Estimated infiltration parameters and manning roughness in border irrigation
Based on the volume balance (VB) equation, the surface water profile was shown to be a power function and Philip equation equal to the Kostiakov–Lewis equation when the infiltration parameter a = 0.5. With this assumption, an equation was proposed for estimating infiltration parameters together with...
Saved in:
Published in | Irrigation and drainage Vol. 61; no. 2; pp. 231 - 239 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.04.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Based on the volume balance (VB) equation, the surface water profile was shown to be a power function and Philip equation equal to the Kostiakov–Lewis equation when the infiltration parameter a = 0.5. With this assumption, an equation was proposed for estimating infiltration parameters together with Manning roughness. The method requires only multi‐point water advance data of border irrigation. Solving the equation requires use of the nonlinear least‐squares fitting technique by Matlab software. The proposed method was validated with field experimental data and some reported border tests. The solution procedure was analysed, the results showing that the values of infiltration parameters S and A are not changed, but Manning roughness n varies when σh were given different values (0.70, 0.75, 0.80, respectively). Alternative measures of subsurface water storage and water advance trajectory were used to validate the method. Errors between measured and estimated were 2.0–13% for subsurface water storage, in which the infiltration parameters S and A were estimated with the proposed method. The maximum average absolute error was 6.07% for water advance in all border tests when different Manning roughness n was used (for an n value was estimated when different the shape factor of surface profile σh values were adopt by the proposed method in this paper). |
---|---|
AbstractList | ABSTRACT
Based on the volume balance (VB) equation, the surface water profile was shown to be a power function and Philip equation equal to the Kostiakov–Lewis equation when the infiltration parameter a = 0.5. With this assumption, an equation was proposed for estimating infiltration parameters together with Manning roughness. The method requires only multi‐point water advance data of border irrigation. Solving the equation requires use of the nonlinear least‐squares fitting technique by Matlab software. The proposed method was validated with field experimental data and some reported border tests. The solution procedure was analysed, the results showing that the values of infiltration parameters S and A are not changed, but Manning roughness n varies when σh were given different values (0.70, 0.75, 0.80, respectively). Alternative measures of subsurface water storage and water advance trajectory were used to validate the method. Errors between measured and estimated were 2.0–13% for subsurface water storage, in which the infiltration parameters S and A were estimated with the proposed method. The maximum average absolute error was 6.07% for water advance in all border tests when different Manning roughness n was used (for an n value was estimated when different the shape factor of surface profile σh values were adopt by the proposed method in this paper). Copyright © 2011 John Wiley & Sons, Ltd.
RÉSUMÉ
En se basant sur l'équation du volume de l'équilibre (VB), il a été montré que le profil de la surface de l'eau dans le cas de l'irrigation en planches est une fonction puissance, et que l'équation de Philip est égale à l'équation de Lewis–Kostiakov quand le paramètre d'infiltration a vaut 0,5. Avec cette hypothèse, une équation a été proposée pour estimer les paramètres d'infiltration en même temps que la rugosité de Manning. La méthode ne nécessite que des données sur l'avancement de la lame d'eau sur les planches d'irrigation. Cette équation a été résolue dans le logiciel Matlab par la méthode non linéaire des moindres carrées. La méthode proposée a été validée avec des données expérimentales de terrain et des données d'essais sur des planches d'irrigation qui nous ont été rapportés. La procédure de résolution a été analysée, et les résultats ont montré que les valeurs des paramètres d'infiltration S et A ne sont pas modifiés, alors que la rugosité de Manning n varie avec σh (σh: coefficient de forme du profil d'infiltration prenant les valeurs de 0,70, 0,75, 0,80, respectivement). D'autres mesures de stockage de l'eau dans le sol et de suivi du front d'humectation ont été utilisées pour valider la méthode. Les erreurs sur le stockage de l'eau dans le sol entre les données mesurées et estimées sont de 2,0 à 13%, les paramètres d'infiltration S et A ayant été estimés par la méthode proposée. L'erreur moyenne maximale absolue sur l'avancement de l'eau sur les planches n'était que de 6,07% pour différents coefficients de rugosité de Manning (et estimés selon les différents coefficients de forme σh utilisés ici). Copyright © 2011 John Wiley & Sons, Ltd. Based on the volume balance (VB) equation, the surface water profile was shown to be a power function and Philip equation equal to the Kostiakov–Lewis equation when the infiltration parameter a = 0.5. With this assumption, an equation was proposed for estimating infiltration parameters together with Manning roughness. The method requires only multi‐point water advance data of border irrigation. Solving the equation requires use of the nonlinear least‐squares fitting technique by Matlab software. The proposed method was validated with field experimental data and some reported border tests. The solution procedure was analysed, the results showing that the values of infiltration parameters S and A are not changed, but Manning roughness n varies when σh were given different values (0.70, 0.75, 0.80, respectively). Alternative measures of subsurface water storage and water advance trajectory were used to validate the method. Errors between measured and estimated were 2.0–13% for subsurface water storage, in which the infiltration parameters S and A were estimated with the proposed method. The maximum average absolute error was 6.07% for water advance in all border tests when different Manning roughness n was used (for an n value was estimated when different the shape factor of surface profile σh values were adopt by the proposed method in this paper). Based on the volume balance (VB) equation, the surface water profile was shown to be a power function and Philip equation equal to the Kostiakov–Lewis equation when the infiltration parameter a = 0.5. With this assumption, an equation was proposed for estimating infiltration parameters together with Manning roughness. The method requires only multi‐point water advance data of border irrigation. Solving the equation requires use of the nonlinear least‐squares fitting technique by Matlab software. The proposed method was validated with field experimental data and some reported border tests. The solution procedure was analysed, the results showing that the values of infiltration parameters S and A are not changed, but Manning roughness n varies when σ h were given different values (0.70, 0.75, 0.80, respectively). Alternative measures of subsurface water storage and water advance trajectory were used to validate the method. Errors between measured and estimated were 2.0–13% for subsurface water storage, in which the infiltration parameters S and A were estimated with the proposed method. The maximum average absolute error was 6.07% for water advance in all border tests when different Manning roughness n was used (for an n value was estimated when different the shape factor of surface profile σ h values were adopt by the proposed method in this paper). Copyright © 2011 John Wiley & Sons, Ltd. En se basant sur l'équation du volume de l'équilibre (VB), il a été montré que le profil de la surface de l'eau dans le cas de l'irrigation en planches est une fonction puissance, et que l'équation de Philip est égale à l'équation de Lewis–Kostiakov quand le paramètre d'infiltration a vaut 0,5. Avec cette hypothèse, une équation a été proposée pour estimer les paramètres d'infiltration en même temps que la rugosité de Manning. La méthode ne nécessite que des données sur l'avancement de la lame d'eau sur les planches d'irrigation. Cette équation a été résolue dans le logiciel Matlab par la méthode non linéaire des moindres carrées. La méthode proposée a été validée avec des données expérimentales de terrain et des données d'essais sur des planches d'irrigation qui nous ont été rapportés. La procédure de résolution a été analysée, et les résultats ont montré que les valeurs des paramètres d'infiltration S et A ne sont pas modifiés, alors que la rugosité de Manning n varie avec σh (σh: coefficient de forme du profil d'infiltration prenant les valeurs de 0,70, 0,75, 0,80, respectivement). D'autres mesures de stockage de l'eau dans le sol et de suivi du front d'humectation ont été utilisées pour valider la méthode. Les erreurs sur le stockage de l'eau dans le sol entre les données mesurées et estimées sont de 2,0 à 13%, les paramètres d'infiltration S et A ayant été estimés par la méthode proposée. L'erreur moyenne maximale absolue sur l'avancement de l'eau sur les planches n'était que de 6,07% pour différents coefficients de rugosité de Manning (et estimés selon les différents coefficients de forme σh utilisés ici). Copyright © 2011 John Wiley & Sons, Ltd. |
Author | Liangjun, Fei Weibo, Nie Xiaoyi, Ma |
Author_xml | – sequence: 1 fullname: Weibo, Nie – sequence: 2 fullname: Liangjun, Fei – sequence: 3 fullname: Xiaoyi, Ma |
BookMark | eNp10N9PwjAQB_DGYCKg8U9wb5qYYbuu3fZoAIGE-AuJiS9N6dpZHR22I8p_b2GGB6NPdw-fu9x9O6BlKiMBOEWwhyCMrrTNezSKD0AbEYxCiClq7XuCj0DHuTcIYZZFSRtMh67WS17LPNBG6bK2vNaVCVbc8qWspXUBN3mw5MZoUwS2WhevRjrndbCobC5toK3VxW7qGBwqXjp58lO7YH4zfOqPw-ndaNK_noYCExqHKZJqgfMkIZSmWQqFwDHFPFVxjKhEESEUpnghqOJciTSGVGElEOQ4SkkiIO6Ci2bvylYfa-lqttROyLLkRlZrxxDEnkZZtKVhQ4WtnLNSMaHr3bH-U116yrapMZ8a86l5f_7Lr6zPx27-kJeN_NSl3PzH2ORx0OifO7Sr5ddec_vOaIITwp5vR2x0_zJ-gOMBm3l_1njFK8YLqx2bzyKIMEQZyVCW4G8DzpVH |
CitedBy_id | crossref_primary_10_1002_ird_2875 crossref_primary_10_1007_s12517_021_06505_9 crossref_primary_10_1002_ird_3087 crossref_primary_10_1007_s13201_024_02334_9 crossref_primary_10_3390_w10111581 crossref_primary_10_3390_w10121825 crossref_primary_10_1007_s12517_021_07716_w crossref_primary_10_1007_s12517_021_07746_4 crossref_primary_10_1016_j_biosystemseng_2015_05_010 crossref_primary_10_1002_ird_2724 crossref_primary_10_3390_w10010067 crossref_primary_10_1002_ird_2726 crossref_primary_10_1016_j_agwat_2020_106497 crossref_primary_10_1016_j_agwat_2020_106575 |
Cites_doi | 10.1006/bioe.2002.0088 10.1016/0378-3774(90)90033-U 10.1061/(ASCE)0733-9437(1995)121:1(57) 10.13031/2013.33542 10.1016/0378-3774(88)90129-1 10.13031/2013.28351 10.1007/s002719900006 10.1061/(ASCE)IR.1943-4774.0000059 10.1016/S0378-3774(00)00139-6 10.1016/S0378-3774(01)00128-7 10.1061/(ASCE)IR.1943-4774.0000092 10.1061/(ASCE)0733-9437(1997)123:4(307) 10.1007/s00271-006-0037-9 10.1061/(ASCE)0733-9437(1997)123:6(415) 10.1061/(ASCE)0733-9437(1989)115:6(982) 10.1061/(ASCE)0733-9437(1993)119:5(768) 10.1016/S0378-3774(97)00007-3 10.1016/S0378-3774(02)00163-4 10.1061/(ASCE)0733-9437(1990)116:5(676) |
ContentType | Journal Article |
Copyright | Copyright © 2011 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2011 John Wiley & Sons, Ltd. |
DBID | FBQ BSCLL AAYXX CITATION 7S9 L.6 |
DOI | 10.1002/ird.624 |
DatabaseName | AGRIS Istex CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Agriculture |
EISSN | 1531-0361 |
EndPage | 239 |
ExternalDocumentID | 10_1002_ird_624 IRD624 ark_67375_WNG_GPZHQ0HD_S US201301959197 |
Genre | article |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation – fundername: Natural Science Foundation of Shaanxi funderid: 2010JQ7010 – fundername: Natural Science Foundation of China funderid: 5057906451079121 – fundername: Xi'an University of Technology funderid: 106‐210916 |
GroupedDBID | ..I .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABHUG ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EDH EJD F00 F01 F04 FBQ FEDTE G-S G.N GNP GODZA H.T H.X HF~ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ UB1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7S9 AAMMB AEFGJ AGXDD AIDQK AIDYY L.6 |
ID | FETCH-LOGICAL-c3564-81efb3d775668980cc3463a8f4416e12556083bc6faafc8406f3fc10a32857c03 |
IEDL.DBID | DR2 |
ISSN | 1531-0353 |
IngestDate | Fri Jul 11 18:34:21 EDT 2025 Tue Jul 01 00:58:17 EDT 2025 Thu Apr 24 22:50:45 EDT 2025 Wed Jan 22 16:48:39 EST 2025 Wed Oct 30 09:51:42 EDT 2024 Wed Dec 27 19:19:08 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3564-81efb3d775668980cc3463a8f4416e12556083bc6faafc8406f3fc10a32857c03 |
Notes | http://dx.doi.org/10.1002/ird.624 Natural Science Foundation of Shaanxi - No. 2010JQ7010 ark:/67375/WNG-GPZHQ0HD-S Irrigation en planches : estimation des paramètres d'infiltration et de rugosité de Manning. ArticleID:IRD624 Natural Science Foundation of China - No. 5057906451079121 China Postdoctoral Science Foundation istex:39F5C4B9B8AB87767A5BA6C22EB22538F7C6F337 Xi'an University of Technology - No. 106-210916 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1033282920 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1033282920 crossref_citationtrail_10_1002_ird_624 crossref_primary_10_1002_ird_624 wiley_primary_10_1002_ird_624_IRD624 istex_primary_ark_67375_WNG_GPZHQ0HD_S fao_agris_US201301959197 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2012 |
PublicationDateYYYYMMDD | 2012-04-01 |
PublicationDate_xml | – month: 04 year: 2012 text: April 2012 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK |
PublicationTitle | Irrigation and drainage |
PublicationTitleAlternate | Irrig. and Drain |
PublicationYear | 2012 |
Publisher | John Wiley & Sons, Ltd |
Publisher_xml | – name: John Wiley & Sons, Ltd |
References | Elliott RL, Walker WR. 1982. Field evaluation of furrow infiltrating and advance functions. Transactions of the ASAE 25(2): 396-400. Valiantzas JD. 2000. Surface water storage independent equation for predicting furrow irrigation advance. Irrigation Science 19(3): 115-123. Wang WH, Jiao XY, Peng SZ, Ma HY. 2007. Linear regression approach for estimating soil infiltration parameters of border irrigation. Journal of Hydraulic Engineering 38(4): 468-472. Alvarez JAR. 2003. Estimation of advance and infiltration equations in furrow irrigation for untested discharges. Agricultural Water Management 60(3): 227-239. Li Z, Zhang JT. 2001. Calculation of field Manning's roughness coefficient. Agricultural Water Management 49(2): 153-161. Yu FX, Singh VP. 1989. Analytical model for border irrigation. Journal of Irrigation and Drainage Engineering ASCE 115(6): 982-999. Gillies MH, Smith RJ, Raine SR. 2007. Accounting for temporal inflow variation in the inverse solution for infiltration in surface irrigation. Irrigation Science 25(2): 87-97. Hatun-ur-Rashid. 1990. Estimation of Manning's roughness coefficient for basin and border irrigation. Agricultural Water Management 18(1): 29-32. Valiantzas JD, Aggelides S, Sassalou A. 2001. Furrow infiltration estimation from time to a single advance point. Agricultural Water Management 52(1): 17-32. Maihol JC, Gonzalze JM. 1993. Furrow irrigation model for real-time applications on cracking soils. Journal of Irrigation and Drainage Engineering ASCE 119(5): 768-783. Wang QJ, Wang WY, Zhang JH, Ding XL. 2005. Determination of Philip infiltration parameter and Manning roughness according to hydraulic factors in the advance of irrigation water. Journal of Hydraulic Engineering 36(1): 125-128. Zhou ZM, Liu Y. 2005. Simplified water advance calculation model for border irrigation. Journal of Irrigation and Drainage 24(2): 24-26. Renault D, Wallender WW. 1997. Surface storage in furrow irrigation evaluation. Journal of Irrigation and Drainage Engineering ASCE 123(6): 415-422. Clemmens AJ. 2009a. Errors in surface irrigation evaluation from incorrect model assumptions. Journal of Irrigation and Drainage Engineering ASCE 135(5): 556-565. Maheshwari BL. 1988. An optimization technique for estimating infiltration characteristics in border irrigation. Agricultural Water Management 13(1): 13-24. Valiantzas JD. 1997. Volume balance irrigation advance equation: variation of surface shape factor. Journal of Irrigation and Drainage Engineering ASCE 123(4): 307-312. Esfandiair M, Maheshwari BL. 1997. Application of the optimization method for estimating infiltration characteristics in furrow irrigation and comparison with other methods. Agricultural Water Management 34(2): 169-185. Shepard JS, Wallender WW, Hofmans JW. 1993. One-point method for estimating furrow infiltration. Transactions of the ASAE 36(2): 395-404. Clemmens AJ. 2009b. Toward physically based estimation of surface irrigation. Journal of Irrigation and Drainage Engineering ASCE 135(5): 588-596. Katopodes ND, Trang, JH, Clemments AJ. 1990. Estimation of surface irrigation parameter. Journal of Irrigation and Drainage Engineering ASCE 116(5): 676-695. Scaloppi EJ, Merkley GP, Willardson LS. 1995. Intake parameters from advance and wetting phases of surface irrigation. Journal of Irrigation and Drainage Engineering ASCE 121(1): 57-70. Sepaskhah AR, Afshar-Chamanabad H. 2002. Determination of infiltration rate for every other furrow irrigation. Biosystems Engineering 82(4): 479-484. 2009b; 135 1993; 36 1982; 25 1990; 116 2000; 19 1993; 119 2009a; 135 1990; 18 1989; 115 1997; 34 1997; 123 1988; 13 2001; 49 2002; 82 2003 2003; 60 1995; 121 2007; 25 2001; 52 2005; 24 2005; 36 2007; 38 e_1_2_6_10_1 e_1_2_6_20_1 Wang WH (e_1_2_6_22_1) 2007; 38 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_19_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_3_1 e_1_2_6_11_1 Wang QJ (e_1_2_6_21_1) 2005; 36 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 Zhou ZM (e_1_2_6_24_1) 2005; 24 e_1_2_6_16_1 |
References_xml | – reference: Maihol JC, Gonzalze JM. 1993. Furrow irrigation model for real-time applications on cracking soils. Journal of Irrigation and Drainage Engineering ASCE 119(5): 768-783. – reference: Valiantzas JD. 2000. Surface water storage independent equation for predicting furrow irrigation advance. Irrigation Science 19(3): 115-123. – reference: Clemmens AJ. 2009b. Toward physically based estimation of surface irrigation. Journal of Irrigation and Drainage Engineering ASCE 135(5): 588-596. – reference: Valiantzas JD, Aggelides S, Sassalou A. 2001. Furrow infiltration estimation from time to a single advance point. Agricultural Water Management 52(1): 17-32. – reference: Zhou ZM, Liu Y. 2005. Simplified water advance calculation model for border irrigation. Journal of Irrigation and Drainage 24(2): 24-26. – reference: Shepard JS, Wallender WW, Hofmans JW. 1993. One-point method for estimating furrow infiltration. Transactions of the ASAE 36(2): 395-404. – reference: Wang QJ, Wang WY, Zhang JH, Ding XL. 2005. Determination of Philip infiltration parameter and Manning roughness according to hydraulic factors in the advance of irrigation water. Journal of Hydraulic Engineering 36(1): 125-128. – reference: Wang WH, Jiao XY, Peng SZ, Ma HY. 2007. Linear regression approach for estimating soil infiltration parameters of border irrigation. Journal of Hydraulic Engineering 38(4): 468-472. – reference: Elliott RL, Walker WR. 1982. Field evaluation of furrow infiltrating and advance functions. Transactions of the ASAE 25(2): 396-400. – reference: Valiantzas JD. 1997. Volume balance irrigation advance equation: variation of surface shape factor. Journal of Irrigation and Drainage Engineering ASCE 123(4): 307-312. – reference: Clemmens AJ. 2009a. Errors in surface irrigation evaluation from incorrect model assumptions. Journal of Irrigation and Drainage Engineering ASCE 135(5): 556-565. – reference: Li Z, Zhang JT. 2001. Calculation of field Manning's roughness coefficient. Agricultural Water Management 49(2): 153-161. – reference: Renault D, Wallender WW. 1997. Surface storage in furrow irrigation evaluation. Journal of Irrigation and Drainage Engineering ASCE 123(6): 415-422. – reference: Alvarez JAR. 2003. Estimation of advance and infiltration equations in furrow irrigation for untested discharges. Agricultural Water Management 60(3): 227-239. – reference: Esfandiair M, Maheshwari BL. 1997. Application of the optimization method for estimating infiltration characteristics in furrow irrigation and comparison with other methods. Agricultural Water Management 34(2): 169-185. – reference: Katopodes ND, Trang, JH, Clemments AJ. 1990. Estimation of surface irrigation parameter. Journal of Irrigation and Drainage Engineering ASCE 116(5): 676-695. – reference: Hatun-ur-Rashid. 1990. Estimation of Manning's roughness coefficient for basin and border irrigation. Agricultural Water Management 18(1): 29-32. – reference: Scaloppi EJ, Merkley GP, Willardson LS. 1995. Intake parameters from advance and wetting phases of surface irrigation. Journal of Irrigation and Drainage Engineering ASCE 121(1): 57-70. – reference: Maheshwari BL. 1988. An optimization technique for estimating infiltration characteristics in border irrigation. Agricultural Water Management 13(1): 13-24. – reference: Yu FX, Singh VP. 1989. Analytical model for border irrigation. Journal of Irrigation and Drainage Engineering ASCE 115(6): 982-999. – reference: Gillies MH, Smith RJ, Raine SR. 2007. Accounting for temporal inflow variation in the inverse solution for infiltration in surface irrigation. Irrigation Science 25(2): 87-97. – reference: Sepaskhah AR, Afshar-Chamanabad H. 2002. Determination of infiltration rate for every other furrow irrigation. Biosystems Engineering 82(4): 479-484. – volume: 25 start-page: 396 issue: 2 year: 1982 end-page: 400 article-title: Field evaluation of furrow infiltrating and advance functions publication-title: Transactions of the ASAE – volume: 13 start-page: 13 issue: 1 year: 1988 end-page: 24 article-title: An optimization technique for estimating infiltration characteristics in border irrigation publication-title: Agricultural Water Management – volume: 115 start-page: 982 issue: 6 year: 1989 end-page: 999 article-title: Analytical model for border irrigation publication-title: Journal of Irrigation and Drainage Engineering ASCE – volume: 135 start-page: 556 issue: 5 year: 2009a end-page: 565 article-title: Errors in surface irrigation evaluation from incorrect model assumptions publication-title: Journal of Irrigation and Drainage Engineering ASCE – volume: 18 start-page: 29 issue: 1 year: 1990 end-page: 32 article-title: Estimation of Manning's roughness coefficient for basin and border irrigation publication-title: Agricultural Water Management – volume: 49 start-page: 153 issue: 2 year: 2001 end-page: 161 article-title: Calculation of field Manning's roughness coefficient publication-title: Agricultural Water Management – volume: 123 start-page: 415 issue: 6 year: 1997 end-page: 422 article-title: Surface storage in furrow irrigation evaluation publication-title: Journal of Irrigation and Drainage Engineering ASCE – volume: 116 start-page: 676 issue: 5 year: 1990 end-page: 695 article-title: Estimation of surface irrigation parameter publication-title: Journal of Irrigation and Drainage Engineering ASCE – volume: 36 start-page: 125 issue: 1 year: 2005 end-page: 128 article-title: Determination of Philip infiltration parameter and Manning roughness according to hydraulic factors in the advance of irrigation water publication-title: Journal of Hydraulic Engineering – volume: 36 start-page: 395 issue: 2 year: 1993 end-page: 404 article-title: One‐point method for estimating furrow infiltration publication-title: Transactions of the ASAE – volume: 38 start-page: 468 issue: 4 year: 2007 end-page: 472 article-title: Linear regression approach for estimating soil infiltration parameters of border irrigation publication-title: Journal of Hydraulic Engineering – volume: 24 start-page: 24 issue: 2 year: 2005 end-page: 26 article-title: Simplified water advance calculation model for border irrigation publication-title: Journal of Irrigation and Drainage – volume: 25 start-page: 87 issue: 2 year: 2007 end-page: 97 article-title: Accounting for temporal inflow variation in the inverse solution for infiltration in surface irrigation publication-title: Irrigation Science – volume: 123 start-page: 307 issue: 4 year: 1997 end-page: 312 article-title: Volume balance irrigation advance equation: variation of surface shape factor publication-title: Journal of Irrigation and Drainage Engineering ASCE – year: 2003 – volume: 121 start-page: 57 issue: 1 year: 1995 end-page: 70 article-title: Intake parameters from advance and wetting phases of surface irrigation publication-title: Journal of Irrigation and Drainage Engineering ASCE – volume: 82 start-page: 479 issue: 4 year: 2002 end-page: 484 article-title: Determination of infiltration rate for every other furrow irrigation publication-title: Biosystems Engineering – volume: 52 start-page: 17 issue: 1 year: 2001 end-page: 32 article-title: Furrow infiltration estimation from time to a single advance point publication-title: Agricultural Water Management – volume: 119 start-page: 768 issue: 5 year: 1993 end-page: 783 article-title: Furrow irrigation model for real‐time applications on cracking soils publication-title: Journal of Irrigation and Drainage Engineering ASCE – volume: 60 start-page: 227 issue: 3 year: 2003 end-page: 239 article-title: Estimation of advance and infiltration equations in furrow irrigation for untested discharges publication-title: Agricultural Water Management – volume: 19 start-page: 115 issue: 3 year: 2000 end-page: 123 article-title: Surface water storage independent equation for predicting furrow irrigation advance publication-title: Irrigation Science – volume: 135 start-page: 588 issue: 5 year: 2009b end-page: 596 article-title: Toward physically based estimation of surface irrigation publication-title: Journal of Irrigation and Drainage Engineering ASCE – volume: 34 start-page: 169 issue: 2 year: 1997 end-page: 185 article-title: Application of the optimization method for estimating infiltration characteristics in furrow irrigation and comparison with other methods publication-title: Agricultural Water Management – ident: e_1_2_6_15_1 doi: 10.1006/bioe.2002.0088 – ident: e_1_2_6_8_1 doi: 10.1016/0378-3774(90)90033-U – ident: e_1_2_6_14_1 doi: 10.1061/(ASCE)0733-9437(1995)121:1(57) – ident: e_1_2_6_20_1 – volume: 38 start-page: 468 issue: 4 year: 2007 ident: e_1_2_6_22_1 article-title: Linear regression approach for estimating soil infiltration parameters of border irrigation publication-title: Journal of Hydraulic Engineering – ident: e_1_2_6_5_1 doi: 10.13031/2013.33542 – ident: e_1_2_6_11_1 doi: 10.1016/0378-3774(88)90129-1 – ident: e_1_2_6_16_1 doi: 10.13031/2013.28351 – ident: e_1_2_6_18_1 doi: 10.1007/s002719900006 – ident: e_1_2_6_3_1 doi: 10.1061/(ASCE)IR.1943-4774.0000059 – ident: e_1_2_6_10_1 doi: 10.1016/S0378-3774(00)00139-6 – volume: 24 start-page: 24 issue: 2 year: 2005 ident: e_1_2_6_24_1 article-title: Simplified water advance calculation model for border irrigation publication-title: Journal of Irrigation and Drainage – ident: e_1_2_6_19_1 doi: 10.1016/S0378-3774(01)00128-7 – ident: e_1_2_6_4_1 doi: 10.1061/(ASCE)IR.1943-4774.0000092 – volume: 36 start-page: 125 issue: 1 year: 2005 ident: e_1_2_6_21_1 article-title: Determination of Philip infiltration parameter and Manning roughness according to hydraulic factors in the advance of irrigation water publication-title: Journal of Hydraulic Engineering – ident: e_1_2_6_17_1 doi: 10.1061/(ASCE)0733-9437(1997)123:4(307) – ident: e_1_2_6_7_1 doi: 10.1007/s00271-006-0037-9 – ident: e_1_2_6_13_1 doi: 10.1061/(ASCE)0733-9437(1997)123:6(415) – ident: e_1_2_6_23_1 doi: 10.1061/(ASCE)0733-9437(1989)115:6(982) – ident: e_1_2_6_12_1 doi: 10.1061/(ASCE)0733-9437(1993)119:5(768) – ident: e_1_2_6_6_1 doi: 10.1016/S0378-3774(97)00007-3 – ident: e_1_2_6_2_1 doi: 10.1016/S0378-3774(02)00163-4 – ident: e_1_2_6_9_1 doi: 10.1061/(ASCE)0733-9437(1990)116:5(676) |
SSID | ssj0009927 |
Score | 1.9604862 |
Snippet | Based on the volume balance (VB) equation, the surface water profile was shown to be a power function and Philip equation equal to the Kostiakov–Lewis equation... ABSTRACT Based on the volume balance (VB) equation, the surface water profile was shown to be a power function and Philip equation equal to the Kostiakov–Lewis... |
SourceID | proquest crossref wiley istex fao |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 231 |
SubjectTerms | border irrigation computer software equations field experimentation infiltration (hydrology) infiltration parameters irrigation en planches least squares Manning roughness paramètres d'infiltration roughness rugosité de Manning shape subsurface flow surface water volume balance equation équation du volume d'équilibre |
Title | Estimated infiltration parameters and manning roughness in border irrigation |
URI | https://api.istex.fr/ark:/67375/WNG-GPZHQ0HD-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fird.624 https://www.proquest.com/docview/1033282920 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbnraHrd0HzdYVDcLenDiSLduP3pLYHo3XOQkrfRGSLJWRkYx8QOlfv5PtpGlHYezJGO6QfKeTfpLOv0OoA6jBaKmoo2ExcDxBjSOITx2A4oFbSumXZZUgm7N05n299C8PSn3V_BD7AzcbGdV8bQNcyHXvjjT056rsMmKZQG2mloVDxR1xVBRVxVohnG3CkE_r32WtZq_Ru7cOPTViCejUGvbmHtQ8BKzVijN6ia52fa0TTebd7UZ21e0DGsf_-pgj9KLBoTiuB84xeqIXr9Dz-HrVcHFoeDvgKnyNzoeTaTaOYaLDWT7Kzqf16Ra-iIt4PARQPMFxPsDjOM-zPMHFt1mS2oIeII0_w05zWOCsKLKk0nqDZqPh9EvqNKUYHEV95jlhXxtJyyAA9BdGoasU9RgVoQE0xXTf8pgBlpOKGSGMgk0jM9SovisoCf1AufQtai2WC32CsCtL4lIltPBCzw-IZGVkpIxgpmHGY2Ebfdo5hquGp9yWy_jFa4ZlwsFYHIzVRngv-Lum5vhb5AQ8ywUYb81nE2KvaS2bTj8KoJnK3XtVsZrbJLfA5z_yhCcXV-l3Nx3wSRt93I0HDqFn71PEQi-3a2iJUnsRTdw26lTefawfPCsG8Hj3b2Lv0TPoKanzg05Ra7Pa6g8AfTbyrBrlfwArsfaP |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6x8QA88ButMMBIE2_p0jhxkseMtkmgDSNtxQQPlu3Y0zTUoq6V0P76nZO020BIiKco0p3s3PnsL_b5O4ADRA1GS0UdjYuB4wtqHOEF1EEoHrqVlEFV1QmyBctm_seT4KTNqrR3YRp-iO2Gm42Mer62AW43pA-vWUPPllWXef4O3LX1vC1vfr-8po6K47pcKwa0TRkKaHNh1qoetoq3VqIdIxaIT61pf90Cmzcha73mDB_B901vm1ST8-56Jbvq8jcix__7nMfwsIWiJGnGzhO4o-dP4UFyumzpODS-3aArfAajwWSajxOc60heDPPRtNngIsdJmYwHiIsnJCn6ZJwURV6kpPw8SzNb0wOlyRH-bA5KkpdlntZaz2E2HEw_ZE5bjcFRNGC-E_W0kbQKQwSAURy5SlGfUREZBFRM9yyVGcI5qZgRwij8b2SGGtVzBfWiIFQufQG788Vc7wFxZeW5VAkt_MgPQk-yKjZSxjjZMOOzqAPvN57hqqUqtxUzfvCGZNnjaCyOxuoA2Qr-bNg5_hTZQ9dygca74LOJZ09qLaFOLw6xmdrfW1WxPLd5bmHAvxYpT4-_ZV_crM8nHXi3GRAco88eqYi5XqwvsCVK7Vm053bgoHbv3_rB87KPj5f_JvYW7mXT8YiP8uLTK7iPvfaadKF92F0t1_o1IqGVfFMP-SuwF_qr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdrB2N72Hdp1n1oUPbm1JFs2X705sT2lniZk7DSFyHJ0igtSUkTKPvrd7KdNN0YjD0Zwx2S73TST9L5dwgdA2owWirqaFgMHE9Q4wjiUwegeOBWUvpVVSfIFiybeZ9P_dOdUl8NP8T2wM1GRj1f2wC_qszJLWno-bLqMuLtofsecyNbtSEpb5mjoqiu1grxbDOGfNr8L2tVT1rFOwvRnhELgKfWsjd3sOYuYq2XnMETdLbpbJNpctFdr2RX_fyNx_G_vuYpetwCURw3I-cZuqfnz9Gj-MeyJePQ8LZDVvgCDfuTaT6KYabDeTHIh9PmeAuP4zIe9QEVT3BcJHgUF0VepLj8OkszW9EDpPFH2Gr2S5yXZZ7WWi_RbNCffsqcthaDo6jPPCfsaSNpFQQA_8IodJWiHqMiNACnmO5ZIjMAc1IxI4RRsGtkhhrVcwUloR8olx6g_flirg8RdmVFXKqEFl7o-QGRrIqMlBFMNcx4LOygDxvHcNUSldt6GZe8oVgmHIzFwVgdhLeCVw03x58ih-BZLsB413w2Ifae1tLp9KIAmqndvVUVywub5Rb4_HuR8nR8ln1zs4RPOuj9ZjxwiD17oSLmerG-hpYotTfRxO2g49q7f-sHz8sEHq_-TewdejBOBnyYF1-O0EPoNGlyhV6j_dVyrd8ADFrJt_WA_wWxwfla |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimated+infiltration+parameters+and+manning+roughness+in+border+irrigation&rft.jtitle=Irrigation+and+drainage&rft.au=Weibo%2C+Nie&rft.au=Liangjun%2C+Fei&rft.au=Xiaoyi%2C+Ma&rft.date=2012-04-01&rft.issn=1531-0353&rft.volume=61&rft.issue=2+p.231-239&rft.spage=231&rft.epage=239&rft_id=info:doi/10.1002%2Fird.624&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1531-0353&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1531-0353&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1531-0353&client=summon |