Lithiophilic Vertical Cactus‐Like Framework Derived from Cu/Zn‐Based Coordination Polymer through In Situ Chemical Etching for Stable Lithium Metal Batteries

Detrimental dendritic lithium (Li) growth, infinite volume expansion of Li deposition and inevitable excess electrolyte consumption have always impeded the successful application of Li metal anodes. Herein, a unique lithiophilic vertical cactus‐like framework (LVCF) derived from a Zn/Cu‐based coordi...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 14
Main Authors Liu, Tiancun, Chen, Shuangqiang, Sun, Weiwei, Lv, Li‐Ping, Du, Fei‐Hu, Liu, Hao, Wang, Yong
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Detrimental dendritic lithium (Li) growth, infinite volume expansion of Li deposition and inevitable excess electrolyte consumption have always impeded the successful application of Li metal anodes. Herein, a unique lithiophilic vertical cactus‐like framework (LVCF) derived from a Zn/Cu‐based coordination polymer through in situ chemical etching of Cu foam is proposed to enhance the safety and electrochemical performance of Li metal anodes. An ingenious strategy of releasing Cu ions from Cu foam in the presence of organic ligands is implemented successfully to achieve the coordination polymer precursor, resulting in the coexistence of massive lithiophilic nitrogen‐containing functional groups, ZnO quantum dots and in situ grown carbon nanotubes (CNTs) in the LVCF, which is beneficial to avoiding the generation of harmful Li dendrites. Benefiting from the positive effects of the improved lithiophilicity, decreased local current density and relieved volume expansion, LVCF delivers an ultrastable Coulombic efficiency of 98.6% for 600 cycles at 1 mA cm–2 and an improved cycling lifespan of 1800 h for symmetric cells. Full cells comprising LVCF@Li anodes and LiFePO4 cathodes can deliver an ultrahigh capacity of 101.8 mAh g–1 (capacity retention ratio: 77.9%) after 900 cycles at 1 C and excellent rate performance. A 3D free‐standing and lithiophilic vertical cactus‐like framework, commercial Cu foam covered by an annealed Zn/Cu‐based precursor, is proposed as the current collector of Li metal anode. Massive lithiophilic sites (ZnO quantum dots and nitrogen containing groups) and in situ grown carbon nanotubes play a significant role in the suppression of Li dendrites.
AbstractList Detrimental dendritic lithium (Li) growth, infinite volume expansion of Li deposition and inevitable excess electrolyte consumption have always impeded the successful application of Li metal anodes. Herein, a unique lithiophilic vertical cactus‐like framework (LVCF) derived from a Zn/Cu‐based coordination polymer through in situ chemical etching of Cu foam is proposed to enhance the safety and electrochemical performance of Li metal anodes. An ingenious strategy of releasing Cu ions from Cu foam in the presence of organic ligands is implemented successfully to achieve the coordination polymer precursor, resulting in the coexistence of massive lithiophilic nitrogen‐containing functional groups, ZnO quantum dots and in situ grown carbon nanotubes (CNTs) in the LVCF, which is beneficial to avoiding the generation of harmful Li dendrites. Benefiting from the positive effects of the improved lithiophilicity, decreased local current density and relieved volume expansion, LVCF delivers an ultrastable Coulombic efficiency of 98.6% for 600 cycles at 1 mA cm –2 and an improved cycling lifespan of 1800 h for symmetric cells. Full cells comprising LVCF@Li anodes and LiFePO 4 cathodes can deliver an ultrahigh capacity of 101.8 mAh g –1 (capacity retention ratio: 77.9%) after 900 cycles at 1 C and excellent rate performance.
Detrimental dendritic lithium (Li) growth, infinite volume expansion of Li deposition and inevitable excess electrolyte consumption have always impeded the successful application of Li metal anodes. Herein, a unique lithiophilic vertical cactus‐like framework (LVCF) derived from a Zn/Cu‐based coordination polymer through in situ chemical etching of Cu foam is proposed to enhance the safety and electrochemical performance of Li metal anodes. An ingenious strategy of releasing Cu ions from Cu foam in the presence of organic ligands is implemented successfully to achieve the coordination polymer precursor, resulting in the coexistence of massive lithiophilic nitrogen‐containing functional groups, ZnO quantum dots and in situ grown carbon nanotubes (CNTs) in the LVCF, which is beneficial to avoiding the generation of harmful Li dendrites. Benefiting from the positive effects of the improved lithiophilicity, decreased local current density and relieved volume expansion, LVCF delivers an ultrastable Coulombic efficiency of 98.6% for 600 cycles at 1 mA cm–2 and an improved cycling lifespan of 1800 h for symmetric cells. Full cells comprising LVCF@Li anodes and LiFePO4 cathodes can deliver an ultrahigh capacity of 101.8 mAh g–1 (capacity retention ratio: 77.9%) after 900 cycles at 1 C and excellent rate performance. A 3D free‐standing and lithiophilic vertical cactus‐like framework, commercial Cu foam covered by an annealed Zn/Cu‐based precursor, is proposed as the current collector of Li metal anode. Massive lithiophilic sites (ZnO quantum dots and nitrogen containing groups) and in situ grown carbon nanotubes play a significant role in the suppression of Li dendrites.
Detrimental dendritic lithium (Li) growth, infinite volume expansion of Li deposition and inevitable excess electrolyte consumption have always impeded the successful application of Li metal anodes. Herein, a unique lithiophilic vertical cactus‐like framework (LVCF) derived from a Zn/Cu‐based coordination polymer through in situ chemical etching of Cu foam is proposed to enhance the safety and electrochemical performance of Li metal anodes. An ingenious strategy of releasing Cu ions from Cu foam in the presence of organic ligands is implemented successfully to achieve the coordination polymer precursor, resulting in the coexistence of massive lithiophilic nitrogen‐containing functional groups, ZnO quantum dots and in situ grown carbon nanotubes (CNTs) in the LVCF, which is beneficial to avoiding the generation of harmful Li dendrites. Benefiting from the positive effects of the improved lithiophilicity, decreased local current density and relieved volume expansion, LVCF delivers an ultrastable Coulombic efficiency of 98.6% for 600 cycles at 1 mA cm–2 and an improved cycling lifespan of 1800 h for symmetric cells. Full cells comprising LVCF@Li anodes and LiFePO4 cathodes can deliver an ultrahigh capacity of 101.8 mAh g–1 (capacity retention ratio: 77.9%) after 900 cycles at 1 C and excellent rate performance.
Author Liu, Hao
Lv, Li‐Ping
Du, Fei‐Hu
Liu, Tiancun
Chen, Shuangqiang
Wang, Yong
Sun, Weiwei
Author_xml – sequence: 1
  givenname: Tiancun
  surname: Liu
  fullname: Liu, Tiancun
  organization: Shanghai University
– sequence: 2
  givenname: Shuangqiang
  orcidid: 0000-0002-9111-1691
  surname: Chen
  fullname: Chen, Shuangqiang
  organization: Shanghai University
– sequence: 3
  givenname: Weiwei
  surname: Sun
  fullname: Sun, Weiwei
  organization: Shanghai University
– sequence: 4
  givenname: Li‐Ping
  surname: Lv
  fullname: Lv, Li‐Ping
  organization: Shanghai University
– sequence: 5
  givenname: Fei‐Hu
  surname: Du
  fullname: Du, Fei‐Hu
  organization: Shanghai University
– sequence: 6
  givenname: Hao
  surname: Liu
  fullname: Liu, Hao
  organization: Shanghai University
– sequence: 7
  givenname: Yong
  orcidid: 0000-0003-3489-7672
  surname: Wang
  fullname: Wang, Yong
  email: yongwang@shu.edu.cn
  organization: Shanghai University
BookMark eNqFkd9q2zAUh8VoYf2z210Ldp30SLZl5zJxm62QskHbUXpjZPkoVmNbqSSv5G6P0Ffoq_VJ6iajg8HolQ7i-85P4ndI9jrbISGfGYwZAD-RlW7HHDhAlrD4AzlggolRBDzbe5vZzUdy6P0dAEvTKD4gTwsTamPXtWmMoj_RBaNkQ3OpQu-ffz8uzArp3MkWH6xb0VN05hdWVDvb0rw_ue0GZib9cJVb6yrTyWBsR3_YZtOio6F2tl_W9Lyjlyb0NK-x3QacBVWbbkm1dfQyyLJBun1J39ILDAMwkyEMYeiPyb6WjcdPf84jcj0_u8q_jRbfv57n08VIRYmIRzoqldTpJBaRZCpJUMRxBSBYwkrGVFQKwSUvIQUdSazSNBY8g2zAVKZVCdER-bLbu3b2vkcfijvbu26ILHgCE86TJM0GKt5RylnvHepCmbD9c3DSNAWD4rWM4rWM4q2MQRv_o62daaXb_F-Y7IQH0-DmHbqYns4v_rov-LCi0w
CitedBy_id crossref_primary_10_1016_j_nxener_2024_100237
crossref_primary_10_3390_batteries10110405
crossref_primary_10_26599_NRE_2023_9120048
crossref_primary_10_1002_smll_202207764
crossref_primary_10_1002_adma_202201801
crossref_primary_10_1002_advs_202101111
crossref_primary_10_1002_chem_202304152
crossref_primary_10_1002_anie_202409436
crossref_primary_10_1002_adfm_202409812
crossref_primary_10_1016_j_jpowsour_2024_235392
crossref_primary_10_1002_slct_202201311
crossref_primary_10_1002_ange_202409436
crossref_primary_10_1002_anie_202320259
crossref_primary_10_1021_acs_energyfuels_1c00643
crossref_primary_10_1016_j_nanoen_2022_106937
crossref_primary_10_1039_D1SE01132D
crossref_primary_10_1016_j_cej_2021_132510
crossref_primary_10_1002_aenm_202204002
crossref_primary_10_1134_S0036023624601491
crossref_primary_10_1016_j_jcis_2024_07_057
crossref_primary_10_1039_D2CP04032H
crossref_primary_10_1002_advs_202300860
crossref_primary_10_1016_j_jallcom_2023_170230
crossref_primary_10_1016_j_jcis_2021_11_059
crossref_primary_10_1021_acsenergylett_3c02752
crossref_primary_10_1016_j_cej_2023_143497
crossref_primary_10_1063_5_0075283
crossref_primary_10_1007_s41918_022_00158_2
crossref_primary_10_1021_acsmaterialslett_2c00443
crossref_primary_10_1021_acsami_3c00379
crossref_primary_10_1002_adfm_202213770
crossref_primary_10_1021_acsami_4c15406
crossref_primary_10_1007_s12274_022_5089_5
crossref_primary_10_1021_acsnano_2c09037
crossref_primary_10_1007_s40843_021_1764_x
crossref_primary_10_1039_D3DT00260H
crossref_primary_10_1002_ange_202320259
crossref_primary_10_1002_cjoc_202200816
crossref_primary_10_1002_adma_202210130
crossref_primary_10_1007_s12598_023_02477_9
crossref_primary_10_1039_D2TA01536F
Cites_doi 10.1002/adma.201808392
10.1016/j.jpowsour.2019.02.033
10.1002/adma.201805654
10.1016/j.colsurfa.2014.10.023
10.1016/j.ensm.2020.04.022
10.1002/ange.202002711
10.1002/aenm.201804019
10.1002/adfm.202000786
10.1038/nnano.2017.16
10.1002/aenm.202001479
10.1039/c1cc15525c
10.1016/j.nanoen.2019.04.087
10.1038/s41467-017-00519-2
10.1002/advs.201901433
10.1021/jacs.9b02448
10.1039/c2ce26847g
10.1002/adma.201706216
10.1038/s41467-019-08767-0
10.1038/ncomms15106
10.1021/jp3079327
10.1039/C4CY01505C
10.1002/adma.201604460
10.1002/adfm.201909159
10.1126/sciadv.aau5655
10.1002/smtd.201800035
10.1002/anie.201702099
10.1002/anie.201710806
10.1002/anie.201812523
10.1039/C5RA04033G
10.1016/j.ensm.2019.01.009
10.1016/S0010-938X(02)00021-5
10.1002/adfm.201908075
10.1016/j.synthmet.2017.01.010
10.1002/aenm.201600811
10.1021/jacs.9b00543
10.1016/j.cej.2020.124848
10.1039/C9CE01285K
10.1039/C8TA12511B
10.1002/adfm.201907717
10.1016/j.ensm.2020.07.007
10.1021/jacs.7b06437
10.1073/pnas.1618871114
10.1016/j.ensm.2018.10.015
10.1038/nmat3191
10.1016/j.nanoen.2017.11.032
10.1016/j.micromeso.2013.10.003
10.1021/acsaem.9b00573
10.1038/s41565-019-0427-9
10.1039/C9CC08478A
10.1039/C7SC00668C
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202008514
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202008514
ADFM202008514
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 52073170; 21975154
– fundername: Shanghai Municipal Education Commission
  funderid: 2019‐01‐07‐00‐09‐E00021
– fundername: Innovative Research Team of High‐level Local Universities in Shanghai
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3564-f3bcaf79463a1c55e644d006151b11c3b662a2b070f3aed77462808e64c8fcb03
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sun Jul 13 04:42:30 EDT 2025
Tue Jul 01 04:12:23 EDT 2025
Thu Apr 24 23:06:04 EDT 2025
Wed Jan 22 16:29:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3564-f3bcaf79463a1c55e644d006151b11c3b662a2b070f3aed77462808e64c8fcb03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9111-1691
0000-0003-3489-7672
PQID 2509225578
PQPubID 2045204
PageCount 12
ParticipantIDs proquest_journals_2509225578
crossref_citationtrail_10_1002_adfm_202008514
crossref_primary_10_1002_adfm_202008514
wiley_primary_10_1002_adfm_202008514_ADFM202008514
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 1, 2021
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 1, 2021
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2017; 8
2019; 9
2015; 5
2019; 6
2019; 5
2019; 31
2019; 30
2019; 2
2019; 10
2015; 465
2019; 14
2019; 58
2019; 19
2019; 18
2017; 29
2020; 56
2020; 10
2020; 32
2019; 141
2018; 43
2012; 11
2017; 114
2017; 139
2016; 6
2013; 15
2018; 2
2019; 62
2020; 394
2020; 30
2019; 419
2020; 132
2017; 12
2002; 44
2017; 56
2013; 117
2018; 30
2014; 184
2020; 22
2011; 47
2017; 226
2018; 57
2020; 29
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 14
  start-page: 594
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 29
  start-page: 332
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 43
  start-page: 368
  year: 2018
  publication-title: Nano Energy
– volume: 8
  start-page: 336
  year: 2017
  publication-title: Nat. Commun.
– volume: 56
  start-page: 1980
  year: 2020
  publication-title: Chem. Commun.
– volume: 2
  start-page: 4379
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 184
  start-page: 55
  year: 2014
  publication-title: Microporous Mesoporous Mater.
– volume: 114
  start-page: 3584
  year: 2017
  publication-title: Proc. Natl. Acad. Sci., USA
– volume: 226
  start-page: 39
  year: 2017
  publication-title: Synth. Met.
– volume: 5
  start-page: 1829
  year: 2015
  publication-title: Catal. Sci. Technol.
– volume: 10
  start-page: 900
  year: 2019
  publication-title: Nat. Commun.
– volume: 19
  start-page: 24
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 419
  start-page: 72
  year: 2019
  publication-title: J. Power Sources
– volume: 32
  start-page: 261
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 11
  start-page: 19
  year: 2012
  publication-title: Nat. Mater.
– volume: 62
  start-page: 55
  year: 2019
  publication-title: Nano Energy
– volume: 2
  year: 2018
  publication-title: Small Methods
– volume: 44
  start-page: 2507
  year: 2002
  publication-title: Corros. Sci.
– volume: 12
  start-page: 194
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 56
  start-page: 7764
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 8460
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 47
  year: 2011
  publication-title: Chem. Commun.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 57
  start-page: 1505
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 141
  start-page: 5880
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 15
  start-page: 1794
  year: 2013
  publication-title: CrystEngComm
– volume: 394
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 465
  start-page: 67
  year: 2015
  publication-title: Colloids Surf. A
– volume: 117
  start-page: 2590
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 132
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 30
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 8
  start-page: 4285
  year: 2017
  publication-title: Chem. Sci.
– volume: 18
  start-page: 382
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 22
  start-page: 320
  year: 2020
  publication-title: CrystEngComm
– volume: 19
  year: 2019
  publication-title: Adv. Mater.
– volume: 58
  start-page: 3092
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 141
  start-page: 7518
  year: 2019
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_8_11_1
  doi: 10.1002/adma.201808392
– ident: e_1_2_8_9_1
  doi: 10.1016/j.jpowsour.2019.02.033
– ident: e_1_2_8_35_1
  doi: 10.1002/adma.201805654
– ident: e_1_2_8_43_1
  doi: 10.1016/j.colsurfa.2014.10.023
– ident: e_1_2_8_36_1
  doi: 10.1016/j.ensm.2020.04.022
– ident: e_1_2_8_24_1
  doi: 10.1002/ange.202002711
– ident: e_1_2_8_6_1
  doi: 10.1002/aenm.201804019
– ident: e_1_2_8_28_1
  doi: 10.1002/adfm.202000786
– ident: e_1_2_8_1_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_8_19_1
  doi: 10.1002/aenm.202001479
– ident: e_1_2_8_41_1
  doi: 10.1039/c1cc15525c
– ident: e_1_2_8_33_1
  doi: 10.1016/j.nanoen.2019.04.087
– ident: e_1_2_8_22_1
  doi: 10.1038/s41467-017-00519-2
– ident: e_1_2_8_32_1
  doi: 10.1002/advs.201901433
– ident: e_1_2_8_21_1
  doi: 10.1021/jacs.9b02448
– ident: e_1_2_8_39_1
  doi: 10.1039/c2ce26847g
– ident: e_1_2_8_29_1
  doi: 10.1002/adma.201706216
– ident: e_1_2_8_13_1
  doi: 10.1038/s41467-019-08767-0
– ident: e_1_2_8_3_1
  doi: 10.1038/ncomms15106
– ident: e_1_2_8_49_1
  doi: 10.1021/jp3079327
– ident: e_1_2_8_40_1
  doi: 10.1039/C4CY01505C
– ident: e_1_2_8_23_1
  doi: 10.1002/adma.201604460
– ident: e_1_2_8_46_1
  doi: 10.1002/adfm.201909159
– ident: e_1_2_8_14_1
  doi: 10.1126/sciadv.aau5655
– ident: e_1_2_8_16_1
  doi: 10.1002/smtd.201800035
– ident: e_1_2_8_47_1
  doi: 10.1002/anie.201702099
– ident: e_1_2_8_12_1
  doi: 10.1002/anie.201710806
– ident: e_1_2_8_30_1
  doi: 10.1002/anie.201812523
– ident: e_1_2_8_38_1
  doi: 10.1039/C5RA04033G
– ident: e_1_2_8_10_1
  doi: 10.1016/j.ensm.2019.01.009
– ident: e_1_2_8_37_1
  doi: 10.1016/S0010-938X(02)00021-5
– ident: e_1_2_8_25_1
  doi: 10.1002/adfm.201908075
– ident: e_1_2_8_48_1
  doi: 10.1016/j.synthmet.2017.01.010
– ident: e_1_2_8_4_1
  doi: 10.1002/aenm.201600811
– ident: e_1_2_8_20_1
  doi: 10.1021/jacs.9b00543
– ident: e_1_2_8_34_1
  doi: 10.1016/j.cej.2020.124848
– ident: e_1_2_8_45_1
  doi: 10.1039/C9CE01285K
– ident: e_1_2_8_44_1
  doi: 10.1039/C8TA12511B
– ident: e_1_2_8_8_1
  doi: 10.1002/adfm.201907717
– ident: e_1_2_8_27_1
  doi: 10.1016/j.ensm.2020.07.007
– ident: e_1_2_8_7_1
  doi: 10.1021/jacs.7b06437
– ident: e_1_2_8_5_1
  doi: 10.1073/pnas.1618871114
– ident: e_1_2_8_17_1
  doi: 10.1016/j.ensm.2018.10.015
– ident: e_1_2_8_2_1
  doi: 10.1038/nmat3191
– ident: e_1_2_8_15_1
  doi: 10.1016/j.nanoen.2017.11.032
– ident: e_1_2_8_42_1
  doi: 10.1016/j.micromeso.2013.10.003
– ident: e_1_2_8_31_1
  doi: 10.1021/acsaem.9b00573
– ident: e_1_2_8_26_1
  doi: 10.1038/s41565-019-0427-9
– ident: e_1_2_8_50_1
  doi: 10.1039/C9CC08478A
– ident: e_1_2_8_18_1
  doi: 10.1039/C7SC00668C
SSID ssj0017734
Score 2.549304
Snippet Detrimental dendritic lithium (Li) growth, infinite volume expansion of Li deposition and inevitable excess electrolyte consumption have always impeded the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anodes
Carbon nanotubes
Chemical etching
Coordination polymers
Electrochemical analysis
Electrolytic cells
Functional groups
in situ chemical etching
Li metal batteries
lithiophilic frameworks
Lithium batteries
Local current
Materials science
Metal foams
Polymers
Prepolymers
Quantum dots
Zinc oxide
Title Lithiophilic Vertical Cactus‐Like Framework Derived from Cu/Zn‐Based Coordination Polymer through In Situ Chemical Etching for Stable Lithium Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202008514
https://www.proquest.com/docview/2509225578
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqeikH-ovYlqI5VOopbOz87nG7y4pWu1VVSrXiEtmOLSKWLGKTSnDqI_QV-mp9ko7tJCyVUCU4JpqJEtsz89n5_JmQdyoSTA506GkmEi8MVeylVDJvoJXC-uzr0C64zT7Hh8fhp3k0X9vF7_QhugU3Exk2X5sA52LVvxEN5bk2O8mZBQ1GENQQtgwq-trpR9Ekcb-VY2oIXnTeqjb6rH_b_XZVuoGa64DVVpzJU8Lbd3VEk7P9uhL78vofGceHfMwzstXAURi68fOcPFLlC7K5JlL4kvyeFtVpsbwwKy8SvlseNrqMuKzq1Z-fv6bFmYJJy_GCMbr9UDmYfSswqvsnJdp8wFqZw2iJM93CLT_Cl-Xi6lxdQnNQEHws4aioamgVDOCgsjRPQFQNCInFQoF9k_ocZgqnDOCkQXGm_4ocTw6-jQ695mAHTwZRjOMiEJJrI20fcCqjSCEoyx24EpTKQMQx40xgNtIBVzki1JilfopmMtVS-ME22SiXpdohkOdU-0rpKGE65JSnQoRhwCTjeDuNkx7x2o7NZKN6bg7fWGROr5llpumzrul75H1nf-H0Pu603G3HSdbE_SpDQDnADIlpsEeY7fD_PCUbjiez7ur1fZzekCfMEG0snWiXbFSXtXqLSKkSe-TxcDybHu3ZqPgLrKAP6A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO5V9sKTAHEKd0E-d3DxzKble7dLdC0KIVl9R2bBF1m626CaiceARegUfgVXgEnoRx_toiISSkHjgmGluOPeP5PBl_A_BU-YLJnvYszURoeZ4KrMiRzOpppcg_29orA27T3WC0772a-bMV-N7chan4IdqAm7GMcr82Bm4C0t0z1lCeaHOVnJWowavzKnfU6Sc6tS1fjAe0xM8YG27v9UdWXVjAkq4f0LhcIbk21Ooud6TvKwIFSeXcheNIVwQB40yQNWiXq4QQUsAiOyIxGWkpbJf6vQJXTRlxQ9c_eNMyVjlhWP3IDhyTUubMGp5Im3UvjveiHzwDt-chcunjhjfhRzM7VWrL4WaRi035-TfiyP9q-m7BWo24casykduworI7cOMcD-Nd-DZJ8w_p4tgElyS-K1PNqUmfy7xY_vzydZIeKhw2aWw4oGYfVYLmag72i-77jGReEhxIsL-g70qrCCu-XsxPj9QJ1rWQcJzh2zQvsCFpwO28zGRFOjggoX4xV1iOpDjCqaJTEVbsp6la3oP9S5mj-7CaLTL1ADBJHG0rpf2QaY87PBLC81wmGafXURB2wGo0KZY1sbupLzKPK0pqFpuljtul7sDzVv64ojT5o-RGo5hxvbUtY8LMPXICtNN3gJUa9pde4q3BcNo-rf9LoydwbbQ3ncST8e7OQ7jOXL_OntqA1fykUI8IGObicWmKCAeXrby_APVCasg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKkRAcyr_YUmAOIE7pJo7zswcOZdOoS3erCihacUljxxZRt9lVNwGVE4_AK_AGvAqvwJMwdn7aIiEkpB44Jhpbjj3j-TwZf0PIU-lxKgaKWYrywGJM-lboCGoNlJTon23FTMBtsufvHLBXU2-6Qr63d2Fqfogu4KYtw-zX2sAXmeqfkYammdI3yakBDaxJq9yVp5_w0LZ8MYpwhZ9RGm-_He5YTV0BS7iej8NyuUiVZlZ3U0d4nkRMkNW-nTuOcLnv05RyNAblpjJDgOTT0A5RTIRKcNvFfq-Qq8y3B7pYRPS6I6xygqD-j-07OqPMmbY0kTbtXxzvRTd4hm3PI2Tj4uKb5Ec7OXVmy9FmVfJN8fk33sj_afZukbUGb8NWbSC3yYos7pAb51gY75Jv47z8kM8XOrQk4J1JNMcmw1SU1fLnl6_j_EhC3CaxQYTNPsoM9MUcGFb99wXKvEQwkMFwjt-V1_FV2J_PTo_lCTSVkGBUwJu8rKClaIDt0uSxAh4bADE_n0kwI6mOYSLxTAQ192kul_fIwaXM0X2yWswL-YBAljnKllJ5AVUsddKQc8ZcKmiKr0M_6BGrVaRENLTuurrILKkJqWmilzrplrpHnnfyi5rQ5I-SG61eJs3GtkwQMQ_QBeA-3yPUKNhfekm2onjSPa3_S6Mn5Np-FCfj0d7uQ3Kd6qQikzq1QVbLk0o-QlRY8sfGEIEcXrbu_gIr_mlu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithiophilic+Vertical+Cactus%E2%80%90Like+Framework+Derived+from+Cu%2FZn%E2%80%90Based+Coordination+Polymer+through+In+Situ+Chemical+Etching+for+Stable+Lithium+Metal+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Liu%2C+Tiancun&rft.au=Chen%2C+Shuangqiang&rft.au=Sun%2C+Weiwei&rft.au=Li%E2%80%90Ping+Lv&rft.date=2021-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=14&rft_id=info:doi/10.1002%2Fadfm.202008514&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon