Lithiophilic Vertical Cactus‐Like Framework Derived from Cu/Zn‐Based Coordination Polymer through In Situ Chemical Etching for Stable Lithium Metal Batteries
Detrimental dendritic lithium (Li) growth, infinite volume expansion of Li deposition and inevitable excess electrolyte consumption have always impeded the successful application of Li metal anodes. Herein, a unique lithiophilic vertical cactus‐like framework (LVCF) derived from a Zn/Cu‐based coordi...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 14 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Detrimental dendritic lithium (Li) growth, infinite volume expansion of Li deposition and inevitable excess electrolyte consumption have always impeded the successful application of Li metal anodes. Herein, a unique lithiophilic vertical cactus‐like framework (LVCF) derived from a Zn/Cu‐based coordination polymer through in situ chemical etching of Cu foam is proposed to enhance the safety and electrochemical performance of Li metal anodes. An ingenious strategy of releasing Cu ions from Cu foam in the presence of organic ligands is implemented successfully to achieve the coordination polymer precursor, resulting in the coexistence of massive lithiophilic nitrogen‐containing functional groups, ZnO quantum dots and in situ grown carbon nanotubes (CNTs) in the LVCF, which is beneficial to avoiding the generation of harmful Li dendrites. Benefiting from the positive effects of the improved lithiophilicity, decreased local current density and relieved volume expansion, LVCF delivers an ultrastable Coulombic efficiency of 98.6% for 600 cycles at 1 mA cm–2 and an improved cycling lifespan of 1800 h for symmetric cells. Full cells comprising LVCF@Li anodes and LiFePO4 cathodes can deliver an ultrahigh capacity of 101.8 mAh g–1 (capacity retention ratio: 77.9%) after 900 cycles at 1 C and excellent rate performance.
A 3D free‐standing and lithiophilic vertical cactus‐like framework, commercial Cu foam covered by an annealed Zn/Cu‐based precursor, is proposed as the current collector of Li metal anode. Massive lithiophilic sites (ZnO quantum dots and nitrogen containing groups) and in situ grown carbon nanotubes play a significant role in the suppression of Li dendrites. |
---|---|
AbstractList | Detrimental dendritic lithium (Li) growth, infinite volume expansion of Li deposition and inevitable excess electrolyte consumption have always impeded the successful application of Li metal anodes. Herein, a unique lithiophilic vertical cactus‐like framework (LVCF) derived from a Zn/Cu‐based coordination polymer through in situ chemical etching of Cu foam is proposed to enhance the safety and electrochemical performance of Li metal anodes. An ingenious strategy of releasing Cu ions from Cu foam in the presence of organic ligands is implemented successfully to achieve the coordination polymer precursor, resulting in the coexistence of massive lithiophilic nitrogen‐containing functional groups, ZnO quantum dots and in situ grown carbon nanotubes (CNTs) in the LVCF, which is beneficial to avoiding the generation of harmful Li dendrites. Benefiting from the positive effects of the improved lithiophilicity, decreased local current density and relieved volume expansion, LVCF delivers an ultrastable Coulombic efficiency of 98.6% for 600 cycles at 1 mA cm
–2
and an improved cycling lifespan of 1800 h for symmetric cells. Full cells comprising LVCF@Li anodes and LiFePO
4
cathodes can deliver an ultrahigh capacity of 101.8 mAh g
–1
(capacity retention ratio: 77.9%) after 900 cycles at 1 C and excellent rate performance. Detrimental dendritic lithium (Li) growth, infinite volume expansion of Li deposition and inevitable excess electrolyte consumption have always impeded the successful application of Li metal anodes. Herein, a unique lithiophilic vertical cactus‐like framework (LVCF) derived from a Zn/Cu‐based coordination polymer through in situ chemical etching of Cu foam is proposed to enhance the safety and electrochemical performance of Li metal anodes. An ingenious strategy of releasing Cu ions from Cu foam in the presence of organic ligands is implemented successfully to achieve the coordination polymer precursor, resulting in the coexistence of massive lithiophilic nitrogen‐containing functional groups, ZnO quantum dots and in situ grown carbon nanotubes (CNTs) in the LVCF, which is beneficial to avoiding the generation of harmful Li dendrites. Benefiting from the positive effects of the improved lithiophilicity, decreased local current density and relieved volume expansion, LVCF delivers an ultrastable Coulombic efficiency of 98.6% for 600 cycles at 1 mA cm–2 and an improved cycling lifespan of 1800 h for symmetric cells. Full cells comprising LVCF@Li anodes and LiFePO4 cathodes can deliver an ultrahigh capacity of 101.8 mAh g–1 (capacity retention ratio: 77.9%) after 900 cycles at 1 C and excellent rate performance. A 3D free‐standing and lithiophilic vertical cactus‐like framework, commercial Cu foam covered by an annealed Zn/Cu‐based precursor, is proposed as the current collector of Li metal anode. Massive lithiophilic sites (ZnO quantum dots and nitrogen containing groups) and in situ grown carbon nanotubes play a significant role in the suppression of Li dendrites. Detrimental dendritic lithium (Li) growth, infinite volume expansion of Li deposition and inevitable excess electrolyte consumption have always impeded the successful application of Li metal anodes. Herein, a unique lithiophilic vertical cactus‐like framework (LVCF) derived from a Zn/Cu‐based coordination polymer through in situ chemical etching of Cu foam is proposed to enhance the safety and electrochemical performance of Li metal anodes. An ingenious strategy of releasing Cu ions from Cu foam in the presence of organic ligands is implemented successfully to achieve the coordination polymer precursor, resulting in the coexistence of massive lithiophilic nitrogen‐containing functional groups, ZnO quantum dots and in situ grown carbon nanotubes (CNTs) in the LVCF, which is beneficial to avoiding the generation of harmful Li dendrites. Benefiting from the positive effects of the improved lithiophilicity, decreased local current density and relieved volume expansion, LVCF delivers an ultrastable Coulombic efficiency of 98.6% for 600 cycles at 1 mA cm–2 and an improved cycling lifespan of 1800 h for symmetric cells. Full cells comprising LVCF@Li anodes and LiFePO4 cathodes can deliver an ultrahigh capacity of 101.8 mAh g–1 (capacity retention ratio: 77.9%) after 900 cycles at 1 C and excellent rate performance. |
Author | Liu, Hao Lv, Li‐Ping Du, Fei‐Hu Liu, Tiancun Chen, Shuangqiang Wang, Yong Sun, Weiwei |
Author_xml | – sequence: 1 givenname: Tiancun surname: Liu fullname: Liu, Tiancun organization: Shanghai University – sequence: 2 givenname: Shuangqiang orcidid: 0000-0002-9111-1691 surname: Chen fullname: Chen, Shuangqiang organization: Shanghai University – sequence: 3 givenname: Weiwei surname: Sun fullname: Sun, Weiwei organization: Shanghai University – sequence: 4 givenname: Li‐Ping surname: Lv fullname: Lv, Li‐Ping organization: Shanghai University – sequence: 5 givenname: Fei‐Hu surname: Du fullname: Du, Fei‐Hu organization: Shanghai University – sequence: 6 givenname: Hao surname: Liu fullname: Liu, Hao organization: Shanghai University – sequence: 7 givenname: Yong orcidid: 0000-0003-3489-7672 surname: Wang fullname: Wang, Yong email: yongwang@shu.edu.cn organization: Shanghai University |
BookMark | eNqFkd9q2zAUh8VoYf2z210Ldp30SLZl5zJxm62QskHbUXpjZPkoVmNbqSSv5G6P0Ffoq_VJ6iajg8HolQ7i-85P4ndI9jrbISGfGYwZAD-RlW7HHDhAlrD4AzlggolRBDzbe5vZzUdy6P0dAEvTKD4gTwsTamPXtWmMoj_RBaNkQ3OpQu-ffz8uzArp3MkWH6xb0VN05hdWVDvb0rw_ue0GZib9cJVb6yrTyWBsR3_YZtOio6F2tl_W9Lyjlyb0NK-x3QacBVWbbkm1dfQyyLJBun1J39ILDAMwkyEMYeiPyb6WjcdPf84jcj0_u8q_jRbfv57n08VIRYmIRzoqldTpJBaRZCpJUMRxBSBYwkrGVFQKwSUvIQUdSazSNBY8g2zAVKZVCdER-bLbu3b2vkcfijvbu26ILHgCE86TJM0GKt5RylnvHepCmbD9c3DSNAWD4rWM4rWM4q2MQRv_o62daaXb_F-Y7IQH0-DmHbqYns4v_rov-LCi0w |
CitedBy_id | crossref_primary_10_1016_j_nxener_2024_100237 crossref_primary_10_3390_batteries10110405 crossref_primary_10_26599_NRE_2023_9120048 crossref_primary_10_1002_smll_202207764 crossref_primary_10_1002_adma_202201801 crossref_primary_10_1002_advs_202101111 crossref_primary_10_1002_chem_202304152 crossref_primary_10_1002_anie_202409436 crossref_primary_10_1002_adfm_202409812 crossref_primary_10_1016_j_jpowsour_2024_235392 crossref_primary_10_1002_slct_202201311 crossref_primary_10_1002_ange_202409436 crossref_primary_10_1002_anie_202320259 crossref_primary_10_1021_acs_energyfuels_1c00643 crossref_primary_10_1016_j_nanoen_2022_106937 crossref_primary_10_1039_D1SE01132D crossref_primary_10_1016_j_cej_2021_132510 crossref_primary_10_1002_aenm_202204002 crossref_primary_10_1134_S0036023624601491 crossref_primary_10_1016_j_jcis_2024_07_057 crossref_primary_10_1039_D2CP04032H crossref_primary_10_1002_advs_202300860 crossref_primary_10_1016_j_jallcom_2023_170230 crossref_primary_10_1016_j_jcis_2021_11_059 crossref_primary_10_1021_acsenergylett_3c02752 crossref_primary_10_1016_j_cej_2023_143497 crossref_primary_10_1063_5_0075283 crossref_primary_10_1007_s41918_022_00158_2 crossref_primary_10_1021_acsmaterialslett_2c00443 crossref_primary_10_1021_acsami_3c00379 crossref_primary_10_1002_adfm_202213770 crossref_primary_10_1021_acsami_4c15406 crossref_primary_10_1007_s12274_022_5089_5 crossref_primary_10_1021_acsnano_2c09037 crossref_primary_10_1007_s40843_021_1764_x crossref_primary_10_1039_D3DT00260H crossref_primary_10_1002_ange_202320259 crossref_primary_10_1002_cjoc_202200816 crossref_primary_10_1002_adma_202210130 crossref_primary_10_1007_s12598_023_02477_9 crossref_primary_10_1039_D2TA01536F |
Cites_doi | 10.1002/adma.201808392 10.1016/j.jpowsour.2019.02.033 10.1002/adma.201805654 10.1016/j.colsurfa.2014.10.023 10.1016/j.ensm.2020.04.022 10.1002/ange.202002711 10.1002/aenm.201804019 10.1002/adfm.202000786 10.1038/nnano.2017.16 10.1002/aenm.202001479 10.1039/c1cc15525c 10.1016/j.nanoen.2019.04.087 10.1038/s41467-017-00519-2 10.1002/advs.201901433 10.1021/jacs.9b02448 10.1039/c2ce26847g 10.1002/adma.201706216 10.1038/s41467-019-08767-0 10.1038/ncomms15106 10.1021/jp3079327 10.1039/C4CY01505C 10.1002/adma.201604460 10.1002/adfm.201909159 10.1126/sciadv.aau5655 10.1002/smtd.201800035 10.1002/anie.201702099 10.1002/anie.201710806 10.1002/anie.201812523 10.1039/C5RA04033G 10.1016/j.ensm.2019.01.009 10.1016/S0010-938X(02)00021-5 10.1002/adfm.201908075 10.1016/j.synthmet.2017.01.010 10.1002/aenm.201600811 10.1021/jacs.9b00543 10.1016/j.cej.2020.124848 10.1039/C9CE01285K 10.1039/C8TA12511B 10.1002/adfm.201907717 10.1016/j.ensm.2020.07.007 10.1021/jacs.7b06437 10.1073/pnas.1618871114 10.1016/j.ensm.2018.10.015 10.1038/nmat3191 10.1016/j.nanoen.2017.11.032 10.1016/j.micromeso.2013.10.003 10.1021/acsaem.9b00573 10.1038/s41565-019-0427-9 10.1039/C9CC08478A 10.1039/C7SC00668C |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202008514 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202008514 ADFM202008514 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 52073170; 21975154 – fundername: Shanghai Municipal Education Commission funderid: 2019‐01‐07‐00‐09‐E00021 – fundername: Innovative Research Team of High‐level Local Universities in Shanghai |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3564-f3bcaf79463a1c55e644d006151b11c3b662a2b070f3aed77462808e64c8fcb03 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sun Jul 13 04:42:30 EDT 2025 Tue Jul 01 04:12:23 EDT 2025 Thu Apr 24 23:06:04 EDT 2025 Wed Jan 22 16:29:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3564-f3bcaf79463a1c55e644d006151b11c3b662a2b070f3aed77462808e64c8fcb03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9111-1691 0000-0003-3489-7672 |
PQID | 2509225578 |
PQPubID | 2045204 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2509225578 crossref_citationtrail_10_1002_adfm_202008514 crossref_primary_10_1002_adfm_202008514 wiley_primary_10_1002_adfm_202008514_ADFM202008514 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 1, 2021 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 1, 2021 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2017; 8 2019; 9 2015; 5 2019; 6 2019; 5 2019; 31 2019; 30 2019; 2 2019; 10 2015; 465 2019; 14 2019; 58 2019; 19 2019; 18 2017; 29 2020; 56 2020; 10 2020; 32 2019; 141 2018; 43 2012; 11 2017; 114 2017; 139 2016; 6 2013; 15 2018; 2 2019; 62 2020; 394 2020; 30 2019; 419 2020; 132 2017; 12 2002; 44 2017; 56 2013; 117 2018; 30 2014; 184 2020; 22 2011; 47 2017; 226 2018; 57 2020; 29 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_50_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 14 start-page: 594 year: 2019 publication-title: Nat. Nanotechnol. – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 29 start-page: 332 year: 2020 publication-title: Energy Storage Mater. – volume: 43 start-page: 368 year: 2018 publication-title: Nano Energy – volume: 8 start-page: 336 year: 2017 publication-title: Nat. Commun. – volume: 56 start-page: 1980 year: 2020 publication-title: Chem. Commun. – volume: 2 start-page: 4379 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 184 start-page: 55 year: 2014 publication-title: Microporous Mesoporous Mater. – volume: 114 start-page: 3584 year: 2017 publication-title: Proc. Natl. Acad. Sci., USA – volume: 226 start-page: 39 year: 2017 publication-title: Synth. Met. – volume: 5 start-page: 1829 year: 2015 publication-title: Catal. Sci. Technol. – volume: 10 start-page: 900 year: 2019 publication-title: Nat. Commun. – volume: 19 start-page: 24 year: 2019 publication-title: Energy Storage Mater. – volume: 419 start-page: 72 year: 2019 publication-title: J. Power Sources – volume: 32 start-page: 261 year: 2020 publication-title: Energy Storage Mater. – volume: 11 start-page: 19 year: 2012 publication-title: Nat. Mater. – volume: 62 start-page: 55 year: 2019 publication-title: Nano Energy – volume: 2 year: 2018 publication-title: Small Methods – volume: 44 start-page: 2507 year: 2002 publication-title: Corros. Sci. – volume: 12 start-page: 194 year: 2017 publication-title: Nat. Nanotechnol. – volume: 56 start-page: 7764 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 8460 year: 2019 publication-title: J. Mater. Chem. A – volume: 47 year: 2011 publication-title: Chem. Commun. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 57 start-page: 1505 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 141 start-page: 5880 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 15 start-page: 1794 year: 2013 publication-title: CrystEngComm – volume: 394 year: 2020 publication-title: Chem. Eng. J. – volume: 465 start-page: 67 year: 2015 publication-title: Colloids Surf. A – volume: 117 start-page: 2590 year: 2013 publication-title: J. Phys. Chem. C – volume: 132 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 30 year: 2019 publication-title: Adv. Funct. Mater. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 8 start-page: 4285 year: 2017 publication-title: Chem. Sci. – volume: 18 start-page: 382 year: 2019 publication-title: Energy Storage Mater. – volume: 22 start-page: 320 year: 2020 publication-title: CrystEngComm – volume: 19 year: 2019 publication-title: Adv. Mater. – volume: 58 start-page: 3092 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 141 start-page: 7518 year: 2019 publication-title: J. Am. Chem. Soc. – ident: e_1_2_8_11_1 doi: 10.1002/adma.201808392 – ident: e_1_2_8_9_1 doi: 10.1016/j.jpowsour.2019.02.033 – ident: e_1_2_8_35_1 doi: 10.1002/adma.201805654 – ident: e_1_2_8_43_1 doi: 10.1016/j.colsurfa.2014.10.023 – ident: e_1_2_8_36_1 doi: 10.1016/j.ensm.2020.04.022 – ident: e_1_2_8_24_1 doi: 10.1002/ange.202002711 – ident: e_1_2_8_6_1 doi: 10.1002/aenm.201804019 – ident: e_1_2_8_28_1 doi: 10.1002/adfm.202000786 – ident: e_1_2_8_1_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_8_19_1 doi: 10.1002/aenm.202001479 – ident: e_1_2_8_41_1 doi: 10.1039/c1cc15525c – ident: e_1_2_8_33_1 doi: 10.1016/j.nanoen.2019.04.087 – ident: e_1_2_8_22_1 doi: 10.1038/s41467-017-00519-2 – ident: e_1_2_8_32_1 doi: 10.1002/advs.201901433 – ident: e_1_2_8_21_1 doi: 10.1021/jacs.9b02448 – ident: e_1_2_8_39_1 doi: 10.1039/c2ce26847g – ident: e_1_2_8_29_1 doi: 10.1002/adma.201706216 – ident: e_1_2_8_13_1 doi: 10.1038/s41467-019-08767-0 – ident: e_1_2_8_3_1 doi: 10.1038/ncomms15106 – ident: e_1_2_8_49_1 doi: 10.1021/jp3079327 – ident: e_1_2_8_40_1 doi: 10.1039/C4CY01505C – ident: e_1_2_8_23_1 doi: 10.1002/adma.201604460 – ident: e_1_2_8_46_1 doi: 10.1002/adfm.201909159 – ident: e_1_2_8_14_1 doi: 10.1126/sciadv.aau5655 – ident: e_1_2_8_16_1 doi: 10.1002/smtd.201800035 – ident: e_1_2_8_47_1 doi: 10.1002/anie.201702099 – ident: e_1_2_8_12_1 doi: 10.1002/anie.201710806 – ident: e_1_2_8_30_1 doi: 10.1002/anie.201812523 – ident: e_1_2_8_38_1 doi: 10.1039/C5RA04033G – ident: e_1_2_8_10_1 doi: 10.1016/j.ensm.2019.01.009 – ident: e_1_2_8_37_1 doi: 10.1016/S0010-938X(02)00021-5 – ident: e_1_2_8_25_1 doi: 10.1002/adfm.201908075 – ident: e_1_2_8_48_1 doi: 10.1016/j.synthmet.2017.01.010 – ident: e_1_2_8_4_1 doi: 10.1002/aenm.201600811 – ident: e_1_2_8_20_1 doi: 10.1021/jacs.9b00543 – ident: e_1_2_8_34_1 doi: 10.1016/j.cej.2020.124848 – ident: e_1_2_8_45_1 doi: 10.1039/C9CE01285K – ident: e_1_2_8_44_1 doi: 10.1039/C8TA12511B – ident: e_1_2_8_8_1 doi: 10.1002/adfm.201907717 – ident: e_1_2_8_27_1 doi: 10.1016/j.ensm.2020.07.007 – ident: e_1_2_8_7_1 doi: 10.1021/jacs.7b06437 – ident: e_1_2_8_5_1 doi: 10.1073/pnas.1618871114 – ident: e_1_2_8_17_1 doi: 10.1016/j.ensm.2018.10.015 – ident: e_1_2_8_2_1 doi: 10.1038/nmat3191 – ident: e_1_2_8_15_1 doi: 10.1016/j.nanoen.2017.11.032 – ident: e_1_2_8_42_1 doi: 10.1016/j.micromeso.2013.10.003 – ident: e_1_2_8_31_1 doi: 10.1021/acsaem.9b00573 – ident: e_1_2_8_26_1 doi: 10.1038/s41565-019-0427-9 – ident: e_1_2_8_50_1 doi: 10.1039/C9CC08478A – ident: e_1_2_8_18_1 doi: 10.1039/C7SC00668C |
SSID | ssj0017734 |
Score | 2.549304 |
Snippet | Detrimental dendritic lithium (Li) growth, infinite volume expansion of Li deposition and inevitable excess electrolyte consumption have always impeded the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anodes Carbon nanotubes Chemical etching Coordination polymers Electrochemical analysis Electrolytic cells Functional groups in situ chemical etching Li metal batteries lithiophilic frameworks Lithium batteries Local current Materials science Metal foams Polymers Prepolymers Quantum dots Zinc oxide |
Title | Lithiophilic Vertical Cactus‐Like Framework Derived from Cu/Zn‐Based Coordination Polymer through In Situ Chemical Etching for Stable Lithium Metal Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202008514 https://www.proquest.com/docview/2509225578 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqeikH-ovYlqI5VOopbOz87nG7y4pWu1VVSrXiEtmOLSKWLGKTSnDqI_QV-mp9ko7tJCyVUCU4JpqJEtsz89n5_JmQdyoSTA506GkmEi8MVeylVDJvoJXC-uzr0C64zT7Hh8fhp3k0X9vF7_QhugU3Exk2X5sA52LVvxEN5bk2O8mZBQ1GENQQtgwq-trpR9Ekcb-VY2oIXnTeqjb6rH_b_XZVuoGa64DVVpzJU8Lbd3VEk7P9uhL78vofGceHfMwzstXAURi68fOcPFLlC7K5JlL4kvyeFtVpsbwwKy8SvlseNrqMuKzq1Z-fv6bFmYJJy_GCMbr9UDmYfSswqvsnJdp8wFqZw2iJM93CLT_Cl-Xi6lxdQnNQEHws4aioamgVDOCgsjRPQFQNCInFQoF9k_ocZgqnDOCkQXGm_4ocTw6-jQ695mAHTwZRjOMiEJJrI20fcCqjSCEoyx24EpTKQMQx40xgNtIBVzki1JilfopmMtVS-ME22SiXpdohkOdU-0rpKGE65JSnQoRhwCTjeDuNkx7x2o7NZKN6bg7fWGROr5llpumzrul75H1nf-H0Pu603G3HSdbE_SpDQDnADIlpsEeY7fD_PCUbjiez7ur1fZzekCfMEG0snWiXbFSXtXqLSKkSe-TxcDybHu3ZqPgLrKAP6A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO5V9sKTAHEKd0E-d3DxzKble7dLdC0KIVl9R2bBF1m626CaiceARegUfgVXgEnoRx_toiISSkHjgmGluOPeP5PBl_A_BU-YLJnvYszURoeZ4KrMiRzOpppcg_29orA27T3WC0772a-bMV-N7chan4IdqAm7GMcr82Bm4C0t0z1lCeaHOVnJWowavzKnfU6Sc6tS1fjAe0xM8YG27v9UdWXVjAkq4f0LhcIbk21Ooud6TvKwIFSeXcheNIVwQB40yQNWiXq4QQUsAiOyIxGWkpbJf6vQJXTRlxQ9c_eNMyVjlhWP3IDhyTUubMGp5Im3UvjveiHzwDt-chcunjhjfhRzM7VWrL4WaRi035-TfiyP9q-m7BWo24casykduworI7cOMcD-Nd-DZJ8w_p4tgElyS-K1PNqUmfy7xY_vzydZIeKhw2aWw4oGYfVYLmag72i-77jGReEhxIsL-g70qrCCu-XsxPj9QJ1rWQcJzh2zQvsCFpwO28zGRFOjggoX4xV1iOpDjCqaJTEVbsp6la3oP9S5mj-7CaLTL1ADBJHG0rpf2QaY87PBLC81wmGafXURB2wGo0KZY1sbupLzKPK0pqFpuljtul7sDzVv64ojT5o-RGo5hxvbUtY8LMPXICtNN3gJUa9pde4q3BcNo-rf9LoydwbbQ3ncST8e7OQ7jOXL_OntqA1fykUI8IGObicWmKCAeXrby_APVCasg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKkRAcyr_YUmAOIE7pJo7zswcOZdOoS3erCihacUljxxZRt9lVNwGVE4_AK_AGvAqvwJMwdn7aIiEkpB44Jhpbjj3j-TwZf0PIU-lxKgaKWYrywGJM-lboCGoNlJTon23FTMBtsufvHLBXU2-6Qr63d2Fqfogu4KYtw-zX2sAXmeqfkYammdI3yakBDaxJq9yVp5_w0LZ8MYpwhZ9RGm-_He5YTV0BS7iej8NyuUiVZlZ3U0d4nkRMkNW-nTuOcLnv05RyNAblpjJDgOTT0A5RTIRKcNvFfq-Qq8y3B7pYRPS6I6xygqD-j-07OqPMmbY0kTbtXxzvRTd4hm3PI2Tj4uKb5Ec7OXVmy9FmVfJN8fk33sj_afZukbUGb8NWbSC3yYos7pAb51gY75Jv47z8kM8XOrQk4J1JNMcmw1SU1fLnl6_j_EhC3CaxQYTNPsoM9MUcGFb99wXKvEQwkMFwjt-V1_FV2J_PTo_lCTSVkGBUwJu8rKClaIDt0uSxAh4bADE_n0kwI6mOYSLxTAQ192kul_fIwaXM0X2yWswL-YBAljnKllJ5AVUsddKQc8ZcKmiKr0M_6BGrVaRENLTuurrILKkJqWmilzrplrpHnnfyi5rQ5I-SG61eJs3GtkwQMQ_QBeA-3yPUKNhfekm2onjSPa3_S6Mn5Np-FCfj0d7uQ3Kd6qQikzq1QVbLk0o-QlRY8sfGEIEcXrbu_gIr_mlu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithiophilic+Vertical+Cactus%E2%80%90Like+Framework+Derived+from+Cu%2FZn%E2%80%90Based+Coordination+Polymer+through+In+Situ+Chemical+Etching+for+Stable+Lithium+Metal+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Liu%2C+Tiancun&rft.au=Chen%2C+Shuangqiang&rft.au=Sun%2C+Weiwei&rft.au=Li%E2%80%90Ping+Lv&rft.date=2021-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=14&rft_id=info:doi/10.1002%2Fadfm.202008514&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |