Estimated infiltration parameters and manning roughness in border irrigation

Based on the volume balance (VB) equation, the surface water profile was shown to be a power function and Philip equation equal to the Kostiakov–Lewis equation when the infiltration parameter a = 0.5. With this assumption, an equation was proposed for estimating infiltration parameters together with...

Full description

Saved in:
Bibliographic Details
Published inIrrigation and drainage Vol. 61; no. 2; pp. 231 - 239
Main Authors Weibo, Nie, Liangjun, Fei, Xiaoyi, Ma
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.04.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Based on the volume balance (VB) equation, the surface water profile was shown to be a power function and Philip equation equal to the Kostiakov–Lewis equation when the infiltration parameter a = 0.5. With this assumption, an equation was proposed for estimating infiltration parameters together with Manning roughness. The method requires only multi‐point water advance data of border irrigation. Solving the equation requires use of the nonlinear least‐squares fitting technique by Matlab software. The proposed method was validated with field experimental data and some reported border tests. The solution procedure was analysed, the results showing that the values of infiltration parameters S and A are not changed, but Manning roughness n varies when σh were given different values (0.70, 0.75, 0.80, respectively). Alternative measures of subsurface water storage and water advance trajectory were used to validate the method. Errors between measured and estimated were 2.0–13% for subsurface water storage, in which the infiltration parameters S and A were estimated with the proposed method. The maximum average absolute error was 6.07% for water advance in all border tests when different Manning roughness n was used (for an n value was estimated when different the shape factor of surface profile σh values were adopt by the proposed method in this paper).
AbstractList ABSTRACT Based on the volume balance (VB) equation, the surface water profile was shown to be a power function and Philip equation equal to the Kostiakov–Lewis equation when the infiltration parameter a = 0.5. With this assumption, an equation was proposed for estimating infiltration parameters together with Manning roughness. The method requires only multi‐point water advance data of border irrigation. Solving the equation requires use of the nonlinear least‐squares fitting technique by Matlab software. The proposed method was validated with field experimental data and some reported border tests. The solution procedure was analysed, the results showing that the values of infiltration parameters S and A are not changed, but Manning roughness n varies when σh were given different values (0.70, 0.75, 0.80, respectively). Alternative measures of subsurface water storage and water advance trajectory were used to validate the method. Errors between measured and estimated were 2.0–13% for subsurface water storage, in which the infiltration parameters S and A were estimated with the proposed method. The maximum average absolute error was 6.07% for water advance in all border tests when different Manning roughness n was used (for an n value was estimated when different the shape factor of surface profile σh values were adopt by the proposed method in this paper). Copyright © 2011 John Wiley & Sons, Ltd. RÉSUMÉ En se basant sur l'équation du volume de l'équilibre (VB), il a été montré que le profil de la surface de l'eau dans le cas de l'irrigation en planches est une fonction puissance, et que l'équation de Philip est égale à l'équation de Lewis–Kostiakov quand le paramètre d'infiltration a vaut 0,5. Avec cette hypothèse, une équation a été proposée pour estimer les paramètres d'infiltration en même temps que la rugosité de Manning. La méthode ne nécessite que des données sur l'avancement de la lame d'eau sur les planches d'irrigation. Cette équation a été résolue dans le logiciel Matlab par la méthode non linéaire des moindres carrées. La méthode proposée a été validée avec des données expérimentales de terrain et des données d'essais sur des planches d'irrigation qui nous ont été rapportés. La procédure de résolution a été analysée, et les résultats ont montré que les valeurs des paramètres d'infiltration S et A ne sont pas modifiés, alors que la rugosité de Manning n varie avec σh (σh: coefficient de forme du profil d'infiltration prenant les valeurs de 0,70, 0,75, 0,80, respectivement). D'autres mesures de stockage de l'eau dans le sol et de suivi du front d'humectation ont été utilisées pour valider la méthode. Les erreurs sur le stockage de l'eau dans le sol entre les données mesurées et estimées sont de 2,0 à 13%, les paramètres d'infiltration S et A ayant été estimés par la méthode proposée. L'erreur moyenne maximale absolue sur l'avancement de l'eau sur les planches n'était que de 6,07% pour différents coefficients de rugosité de Manning (et estimés selon les différents coefficients de forme σh utilisés ici). Copyright © 2011 John Wiley & Sons, Ltd.
Based on the volume balance (VB) equation, the surface water profile was shown to be a power function and Philip equation equal to the Kostiakov–Lewis equation when the infiltration parameter a = 0.5. With this assumption, an equation was proposed for estimating infiltration parameters together with Manning roughness. The method requires only multi‐point water advance data of border irrigation. Solving the equation requires use of the nonlinear least‐squares fitting technique by Matlab software. The proposed method was validated with field experimental data and some reported border tests. The solution procedure was analysed, the results showing that the values of infiltration parameters S and A are not changed, but Manning roughness n varies when σh were given different values (0.70, 0.75, 0.80, respectively). Alternative measures of subsurface water storage and water advance trajectory were used to validate the method. Errors between measured and estimated were 2.0–13% for subsurface water storage, in which the infiltration parameters S and A were estimated with the proposed method. The maximum average absolute error was 6.07% for water advance in all border tests when different Manning roughness n was used (for an n value was estimated when different the shape factor of surface profile σh values were adopt by the proposed method in this paper).
Based on the volume balance (VB) equation, the surface water profile was shown to be a power function and Philip equation equal to the Kostiakov–Lewis equation when the infiltration parameter a  = 0.5. With this assumption, an equation was proposed for estimating infiltration parameters together with Manning roughness. The method requires only multi‐point water advance data of border irrigation. Solving the equation requires use of the nonlinear least‐squares fitting technique by Matlab software. The proposed method was validated with field experimental data and some reported border tests. The solution procedure was analysed, the results showing that the values of infiltration parameters S and A are not changed, but Manning roughness n varies when σ h were given different values (0.70, 0.75, 0.80, respectively). Alternative measures of subsurface water storage and water advance trajectory were used to validate the method. Errors between measured and estimated were 2.0–13% for subsurface water storage, in which the infiltration parameters S and A were estimated with the proposed method. The maximum average absolute error was 6.07% for water advance in all border tests when different Manning roughness n was used (for an n value was estimated when different the shape factor of surface profile σ h values were adopt by the proposed method in this paper). Copyright © 2011 John Wiley & Sons, Ltd. En se basant sur l'équation du volume de l'équilibre (VB), il a été montré que le profil de la surface de l'eau dans le cas de l'irrigation en planches est une fonction puissance, et que l'équation de Philip est égale à l'équation de Lewis–Kostiakov quand le paramètre d'infiltration a vaut 0,5. Avec cette hypothèse, une équation a été proposée pour estimer les paramètres d'infiltration en même temps que la rugosité de Manning. La méthode ne nécessite que des données sur l'avancement de la lame d'eau sur les planches d'irrigation. Cette équation a été résolue dans le logiciel Matlab par la méthode non linéaire des moindres carrées. La méthode proposée a été validée avec des données expérimentales de terrain et des données d'essais sur des planches d'irrigation qui nous ont été rapportés. La procédure de résolution a été analysée, et les résultats ont montré que les valeurs des paramètres d'infiltration S et A ne sont pas modifiés, alors que la rugosité de Manning n varie avec σh (σh: coefficient de forme du profil d'infiltration prenant les valeurs de 0,70, 0,75, 0,80, respectivement). D'autres mesures de stockage de l'eau dans le sol et de suivi du front d'humectation ont été utilisées pour valider la méthode. Les erreurs sur le stockage de l'eau dans le sol entre les données mesurées et estimées sont de 2,0 à 13%, les paramètres d'infiltration S et A ayant été estimés par la méthode proposée. L'erreur moyenne maximale absolue sur l'avancement de l'eau sur les planches n'était que de 6,07% pour différents coefficients de rugosité de Manning (et estimés selon les différents coefficients de forme σh utilisés ici). Copyright © 2011 John Wiley & Sons, Ltd.
Author Liangjun, Fei
Weibo, Nie
Xiaoyi, Ma
Author_xml – sequence: 1
  fullname: Weibo, Nie
– sequence: 2
  fullname: Liangjun, Fei
– sequence: 3
  fullname: Xiaoyi, Ma
BookMark eNp10N9PwjAQB_DGYCKg8U9wb5qYYbuu3fZoAIGE-AuJiS9N6dpZHR22I8p_b2GGB6NPdw-fu9x9O6BlKiMBOEWwhyCMrrTNezSKD0AbEYxCiClq7XuCj0DHuTcIYZZFSRtMh67WS17LPNBG6bK2vNaVCVbc8qWspXUBN3mw5MZoUwS2WhevRjrndbCobC5toK3VxW7qGBwqXjp58lO7YH4zfOqPw-ndaNK_noYCExqHKZJqgfMkIZSmWQqFwDHFPFVxjKhEESEUpnghqOJciTSGVGElEOQ4SkkiIO6Ci2bvylYfa-lqttROyLLkRlZrxxDEnkZZtKVhQ4WtnLNSMaHr3bH-U116yrapMZ8a86l5f_7Lr6zPx27-kJeN_NSl3PzH2ORx0OifO7Sr5ddec_vOaIITwp5vR2x0_zJ-gOMBm3l_1njFK8YLqx2bzyKIMEQZyVCW4G8DzpVH
CitedBy_id crossref_primary_10_1002_ird_2875
crossref_primary_10_1007_s12517_021_06505_9
crossref_primary_10_1002_ird_3087
crossref_primary_10_1007_s13201_024_02334_9
crossref_primary_10_3390_w10111581
crossref_primary_10_3390_w10121825
crossref_primary_10_1007_s12517_021_07716_w
crossref_primary_10_1007_s12517_021_07746_4
crossref_primary_10_1016_j_biosystemseng_2015_05_010
crossref_primary_10_1002_ird_2724
crossref_primary_10_3390_w10010067
crossref_primary_10_1002_ird_2726
crossref_primary_10_1016_j_agwat_2020_106497
crossref_primary_10_1016_j_agwat_2020_106575
Cites_doi 10.1006/bioe.2002.0088
10.1016/0378-3774(90)90033-U
10.1061/(ASCE)0733-9437(1995)121:1(57)
10.13031/2013.33542
10.1016/0378-3774(88)90129-1
10.13031/2013.28351
10.1007/s002719900006
10.1061/(ASCE)IR.1943-4774.0000059
10.1016/S0378-3774(00)00139-6
10.1016/S0378-3774(01)00128-7
10.1061/(ASCE)IR.1943-4774.0000092
10.1061/(ASCE)0733-9437(1997)123:4(307)
10.1007/s00271-006-0037-9
10.1061/(ASCE)0733-9437(1997)123:6(415)
10.1061/(ASCE)0733-9437(1989)115:6(982)
10.1061/(ASCE)0733-9437(1993)119:5(768)
10.1016/S0378-3774(97)00007-3
10.1016/S0378-3774(02)00163-4
10.1061/(ASCE)0733-9437(1990)116:5(676)
ContentType Journal Article
Copyright Copyright © 2011 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2011 John Wiley & Sons, Ltd.
DBID FBQ
BSCLL
AAYXX
CITATION
7S9
L.6
DOI 10.1002/ird.624
DatabaseName AGRIS
Istex
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
CrossRef

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 1531-0361
EndPage 239
ExternalDocumentID 10_1002_ird_624
IRD624
ark_67375_WNG_GPZHQ0HD_S
US201301959197
Genre article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
– fundername: Natural Science Foundation of Shaanxi
  funderid: 2010JQ7010
– fundername: Natural Science Foundation of China
  funderid: 5057906451079121
– fundername: Xi'an University of Technology
  funderid: 106‐210916
GroupedDBID ..I
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EDH
EJD
F00
F01
F04
FBQ
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7S9
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
L.6
ID FETCH-LOGICAL-c3564-81efb3d775668980cc3463a8f4416e12556083bc6faafc8406f3fc10a32857c03
IEDL.DBID DR2
ISSN 1531-0353
IngestDate Fri Jul 11 18:34:21 EDT 2025
Tue Jul 01 00:58:17 EDT 2025
Thu Apr 24 22:50:45 EDT 2025
Wed Jan 22 16:48:39 EST 2025
Wed Oct 30 09:51:42 EDT 2024
Wed Dec 27 19:19:08 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3564-81efb3d775668980cc3463a8f4416e12556083bc6faafc8406f3fc10a32857c03
Notes http://dx.doi.org/10.1002/ird.624
Natural Science Foundation of Shaanxi - No. 2010JQ7010
ark:/67375/WNG-GPZHQ0HD-S
Irrigation en planches : estimation des paramètres d'infiltration et de rugosité de Manning.
ArticleID:IRD624
Natural Science Foundation of China - No. 5057906451079121
China Postdoctoral Science Foundation
istex:39F5C4B9B8AB87767A5BA6C22EB22538F7C6F337
Xi'an University of Technology - No. 106-210916
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1033282920
PQPubID 24069
PageCount 9
ParticipantIDs proquest_miscellaneous_1033282920
crossref_citationtrail_10_1002_ird_624
crossref_primary_10_1002_ird_624
wiley_primary_10_1002_ird_624_IRD624
istex_primary_ark_67375_WNG_GPZHQ0HD_S
fao_agris_US201301959197
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2012
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: April 2012
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Irrigation and drainage
PublicationTitleAlternate Irrig. and Drain
PublicationYear 2012
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Elliott RL, Walker WR. 1982. Field evaluation of furrow infiltrating and advance functions. Transactions of the ASAE 25(2): 396-400.
Valiantzas JD. 2000. Surface water storage independent equation for predicting furrow irrigation advance. Irrigation Science 19(3): 115-123.
Wang WH, Jiao XY, Peng SZ, Ma HY. 2007. Linear regression approach for estimating soil infiltration parameters of border irrigation. Journal of Hydraulic Engineering 38(4): 468-472.
Alvarez JAR. 2003. Estimation of advance and infiltration equations in furrow irrigation for untested discharges. Agricultural Water Management 60(3): 227-239.
Li Z, Zhang JT. 2001. Calculation of field Manning's roughness coefficient. Agricultural Water Management 49(2): 153-161.
Yu FX, Singh VP. 1989. Analytical model for border irrigation. Journal of Irrigation and Drainage Engineering ASCE 115(6): 982-999.
Gillies MH, Smith RJ, Raine SR. 2007. Accounting for temporal inflow variation in the inverse solution for infiltration in surface irrigation. Irrigation Science 25(2): 87-97.
Hatun-ur-Rashid. 1990. Estimation of Manning's roughness coefficient for basin and border irrigation. Agricultural Water Management 18(1): 29-32.
Valiantzas JD, Aggelides S, Sassalou A. 2001. Furrow infiltration estimation from time to a single advance point. Agricultural Water Management 52(1): 17-32.
Maihol JC, Gonzalze JM. 1993. Furrow irrigation model for real-time applications on cracking soils. Journal of Irrigation and Drainage Engineering ASCE 119(5): 768-783.
Wang QJ, Wang WY, Zhang JH, Ding XL. 2005. Determination of Philip infiltration parameter and Manning roughness according to hydraulic factors in the advance of irrigation water. Journal of Hydraulic Engineering 36(1): 125-128.
Zhou ZM, Liu Y. 2005. Simplified water advance calculation model for border irrigation. Journal of Irrigation and Drainage 24(2): 24-26.
Renault D, Wallender WW. 1997. Surface storage in furrow irrigation evaluation. Journal of Irrigation and Drainage Engineering ASCE 123(6): 415-422.
Clemmens AJ. 2009a. Errors in surface irrigation evaluation from incorrect model assumptions. Journal of Irrigation and Drainage Engineering ASCE 135(5): 556-565.
Maheshwari BL. 1988. An optimization technique for estimating infiltration characteristics in border irrigation. Agricultural Water Management 13(1): 13-24.
Valiantzas JD. 1997. Volume balance irrigation advance equation: variation of surface shape factor. Journal of Irrigation and Drainage Engineering ASCE 123(4): 307-312.
Esfandiair M, Maheshwari BL. 1997. Application of the optimization method for estimating infiltration characteristics in furrow irrigation and comparison with other methods. Agricultural Water Management 34(2): 169-185.
Shepard JS, Wallender WW, Hofmans JW. 1993. One-point method for estimating furrow infiltration. Transactions of the ASAE 36(2): 395-404.
Clemmens AJ. 2009b. Toward physically based estimation of surface irrigation. Journal of Irrigation and Drainage Engineering ASCE 135(5): 588-596.
Katopodes ND, Trang, JH, Clemments AJ. 1990. Estimation of surface irrigation parameter. Journal of Irrigation and Drainage Engineering ASCE 116(5): 676-695.
Scaloppi EJ, Merkley GP, Willardson LS. 1995. Intake parameters from advance and wetting phases of surface irrigation. Journal of Irrigation and Drainage Engineering ASCE 121(1): 57-70.
Sepaskhah AR, Afshar-Chamanabad H. 2002. Determination of infiltration rate for every other furrow irrigation. Biosystems Engineering 82(4): 479-484.
2009b; 135
1993; 36
1982; 25
1990; 116
2000; 19
1993; 119
2009a; 135
1990; 18
1989; 115
1997; 34
1997; 123
1988; 13
2001; 49
2002; 82
2003
2003; 60
1995; 121
2007; 25
2001; 52
2005; 24
2005; 36
2007; 38
e_1_2_6_10_1
e_1_2_6_20_1
Wang WH (e_1_2_6_22_1) 2007; 38
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_19_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_3_1
e_1_2_6_11_1
Wang QJ (e_1_2_6_21_1) 2005; 36
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
Zhou ZM (e_1_2_6_24_1) 2005; 24
e_1_2_6_16_1
References_xml – reference: Maihol JC, Gonzalze JM. 1993. Furrow irrigation model for real-time applications on cracking soils. Journal of Irrigation and Drainage Engineering ASCE 119(5): 768-783.
– reference: Valiantzas JD. 2000. Surface water storage independent equation for predicting furrow irrigation advance. Irrigation Science 19(3): 115-123.
– reference: Clemmens AJ. 2009b. Toward physically based estimation of surface irrigation. Journal of Irrigation and Drainage Engineering ASCE 135(5): 588-596.
– reference: Valiantzas JD, Aggelides S, Sassalou A. 2001. Furrow infiltration estimation from time to a single advance point. Agricultural Water Management 52(1): 17-32.
– reference: Zhou ZM, Liu Y. 2005. Simplified water advance calculation model for border irrigation. Journal of Irrigation and Drainage 24(2): 24-26.
– reference: Shepard JS, Wallender WW, Hofmans JW. 1993. One-point method for estimating furrow infiltration. Transactions of the ASAE 36(2): 395-404.
– reference: Wang QJ, Wang WY, Zhang JH, Ding XL. 2005. Determination of Philip infiltration parameter and Manning roughness according to hydraulic factors in the advance of irrigation water. Journal of Hydraulic Engineering 36(1): 125-128.
– reference: Wang WH, Jiao XY, Peng SZ, Ma HY. 2007. Linear regression approach for estimating soil infiltration parameters of border irrigation. Journal of Hydraulic Engineering 38(4): 468-472.
– reference: Elliott RL, Walker WR. 1982. Field evaluation of furrow infiltrating and advance functions. Transactions of the ASAE 25(2): 396-400.
– reference: Valiantzas JD. 1997. Volume balance irrigation advance equation: variation of surface shape factor. Journal of Irrigation and Drainage Engineering ASCE 123(4): 307-312.
– reference: Clemmens AJ. 2009a. Errors in surface irrigation evaluation from incorrect model assumptions. Journal of Irrigation and Drainage Engineering ASCE 135(5): 556-565.
– reference: Li Z, Zhang JT. 2001. Calculation of field Manning's roughness coefficient. Agricultural Water Management 49(2): 153-161.
– reference: Renault D, Wallender WW. 1997. Surface storage in furrow irrigation evaluation. Journal of Irrigation and Drainage Engineering ASCE 123(6): 415-422.
– reference: Alvarez JAR. 2003. Estimation of advance and infiltration equations in furrow irrigation for untested discharges. Agricultural Water Management 60(3): 227-239.
– reference: Esfandiair M, Maheshwari BL. 1997. Application of the optimization method for estimating infiltration characteristics in furrow irrigation and comparison with other methods. Agricultural Water Management 34(2): 169-185.
– reference: Katopodes ND, Trang, JH, Clemments AJ. 1990. Estimation of surface irrigation parameter. Journal of Irrigation and Drainage Engineering ASCE 116(5): 676-695.
– reference: Hatun-ur-Rashid. 1990. Estimation of Manning's roughness coefficient for basin and border irrigation. Agricultural Water Management 18(1): 29-32.
– reference: Scaloppi EJ, Merkley GP, Willardson LS. 1995. Intake parameters from advance and wetting phases of surface irrigation. Journal of Irrigation and Drainage Engineering ASCE 121(1): 57-70.
– reference: Maheshwari BL. 1988. An optimization technique for estimating infiltration characteristics in border irrigation. Agricultural Water Management 13(1): 13-24.
– reference: Yu FX, Singh VP. 1989. Analytical model for border irrigation. Journal of Irrigation and Drainage Engineering ASCE 115(6): 982-999.
– reference: Gillies MH, Smith RJ, Raine SR. 2007. Accounting for temporal inflow variation in the inverse solution for infiltration in surface irrigation. Irrigation Science 25(2): 87-97.
– reference: Sepaskhah AR, Afshar-Chamanabad H. 2002. Determination of infiltration rate for every other furrow irrigation. Biosystems Engineering 82(4): 479-484.
– volume: 25
  start-page: 396
  issue: 2
  year: 1982
  end-page: 400
  article-title: Field evaluation of furrow infiltrating and advance functions
  publication-title: Transactions of the ASAE
– volume: 13
  start-page: 13
  issue: 1
  year: 1988
  end-page: 24
  article-title: An optimization technique for estimating infiltration characteristics in border irrigation
  publication-title: Agricultural Water Management
– volume: 115
  start-page: 982
  issue: 6
  year: 1989
  end-page: 999
  article-title: Analytical model for border irrigation
  publication-title: Journal of Irrigation and Drainage Engineering ASCE
– volume: 135
  start-page: 556
  issue: 5
  year: 2009a
  end-page: 565
  article-title: Errors in surface irrigation evaluation from incorrect model assumptions
  publication-title: Journal of Irrigation and Drainage Engineering ASCE
– volume: 18
  start-page: 29
  issue: 1
  year: 1990
  end-page: 32
  article-title: Estimation of Manning's roughness coefficient for basin and border irrigation
  publication-title: Agricultural Water Management
– volume: 49
  start-page: 153
  issue: 2
  year: 2001
  end-page: 161
  article-title: Calculation of field Manning's roughness coefficient
  publication-title: Agricultural Water Management
– volume: 123
  start-page: 415
  issue: 6
  year: 1997
  end-page: 422
  article-title: Surface storage in furrow irrigation evaluation
  publication-title: Journal of Irrigation and Drainage Engineering ASCE
– volume: 116
  start-page: 676
  issue: 5
  year: 1990
  end-page: 695
  article-title: Estimation of surface irrigation parameter
  publication-title: Journal of Irrigation and Drainage Engineering ASCE
– volume: 36
  start-page: 125
  issue: 1
  year: 2005
  end-page: 128
  article-title: Determination of Philip infiltration parameter and Manning roughness according to hydraulic factors in the advance of irrigation water
  publication-title: Journal of Hydraulic Engineering
– volume: 36
  start-page: 395
  issue: 2
  year: 1993
  end-page: 404
  article-title: One‐point method for estimating furrow infiltration
  publication-title: Transactions of the ASAE
– volume: 38
  start-page: 468
  issue: 4
  year: 2007
  end-page: 472
  article-title: Linear regression approach for estimating soil infiltration parameters of border irrigation
  publication-title: Journal of Hydraulic Engineering
– volume: 24
  start-page: 24
  issue: 2
  year: 2005
  end-page: 26
  article-title: Simplified water advance calculation model for border irrigation
  publication-title: Journal of Irrigation and Drainage
– volume: 25
  start-page: 87
  issue: 2
  year: 2007
  end-page: 97
  article-title: Accounting for temporal inflow variation in the inverse solution for infiltration in surface irrigation
  publication-title: Irrigation Science
– volume: 123
  start-page: 307
  issue: 4
  year: 1997
  end-page: 312
  article-title: Volume balance irrigation advance equation: variation of surface shape factor
  publication-title: Journal of Irrigation and Drainage Engineering ASCE
– year: 2003
– volume: 121
  start-page: 57
  issue: 1
  year: 1995
  end-page: 70
  article-title: Intake parameters from advance and wetting phases of surface irrigation
  publication-title: Journal of Irrigation and Drainage Engineering ASCE
– volume: 82
  start-page: 479
  issue: 4
  year: 2002
  end-page: 484
  article-title: Determination of infiltration rate for every other furrow irrigation
  publication-title: Biosystems Engineering
– volume: 52
  start-page: 17
  issue: 1
  year: 2001
  end-page: 32
  article-title: Furrow infiltration estimation from time to a single advance point
  publication-title: Agricultural Water Management
– volume: 119
  start-page: 768
  issue: 5
  year: 1993
  end-page: 783
  article-title: Furrow irrigation model for real‐time applications on cracking soils
  publication-title: Journal of Irrigation and Drainage Engineering ASCE
– volume: 60
  start-page: 227
  issue: 3
  year: 2003
  end-page: 239
  article-title: Estimation of advance and infiltration equations in furrow irrigation for untested discharges
  publication-title: Agricultural Water Management
– volume: 19
  start-page: 115
  issue: 3
  year: 2000
  end-page: 123
  article-title: Surface water storage independent equation for predicting furrow irrigation advance
  publication-title: Irrigation Science
– volume: 135
  start-page: 588
  issue: 5
  year: 2009b
  end-page: 596
  article-title: Toward physically based estimation of surface irrigation
  publication-title: Journal of Irrigation and Drainage Engineering ASCE
– volume: 34
  start-page: 169
  issue: 2
  year: 1997
  end-page: 185
  article-title: Application of the optimization method for estimating infiltration characteristics in furrow irrigation and comparison with other methods
  publication-title: Agricultural Water Management
– ident: e_1_2_6_15_1
  doi: 10.1006/bioe.2002.0088
– ident: e_1_2_6_8_1
  doi: 10.1016/0378-3774(90)90033-U
– ident: e_1_2_6_14_1
  doi: 10.1061/(ASCE)0733-9437(1995)121:1(57)
– ident: e_1_2_6_20_1
– volume: 38
  start-page: 468
  issue: 4
  year: 2007
  ident: e_1_2_6_22_1
  article-title: Linear regression approach for estimating soil infiltration parameters of border irrigation
  publication-title: Journal of Hydraulic Engineering
– ident: e_1_2_6_5_1
  doi: 10.13031/2013.33542
– ident: e_1_2_6_11_1
  doi: 10.1016/0378-3774(88)90129-1
– ident: e_1_2_6_16_1
  doi: 10.13031/2013.28351
– ident: e_1_2_6_18_1
  doi: 10.1007/s002719900006
– ident: e_1_2_6_3_1
  doi: 10.1061/(ASCE)IR.1943-4774.0000059
– ident: e_1_2_6_10_1
  doi: 10.1016/S0378-3774(00)00139-6
– volume: 24
  start-page: 24
  issue: 2
  year: 2005
  ident: e_1_2_6_24_1
  article-title: Simplified water advance calculation model for border irrigation
  publication-title: Journal of Irrigation and Drainage
– ident: e_1_2_6_19_1
  doi: 10.1016/S0378-3774(01)00128-7
– ident: e_1_2_6_4_1
  doi: 10.1061/(ASCE)IR.1943-4774.0000092
– volume: 36
  start-page: 125
  issue: 1
  year: 2005
  ident: e_1_2_6_21_1
  article-title: Determination of Philip infiltration parameter and Manning roughness according to hydraulic factors in the advance of irrigation water
  publication-title: Journal of Hydraulic Engineering
– ident: e_1_2_6_17_1
  doi: 10.1061/(ASCE)0733-9437(1997)123:4(307)
– ident: e_1_2_6_7_1
  doi: 10.1007/s00271-006-0037-9
– ident: e_1_2_6_13_1
  doi: 10.1061/(ASCE)0733-9437(1997)123:6(415)
– ident: e_1_2_6_23_1
  doi: 10.1061/(ASCE)0733-9437(1989)115:6(982)
– ident: e_1_2_6_12_1
  doi: 10.1061/(ASCE)0733-9437(1993)119:5(768)
– ident: e_1_2_6_6_1
  doi: 10.1016/S0378-3774(97)00007-3
– ident: e_1_2_6_2_1
  doi: 10.1016/S0378-3774(02)00163-4
– ident: e_1_2_6_9_1
  doi: 10.1061/(ASCE)0733-9437(1990)116:5(676)
SSID ssj0009927
Score 1.9604862
Snippet Based on the volume balance (VB) equation, the surface water profile was shown to be a power function and Philip equation equal to the Kostiakov–Lewis equation...
ABSTRACT Based on the volume balance (VB) equation, the surface water profile was shown to be a power function and Philip equation equal to the Kostiakov–Lewis...
SourceID proquest
crossref
wiley
istex
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 231
SubjectTerms border irrigation
computer software
equations
field experimentation
infiltration (hydrology)
infiltration parameters
irrigation en planches
least squares
Manning roughness
paramètres d'infiltration
roughness
rugosité de Manning
shape
subsurface flow
surface water
volume balance equation
équation du volume d'équilibre
Title Estimated infiltration parameters and manning roughness in border irrigation
URI https://api.istex.fr/ark:/67375/WNG-GPZHQ0HD-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fird.624
https://www.proquest.com/docview/1033282920
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbnraHrd0HzdYVDcLenDiSLduP3pLYHo3XOQkrfRGSLJWRkYx8QOlfv5PtpGlHYezJGO6QfKeTfpLOv0OoA6jBaKmoo2ExcDxBjSOITx2A4oFbSumXZZUgm7N05n299C8PSn3V_BD7AzcbGdV8bQNcyHXvjjT056rsMmKZQG2mloVDxR1xVBRVxVohnG3CkE_r32WtZq_Ru7cOPTViCejUGvbmHtQ8BKzVijN6ia52fa0TTebd7UZ21e0DGsf_-pgj9KLBoTiuB84xeqIXr9Dz-HrVcHFoeDvgKnyNzoeTaTaOYaLDWT7Kzqf16Ra-iIt4PARQPMFxPsDjOM-zPMHFt1mS2oIeII0_w05zWOCsKLKk0nqDZqPh9EvqNKUYHEV95jlhXxtJyyAA9BdGoasU9RgVoQE0xXTf8pgBlpOKGSGMgk0jM9SovisoCf1AufQtai2WC32CsCtL4lIltPBCzw-IZGVkpIxgpmHGY2Ebfdo5hquGp9yWy_jFa4ZlwsFYHIzVRngv-Lum5vhb5AQ8ywUYb81nE2KvaS2bTj8KoJnK3XtVsZrbJLfA5z_yhCcXV-l3Nx3wSRt93I0HDqFn71PEQi-3a2iJUnsRTdw26lTefawfPCsG8Hj3b2Lv0TPoKanzg05Ra7Pa6g8AfTbyrBrlfwArsfaP
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6x8QA88ButMMBIE2_p0jhxkseMtkmgDSNtxQQPlu3Y0zTUoq6V0P76nZO020BIiKco0p3s3PnsL_b5O4ADRA1GS0UdjYuB4wtqHOEF1EEoHrqVlEFV1QmyBctm_seT4KTNqrR3YRp-iO2Gm42Mer62AW43pA-vWUPPllWXef4O3LX1vC1vfr-8po6K47pcKwa0TRkKaHNh1qoetoq3VqIdIxaIT61pf90Cmzcha73mDB_B901vm1ST8-56Jbvq8jcix__7nMfwsIWiJGnGzhO4o-dP4UFyumzpODS-3aArfAajwWSajxOc60heDPPRtNngIsdJmYwHiIsnJCn6ZJwURV6kpPw8SzNb0wOlyRH-bA5KkpdlntZaz2E2HEw_ZE5bjcFRNGC-E_W0kbQKQwSAURy5SlGfUREZBFRM9yyVGcI5qZgRwij8b2SGGtVzBfWiIFQufQG788Vc7wFxZeW5VAkt_MgPQk-yKjZSxjjZMOOzqAPvN57hqqUqtxUzfvCGZNnjaCyOxuoA2Qr-bNg5_hTZQ9dygca74LOJZ09qLaFOLw6xmdrfW1WxPLd5bmHAvxYpT4-_ZV_crM8nHXi3GRAco88eqYi5XqwvsCVK7Vm053bgoHbv3_rB87KPj5f_JvYW7mXT8YiP8uLTK7iPvfaadKF92F0t1_o1IqGVfFMP-SuwF_qr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdrB2N72Hdp1n1oUPbm1JFs2X705sT2lniZk7DSFyHJ0igtSUkTKPvrd7KdNN0YjD0Zwx2S73TST9L5dwgdA2owWirqaFgMHE9Q4wjiUwegeOBWUvpVVSfIFiybeZ9P_dOdUl8NP8T2wM1GRj1f2wC_qszJLWno-bLqMuLtofsecyNbtSEpb5mjoqiu1grxbDOGfNr8L2tVT1rFOwvRnhELgKfWsjd3sOYuYq2XnMETdLbpbJNpctFdr2RX_fyNx_G_vuYpetwCURw3I-cZuqfnz9Gj-MeyJePQ8LZDVvgCDfuTaT6KYabDeTHIh9PmeAuP4zIe9QEVT3BcJHgUF0VepLj8OkszW9EDpPFH2Gr2S5yXZZ7WWi_RbNCffsqcthaDo6jPPCfsaSNpFQQA_8IodJWiHqMiNACnmO5ZIjMAc1IxI4RRsGtkhhrVcwUloR8olx6g_flirg8RdmVFXKqEFl7o-QGRrIqMlBFMNcx4LOygDxvHcNUSldt6GZe8oVgmHIzFwVgdhLeCVw03x58ih-BZLsB413w2Ifae1tLp9KIAmqndvVUVywub5Rb4_HuR8nR8ln1zs4RPOuj9ZjxwiD17oSLmerG-hpYotTfRxO2g49q7f-sHz8sEHq_-TewdejBOBnyYF1-O0EPoNGlyhV6j_dVyrd8ADFrJt_WA_wWxwfla
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimated+infiltration+parameters+and+manning+roughness+in+border+irrigation&rft.jtitle=Irrigation+and+drainage&rft.au=Weibo%2C+Nie&rft.au=Liangjun%2C+Fei&rft.au=Xiaoyi%2C+Ma&rft.date=2012-04-01&rft.issn=1531-0353&rft.volume=61&rft.issue=2+p.231-239&rft.spage=231&rft.epage=239&rft_id=info:doi/10.1002%2Fird.624&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1531-0353&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1531-0353&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1531-0353&client=summon