Extreme‐Value Statistics Reveal Rare Failure‐Critical Defects in Additive Manufacturing

Additive manufacturing enables the rapid, cost effective production of customized structural components. To fully capitalize on the agility of additive manufacturing, it is necessary to develop complementary high‐throughput materials evaluation techniques. In this study, over 1000 nominally identica...

Full description

Saved in:
Bibliographic Details
Published inAdvanced engineering materials Vol. 19; no. 8
Main Authors Boyce, Brad L., Salzbrenner, Bradley C., Rodelas, Jeffrey M., Swiler, Laura P., Madison, Jonathan D., Jared, Bradley H., Shen, Yu‐Lin
Format Journal Article
LanguageEnglish
Published United States Wiley 01.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Additive manufacturing enables the rapid, cost effective production of customized structural components. To fully capitalize on the agility of additive manufacturing, it is necessary to develop complementary high‐throughput materials evaluation techniques. In this study, over 1000 nominally identical tensile tests are used to explore the effect of process variability on the mechanical property distributions of a precipitation hardened stainless steel produced by a laser powder bed fusion process, also known as direct metal laser sintering or selective laser melting. With this large dataset, rare defects are revealed that affect only ≈2% of the population, stemming from a single build lot of material. The rare defects cause a substantial loss in ductility and are associated with an interconnected network of porosity. The adoption of streamlined test methods will be paramount to diagnosing and mitigating such dangerous anomalies in future structural components. Arrays of tensile bars printed by laser powder bed fusion (additive manufacturing) are tested with a high‐throughput mechanical test method. The resulting property distributions reveal within‐ and between‐build variability as well as anomalous behavior associated with rare, failure‐critical defects.
AbstractList Additive manufacturing enables the rapid, cost effective production of large populations of material test coupons such as tensile bars. By adopting streamlined test methods including ‘drop-in’ grips and non-contact extensometry, testing these large populations becomes more efficient. Unlike hardness tests, the tensile test provides a direct measure of yield strength, flow properties, and ductility, which can be directly incorporated into solid mechanics simulations. In the present work, over 1000 nominally identical tensile tests were used to explore the effect of process variability on the mechanical property distributions of a precipitation hardened stainless steel, 17-4PH, produced by a laser powder bed fusion process, also known as direct metal laser sintering. With this large dataset, rare defects are revealed that affect only ~2% of the population, stemming from a single build lot of material. Lastly, the rare defects caused a substantial loss in ductility and were associated with an interconnected network of porosity.
Additive manufacturing enables the rapid, cost effective production of customized structural components. To fully capitalize on the agility of additive manufacturing, it is necessary to develop complementary high‐throughput materials evaluation techniques. In this study, over 1000 nominally identical tensile tests are used to explore the effect of process variability on the mechanical property distributions of a precipitation hardened stainless steel produced by a laser powder bed fusion process, also known as direct metal laser sintering or selective laser melting. With this large dataset, rare defects are revealed that affect only ≈2% of the population, stemming from a single build lot of material. The rare defects cause a substantial loss in ductility and are associated with an interconnected network of porosity. The adoption of streamlined test methods will be paramount to diagnosing and mitigating such dangerous anomalies in future structural components. Arrays of tensile bars printed by laser powder bed fusion (additive manufacturing) are tested with a high‐throughput mechanical test method. The resulting property distributions reveal within‐ and between‐build variability as well as anomalous behavior associated with rare, failure‐critical defects.
Author Madison, Jonathan D.
Swiler, Laura P.
Rodelas, Jeffrey M.
Jared, Bradley H.
Boyce, Brad L.
Salzbrenner, Bradley C.
Shen, Yu‐Lin
Author_xml – sequence: 1
  givenname: Brad L.
  surname: Boyce
  fullname: Boyce, Brad L.
  email: blboyce@sandia.gov
  organization: Sandia National Laboratories
– sequence: 2
  givenname: Bradley C.
  surname: Salzbrenner
  fullname: Salzbrenner, Bradley C.
  organization: Sandia National Laboratories
– sequence: 3
  givenname: Jeffrey M.
  surname: Rodelas
  fullname: Rodelas, Jeffrey M.
  organization: Sandia National Laboratories
– sequence: 4
  givenname: Laura P.
  surname: Swiler
  fullname: Swiler, Laura P.
  organization: Sandia National Laboratories
– sequence: 5
  givenname: Jonathan D.
  surname: Madison
  fullname: Madison, Jonathan D.
  organization: Sandia National Laboratories
– sequence: 6
  givenname: Bradley H.
  surname: Jared
  fullname: Jared, Bradley H.
  organization: Sandia National Laboratories
– sequence: 7
  givenname: Yu‐Lin
  surname: Shen
  fullname: Shen, Yu‐Lin
  organization: University of New Mexico
BackLink https://www.osti.gov/servlets/purl/1343622$$D View this record in Osti.gov
BookMark eNqFkMtKAzEUhoMo2Fa3rgf3U3OfmWXpRYUWoV42LkImc0Yj0xlJZqrd-Qg-o09iSkVBEFcJJ__35_D10X7d1IDQCcFDgjE90wWshhSTBGOC6R7qEUGTmEqe7oc7Z2lMpJCHqO_9U4gQTFgP3U9fWwcr-Hh7v9NVB9F1q1vrW2t8tIQ16CpaagfRTNuqc9vY2NnwGuYTKMG0PrJ1NCqKMFxDtNB1V2rTds7WD0fooNSVh-Ovc4BuZ9Ob8UU8vzq_HI_msWFC0jhPE5kWLMtykpQZpSwTORcmA6oBC5kSTYWUghsmS14YTHIh88IQrFkieFmyATrd9TZhb-WNbcE8mqauw3qKMM5kKB2g4S5kXOO9g1I9O7vSbqMIVlt_autPffsLAP8FhOLgpqlbF2T8jWU77MVWsPnnEzWaTBc_7Cd-2YjO
CitedBy_id crossref_primary_10_1016_j_addma_2021_101875
crossref_primary_10_1007_s40192_020_00177_1
crossref_primary_10_1016_j_addma_2020_101717
crossref_primary_10_1016_j_apm_2020_02_004
crossref_primary_10_3390_ma14030560
crossref_primary_10_1016_j_msea_2020_139922
crossref_primary_10_1007_s40964_022_00281_y
crossref_primary_10_1115_1_4053812
crossref_primary_10_1016_j_addma_2021_102050
crossref_primary_10_1016_j_cossms_2023_101090
crossref_primary_10_1007_s11837_019_03808_x
crossref_primary_10_1088_1757_899X_1249_1_012004
crossref_primary_10_3390_polym14081513
crossref_primary_10_1007_s11837_018_2966_1
crossref_primary_10_1016_j_addma_2022_103269
crossref_primary_10_1016_j_addma_2024_104632
crossref_primary_10_1016_j_addma_2024_104477
crossref_primary_10_1098_rspa_2021_0444
crossref_primary_10_1007_s11837_021_04888_4
crossref_primary_10_1016_j_addma_2022_103127
crossref_primary_10_1016_j_msea_2024_146999
crossref_primary_10_1016_j_addma_2020_101589
crossref_primary_10_1007_s11665_024_09718_7
crossref_primary_10_1016_j_commatsci_2019_109099
crossref_primary_10_1021_accountsmr_3c00108
crossref_primary_10_3390_ma17235872
crossref_primary_10_1016_j_msea_2019_138632
crossref_primary_10_1016_j_mattod_2022_01_021
crossref_primary_10_1088_1361_651X_aac616
crossref_primary_10_1007_s11665_019_04206_9
crossref_primary_10_1016_j_mtla_2023_101705
crossref_primary_10_1016_j_pmatsci_2021_100786
crossref_primary_10_1016_j_matdes_2024_112776
crossref_primary_10_1016_j_msea_2024_146567
crossref_primary_10_1007_s10704_020_00463_1
crossref_primary_10_1016_j_mattod_2021_05_003
crossref_primary_10_1007_s10704_019_00357_x
crossref_primary_10_1007_s13632_018_0456_z
crossref_primary_10_1016_j_mtla_2021_101086
crossref_primary_10_1016_j_addma_2019_100946
crossref_primary_10_1007_s00170_022_09003_8
crossref_primary_10_3389_fmats_2022_919797
crossref_primary_10_1557_mrs_2019_75
crossref_primary_10_1007_s00170_023_12113_6
crossref_primary_10_1016_j_mechmat_2021_104191
crossref_primary_10_1007_s40192_019_00126_7
crossref_primary_10_1016_j_addma_2019_06_011
crossref_primary_10_1115_1_4045381
crossref_primary_10_1016_j_addma_2022_103284
crossref_primary_10_1016_j_addma_2020_101128
crossref_primary_10_1016_j_matchar_2022_112043
crossref_primary_10_1016_j_addma_2020_101602
crossref_primary_10_1016_j_addma_2018_06_024
crossref_primary_10_1007_s40964_025_00998_6
crossref_primary_10_1016_j_cma_2020_113471
crossref_primary_10_1016_j_jmapro_2021_04_027
crossref_primary_10_1016_j_jmatprotec_2023_117998
crossref_primary_10_1177_03093247211045602
crossref_primary_10_1016_j_addma_2020_101090
crossref_primary_10_1016_j_ijplas_2022_103254
crossref_primary_10_1557_s43579_023_00332_7
crossref_primary_10_1016_j_addma_2018_11_019
crossref_primary_10_1016_j_actamat_2021_117464
crossref_primary_10_1016_j_msea_2024_147199
crossref_primary_10_1007_s11665_023_07897_3
Cites_doi 10.1016/j.matdes.2009.11.032
10.1364/AO.54.002477
10.1108/13552540710776142
10.1108/13552541111156504
10.1007/BF02321405
10.1149/1.2425624
10.1016/0001-6160(77)90168-7
10.1007/s11661-999-0323-2
10.1186/s40192-016-0045-4
10.1098/rspa.2004.1279
10.1016/j.addma.2014.08.002
10.1016/j.actamat.2014.12.054
10.1016/j.matdes.2013.03.056
10.1007/s00339-007-4159-6
10.1007/s00170-012-4558-5
10.1016/j.msea.2011.12.004
10.1016/j.engfracmech.2006.12.021
10.1016/0966-9795(96)00051-9
10.1007/s11837-998-0299-1
10.1115/1.4028725
10.1016/j.jmatprotec.2016.10.023
10.1016/j.actamat.2010.02.004
10.1089/3dp.2013.0002
10.1007/s11837-006-0223-5
10.1016/j.actbio.2008.03.013
10.1016/S0921-5093(03)00527-6
10.1103/PhysRevA.46.R1724
10.1016/j.jmatprotec.2012.11.014
10.1007/s11665-014-0958-z
10.1016/j.matdes.2016.01.099
10.1016/j.jmatprotec.2016.09.005
10.1007/s11340-009-9286-x
10.1143/JPSJ.12.1212
10.1115/1.2738962
10.1103/RevModPhys.64.961
10.1016/j.jmatprotec.2014.05.002
10.1016/j.addma.2014.08.001
10.1103/PhysRevE.52.819
10.1115/1.4010337
10.6028/jres.119.015
10.1117/12.2217855
10.1007/s00339-009-5266-3
ContentType Journal Article
Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
CorporateAuthor Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
CorporateAuthor_xml – name: Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1002/adem.201700102
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 1527-2648
EndPage n/a
ExternalDocumentID 1343622
10_1002_adem_201700102
ADEM201700102
Genre article
GroupedDBID -~X
05W
0R~
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
50Y
52U
5GY
5VS
66C
6P2
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F5P
FEDTE
G-S
GNP
GODZA
HGLYW
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TUS
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XPP
XV2
ZZTAW
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
6XO
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OIOZB
OTOTI
ID FETCH-LOGICAL-c3562-b8768d399b17f922395b45c9e2ae05681a256654c36f4dc01b56bdc10a3754ff3
IEDL.DBID DR2
ISSN 1438-1656
IngestDate Fri May 19 01:56:18 EDT 2023
Thu Apr 24 22:59:48 EDT 2025
Tue Jul 01 02:50:59 EDT 2025
Wed Jan 22 17:03:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3562-b8768d399b17f922395b45c9e2ae05681a256654c36f4dc01b56bdc10a3754ff3
Notes AC04-94AL85000
USDOE National Nuclear Security Administration (NNSA)
SAND-2017-0719J
OpenAccessLink https://www.osti.gov/servlets/purl/1343622
PageCount 10
ParticipantIDs osti_scitechconnect_1343622
crossref_primary_10_1002_adem_201700102
crossref_citationtrail_10_1002_adem_201700102
wiley_primary_10_1002_adem_201700102_ADEM201700102
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2017
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: August 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Advanced engineering materials
PublicationYear 2017
Publisher Wiley
Publisher_xml – name: Wiley
References 2014; 119
1995; 52
2010; 31
2007; 129
1963; 110
2010; 58
1977; 25
2011
2013; 67
2004; 460
2006; 58
2015; 54
1974
2016; 95
2003
2008; 4
2002
2007; 74
2011; 17
2014; 23
2007; 13
2014; 214
1989; 29
1957; 12
2014; 1
2016; 5
2009; 97
2015; 137
2001
1951; 18
2013; 50
2015; 87
2013; 213
2017
2016
1992; 46
1999; 30
2015
2017; 240
2017; 241
1998; 50
1996; 4
1992; 64
2012; 534
2007; 89
2010; 50
1885; 9
2003; 361
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Johnson N. L. (e_1_2_7_50_1) 2002
Jared B. H. (e_1_2_7_52_1) 2017
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
(e_1_2_7_12_1) 2015
e_1_2_7_6_1
e_1_2_7_4_1
Considere A. (e_1_2_7_18_1) 1885; 9
e_1_2_7_8_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
Rice R. C. (e_1_2_7_48_1) 2003
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_27_1
e_1_2_7_29_1
Ryan B. F. (e_1_2_7_17_1) 2001
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
Spears T. G. (e_1_2_7_39_1) 2016; 5
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
Weibull W. (e_1_2_7_15_1) 1951; 18
References_xml – year: 2011
– volume: 58
  start-page: 25
  year: 2006
  publication-title: JOM
– volume: 13
  start-page: 196
  year: 2007
  publication-title: Rapid Prototyping J
– start-page: 60
  year: 2015
– volume: 5
  start-page: 1
  year: 2016
  publication-title: Integr. Mater. Manuf. Innov
– volume: 58
  start-page: 3303
  year: 2010
  publication-title: Acta Mater
– volume: 110
  start-page: 1195
  year: 1963
  publication-title: J. Electrochem. Soc
– volume: 89
  start-page: 743
  year: 2007
  publication-title: Appl. Phys. A
– volume: 52
  start-page: 819
  year: 1995
  publication-title: Phys. Rev. E
– year: 2001
– volume: 9
  start-page: 574
  year: 1885
  publication-title: Ann. Ponts Chaussees
– volume: 50
  start-page: 17
  year: 1998
  publication-title: JOM
– volume: 12
  start-page: 1212
  year: 1957
  publication-title: J. Phys. Soc. Jpn
– volume: 64
  start-page: 961
  year: 1992
  publication-title: Rev. Mod. Phys
– volume: 29
  start-page: 261
  year: 1989
  publication-title: Exp. Mech
– volume: 240
  start-page: 12
  year: 2017
  publication-title: J. Mater. Process. Technol
– volume: 361
  start-page: 198
  year: 2003
  publication-title: Mater. Sci. Eng. A
– volume: 4
  start-page: 505
  year: 1996
  publication-title: Intermetallics
– volume: 95
  start-page: 431
  year: 2016
  publication-title: Mater. Des
– volume: 1
  start-page: 77
  year: 2014
  publication-title: Addit. Manuf
– volume: 46
  start-page: R1724
  year: 1992
  publication-title: Phys. Rev. A
– volume: 4
  start-page: 1536
  year: 2008
  publication-title: Acta Biomater
– volume: 214
  start-page: 2522
  year: 2014
  publication-title: J. Mater. Process. Technol
– volume: 74
  start-page: 2518
  year: 2007
  publication-title: Eng. Fract. Mech
– volume: 23
  start-page: 1917
  year: 2014
  publication-title: J. Mater. Eng. Perform
– volume: 50
  start-page: 993
  year: 2010
  publication-title: Exp. Mech
– volume: 1
  start-page: 87
  year: 2014
  publication-title: Addit. Manuf
– volume: 1
  start-page: 6
  year: 2014
  publication-title: 3D Print. Addit. Manuf
– volume: 17
  start-page: 380
  year: 2011
  publication-title: Rapid Prototyping J
– volume: 534
  start-page: 536
  year: 2012
  publication-title: Mater. Sci. Eng. A
– volume: 18
  start-page: 293
  year: 1951
  publication-title: J. Appl. Mech. − Trans. ASME
– volume: 67
  start-page: 1191
  year: 2013
  publication-title: Int. J. Adv. Manuf. Technol
– year: 2003
– year: 2016
– volume: 87
  start-page: 309
  year: 2015
  publication-title: Acta Mater
– volume: 97
  start-page: 641
  year: 2009
  publication-title: Appl. Phys. A
– volume: 213
  start-page: 606
  year: 2013
  publication-title: J. Mater. Process. Technol
– volume: 460
  start-page: 2353
  year: 2004
  publication-title: Proc. Math. Phys. Eng. Sci
– volume: 241
  start-page: 1
  year: 2017
  publication-title: J. Mater. Process. Technol
– volume: 31
  start-page: S106
  year: 2010
  publication-title: Mater. Des
– volume: 50
  start-page: 17
  year: 1998
  publication-title: JOM J. Miner. Met. Mater. Soc
– volume: 30
  start-page: 345
  year: 1999
  publication-title: Metall. Mater. Trans. A
– volume: 54
  start-page: 2477
  year: 2015
  publication-title: Appl. Opt
– year: 2002
– volume: 25
  start-page: 839
  year: 1977
  publication-title: Acta Metall
– volume: 129
  start-page: 1028
  year: 2007
  publication-title: J. Manuf. Sci. Eng
– year: 1974
– volume: 119
  start-page: 398
  year: 2014
  publication-title: J. Res. National Inst. Stand. Technol
– year: 2017
– volume: 137
  start-page: 014001
  year: 2015
  publication-title: J. Manuf. Sci. Eng
– volume: 50
  start-page: 581
  year: 2013
  publication-title: Mater Des
– ident: e_1_2_7_49_1
  doi: 10.1016/j.matdes.2009.11.032
– ident: e_1_2_7_36_1
  doi: 10.1364/AO.54.002477
– ident: e_1_2_7_3_1
– ident: e_1_2_7_27_1
  doi: 10.1108/13552540710776142
– ident: e_1_2_7_7_1
  doi: 10.1108/13552541111156504
– ident: e_1_2_7_11_1
  doi: 10.1007/BF02321405
– ident: e_1_2_7_42_1
  doi: 10.1149/1.2425624
– ident: e_1_2_7_19_1
  doi: 10.1016/0001-6160(77)90168-7
– ident: e_1_2_7_9_1
  doi: 10.1007/s11661-999-0323-2
– volume: 5
  start-page: 1
  year: 2016
  ident: e_1_2_7_39_1
  publication-title: Integr. Mater. Manuf. Innov
  doi: 10.1186/s40192-016-0045-4
– ident: e_1_2_7_34_1
  doi: 10.1098/rspa.2004.1279
– ident: e_1_2_7_30_1
  doi: 10.1016/j.addma.2014.08.002
– ident: e_1_2_7_21_1
– ident: e_1_2_7_20_1
  doi: 10.1016/j.actamat.2014.12.054
– ident: e_1_2_7_23_1
  doi: 10.1016/j.matdes.2013.03.056
– ident: e_1_2_7_38_1
– ident: e_1_2_7_45_1
  doi: 10.1007/s00339-007-4159-6
– ident: e_1_2_7_1_1
  doi: 10.1007/s00170-012-4558-5
– ident: e_1_2_7_10_1
  doi: 10.1016/j.msea.2011.12.004
– ident: e_1_2_7_53_1
  doi: 10.1016/j.engfracmech.2006.12.021
– ident: e_1_2_7_13_1
  doi: 10.1016/0966-9795(96)00051-9
– ident: e_1_2_7_46_1
  doi: 10.1007/s11837-998-0299-1
– ident: e_1_2_7_5_1
  doi: 10.1115/1.4028725
– ident: e_1_2_7_8_1
  doi: 10.1016/j.jmatprotec.2016.10.023
– ident: e_1_2_7_35_1
  doi: 10.1016/j.actamat.2010.02.004
– volume-title: Metallic Materials Properties Development and Standardization (MMPDS): Chapters 1–4
  year: 2003
  ident: e_1_2_7_48_1
– ident: e_1_2_7_2_1
  doi: 10.1089/3dp.2013.0002
– ident: e_1_2_7_51_1
  doi: 10.1007/s11837-006-0223-5
– volume-title: Scripta Materialia
  year: 2017
  ident: e_1_2_7_52_1
– ident: e_1_2_7_43_1
  doi: 10.1016/j.actbio.2008.03.013
– ident: e_1_2_7_40_1
  doi: 10.1016/S0921-5093(03)00527-6
– start-page: 60
  volume-title: Standard Test Methods for Tension Testing of Metallic Materials, American Society for Testing and Materials
  year: 2015
  ident: e_1_2_7_12_1
– ident: e_1_2_7_33_1
  doi: 10.1103/PhysRevA.46.R1724
– ident: e_1_2_7_25_1
  doi: 10.1016/j.jmatprotec.2012.11.014
– ident: e_1_2_7_4_1
  doi: 10.1007/s11665-014-0958-z
– volume: 9
  start-page: 574
  year: 1885
  ident: e_1_2_7_18_1
  publication-title: Ann. Ponts Chaussees
– ident: e_1_2_7_44_1
  doi: 10.1007/s11837-998-0299-1
– ident: e_1_2_7_47_1
  doi: 10.1016/j.matdes.2016.01.099
– ident: e_1_2_7_24_1
  doi: 10.1016/j.jmatprotec.2016.09.005
– ident: e_1_2_7_16_1
  doi: 10.1007/s11340-009-9286-x
– ident: e_1_2_7_41_1
  doi: 10.1143/JPSJ.12.1212
– ident: e_1_2_7_22_1
  doi: 10.1115/1.2738962
– ident: e_1_2_7_32_1
  doi: 10.1103/RevModPhys.64.961
– ident: e_1_2_7_26_1
  doi: 10.1016/j.jmatprotec.2014.05.002
– ident: e_1_2_7_29_1
  doi: 10.1016/j.addma.2014.08.001
– ident: e_1_2_7_31_1
  doi: 10.1103/PhysRevE.52.819
– volume-title: Minitab Handbook
  year: 2001
  ident: e_1_2_7_17_1
– ident: e_1_2_7_6_1
– volume: 18
  start-page: 293
  year: 1951
  ident: e_1_2_7_15_1
  publication-title: J. Appl. Mech. − Trans. ASME
  doi: 10.1115/1.4010337
– ident: e_1_2_7_14_1
  doi: 10.6028/jres.119.015
– volume-title: Continuous Multivariate Distributions, Vol. 1, Models and Applications
  year: 2002
  ident: e_1_2_7_50_1
– ident: e_1_2_7_37_1
  doi: 10.1117/12.2217855
– ident: e_1_2_7_28_1
  doi: 10.1007/s00339-009-5266-3
SSID ssj0011013
Score 2.460707
Snippet Additive manufacturing enables the rapid, cost effective production of customized structural components. To fully capitalize on the agility of additive...
Additive manufacturing enables the rapid, cost effective production of large populations of material test coupons such as tensile bars. By adopting streamlined...
SourceID osti
crossref
wiley
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
SubjectTerms additive manufacturing
deformation
MATERIALS SCIENCE
power bed fusion
statistics
tensile
Title Extreme‐Value Statistics Reveal Rare Failure‐Critical Defects in Additive Manufacturing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.201700102
https://www.osti.gov/servlets/purl/1343622
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LSsNAFIYH6UoX3sValVkIrtLmMkmaZdGWItRFsVJwEWYmJ1AsUWoi4spH8Bl9Es-ZtLEVRNBdQiYhmTOXP8M_32HsTAZRmrj4dxI4UlsicMCSIDQGRCeoDyIQBl88uA76I3E19sdLu_hLPkS14EY9w4zX1MGlemp9QUPJPU7WrNBg0XAQJsMWqaJhxY_Cqc3kR6YU3xZhZhbURtttrd6-MivVHrB3rYpVM9v0tphcvGdpMrlvFrlq6tdvCMf_fMg225xLUd4p284OW4Nsl20sAQr32F33JacFxI-391s5LYCTNi3RznwIzygy-VDOgPfkhOztWGyROoFfgjGK8EnGO0liHEp8ILOCdlKYrZH7bNTr3lz0rXk6Bkt7qJIshQNnO0FBo5wwjVBWRL4Svo7AlWATx0yifAp8ob0gFYm2HeUHKtGOLSnNbpp6B6yWPWRwyLiOXO2mjg-eLQWEbQmgwiiU2GzaPmqkOrMW4Yj1nFVOKTOmcUlZdmOqtLiqtDo7r8o_lpSOH0s2KLox6guC5GpyE-k8djyBMzledU2kfnlITJ2kOjv6y00Ntk7HpZXwmNXyWQEnKG9ydWqa8CclKvHu
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60HtSDb7HWxx4ET2nz2CTNsWhL1baH0orgIexuNlAsqZRUxJM_wd_oL3Fm00QriKDHJLMh2dnZ-Xb59htCzrgXxJENqxPP4tJgnqUMrpgEh8gI8EGgmJYv7va89pBd37k5mxDPwmT6EMWGG0aGnq8xwHFDuvapGor0ceRm-VoXbZmsYFlvvarqFwpSkNx0hWQs8m2g0Eyu22jatcX2C3mpNIH4WoSrOt-0NonIvzSjmTxUZ6moypdvIo7_-pUtsjFHo7SRDZ9tsqSSHbL-RaNwl9w3n1PcQ3x_fbvl45miCE8zdWfaV0-AM2mfTxVt8REy3MEsr55AL5XmitBRQhtRpElKtMuTGR6m0Kcj98iw1RxctI15RQZDOgCUDAFzZz0CTCMsPw4AWQSuYK4MlM2ViVJmHBCU5zLpeDGLpGkJ1xORtEyOlXbj2NknpWSSqANCZWBLO7Zc5ZicKb_OlRJ-4HMYOXUXYFKZGLk_QjmXK8eqGeMwE1q2Q-y0sOi0Mjkv7B8zoY4fLSvo3hAgBurkSiQUyTS0HAbJHJ7a2lW_vCTEOCmuDv_S6JSstgfdTti56t1UyBrez5iFR6SUTmfqGNBOKk70eP4ATFz2CQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60gujBt1jrYw-Cp9Q8NklzLLahPlqkWCl4CJvNBoolLSUV8eRP8Df6S5zZNLEVRNBjkt2Q7MzsfLt8-w0hZ9zx4siE1YljcKExx5Aal0yAQUQE-MCTTMkXtztOq8eu-3Z_7hR_pg9RbLhhZKj5GgN8HMUXX6KhyB5HaparZNGWyQpz9Br6daNbCEhBblMFkrHGt4Y6M7lso25eLPZfSEulEYTXIlpV6cbfJDz_0Ixl8lSdpmFVvH7TcPzPn2yRjRkWpfXMebbJkkx2yPqcQuEueWy-pLiD-PH2_sCHU0kRnGbazrQrnwFl0i6fSOrzAfLboVleO4E2pGKK0EFC61GkKEq0zZMpHqVQZyP3SM9v3l-2tFk9Bk1YAJO0EGbOWgSIJjTc2ANc4dkhs4UnTS51FDLjgJ8cmwnLiVkkdCO0nTAShs6xzm4cW_uklIwSeUCo8ExhxoYtLZ0z6da4lKHruRz8pmYDSCoTLTdHIGZi5VgzYxhkMstmgIMWFINWJudF-3Em0_FjywpaNwCAgSq5AulEIg0Mi0Eqh6emstQvLwkwSoqrw790OiWrdw0_uL3q3FTIGt7OaIVHpJROpvIYoE4anihv_gSHzPTB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extreme%E2%80%90Value+Statistics+Reveal+Rare+Failure%E2%80%90Critical+Defects+in+Additive+Manufacturing&rft.jtitle=Advanced+engineering+materials&rft.au=Boyce%2C+Brad+L.&rft.au=Salzbrenner%2C+Bradley+C.&rft.au=Rodelas%2C+Jeffrey+M.&rft.au=Swiler%2C+Laura+P.&rft.date=2017-08-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=19&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadem.201700102&rft.externalDBID=10.1002%252Fadem.201700102&rft.externalDocID=ADEM201700102
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon