at the carbon matrix/S interface to significantly decrease the kinetic barrier for the conversion of sulfur species during battery operation. A composite of sulfur anchored on a carbonized HKUST‐1 matrix is developed to serve as a cathode for Al–S batteries, which maintain a reversible capacity of 460 mAh g−1 at the 500th cycle under the current density of 1 A g−1 with a Coulombic efficiency > 95% owing to the decreased kinetic barrier during the electrochemical conversion of sulfur.
AbstractList The rechargeable aluminum–sulfur (Al–S) battery is a promising next generation electrochemical energy storage system owing to its high theoretical capacity of 1672 mAh g−1 and in combining low‐cost and naturally abundant elements, Al and S. However, to date, its poor reversibility and low lifespan have limited its practical application. In this paper, a composite cathode is reported for Al–S batteries based on S anchored on a carbonized HKUST‐1 matrix (S@HKUST‐1‐C). The S@HKUST‐1‐C composite maintains a reversible capacity of 600 mAh g−1 at the 75th cycle and a reversible capacity of 460 mAh g−1 at the 500th cycle under a current density of 1 A g−1, with a Coulombic efficiency of around 95%. X‐ray diffraction and Auger spectrum results reveal that the Cu in HKUST‐1 forms S–Cu ionic clusters. This serves to facilitate the electrochemical reaction and improve the reversibility of S during charge/discharge. Additionally, Cu increases the electron conductivity at the carbon matrix/S interface to significantly decrease the kinetic barrier for the conversion of sulfur species during battery operation. A composite of sulfur anchored on a carbonized HKUST‐1 matrix is developed to serve as a cathode for Al–S batteries, which maintain a reversible capacity of 460 mAh g−1 at the 500th cycle under the current density of 1 A g−1 with a Coulombic efficiency > 95% owing to the decreased kinetic barrier during the electrochemical conversion of sulfur.
The rechargeable aluminum–sulfur (Al–S) battery is a promising next generation electrochemical energy storage system owing to its high theoretical capacity of 1672 mAh g −1 and in combining low‐cost and naturally abundant elements, Al and S. However, to date, its poor reversibility and low lifespan have limited its practical application. In this paper, a composite cathode is reported for Al–S batteries based on S anchored on a carbonized HKUST‐1 matrix (S@HKUST‐1‐C). The S@HKUST‐1‐C composite maintains a reversible capacity of 600 mAh g −1 at the 75th cycle and a reversible capacity of 460 mAh g −1 at the 500th cycle under a current density of 1 A g −1 , with a Coulombic efficiency of around 95%. X‐ray diffraction and Auger spectrum results reveal that the Cu in HKUST‐1 forms S–Cu ionic clusters. This serves to facilitate the electrochemical reaction and improve the reversibility of S during charge/discharge. Additionally, Cu increases the electron conductivity at the carbon matrix/S interface to significantly decrease the kinetic barrier for the conversion of sulfur species during battery operation.
The rechargeable aluminum–sulfur (Al–S) battery is a promising next generation electrochemical energy storage system owing to its high theoretical capacity of 1672 mAh g−1 and in combining low‐cost and naturally abundant elements, Al and S. However, to date, its poor reversibility and low lifespan have limited its practical application. In this paper, a composite cathode is reported for Al–S batteries based on S anchored on a carbonized HKUST‐1 matrix (S@HKUST‐1‐C). The S@HKUST‐1‐C composite maintains a reversible capacity of 600 mAh g−1 at the 75th cycle and a reversible capacity of 460 mAh g−1 at the 500th cycle under a current density of 1 A g−1, with a Coulombic efficiency of around 95%. X‐ray diffraction and Auger spectrum results reveal that the Cu in HKUST‐1 forms S–Cu ionic clusters. This serves to facilitate the electrochemical reaction and improve the reversibility of S during charge/discharge. Additionally, Cu increases the electron conductivity at the carbon matrix/S interface to significantly decrease the kinetic barrier for the conversion of sulfur species during battery operation.
Author Jin, Hongchang
Wan, Li‐Jun
Hu, Zhiqiu
Ji, Hengxing
Qi, Zhikai
Guo, Yue
Author_xml – sequence: 1
  givenname: Yue
  surname: Guo
  fullname: Guo, Yue
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Hongchang
  surname: Jin
  fullname: Jin, Hongchang
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Zhikai
  orcidid: 0000-0002-0985-8316
  surname: Qi
  fullname: Qi, Zhikai
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Zhiqiu
  surname: Hu
  fullname: Hu, Zhiqiu
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Hengxing
  orcidid: 0000-0003-2851-9878
  surname: Ji
  fullname: Ji, Hengxing
  email: jihengx@ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 6
  givenname: Li‐Jun
  surname: Wan
  fullname: Wan, Li‐Jun
  organization: Chinese Academy of Sciences
BookMark eNqFkM9Kw0AQxhepYFu9el7wnLqbZHfTY62tFVp6UMFbmCS7dkuyqbsJpZ76CIJv2CcxpaWCIJ5mhvl-8-froJYpjUTompIeJcS_hUwVPZ_QiAgu-BlqU065FxA_ap1y-nqBOs4tCaFCBGEb6SHYpDT6Q2a77edsPsbgMOCnOle1xZPSVViVFg_yutCmLnbbr2PrDqpKWi0dXutqgUdmASaVGR7CClJdbTCYptikuTZveKqVvETnCnInr46xi17Go-fhxJvOHx6Hg6mXBoxzL8wIBx8yrlQqgUVCMkYDKcMwARH6TAR9RlWfkiTkjLJUgJIRNJ9FfpJyAkEX3Rzmrmz5XktXxcuytqZZGftURCwIOPEbVXhQpbZ0zkoVN0dDpUtTWdB5TEm8NzXemxqfTG2w3i9sZXUBdvM30D8Aa53LzT_qeHA_nv2w35MMjhM
CitedBy_id crossref_primary_10_1007_s10008_024_05861_2
crossref_primary_10_1016_j_electacta_2023_143360
crossref_primary_10_1016_j_ccr_2022_214856
crossref_primary_10_1002_cctc_202301291
crossref_primary_10_1002_ange_201906306
crossref_primary_10_1039_C9NR07809F
crossref_primary_10_1021_acs_jpcc_0c01358
crossref_primary_10_1016_j_ensm_2022_06_055
crossref_primary_10_1016_j_cej_2020_127792
crossref_primary_10_1002_adma_202104557
crossref_primary_10_1002_inf2_12291
crossref_primary_10_1073_pnas_2312091120
crossref_primary_10_1002_aenm_202003689
crossref_primary_10_1002_aenm_201903750
crossref_primary_10_1016_j_mtchem_2024_102055
crossref_primary_10_1002_adfm_202423454
crossref_primary_10_1016_j_apsusc_2024_162201
crossref_primary_10_1021_acsnano_4c13092
crossref_primary_10_1039_D4QI02314E
crossref_primary_10_1002_anie_202202696
crossref_primary_10_1021_acs_chemrev_0c01257
crossref_primary_10_1007_s40843_021_1913_4
crossref_primary_10_1002_adfm_202305674
crossref_primary_10_1002_adma_202205489
crossref_primary_10_1016_j_nanoen_2020_104621
crossref_primary_10_1002_asia_201901714
crossref_primary_10_1016_j_ensm_2023_01_002
crossref_primary_10_1016_j_ensm_2023_102922
crossref_primary_10_1021_acsenergylett_4c00871
crossref_primary_10_1016_j_jcis_2023_07_203
crossref_primary_10_1021_acsanm_4c03305
crossref_primary_10_1002_ange_202202696
crossref_primary_10_1002_aesr_202100157
crossref_primary_10_1016_j_ensm_2020_05_029
crossref_primary_10_1002_adfm_202405358
crossref_primary_10_1039_D4CS00929K
crossref_primary_10_1002_aenm_202100770
crossref_primary_10_1002_ange_202318204
crossref_primary_10_1039_D0MA01019G
crossref_primary_10_1039_D0QI00841A
crossref_primary_10_1039_D1TA01422F
crossref_primary_10_1002_adfm_202204364
crossref_primary_10_1002_aenm_202100769
crossref_primary_10_1016_j_jechem_2021_04_054
crossref_primary_10_54227_mlab_20220055
crossref_primary_10_1039_C9EE00862D
crossref_primary_10_1002_adma_202200102
crossref_primary_10_1021_acsenergylett_2c02493
crossref_primary_10_1016_j_ensm_2019_10_022
crossref_primary_10_1021_acsnano_0c02831
crossref_primary_10_1002_adfm_202309345
crossref_primary_10_1016_j_ensm_2020_09_013
crossref_primary_10_1021_acsnano_0c08652
crossref_primary_10_1002_batt_202100355
crossref_primary_10_1002_smll_202304515
crossref_primary_10_1007_s13391_019_00170_7
crossref_primary_10_1002_adfm_202205562
crossref_primary_10_1002_aenm_202302464
crossref_primary_10_1002_adma_202102026
crossref_primary_10_1016_j_jpowsour_2024_235837
crossref_primary_10_1016_j_surfin_2024_105690
crossref_primary_10_1002_sus2_263
crossref_primary_10_1016_j_envres_2023_115322
crossref_primary_10_1039_D0QI01302A
crossref_primary_10_3390_ma13020425
crossref_primary_10_1039_D3TA07839F
crossref_primary_10_1039_D0MA00546K
crossref_primary_10_1002_adma_202204636
crossref_primary_10_1039_D4QI02117G
crossref_primary_10_1039_D1CC04337D
crossref_primary_10_1021_acsmaterialslett_3c01043
crossref_primary_10_1039_C9SE00762H
crossref_primary_10_1016_j_ccr_2019_05_006
crossref_primary_10_1088_2399_1984_abb09d
crossref_primary_10_1002_adfm_202214405
crossref_primary_10_1016_j_cej_2020_126377
crossref_primary_10_1016_j_ijhydene_2020_11_076
crossref_primary_10_1002_adma_202008414
crossref_primary_10_1016_j_enchem_2020_100049
crossref_primary_10_1016_j_jechem_2020_06_047
crossref_primary_10_1016_j_jpowsour_2021_229839
crossref_primary_10_1002_anie_202318204
crossref_primary_10_1039_D1QM01267C
crossref_primary_10_1115_1_4045784
crossref_primary_10_1016_j_cej_2025_159924
crossref_primary_10_1016_j_ensm_2022_08_030
crossref_primary_10_1016_j_jallcom_2022_168450
crossref_primary_10_1039_D2TA02217F
crossref_primary_10_1021_acs_chemrev_3c00919
crossref_primary_10_1080_1536383X_2020_1806249
crossref_primary_10_1016_j_jssc_2021_122191
crossref_primary_10_1007_s40820_022_00915_4
crossref_primary_10_1002_smll_202201362
crossref_primary_10_1016_j_jcis_2025_03_015
crossref_primary_10_1039_C9NJ05405G
crossref_primary_10_1002_anie_201906306
crossref_primary_10_1038_s42004_022_00693_5
crossref_primary_10_1002_adfm_202004084
crossref_primary_10_1021_acs_chemmater_2c00248
crossref_primary_10_1039_D0NA01019G
crossref_primary_10_1016_j_coelec_2023_101222
crossref_primary_10_1016_j_mtadv_2019_100046
crossref_primary_10_1016_j_cej_2024_158528
crossref_primary_10_1039_D1CC05783A
crossref_primary_10_1002_slct_201903842
crossref_primary_10_1002_tcr_202200181
crossref_primary_10_1021_acsmaterialslett_0c00208
crossref_primary_10_1016_j_jechem_2021_02_028
crossref_primary_10_1021_acsmaterialslett_2c00306
crossref_primary_10_1021_acsomega_3c05500
crossref_primary_10_1002_adfm_202307486
crossref_primary_10_1021_accountsmr_3c00167
crossref_primary_10_1039_D2TA02049A
crossref_primary_10_1021_acsomega_0c06067
crossref_primary_10_1002_tcr_202300268
crossref_primary_10_1039_D2CC04067K
Cites_doi 10.1002/sia.6239
10.1039/c1cc15779e
10.1126/sciadv.aao7233
10.1021/ja309435f
10.1038/nature14340
10.1002/adfm.201304156
10.1021/acsami.6b10366
10.1103/PhysRevB.61.14095
10.1016/j.jpowsour.2016.02.062
10.1201/b17118
10.1002/aenm.201700561
10.1021/am300951f
10.1002/adma.201704166
10.1016/j.chempr.2017.12.029
10.1002/adma.201602958
10.1021/jp500593d
10.1002/anie.201711328
10.1149/2.0871707jes
10.1021/acs.nanolett.5b00112
10.1002/anie.201603531
10.1002/adma.201304126
10.1126/science.283.5405.1148
10.1016/j.jpowsour.2015.02.131
10.1002/smtd.201700217
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201807676
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201807676
ADFM201807676
Genre article
GrantInformation_xml – fundername: Chinese Academy of Sciences
– fundername: iChEM
– fundername: USTC
– fundername: Fundamental Research Funds for the Central Universities
  funderid: WK2060140003
– fundername: National Natural Science Foundation of China
  funderid: 51761145046
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAHHS
AANHP
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3566-4d06a2ad6ffcea587e5513ee44ba742573951f910b46515c7afe8a30182bc60a3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 06:04:08 EDT 2025
Thu Apr 24 23:07:49 EDT 2025
Tue Jul 01 04:11:55 EDT 2025
Wed Aug 20 07:26:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3566-4d06a2ad6ffcea587e5513ee44ba742573951f910b46515c7afe8a30182bc60a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0985-8316
0000-0003-2851-9878
PQID 2178533602
PQPubID 2045204
PageCount 6
ParticipantIDs proquest_journals_2178533602
crossref_citationtrail_10_1002_adfm_201807676
crossref_primary_10_1002_adfm_201807676
wiley_primary_10_1002_adfm_201807676_ADFM201807676
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 14, 2019
PublicationDateYYYYMMDD 2019-02-14
PublicationDate_xml – month: 02
  year: 2019
  text: February 14, 2019
  day: 14
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 118
2015; 283
2017; 7
2017; 1
2017; 3
2018; 4
2012; 135
2015; 520
2017; 49
2000; 61
1999; 283
2014; 24
2018; 30
2016; 313
2017; 164
2014
2011; 47
2016; 28
2015 2014; 15 26
2012; 4
2016; 8
2016; 55
2018; 57
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_23_1
e_1_2_7_11_1
e_1_2_7_22_1
e_1_2_7_10_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 283
  start-page: 1148
  year: 1999
  publication-title: Science
– volume: 313
  start-page: 9
  year: 2016
  publication-title: J. Power Sources
– volume: 164
  start-page: A1499
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 61
  start-page: 14095
  year: 2000
  publication-title: Phys. Rev. B
– volume: 1
  start-page: 1700217
  year: 2017
  publication-title: Small Methods
– volume: 47
  start-page: 12610
  year: 2011
  publication-title: Chem. Commun.
– volume: 28
  start-page: 9218
  year: 2016
  publication-title: Adv. Mater.
– volume: 4
  start-page: 4246
  year: 2012
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: eaao7233
  year: 2017
  publication-title: Sci. Adv.
– volume: 30
  start-page: 1704166
  year: 2018
  publication-title: Adv. Mater.
– volume: 520
  start-page: 324
  year: 2015
  publication-title: Nature
– volume: 4
  start-page: 586
  year: 2018
  publication-title: Chem
– volume: 118
  start-page: 5203
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 283
  start-page: 416
  year: 2015
  publication-title: J. Power Sources
– volume: 15 26
  start-page: 1796 1261
  year: 2015 2014
  publication-title: Nano Lett. Adv. Mater.
– volume: 55
  start-page: 9898
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 49
  start-page: 1325
  year: 2017
  publication-title: Surf. Interface Anal.
– volume: 24
  start-page: 4156
  year: 2014
  publication-title: Adv. Funct. Mater.
– year: 2014
– volume: 135
  start-page: 763
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1700561
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 57
  start-page: 1898
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 30248
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_7_23_1
  doi: 10.1002/sia.6239
– ident: e_1_2_7_2_1
  doi: 10.1039/c1cc15779e
– ident: e_1_2_7_6_1
  doi: 10.1126/sciadv.aao7233
– ident: e_1_2_7_20_1
  doi: 10.1021/ja309435f
– ident: e_1_2_7_1_1
  doi: 10.1038/nature14340
– ident: e_1_2_7_15_1
  doi: 10.1002/adfm.201304156
– ident: e_1_2_7_16_1
  doi: 10.1021/acsami.6b10366
– ident: e_1_2_7_19_1
  doi: 10.1103/PhysRevB.61.14095
– ident: e_1_2_7_4_1
  doi: 10.1016/j.jpowsour.2016.02.062
– ident: e_1_2_7_21_1
  doi: 10.1201/b17118
– ident: e_1_2_7_22_1
  doi: 10.1002/aenm.201700561
– ident: e_1_2_7_14_1
  doi: 10.1021/am300951f
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.201704166
– ident: e_1_2_7_9_1
  doi: 10.1016/j.chempr.2017.12.029
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.201602958
– ident: e_1_2_7_5_1
  doi: 10.1021/jp500593d
– ident: e_1_2_7_13_1
  doi: 10.1002/anie.201711328
– ident: e_1_2_7_17_1
  doi: 10.1149/2.0871707jes
– ident: e_1_2_7_7_1
  doi: 10.1021/acs.nanolett.5b00112
– ident: e_1_2_7_11_1
  doi: 10.1002/anie.201603531
– ident: e_1_2_7_7_2
  doi: 10.1002/adma.201304126
– ident: e_1_2_7_18_1
  doi: 10.1126/science.283.5405.1148
– ident: e_1_2_7_10_1
  doi: 10.1016/j.jpowsour.2015.02.131
– ident: e_1_2_7_12_1
  doi: 10.1002/smtd.201700217
SSID ssj0017734
Score 2.5878408
Snippet The rechargeable aluminum–sulfur (Al–S) battery is a promising next generation electrochemical energy storage system owing to its high theoretical capacity of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Aluminum
aluminum sulfur batteries
Augers
Cu‐polysulfide ionic clusters
Electron conductivity
Energy storage
HKUST‐1
Materials science
MOFs
Rechargeable batteries
Sulfur
X-ray diffraction
Title Carbonized‐MOF as a Sulfur Host for Aluminum–Sulfur Batteries with Enhanced Capacity and Cycling Life
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201807676
https://www.proquest.com/docview/2178533602
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YvejBtxFFsgcTT4W-6JYj4RFiQBORhFszu90qEYsBepATP8HEf8gvcbYtBUyMiaaXbrrbtDs7M9_szn5LyHUZLA66KTU_kEyzQaAddHAs26YwhGMColS1otu5c1o9-7Zf7q_t4k_4IbIJN6UZsb1WCg58UlqRhoIfqJ3khouROFOc2yphS6Gih4w_ymAsWVZ2DJXgZfSXrI26WdpsvumVVlBzHbDGHqd5QGD5rUmiyUsxmvKimH2jcfzPzxyS_RSO0moyfo7IlgyPyd4aSeEJGdRgzFHzZ9JfzD86900KEwq0Gw2DaExbo8mUIvClVbRygzB6Xcw_00cJdSdG4lRN9tJG-BxnG9Aa-meB4J9CiIV3tTfzibYHgTwlvWbjsdbS0gMaNGEhDNRsX3fABN8JAiGh7DKpjouR0rY5MGUMLMRvAQISHp-4LhgE0kXxY0zDhaODdUa2w1EozwlF2FP2XYF-1FdLscCZjxeCN1ZBRK2zHNGWAvJEyl6uDtEYegnvsumpLvSyLsyRm6z-W8Lb8WPN_FLeXqq_Ew8DNcQxlqObOWLGgvvlLV613uxkpYu_NLoku3hfUSnhhp0n29NxJK8Q8Ux5gexU6512txCP7i_YafoQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHIADO6KsPiBxCmSrXY5VoSrQgsQicYtsx4GKElDbHODEJyDxh3wJM9lYJIQEysmJHSX2zPiNPX4DsFWVnpK2a6wwMsLypUY7yFGWfVc7mrsSUSrt6HZOeOvSP7qqFtGEdBYm44coF9xIM1J7TQpOC9K7H6yhMozoKLlTQ1dc8FEYp7TeRJ-_f1YySDlCZBvL3KEQL-eq4G203d2v7b_OSx9g8zNkTeec5gyo4muzUJPbnWSodvTTNyLHf_3OLEzniJTVMxGagxETz8PUJ57CBeg2ZF-h8j-Z8O35pXPaZHLAJDtPelHSZ637wZAh9mV1NHTdOLl7e37NH2XsneiMM1rvZQfxTRpwwBo4RWvE_0zGWHik45nXrN2NzCJcNg8uGi0rz9FgaQ-RoOWHNpeuDHkUaSOrNWEoY4wxvq-kIHvgIYSLEJOoNOm6FjIyNZQAdGuU5rb0lmAsvo_NMjBEPtWwpnEqDWk3VioR4oX4TewhqLZFBaxihAKdE5hTHo1ekFEvuwF1YVB2YQW2y_oPGXXHjzXXigEPchUeBOirIZTxuO1WwE1H7pe3BPX9Zqcsrfyl0SZMtC467aB9eHK8CpN4f48ixB1_DcaG_cSsIwAaqo1UxN8BnGv8mA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5RkKpy4NEWEV7dA1JPBr-ymxyjBCs8AogWKTdrvA-IAIOS-AAnfgIS_5BfwqztmFCpqlTk09q7lr2zM_vN7uw3ANt1DBJ0fe0oo4UToiQ7yGksh770JPeRUKrd0e0d8-55eNCv96dO8Rf8ENWCm9WM3F5bBb9TZveNNBSVsSfJvQZ54oJ_grmQu02bvKFzVhFIeUIU-8rcsxFeXn9C2-j6u-_bv5-W3rDmNGLNp5xoEXDysUWkydVONk525MMfPI4f-ZslWCjxKGsVA2gZZnT6FeanWAq_waCNw4RU_0Grl8en3knEcMSQ_cquTTZk3dvRmBHyZS0yc4M0u3l5fC4fFdyd5Iozu9rL9tLLPNyAtWmCloT-GaZUuLeHMy_Y0cDo73Ae7f1ud50yQ4MjA8KBTqhcjj4qbozUWG8IbfPFaB2GCQprDQICcIYQSZKnXJcCjW6Q_MmpSSR3MViB2fQ21avACPfUVUPSRKrsXiwmQtFF6E00CVK7ogbORECxLOnLbRaN67ggXvZj24Vx1YU1-FnVvyuIO_5ac2Mi77hU4FFMnhoBmYC7fg38XHD_eEvc6kS9qrT2P41-wOfTThQf7R8frsMXut204eFeuAGz42GmNwn9jJOtfIC_AqVi-0c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbonized%E2%80%90MOF+as+a+Sulfur+Host+for+Aluminum%E2%80%93Sulfur+Batteries+with+Enhanced+Capacity+and+Cycling+Life&rft.jtitle=Advanced+functional+materials&rft.au=Guo%2C+Yue&rft.au=Jin%2C+Hongchang&rft.au=Qi%2C+Zhikai&rft.au=Hu%2C+Zhiqiu&rft.date=2019-02-14&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201807676&rft.externalDBID=10.1002%252Fadfm.201807676&rft.externalDocID=ADFM201807676
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon