A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China
ABSTRACT In this study, fine‐resolution multimodel climate projections over China are developed based on 35 climate models and two emissions scenarios (RCP4.5 and RCP8.5) from phase five of the Coupled Model Intercomparison Project (CMIP5) by means of Bias Correction and Spatial Disaggregation. The...
Saved in:
Published in | International journal of climatology Vol. 34; no. 6; pp. 2059 - 2078 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.05.2014
Wiley Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
In this study, fine‐resolution multimodel climate projections over China are developed based on 35 climate models and two emissions scenarios (RCP4.5 and RCP8.5) from phase five of the Coupled Model Intercomparison Project (CMIP5) by means of Bias Correction and Spatial Disaggregation. The yearly‐averaged temperature is projected to increase by 0.8 to 1.6 °C (0.8 to 1.7 °C), 1.5 to 2.7 °C (2 to 3.7 °C), and 1.9 to 3.3 °C (3.4 to 6 °C) under RCP4.5 (RCP8.5) in three time slices (2010–2039, 2040–2069, and 2070–2099), respectively. The most warming occurs in winter and the least in summer, and the inland areas in the northwest will warm much faster than the southeast. Under the background of surface warming, the probability of extreme low temperatures in winter defined as the monthly temperature being lower than the 9th percentile of the climatological distribution will sharply reduce to 0.1–1.7% under RCP4.5 for the period 2010–2039 and even lower for the following decades. For precipitation change, a remarkable increase is found over most areas of China except the Southwest, ranging from approximately 2 to 20%. The projected precipitation changes are highly robust in northern China, but inconsistent in southern China. In spite of widespread precipitation increases, most areas of China quantified by the Palmer Drought Severity Index are projected to become drier as a consequence of increasing evaporation driven by temperature increases. Detailed examination shows that drought that is moderate or severe according to current climate standards will become the norm in the future. Not only will incidences of severe and extreme drought increase dramatically in the future, but extreme wet events will also become more probable. Furthermore, the increasing drought risk in Southwest China and the Qinghai‐Tibetan Plateau is nearly twice that for other parts of China. |
---|---|
AbstractList | ABSTRACT
In this study, fine‐resolution multimodel climate projections over China are developed based on 35 climate models and two emissions scenarios (RCP4.5 and RCP8.5) from phase five of the Coupled Model Intercomparison Project (CMIP5) by means of Bias Correction and Spatial Disaggregation. The yearly‐averaged temperature is projected to increase by 0.8 to 1.6 °C (0.8 to 1.7 °C), 1.5 to 2.7 °C (2 to 3.7 °C), and 1.9 to 3.3 °C (3.4 to 6 °C) under RCP4.5 (RCP8.5) in three time slices (2010–2039, 2040–2069, and 2070–2099), respectively. The most warming occurs in winter and the least in summer, and the inland areas in the northwest will warm much faster than the southeast. Under the background of surface warming, the probability of extreme low temperatures in winter defined as the monthly temperature being lower than the 9th percentile of the climatological distribution will sharply reduce to 0.1–1.7% under RCP4.5 for the period 2010–2039 and even lower for the following decades. For precipitation change, a remarkable increase is found over most areas of China except the Southwest, ranging from approximately 2 to 20%. The projected precipitation changes are highly robust in northern China, but inconsistent in southern China. In spite of widespread precipitation increases, most areas of China quantified by the Palmer Drought Severity Index are projected to become drier as a consequence of increasing evaporation driven by temperature increases. Detailed examination shows that drought that is moderate or severe according to current climate standards will become the norm in the future. Not only will incidences of severe and extreme drought increase dramatically in the future, but extreme wet events will also become more probable. Furthermore, the increasing drought risk in Southwest China and the Qinghai‐Tibetan Plateau is nearly twice that for other parts of China. In this study, fine‐resolution multimodel climate projections over China are developed based on 35 climate models and two emissions scenarios ( RCP4 .5 and RCP8 .5) from phase five of the Coupled Model Intercomparison Project ( CMIP5 ) by means of Bias Correction and Spatial Disaggregation. The yearly‐averaged temperature is projected to increase by 0.8 to 1.6 °C (0.8 to 1.7 °C), 1.5 to 2.7 °C (2 to 3.7 °C), and 1.9 to 3.3 °C (3.4 to 6 °C) under RCP4 .5 ( RCP8 .5) in three time slices (2010–2039, 2040–2069, and 2070–2099), respectively. The most warming occurs in winter and the least in summer, and the inland areas in the northwest will warm much faster than the southeast. Under the background of surface warming, the probability of extreme low temperatures in winter defined as the monthly temperature being lower than the 9th percentile of the climatological distribution will sharply reduce to 0.1–1.7% under RCP4 .5 for the period 2010–2039 and even lower for the following decades. For precipitation change, a remarkable increase is found over most areas of China except the Southwest, ranging from approximately 2 to 20%. The projected precipitation changes are highly robust in northern China, but inconsistent in southern China. In spite of widespread precipitation increases, most areas of China quantified by the Palmer Drought Severity Index are projected to become drier as a consequence of increasing evaporation driven by temperature increases. Detailed examination shows that drought that is moderate or severe according to current climate standards will become the norm in the future. Not only will incidences of severe and extreme drought increase dramatically in the future, but extreme wet events will also become more probable. Furthermore, the increasing drought risk in Southwest China and the Qinghai‐Tibetan Plateau is nearly twice that for other parts of China. In this study, fine-resolution multimodel climate projections over China are developed based on 35 climate models and two emissions scenarios (RCP4.5 and RCP8.5) from phase five of the Coupled Model Intercomparison Project (CMIP5) by means of Bias Correction and Spatial Disaggregation. The yearly-averaged temperature is projected to increase by 0.8 to 1.6 degree C (0.8 to 1.7 degree C), 1.5 to 2.7 degree C (2 to 3.7 degree C), and 1.9 to 3.3 degree C (3.4 to 6 degree C) under RCP4.5 (RCP8.5) in three time slices (2010-2039, 2040-2069, and 2070-2099), respectively. The most warming occurs in winter and the least in summer, and the inland areas in the northwest will warm much faster than the southeast. Under the background of surface warming, the probability of extreme low temperatures in winter defined as the monthly temperature being lower than the 9th percentile of the climatological distribution will sharply reduce to 0.1-1.7% under RCP4.5 for the period 2010-2039 and even lower for the following decades. For precipitation change, a remarkable increase is found over most areas of China except the Southwest, ranging from approximately 2 to 20%. The projected precipitation changes are highly robust in northern China, but inconsistent in southern China. In spite of widespread precipitation increases, most areas of China quantified by the Palmer Drought Severity Index are projected to become drier as a consequence of increasing evaporation driven by temperature increases. Detailed examination shows that drought that is moderate or severe according to current climate standards will become the norm in the future. Not only will incidences of severe and extreme drought increase dramatically in the future, but extreme wet events will also become more probable. Furthermore, the increasing drought risk in Southwest China and the Qinghai-Tibetan Plateau is nearly twice that for other parts of China. In this study, fine-resolution multimodel climate projections over China are developed based on 35 climate models and two emissions scenarios (RCP4.5 and RCP8.5) from phase five of the Coupled Model Intercomparison Project (CMIP5) by means of Bias Correction and Spatial Disaggregation. The yearly-averaged temperature is projected to increase by 0.8 to 1.6°C (0.8 to 1.7°C), 1.5 to 2.7°C (2 to 3.7°C), and 1.9 to 3.3°C (3.4 to 6°C) under RCP4.5 (RCP8.5) in three time slices (2010-2039, 2040-2069, and 2070-2099), respectively. The most warming occurs in winter and the least in summer, and the inland areas in the northwest will warm much faster than the southeast. Under the background of surface warming, the probability of extreme low temperatures in winter defined as the monthly temperature being lower than the 9th percentile of the climatological distribution will sharply reduce to 0.1-1.7% under RCP4.5 for the period 2010-2039 and even lower for the following decades. For precipitation change, a remarkable increase is found over most areas of China except the Southwest, ranging from approximately 2 to 20%. The projected precipitation changes are highly robust in northern China, but inconsistent in southern China. In spite of widespread precipitation increases, most areas of China quantified by the Palmer Drought Severity Index are projected to become drier as a consequence of increasing evaporation driven by temperature increases. Detailed examination shows that drought that is moderate or severe according to current climate standards will become the norm in the future. Not only will incidences of severe and extreme drought increase dramatically in the future, but extreme wet events will also become more probable. Furthermore, the increasing drought risk in Southwest China and the Qinghai-Tibetan Plateau is nearly twice that for other parts of China. [PUBLICATION ABSTRACT] |
Author | Wang, Lin Chen, Wen |
Author_xml | – sequence: 1 givenname: Lin surname: Wang fullname: Wang, Lin organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Wen surname: Chen fullname: Chen, Wen organization: Chinese Academy of Sciences |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28376439$$DView record in Pascal Francis |
BookMark | eNp10UFrHCEUB3ApKXSTFvoRhFLoIbPR0ZnRYxjaJiUhOaRncdznxsXRrc4Q8u3rZLctlPak4M_n-_tO0UmIARB6T8maElJf7KJZM1HXr9CKEtlVhAhxglZESFkJTsUbdJrzjhAiJW1XaHuJ-9vr-waPs5_cGDfg8T7FHZjJxYCjxXae5gR4gnEPSS_78yLAuL2b9ILOsQ4bbLwb9RR93DqjPd6kOG8fJ-wC7h9d0G_Ra6t9hnfH9Qx9__L5ob-qbu6-XveXN5VhTVtX3WClJby2pO0Mgc7KjllqOQfdDsCHDWsNI9KUcyGF7Eyr9QDCME1hGLhhZ-jToW4J8WOGPKnRZQPe6wBxzoo2NeeMtFQU-uEvuotzCqW7oqhoCGu4LOrjUelcgtmkg3FZ7VOJm55VLVjXcra49cGZFHNOYJU5_s-UtPOKErXMp7xh1DKfP53-vvCr5j9odaBPzsPzf536dte_-J-HT6Dw |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2018_11_362 crossref_primary_10_3389_fenvs_2021_656639 crossref_primary_10_3390_f14020331 crossref_primary_10_1016_j_dendro_2018_11_006 crossref_primary_10_1002_joc_6674 crossref_primary_10_1029_2020JD033742 crossref_primary_10_1016_j_pce_2020_102838 crossref_primary_10_1175_WAF_D_21_0108_1 crossref_primary_10_1002_joc_5105 crossref_primary_10_1016_j_ecolind_2021_107588 crossref_primary_10_1002_joc_7407 crossref_primary_10_5194_essd_11_1931_2019 crossref_primary_10_1016_j_jhydrol_2017_07_001 crossref_primary_10_1007_s00382_024_07344_6 crossref_primary_10_3390_rs13173531 crossref_primary_10_1002_joc_8062 crossref_primary_10_1007_s00477_020_01948_0 crossref_primary_10_1002_joc_8063 crossref_primary_10_1016_j_jhydrol_2021_126502 crossref_primary_10_1016_S2095_3119_16_61545_9 crossref_primary_10_1007_s00382_020_05557_z crossref_primary_10_1175_JHM_D_21_0116_1 crossref_primary_10_1002_joc_6682 crossref_primary_10_3389_fenvs_2022_863575 crossref_primary_10_1016_j_eja_2020_126126 crossref_primary_10_3390_rs14205097 crossref_primary_10_1002_joc_5233 crossref_primary_10_1007_s00477_015_1149_7 crossref_primary_10_1002_joc_6206 crossref_primary_10_1016_j_proeng_2016_07_602 crossref_primary_10_1016_j_agrformet_2017_12_077 crossref_primary_10_1016_j_atmosres_2020_105303 crossref_primary_10_1002_ece3_11264 crossref_primary_10_1007_s00704_020_03172_w crossref_primary_10_1038_s41598_022_13713_0 crossref_primary_10_3390_su14127374 crossref_primary_10_1016_j_agrformet_2016_08_008 crossref_primary_10_1088_2515_7620_ac620e crossref_primary_10_1016_j_agrformet_2018_08_009 crossref_primary_10_1029_2019EA000962 crossref_primary_10_2166_nh_2021_151 crossref_primary_10_1038_s41598_018_19477_w crossref_primary_10_1007_s00382_017_3623_z crossref_primary_10_1007_s12517_020_06359_7 crossref_primary_10_3354_cr01576 crossref_primary_10_3390_rs14184658 crossref_primary_10_1002_joc_7783 crossref_primary_10_1016_j_jhydrol_2016_01_001 crossref_primary_10_1002_joc_4039 crossref_primary_10_1016_j_scitotenv_2019_02_182 crossref_primary_10_1007_s00376_021_1075_1 crossref_primary_10_3389_feart_2022_1061369 crossref_primary_10_1016_j_accre_2020_09_003 crossref_primary_10_1016_j_trd_2022_103395 crossref_primary_10_1007_s11069_021_04851_1 crossref_primary_10_1016_j_ecolmodel_2017_11_009 crossref_primary_10_1007_s00382_016_3510_z crossref_primary_10_1016_j_scitotenv_2020_141258 crossref_primary_10_1175_JCLI_D_19_0084_1 crossref_primary_10_1175_JHM_D_14_0236_1 crossref_primary_10_1016_j_atmosres_2021_105828 crossref_primary_10_1016_j_catena_2019_104343 crossref_primary_10_1016_j_jhydrol_2021_126643 crossref_primary_10_1007_s00376_016_6136_5 crossref_primary_10_1016_j_jenvman_2023_118934 crossref_primary_10_1175_JHM_D_18_0251_1 crossref_primary_10_1029_2021EF002614 crossref_primary_10_3390_su12093684 crossref_primary_10_1007_s00382_022_06379_x crossref_primary_10_1002_joc_4043 crossref_primary_10_1016_j_jhydrol_2015_04_002 crossref_primary_10_1007_s00477_017_1463_3 crossref_primary_10_1016_j_jhydrol_2022_128435 crossref_primary_10_1002_joc_7312 crossref_primary_10_34133_olar_0016 crossref_primary_10_1007_s10584_021_03286_8 crossref_primary_10_1016_j_ejrh_2024_101767 crossref_primary_10_1007_s13351_024_3144_8 crossref_primary_10_3390_w14192996 crossref_primary_10_1007_s12517_020_05316_8 crossref_primary_10_1007_s10584_022_03359_2 crossref_primary_10_1016_j_atmosres_2023_106675 crossref_primary_10_1155_2018_1818727 crossref_primary_10_1016_j_jenvman_2022_115361 crossref_primary_10_1360_TB_2022_0032 crossref_primary_10_1002_joc_6907 crossref_primary_10_3390_rs14010115 crossref_primary_10_1002_2013JD021190 crossref_primary_10_1007_s11269_020_02553_0 crossref_primary_10_1016_j_scitotenv_2019_02_188 crossref_primary_10_1175_JHM_D_16_0204_1 crossref_primary_10_1007_s12517_019_4571_1 crossref_primary_10_1016_j_gecco_2023_e02541 crossref_primary_10_3390_atmos13020232 crossref_primary_10_3390_f14112234 crossref_primary_10_1007_s10584_018_2161_y crossref_primary_10_3389_feart_2020_00086 crossref_primary_10_3390_rs11111333 crossref_primary_10_1016_j_scitotenv_2020_141481 crossref_primary_10_1007_s00382_022_06344_8 crossref_primary_10_1029_2022WR032380 crossref_primary_10_1007_s11104_024_06998_9 crossref_primary_10_1016_j_jnc_2024_126618 crossref_primary_10_1002_joc_7842 crossref_primary_10_1007_s00704_017_2189_3 crossref_primary_10_1007_s11258_024_01405_w crossref_primary_10_1016_j_ejrh_2018_12_007 crossref_primary_10_3390_atmos15040434 crossref_primary_10_3390_w14213499 crossref_primary_10_3390_w9070475 crossref_primary_10_1371_journal_pone_0163718 crossref_primary_10_1016_j_earscirev_2022_103957 crossref_primary_10_1002_2016JD025276 crossref_primary_10_1016_j_agrformet_2016_11_129 crossref_primary_10_1155_2020_2409068 crossref_primary_10_3390_atmos14091408 crossref_primary_10_1007_s00376_014_4102_7 crossref_primary_10_3390_w11091771 crossref_primary_10_5194_acp_19_887_2019 crossref_primary_10_1080_02626667_2020_1764959 crossref_primary_10_5814_j_issn_1674_764x_2020_03_008 crossref_primary_10_1007_s00703_020_00750_5 crossref_primary_10_1038_s41598_024_76848_2 crossref_primary_10_1016_j_jhydrol_2019_01_019 crossref_primary_10_1016_j_crm_2019_100207 crossref_primary_10_1002_joc_7297 crossref_primary_10_1002_joc_8146 crossref_primary_10_1016_j_atmosres_2024_107481 crossref_primary_10_1002_joc_7616 crossref_primary_10_3390_rs15123008 crossref_primary_10_3390_su11102856 crossref_primary_10_1016_j_scitotenv_2019_05_345 crossref_primary_10_1016_j_envsoft_2024_106127 crossref_primary_10_3390_w12010230 crossref_primary_10_1007_s00704_024_04891_0 crossref_primary_10_3390_biology10010063 crossref_primary_10_1002_joc_6769 crossref_primary_10_1016_j_gecco_2024_e03198 crossref_primary_10_1007_s13351_020_9152_4 crossref_primary_10_1038_srep18813 crossref_primary_10_1002_joc_8150 crossref_primary_10_1007_s00382_020_05411_2 crossref_primary_10_3390_su11123413 crossref_primary_10_1002_joc_7064 crossref_primary_10_1021_acs_est_0c00706 crossref_primary_10_5194_piahs_371_89_2015 crossref_primary_10_1002_met_1738 crossref_primary_10_1007_s00704_021_03625_w crossref_primary_10_1007_s00382_021_05734_8 crossref_primary_10_1002_joc_6892 crossref_primary_10_1007_s11783_019_1202_8 crossref_primary_10_1007_s00382_019_04624_4 crossref_primary_10_1016_j_jhydrol_2014_12_011 crossref_primary_10_1002_joc_4594 crossref_primary_10_1007_s00704_021_03745_3 crossref_primary_10_3390_rs15143641 crossref_primary_10_1016_j_pce_2022_103234 crossref_primary_10_1007_s00704_016_1743_8 crossref_primary_10_1659_MRD_JOURNAL_D_15_00041_1 crossref_primary_10_1080_13683500_2021_1956442 crossref_primary_10_1007_s00704_016_1935_2 crossref_primary_10_1088_1748_9326_acf0d7 crossref_primary_10_1029_2019JD031317 crossref_primary_10_1007_s00382_014_2236_z crossref_primary_10_3390_rs70809998 crossref_primary_10_3390_w11091790 crossref_primary_10_1016_j_jhydrol_2018_10_012 crossref_primary_10_5194_piahs_376_97_2018 crossref_primary_10_1175_JCLI_D_20_0304_1 crossref_primary_10_1002_joc_8046 crossref_primary_10_1002_joc_5331 crossref_primary_10_1175_JAMC_D_18_0266_1 crossref_primary_10_3390_rs16071303 crossref_primary_10_1002_joc_7634 crossref_primary_10_3389_fclim_2021_762997 crossref_primary_10_1007_s00382_016_3066_y crossref_primary_10_1186_s40645_020_00325_3 crossref_primary_10_1016_j_jenvman_2025_124520 crossref_primary_10_3390_land13040458 crossref_primary_10_3389_fenvs_2023_1251789 crossref_primary_10_1007_s00704_018_2398_4 crossref_primary_10_1002_joc_7483 crossref_primary_10_3390_w11091855 crossref_primary_10_1002_joc_6038 crossref_primary_10_1002_joc_6279 crossref_primary_10_1007_s11069_019_03811_0 crossref_primary_10_1002_joc_7009 crossref_primary_10_1155_2016_1879024 crossref_primary_10_1016_j_atmosres_2020_105375 crossref_primary_10_1002_joc_8219 crossref_primary_10_1016_j_foreco_2019_117524 crossref_primary_10_1007_s00382_021_05691_2 crossref_primary_10_1016_j_foreco_2021_119436 crossref_primary_10_1007_s00382_019_04809_x crossref_primary_10_3389_fpls_2024_1430025 crossref_primary_10_3390_atmos12101274 crossref_primary_10_3390_rs14225674 crossref_primary_10_3390_cli13020031 crossref_primary_10_3390_rs16213997 crossref_primary_10_1155_2018_5215093 crossref_primary_10_3390_cli6020030 crossref_primary_10_1175_JHM_D_19_0290_1 crossref_primary_10_1016_j_agrformet_2018_06_027 crossref_primary_10_1016_j_gloplacha_2024_104380 crossref_primary_10_3390_cli11120245 crossref_primary_10_1002_joc_7137 crossref_primary_10_1016_j_atmosres_2025_107946 crossref_primary_10_3390_w10081031 crossref_primary_10_3390_w15122265 crossref_primary_10_1175_JHM_D_22_0006_1 crossref_primary_10_1038_s41598_020_73456_8 crossref_primary_10_1175_JHM_D_17_0180_1 crossref_primary_10_1007_s11442_019_1582_5 crossref_primary_10_3390_w11050997 crossref_primary_10_1016_j_atmosres_2021_105763 crossref_primary_10_1016_j_wace_2021_100304 crossref_primary_10_1360_TB_2022_0643 crossref_primary_10_1007_s11269_018_1975_8 crossref_primary_10_1016_j_jenvman_2019_109623 crossref_primary_10_1007_s10661_015_4303_2 crossref_primary_10_46830_wrirpt_21_00031 crossref_primary_10_2166_nh_2023_142 crossref_primary_10_1016_j_foreco_2022_120131 crossref_primary_10_1016_j_fcr_2023_109112 crossref_primary_10_1002_joc_7386 crossref_primary_10_1029_2022EF002681 crossref_primary_10_3389_feart_2020_00017 crossref_primary_10_1007_s10584_015_1576_y crossref_primary_10_1139_cjce_2018_0692 crossref_primary_10_3390_w15213840 crossref_primary_10_1007_s00382_018_4445_3 crossref_primary_10_1038_s41598_023_48650_z crossref_primary_10_1088_1748_9326_ac97ac crossref_primary_10_1007_s00382_020_05404_1 crossref_primary_10_1007_s00704_019_02895_9 crossref_primary_10_1007_s42991_024_00445_z crossref_primary_10_1021_acs_estlett_2c00104 crossref_primary_10_3390_w12071996 crossref_primary_10_1029_2020WR027698 crossref_primary_10_1016_j_ecoinf_2021_101459 crossref_primary_10_1007_s00704_017_2149_y crossref_primary_10_3390_atmos8010015 crossref_primary_10_1007_s13143_018_0072_5 crossref_primary_10_1016_j_agwat_2024_109239 crossref_primary_10_1002_joc_7152 crossref_primary_10_1155_2019_1545746 crossref_primary_10_1002_joc_7150 crossref_primary_10_1016_j_atmosres_2017_10_024 crossref_primary_10_1016_j_jseaes_2017_02_002 crossref_primary_10_1002_joc_8485 crossref_primary_10_1007_s11069_022_05361_4 crossref_primary_10_1186_s40663_019_0189_8 crossref_primary_10_1093_icb_icae043 crossref_primary_10_1175_JHM_D_15_0058_1 crossref_primary_10_1016_j_scitotenv_2019_134076 crossref_primary_10_1007_s00477_014_0953_9 crossref_primary_10_31497_zrzyxb_20220718 crossref_primary_10_1002_joc_4328 crossref_primary_10_1007_s00704_015_1584_x crossref_primary_10_1016_j_scib_2017_09_023 crossref_primary_10_1007_s11069_020_03928_7 crossref_primary_10_1016_j_scitotenv_2017_11_326 crossref_primary_10_1007_s00704_019_02914_9 crossref_primary_10_1016_j_jhydrol_2018_08_057 crossref_primary_10_1007_s13351_020_9208_5 crossref_primary_10_1002_joc_4295 crossref_primary_10_3390_w16101441 crossref_primary_10_1007_s00704_018_2648_5 crossref_primary_10_1007_s00704_023_04795_5 crossref_primary_10_1002_joc_5388 crossref_primary_10_1016_j_ejrh_2023_101494 crossref_primary_10_1007_s00024_020_02631_9 crossref_primary_10_1029_2020JD033263 crossref_primary_10_1007_s00704_016_1930_7 crossref_primary_10_1007_s00376_020_0077_8 crossref_primary_10_1002_joc_5706 crossref_primary_10_1007_s12517_024_12162_5 crossref_primary_10_1016_j_accre_2022_03_003 crossref_primary_10_2166_nh_2021_069 crossref_primary_10_1016_j_scitotenv_2024_170305 crossref_primary_10_1016_j_agwat_2021_107238 crossref_primary_10_1175_JCLI_D_16_0536_1 crossref_primary_10_1002_joc_8543 crossref_primary_10_1007_s10980_021_01309_4 crossref_primary_10_1016_j_scitotenv_2019_136074 crossref_primary_10_1016_j_ejrh_2015_06_006 crossref_primary_10_1007_s00704_021_03751_5 crossref_primary_10_1007_s00704_021_03775_x crossref_primary_10_1175_JHM_D_16_0118_1 crossref_primary_10_1002_joc_7450 crossref_primary_10_1080_02723646_2019_1706704 crossref_primary_10_1175_JCLI_D_13_00465_1 crossref_primary_10_3390_f16010004 crossref_primary_10_1016_j_agrformet_2021_108770 crossref_primary_10_1016_j_agrformet_2024_109965 crossref_primary_10_1016_j_jhydrol_2021_126091 crossref_primary_10_1016_j_scitotenv_2018_05_324 crossref_primary_10_1002_2014JD022994 crossref_primary_10_1029_2024EF005147 crossref_primary_10_1016_j_scitotenv_2018_01_300 crossref_primary_10_1007_s00382_018_4543_2 crossref_primary_10_1016_j_jhydrol_2024_132315 crossref_primary_10_3390_ijerph18116029 crossref_primary_10_1016_j_ejrh_2024_101661 crossref_primary_10_3390_ijerph15050839 crossref_primary_10_1007_s00382_016_3024_8 crossref_primary_10_3390_w12030904 crossref_primary_10_1002_asl_830 crossref_primary_10_1016_j_scitotenv_2020_144654 crossref_primary_10_1002_2015JD024159 crossref_primary_10_1016_j_scitotenv_2020_140297 crossref_primary_10_1175_JCLI_D_21_0561_1 crossref_primary_10_3390_w16060880 crossref_primary_10_1016_j_jher_2016_10_003 crossref_primary_10_3390_w11101958 crossref_primary_10_46234_ccdcw2021_174 crossref_primary_10_1016_j_agwat_2017_08_008 crossref_primary_10_1155_2019_2820769 crossref_primary_10_1029_2021JD035005 crossref_primary_10_1007_s00704_018_2456_y crossref_primary_10_1029_2018EF001103 crossref_primary_10_1016_j_jhydrol_2019_124323 crossref_primary_10_3390_atmos12060787 crossref_primary_10_3390_su71115029 crossref_primary_10_1029_2020WR027931 crossref_primary_10_1016_j_atmosres_2018_08_008 crossref_primary_10_1029_2018WR023053 crossref_primary_10_1016_j_agsy_2019_01_006 crossref_primary_10_1029_2019EF001280 crossref_primary_10_1007_s00382_016_3302_5 crossref_primary_10_1007_s00382_023_06778_8 crossref_primary_10_1007_s00704_018_2541_2 crossref_primary_10_1007_s00704_019_03024_2 crossref_primary_10_1007_s10584_023_03646_6 crossref_primary_10_1029_2018EF000932 crossref_primary_10_1016_j_fmre_2024_01_023 crossref_primary_10_1016_j_accre_2018_01_003 crossref_primary_10_1371_journal_pone_0158872 crossref_primary_10_1029_2017JD027825 crossref_primary_10_1002_ird_2467 crossref_primary_10_1016_j_scib_2017_12_021 crossref_primary_10_1029_2021GL095795 crossref_primary_10_1155_2016_9472605 crossref_primary_10_1016_j_envexpbot_2025_106087 crossref_primary_10_3390_atmos12091143 crossref_primary_10_1061__ASCE_EE_1943_7870_0001394 crossref_primary_10_1016_j_scitotenv_2023_167632 crossref_primary_10_1007_s41748_021_00273_y crossref_primary_10_1016_j_jenvman_2022_116646 crossref_primary_10_1016_j_quaint_2017_05_005 |
Cites_doi | 10.1029/2006GL027809 10.1007/s10584‐006‐9117‐3 10.1007/S00703‐006‐0184‐9 10.1175/JCLI3848.1 10.1016/j.gloplacha.2008.12.013 10.1029/2001JD000659 10.1175/1520‐0450(1984)023<1100:TPDSIL>2.0.CO;2 10.1111/j.1752‐1688.2000.tb04276.x 10.1080/16742834.2012.11447047 10.1175/1520‐0442(2004)017<2335:ASPDSI>2.0.CO;2 10.1007/s10651‐007‐0018‐z 10.1029/2010JD015001 10.1029/2010JD015541 10.1175/JCLI3952.1 10.1175/2010BAMS2857.1 10.5194/hessd‐10‐597‐2013 10.1029/2007EO470006 10.1175/BAMS‐88‐9‐1383 10.1175/1520‐0442(2002)015<1141:COAURA>2.0.CO;2 10.1175/BAMS‐D‐11‐00094.1 10.1007/s00704‐009‐0134‐9 10.1029/2003JD003651 10.1038/nature08823 10.1002/hyp.7913 10.1029/92GB01822 10.1029/2004JD005669 10.5194/hess‐16‐3383‐2012 10.1007/s00376‐010‐1016‐x 10.1007/s00376‐010‐0080‐6 10.1007/s00376‐009‐0101‐5 10.1080/16742834.2012.11447042 10.1002/9781118165881 10.1007/s00704‐011‐0442‐8 10.2307/210739 10.1029/2009JD012882 10.1017/CBO9781139177245.006 10.1002/joc.1593 10.1002/joc.1843 10.1175/1520‐0442(2003)016<0799:SPDOTN>2.0.CO;2 10.1007/s11434‐010‐3209‐1 10.1007/s00704‐011‐0519‐4 10.1007/BF03342050 10.1023/B:CLIM.0000013685.99609.9e 10.1016/j.jhydrol.2008.02.003 10.1007/s00376-009-9072-9 10.5194/hess‐12‐551‐2008 10.1029/90RG02636 10.3354/cr030079 10.1175/2009MWR2952.1 10.5194/hess‐11‐1373‐2007 10.1029/2008GL033840 10.1177/030913339702100403 |
ContentType | Journal Article |
Copyright | 2013 Royal Meteorological Society 2015 INIST-CNRS 2014 Royal Meteorological Society |
Copyright_xml | – notice: 2013 Royal Meteorological Society – notice: 2015 INIST-CNRS – notice: 2014 Royal Meteorological Society |
DBID | AAYXX CITATION IQODW 7TG 7TN F1W H96 KL. L.G 7TV 7U1 7UA C1K |
DOI | 10.1002/joc.3822 |
DatabaseName | CrossRef Pascal-Francis Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Pollution Abstracts Risk Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts Risk Abstracts Pollution Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Risk Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1097-0088 |
EndPage | 2078 |
ExternalDocumentID | 3282789081 28376439 10_1002_joc_3822 JOC3822 |
Genre | article |
GeographicLocations | Far East Asia China China, People's Rep |
GeographicLocations_xml | – name: China, People's Rep |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: Grants 41025017 and 41230527 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS EDH EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E VOH W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WUPDE WWD WXSBR WYISQ XG1 XJT XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 08R 8W4 AAPBV ABFLS ABHUG ACXME ADAWD ADDAD AFVGU AGJLS IPNFZ IQODW WIN 7TG 7TN AAMMB AEFGJ AGXDD AIDQK AIDYY F1W H96 KL. L.G 7TV 7U1 7UA C1K |
ID | FETCH-LOGICAL-c3562-7bf9f042f067c0e7f973f1f44ea6be4bd36c309cf0689897c6aabe8c3a1ebb4c3 |
IEDL.DBID | DR2 |
ISSN | 0899-8418 |
IngestDate | Fri Jul 11 01:16:18 EDT 2025 Sun Jul 13 04:29:33 EDT 2025 Fri Nov 25 06:03:45 EST 2022 Thu Apr 24 23:07:33 EDT 2025 Tue Jul 01 01:36:51 EDT 2025 Wed Jan 22 17:12:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Multimodel Coupled model Emission scenario General circulation models atmospheric precipitation climate warming bias correction and spatial disaggregation Climate models digital simulation Climate prediction greenhouse gas Atmospheric temperature drought global change China Severity score Palmer Drought Severity Index Error correction Natural hazards climate change projection climate change |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3562-7bf9f042f067c0e7f973f1f44ea6be4bd36c309cf0689897c6aabe8c3a1ebb4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1518503549 |
PQPubID | 996368 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_1524430618 proquest_journals_1518503549 pascalfrancis_primary_28376439 crossref_citationtrail_10_1002_joc_3822 crossref_primary_10_1002_joc_3822 wiley_primary_10_1002_joc_3822_JOC3822 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2014 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: May 2014 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Chichester – name: Bognor Regis |
PublicationTitle | International journal of climatology |
PublicationYear | 2014 |
Publisher | John Wiley & Sons, Ltd Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2011; 116 1993; 7 2010; 99 2002; 15 2004; 62 1984; 23 2010; 463 2008; 35 2003; 16 2008; 32 2012; 16 2008b; 353 2007; 34 2013; 10 2005; 30 2002; 107 2011; 25 2011; 28 2009; 66 2006; 93 2005; 110 2012 1997; 21 2010a; 115 2006; 11 2009 2008; 12 2007 2006; 19 2012; 36 2010b; 55 2007; 11 2007; 14 2009; 26 2012; 108 2009; 137 1994; 43 2009; 29 1948; 38 2012; 93 1991; 29 2003; 108 2008a; 28 2011; 106 2000; 36 2004; 17 2010c; 27 1965 2007; 80 2005; 10 2013 2010; 92 2007; 88 2012; 5 2003; 20 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 Wang S (e_1_2_9_47_1) 2007 e_1_2_9_10_1 e_1_2_9_56_1 Wang L (e_1_2_9_46_1) 2013 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 Chen W (e_1_2_9_5_1) 2006; 11 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 Ma Y (e_1_2_9_27_1) 2012; 36 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_4_1 e_1_2_9_60_1 Liu Z (e_1_2_9_25_1) 2012; 5 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 Chen W (e_1_2_9_6_1) 2008; 32 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 Allen RG (e_1_2_9_2_1) 1994; 43 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 Ren G (e_1_2_9_35_1) 2005; 10 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 30 start-page: 79 year: 2005 end-page: 82 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Clim. Res. – volume: 36 start-page: 397 year: 2012 end-page: 410 article-title: Interannual and interdecadal variations of precipitation over eastern China during Meiyu season and their relationships with the atmospheric circulation and SST publication-title: Chin. J. Atmos. Sci. – volume: 10 start-page: 597 year: 2013 end-page: 624 article-title: Derivation of RCM‐driven potential evapotranspiration for hydrological climate change impact analysis in Great Britain: a comparison of methods and associated uncertainty in future projections publication-title: Hydrol. Earth Syst. Sci. Discuss. – year: 2009 – volume: 16 start-page: 3383 year: 2012 end-page: 3390 article-title: Technical note: downscaling RCM precipitation to the station scale using statistical transformations: a comparison of methods publication-title: Hydrol. Earth Syst. Sci. – volume: 93 start-page: 165 year: 2006 end-page: 175 article-title: The interdecadal variations of the summer monsoon rainfall over South China publication-title: Meteorol. Atmos. Phys. – volume: 11 start-page: 259 year: 2006 end-page: 269 article-title: The coupling relationship between summer rainfall in China and global sea surface temperature publication-title: Clim. Environ. Res. – volume: 35 start-page: L12403 year: 2008 article-title: Revisiting the parameterization of potential evaporation as a driver of long‐term water balance trends publication-title: Geophys. Res. Lett. – volume: 16 start-page: 799 year: 2003 end-page: 816 article-title: Statistical precipitation downscaling over the northwestern United States using numerically simulated precipitation as a predictor publication-title: J. Clim. – volume: 88 start-page: 1383 year: 2007 end-page: 1394 article-title: The WCRP CMIP3 multimodel dataset: a new era in climate change research publication-title: Bull. Am. Meteorol. Soc. – volume: 29 start-page: 191 year: 1991 end-page: 216 article-title: Approaches to the simulation of regional climate change: a review publication-title: Rev. Geophys. – volume: 25 start-page: 1466 year: 2011 end-page: 1478 article-title: Assessing temperature‐based PET equations under a changing climate in temperate, deciduous forests publication-title: Hydrol. Process. – volume: 38 start-page: 55 year: 1948 end-page: 94 article-title: An approach toward a rational classification of climate publication-title: Geogr. Rev. – volume: 80 start-page: 337 year: 2007 end-page: 367 article-title: Using regional climate model data to simulate historical and future river flows in northwest England publication-title: Clim. Change – volume: 11 start-page: 1373 year: 2007 end-page: 1390 article-title: Spatial disaggregation of bias‐corrected GCM precipitation for improved hydrologic simulation: Ping River Basin, Thailand publication-title: Hydrol. Earth Syst. Sci. – volume: 29 start-page: 2056 year: 2009 end-page: 2071 article-title: A multimodel assessment of future climatological droughts in the United Kingdom publication-title: Int. J. Climatol. – volume: 66 start-page: 235 year: 2009 end-page: 252 article-title: Simulations of the impacts of dynamic vegetation on interannual and interdecadal variability of Asian summer monsoon with modern and mid‐Holocene orbital forcings publication-title: Glob. Planet. Change – volume: 23 start-page: 1100 year: 1984 end-page: 1109 article-title: The Palmer Drought Severity Index: limitations and assumptions publication-title: J. Clim. Appl. Meteorol. – volume: 5 start-page: 1275 year: 2012 end-page: 1280 article-title: Comprehensive analysis of drought disasters in China from 1483 to 2010 publication-title: Diaster Adv. – volume: 14 start-page: 249 year: 2007 end-page: 266 article-title: Multivariate Bayesian analysis of atmosphere–ocean general circulation models publication-title: Environ. Ecol. Stat. – volume: 110 start-page: D14110 year: 2005 article-title: Relationship between stationary planetary wave activity and the East Asian winter monsoon publication-title: J. Geophys. Res. – volume: 12 start-page: 551 year: 2008 end-page: 563 article-title: Utility of daily vs. monthly large‐scale climate data: an intercomparison of two statistical downscaling methods publication-title: Hydrol. Earth Syst Sci. – volume: 108 start-page: 4614 year: 2003 article-title: Long‐term climate variations in China and global warming signals publication-title: J. Geophys. Res. – year: 1965 – volume: 27 start-page: 901 year: 2010c end-page: 920 article-title: The variations of dominant convection modes over Asia, Indian Ocean, and western Pacific Ocean during the summers of 1997‐2004 publication-title: Adv. Atmos. Sci. – volume: 116 start-page: D12115 year: 2011 article-title: Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008 publication-title: J. Geophys. Res. – volume: 36 start-page: 387 year: 2000 end-page: 397 article-title: A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States publication-title: J. Am. Water Resour. Assoc. – volume: 353 start-page: 143 year: 2008b end-page: 158 article-title: Multimodel projections of catchment‐scale precipitation regime publication-title: J. Hydrol. – volume: 5 start-page: 527 year: 2012 end-page: 533 article-title: The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi‐model ensemble publication-title: Atmos. Oceanic Sci. Lett. – volume: 92 start-page: 47 year: 2010 end-page: 60 article-title: The Great 2008 Chinese ice storm: its socioeconomic–ecological impact and sustainability lessons learned publication-title: Bull. Am. Meteorol. Soc. – start-page: 109 year: 2012 end-page: 230 – volume: 32 start-page: 950 year: 2008 end-page: 966 article-title: Studies of the dynamical processes of East Asian monsoon system and the quasi‐stationary planetary wave activities publication-title: Chin. J. Atmos. Sci. – volume: 28 start-page: 843 year: 2008a end-page: 858 article-title: A framework for developing high‐resolution multi‐model climate projections: 21st century scenarios for the UK publication-title: Int. J. Climatol. – volume: 137 start-page: 3978 year: 2009 end-page: 3991 article-title: Synoptic‐scale controls of persistent low temperature and icy weather over southern China in January 2008 publication-title: Mon. Weather Rev. – volume: 19 start-page: 4137 year: 2006 end-page: 4153 article-title: Can CGCMs simulate the twentieth‐century “warming hole” in the central United States? publication-title: J. Clim. – volume: 99 start-page: 187 year: 2010 end-page: 192 article-title: Statistical bias correction for daily precipitation in regional climate models over Europe publication-title: Theor. Appl. Climatol. – volume: 10 start-page: 717 year: 2005 end-page: 727 article-title: Changes of surface air temperature in China during 1951–2004 publication-title: Clim. Environ. Res. – volume: 20 start-page: 55 year: 2003 end-page: 69 article-title: The progresses of recent studies on the variabilities of the East Asian monsoon and their causes publication-title: Adv. Atmos. Sci. – volume: 106 start-page: 481 year: 2011 end-page: 488 article-title: Inter‐decadal variability of summer rainfall in Eastern China detected by the Lepage test publication-title: Theor. Appl. Climatol. – volume: 116 start-page: D03106 year: 2011 article-title: The sensitivity of the PDSI to the Thornthwaite and Penman‐Monteith parameterizations for potential evapotranspiration publication-title: J. Geophys. Res. – year: 2007 – volume: 28 start-page: 1023 year: 2011 end-page: 1029 article-title: An abrupt increase in the summer high temperature extreme days across China in the mid‐1990s publication-title: Adv. Atmos. Sci. – volume: 28 start-page: 464 year: 2011 end-page: 476 article-title: Projection of future precipitation change over China with a high‐resolution global atmospheric model publication-title: Adv. Atmos. Sci. – volume: 26 start-page: 101 year: 2009 end-page: 108 article-title: Linkage between Mei‐yu Precipitation and North Atlantic SST on the decadal timescale publication-title: Adv. Atmos. Sci. – volume: 19 start-page: 5843 year: 2006 end-page: 5858 article-title: Twentieth‐century surface air temperature over China and the globe simulated by coupled climate models publication-title: J. Clim. – volume: 34 start-page: L01701 year: 2007 article-title: Possible connection between Pacific oceanic interdecadal pathway and East Asian winter monsoon publication-title: Geophys. Res. Lett. – volume: 108 start-page: 119 year: 2012 end-page: 133 article-title: Interdecadal change in the relationship of southern China summer rainfall with tropical Indo‐Pacific SST publication-title: Theor. Appl. Climatol. – volume: 5 start-page: 514 year: 2012 end-page: 520 article-title: Projections of 2.0°C warming over the globe and China under RCP4.5 publication-title: Atmos. Oceanic Sci. Lett. – volume: 7 start-page: 97 year: 1993 end-page: 108 article-title: Specifying land surface characteristics in general circulation models: soil profile data set and derived water‐holding capacities publication-title: Global Biogeochem. Cycles – volume: 21 start-page: 530 year: 1997 end-page: 548 article-title: Downscaling general circulation model output: a review of methods and limitations publication-title: Prog. Phys. Geogr. – volume: 55 start-page: 1974 year: 2010b end-page: 1982 article-title: Assessment of the uncertainties in temperature change in China during the last century publication-title: Chin. Sci. Bull. – volume: 463 start-page: 747 year: 2010 end-page: 756 article-title: The next generation of scenarios for climate change research and assessment publication-title: Nature – volume: 15 start-page: 1141 year: 2002 end-page: 1158 article-title: Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “reliability ensemble averaging” (REA) method publication-title: J. Clim. – year: 2013 article-title: Equiratio cumulative distribution function matching as an improvement to the equidistant approach in bias correction of precipitation publication-title: Atmos. Sci. Let. – volume: 107 start-page: 4429 year: 2002 article-title: Long‐range experimental hydrologic forecasting for the eastern United States publication-title: J. Geophys. Res. – volume: 43 start-page: 35 year: 1994 end-page: 92 article-title: An update for the calculation of reference evapotranspiration publication-title: Bull. Int. Comm. Irrig. Drain. – volume: 88 start-page: 504 year: 2007 article-title: Fine‐resolution climate projections enhance regional climate change impact studies publication-title: EOS Trans. Am. Geophys. Union – volume: 62 start-page: 189 year: 2004 end-page: 216 article-title: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs publication-title: Clim. Change – volume: 17 start-page: 2335 year: 2004 end-page: 2351 article-title: A self‐calibrating Palmer Drought Severity Index publication-title: J. Clim. – volume: 115 start-page: D10101 year: 2010a article-title: Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching publication-title: J. Geophys. Res. – volume: 93 start-page: 485 year: 2012 end-page: 498 article-title: An overview of CMIP5 and the experiment design publication-title: Bull. Am. Meteorol. Soc. – ident: e_1_2_9_62_1 doi: 10.1029/2006GL027809 – ident: e_1_2_9_10_1 doi: 10.1007/s10584‐006‐9117‐3 – ident: e_1_2_9_61_1 doi: 10.1007/S00703‐006‐0184‐9 – ident: e_1_2_9_20_1 doi: 10.1175/JCLI3848.1 – ident: e_1_2_9_21_1 doi: 10.1016/j.gloplacha.2008.12.013 – ident: e_1_2_9_55_1 doi: 10.1029/2001JD000659 – ident: e_1_2_9_3_1 doi: 10.1175/1520‐0450(1984)023<1100:TPDSIL>2.0.CO;2 – year: 2013 ident: e_1_2_9_46_1 article-title: Equiratio cumulative distribution function matching as an improvement to the equidistant approach in bias correction of precipitation publication-title: Atmos. Sci. Let. – ident: e_1_2_9_16_1 doi: 10.1111/j.1752‐1688.2000.tb04276.x – ident: e_1_2_9_59_1 doi: 10.1080/16742834.2012.11447047 – volume: 11 start-page: 259 year: 2006 ident: e_1_2_9_5_1 article-title: The coupling relationship between summer rainfall in China and global sea surface temperature publication-title: Clim. Environ. Res. – ident: e_1_2_9_50_1 doi: 10.1175/1520‐0442(2004)017<2335:ASPDSI>2.0.CO;2 – ident: e_1_2_9_11_1 doi: 10.1007/s10651‐007‐0018‐z – volume: 32 start-page: 950 year: 2008 ident: e_1_2_9_6_1 article-title: Studies of the dynamical processes of East Asian monsoon system and the quasi‐stationary planetary wave activities publication-title: Chin. J. Atmos. Sci. – ident: e_1_2_9_36_1 doi: 10.1029/2010JD015001 – ident: e_1_2_9_8_1 doi: 10.1029/2010JD015541 – ident: e_1_2_9_60_1 doi: 10.1175/JCLI3952.1 – ident: e_1_2_9_64_1 doi: 10.1175/2010BAMS2857.1 – ident: e_1_2_9_34_1 doi: 10.5194/hessd‐10‐597‐2013 – ident: e_1_2_9_29_1 doi: 10.1029/2007EO470006 – ident: e_1_2_9_30_1 doi: 10.1175/BAMS‐88‐9‐1383 – ident: e_1_2_9_13_1 doi: 10.1175/1520‐0442(2002)015<1141:COAURA>2.0.CO;2 – ident: e_1_2_9_41_1 doi: 10.1175/BAMS‐D‐11‐00094.1 – ident: e_1_2_9_33_1 doi: 10.1007/s00704‐009‐0134‐9 – ident: e_1_2_9_18_1 doi: 10.1029/2003JD003651 – ident: e_1_2_9_31_1 doi: 10.1038/nature08823 – ident: e_1_2_9_39_1 doi: 10.1002/hyp.7913 – ident: e_1_2_9_48_1 doi: 10.1029/92GB01822 – ident: e_1_2_9_4_1 doi: 10.1029/2004JD005669 – ident: e_1_2_9_15_1 doi: 10.5194/hess‐16‐3383‐2012 – ident: e_1_2_9_9_1 doi: 10.1007/s00376‐010‐1016‐x – ident: e_1_2_9_49_1 doi: 10.1007/s00376‐010‐0080‐6 – ident: e_1_2_9_14_1 doi: 10.1007/s00376‐009‐0101‐5 – volume: 10 start-page: 717 year: 2005 ident: e_1_2_9_35_1 article-title: Changes of surface air temperature in China during 1951–2004 publication-title: Clim. Environ. Res. – ident: e_1_2_9_58_1 doi: 10.1080/16742834.2012.11447042 – ident: e_1_2_9_7_1 doi: 10.1002/9781118165881 – ident: e_1_2_9_26_1 doi: 10.1007/s00704‐011‐0442‐8 – ident: e_1_2_9_42_1 doi: 10.2307/210739 – volume-title: Climate of China year: 2007 ident: e_1_2_9_47_1 – ident: e_1_2_9_22_1 doi: 10.1029/2009JD012882 – ident: e_1_2_9_37_1 doi: 10.1017/CBO9781139177245.006 – ident: e_1_2_9_43_1 doi: 10.1002/joc.1593 – ident: e_1_2_9_45_1 doi: 10.1002/joc.1843 – ident: e_1_2_9_51_1 doi: 10.1175/1520‐0442(2003)016<0799:SPDOTN>2.0.CO;2 – ident: e_1_2_9_54_1 – ident: e_1_2_9_23_1 doi: 10.1007/s11434‐010‐3209‐1 – ident: e_1_2_9_40_1 – ident: e_1_2_9_57_1 doi: 10.1007/s00704‐011‐0519‐4 – ident: e_1_2_9_32_1 – ident: e_1_2_9_19_1 doi: 10.1007/BF03342050 – volume: 36 start-page: 397 year: 2012 ident: e_1_2_9_27_1 article-title: Interannual and interdecadal variations of precipitation over eastern China during Meiyu season and their relationships with the atmospheric circulation and SST publication-title: Chin. J. Atmos. Sci. – ident: e_1_2_9_56_1 doi: 10.1023/B:CLIM.0000013685.99609.9e – volume: 5 start-page: 1275 year: 2012 ident: e_1_2_9_25_1 article-title: Comprehensive analysis of drought disasters in China from 1483 to 2010 publication-title: Diaster Adv. – ident: e_1_2_9_44_1 doi: 10.1016/j.jhydrol.2008.02.003 – ident: e_1_2_9_24_1 doi: 10.1007/s00376-009-9072-9 – ident: e_1_2_9_28_1 doi: 10.5194/hess‐12‐551‐2008 – ident: e_1_2_9_12_1 doi: 10.1029/90RG02636 – ident: e_1_2_9_53_1 doi: 10.3354/cr030079 – ident: e_1_2_9_63_1 doi: 10.1175/2009MWR2952.1 – ident: e_1_2_9_38_1 doi: 10.5194/hess‐11‐1373‐2007 – ident: e_1_2_9_17_1 doi: 10.1029/2008GL033840 – ident: e_1_2_9_52_1 doi: 10.1177/030913339702100403 – volume: 43 start-page: 35 year: 1994 ident: e_1_2_9_2_1 article-title: An update for the calculation of reference evapotranspiration publication-title: Bull. Int. Comm. Irrig. Drain. |
SSID | ssj0009916 |
Score | 2.572731 |
Snippet | ABSTRACT
In this study, fine‐resolution multimodel climate projections over China are developed based on 35 climate models and two emissions scenarios (RCP4.5... In this study, fine‐resolution multimodel climate projections over China are developed based on 35 climate models and two emissions scenarios ( RCP4 .5 and... In this study, fine-resolution multimodel climate projections over China are developed based on 35 climate models and two emissions scenarios (RCP4.5 and... |
SourceID | proquest pascalfrancis crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2059 |
SubjectTerms | bias correction and spatial disaggregation China climate change projection Climatology. Bioclimatology. Climate change Earth, ocean, space Exact sciences and technology External geophysics Meteorology Palmer Drought Severity Index |
Title | A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjoc.3822 https://www.proquest.com/docview/1518503549 https://www.proquest.com/docview/1524430618 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iSRDfYnWVCLJe7Npt0tdxKYourIooCB5KkyayurTLPi7-emfSh64oiKdSMm2nmUzyZTr9hpCTSHPPhR2brVjGbO5lkS2Y9G2uAqy2o9zAxDsGN_7VI-8_eU9VViX-C1PyQzQBN_QMM1-jg6diev5JGvpayA6D5Q2mX0zVQjx0_8kchbDHAMgoskPeDWveWcc9ry9cWIlWx-kUOkWX1SwW4OZX0GpWnct18lzrWyabvHXmM9GR79-oHP_3QhtkrQKjtFeOnk2ypPItYg0ARxcTE26nbRqPhgBqzdk2eenReHB951GTh2iq6NAqlgP2pYWmJUcJRcariq75DCSUHI4rMvAzmuYZlc1dcZDQzBQLmtFhTk1B7x3yeHnxEF_ZVakGWzJAUHYgdKTB_zUsftJRgY4Cpruac5X6QnGRMV8yJ5LQjvUqA-mnqVChZGlXCcEl2yXLeZGrPUKl8KBBAhDKIh76oQCIARMy49oHcKm0RU5rsyWyUh3LaYySkoHZTaAjE-xIixw3kuOSu-MHmaMFyzeCyAqEaM0irXooJJV7TxPQKPQcBntreEbTDI6JX1vSXBVzlAHkBBuybmiRtrH7r0ok_dsYj_t_FTwgKwDceJl42SLLs8lcHQI4mokj4wYfEWEM8Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RemglROlLhFeN1NILWXZj53XoAS1Fu8DSqgKJWxo7NlpAyYrdFaJ_qX-lP6ozzoNuVSQuHHqKIo8sx57xfH7k-wDex0b4Hq7YXM0z7go_i13JVeAKHZLajvZCu98xOA56p-LgzD-bg5_1vzAlP0Sz4UaRYedrCnDakN65Yw29KFSLY36rblQe6tsbXK-NP_X3cHA_eN7-55Nuz60kBVzFMdO7oTSxQT81OEmrtg5NHHLTMULoNJBayIwHirdjheWkqxiqIE2ljhRPO1pKoTjW-wSekoA4EfXvfbvjqiKgZSFrHLuR6EQ1023b26lbOpP7FkbpGIfBlPoZMwD3T5hs89z-C_hV91B5veWyNZ3IlvrxF3nkf9KFS7BY4W22WwbIS5jT-StwBrhUKK7tiQLbYt2rIeJ2-_YazndZd9D_6jN71dIKBbFquwpdmBWGlTQsjEi9KkbqbbTQajiq-M63WZpnTDW1UhywzOohTdgwZ1az_A2cPsp3v4X5vMj1MjAlfSxQiPWyWERBJBFFYc7hwgSIn7Vx4GPtJ4mqmk6KIVdJSTLtJThwCQ2cA5uN5aikJ_mHzcaMqzWGRHxEgNSBtdr3kmoGGyfYoshvc19g8WZTjHMPHSiluS6mZIPgENecnciBLeto9zYiOfjSpefKQw3fwbPeyeAoOeofH67Cc8Sporxnugbzk-upXkcsOJEbNgYZfH9sj_0NV_ttKA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9swFD7iIk1IaGMXRDYuRtrYC2nT2Ln4gQfUUlFYGZqGxFuIHRsVUFLRVtP2k_ZX9qd27FxYp03aCw97iiIfWY59js_nS74P4C3XLPBxxeYqmlGXBRl3BZWhy1Rk1HaUH9n9juFZeHzBTi6DywX4Xv8LU_JDNBtuJjLsfG0CfJzp9gNp6E0hWxTTW3Wh8lR9_YLLtcnBoIdj-873-0efu8dupSjgSoqJ3o2E5hrdVOMcLT0VaR5R3dGMqTQUiomMhpJ6XGK5kVWMZJimQsWSph0lBJMU612EZRZ63MhE9D49UFUZnGURK-duzDpxTXTr-e26pXOpb3WcTnAUdCmfMYdvf0XJNs31n8GPuoPK2y23rdlUtOS337gj_48eXIOnFdomh2V4PIcFlb8AZ4gLheLenieQPdK9GyFqt28v4fqQdIeD84DYi5ZWJohUm1XowKTQpCRhIYbSq-Kj3kcLJUfjiu18n6R5RmRTq4kCklk1pCkZ5cQqlr-Ci0f57nVYyotcbQCRIsACiUgv4ywOY4EYCjMOZTpE9Ky0A-9rN0lk1XSjF3KXlBTTfoIDl5iBc2C3sRyX5CR_sNme87TG0NAeGTjqwGbtekk1f00SbFEceDRgWLzbFOPMY46T0lwVM2OD0BBXnJ3YgT3rZ39tRHLysWuer__VcAeenPf6yYfB2ekbWEGQyspLppuwNL2fqS0EglOxbSOQwNVjO-xPnSVr1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CMIP5+multimodel+projection+of+future+temperature%2C+precipitation%2C+and+climatological+drought+in+China&rft.jtitle=International+journal+of+climatology&rft.au=Wang%2C+Lin&rft.au=Chen%2C+Wen&rft.date=2014-05-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0899-8418&rft.eissn=1097-0088&rft.volume=34&rft.issue=6&rft.spage=2059&rft.epage=2078&rft_id=info:doi/10.1002%2Fjoc.3822&rft.externalDBID=10.1002%252Fjoc.3822&rft.externalDocID=JOC3822 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-8418&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-8418&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-8418&client=summon |