A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China

ABSTRACT In this study, fine‐resolution multimodel climate projections over China are developed based on 35 climate models and two emissions scenarios (RCP4.5 and RCP8.5) from phase five of the Coupled Model Intercomparison Project (CMIP5) by means of Bias Correction and Spatial Disaggregation. The...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of climatology Vol. 34; no. 6; pp. 2059 - 2078
Main Authors Wang, Lin, Chen, Wen
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.05.2014
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT In this study, fine‐resolution multimodel climate projections over China are developed based on 35 climate models and two emissions scenarios (RCP4.5 and RCP8.5) from phase five of the Coupled Model Intercomparison Project (CMIP5) by means of Bias Correction and Spatial Disaggregation. The yearly‐averaged temperature is projected to increase by 0.8 to 1.6 °C (0.8 to 1.7 °C), 1.5 to 2.7 °C (2 to 3.7 °C), and 1.9 to 3.3 °C (3.4 to 6 °C) under RCP4.5 (RCP8.5) in three time slices (2010–2039, 2040–2069, and 2070–2099), respectively. The most warming occurs in winter and the least in summer, and the inland areas in the northwest will warm much faster than the southeast. Under the background of surface warming, the probability of extreme low temperatures in winter defined as the monthly temperature being lower than the 9th percentile of the climatological distribution will sharply reduce to 0.1–1.7% under RCP4.5 for the period 2010–2039 and even lower for the following decades. For precipitation change, a remarkable increase is found over most areas of China except the Southwest, ranging from approximately 2 to 20%. The projected precipitation changes are highly robust in northern China, but inconsistent in southern China. In spite of widespread precipitation increases, most areas of China quantified by the Palmer Drought Severity Index are projected to become drier as a consequence of increasing evaporation driven by temperature increases. Detailed examination shows that drought that is moderate or severe according to current climate standards will become the norm in the future. Not only will incidences of severe and extreme drought increase dramatically in the future, but extreme wet events will also become more probable. Furthermore, the increasing drought risk in Southwest China and the Qinghai‐Tibetan Plateau is nearly twice that for other parts of China.
AbstractList ABSTRACT In this study, fine‐resolution multimodel climate projections over China are developed based on 35 climate models and two emissions scenarios (RCP4.5 and RCP8.5) from phase five of the Coupled Model Intercomparison Project (CMIP5) by means of Bias Correction and Spatial Disaggregation. The yearly‐averaged temperature is projected to increase by 0.8 to 1.6 °C (0.8 to 1.7 °C), 1.5 to 2.7 °C (2 to 3.7 °C), and 1.9 to 3.3 °C (3.4 to 6 °C) under RCP4.5 (RCP8.5) in three time slices (2010–2039, 2040–2069, and 2070–2099), respectively. The most warming occurs in winter and the least in summer, and the inland areas in the northwest will warm much faster than the southeast. Under the background of surface warming, the probability of extreme low temperatures in winter defined as the monthly temperature being lower than the 9th percentile of the climatological distribution will sharply reduce to 0.1–1.7% under RCP4.5 for the period 2010–2039 and even lower for the following decades. For precipitation change, a remarkable increase is found over most areas of China except the Southwest, ranging from approximately 2 to 20%. The projected precipitation changes are highly robust in northern China, but inconsistent in southern China. In spite of widespread precipitation increases, most areas of China quantified by the Palmer Drought Severity Index are projected to become drier as a consequence of increasing evaporation driven by temperature increases. Detailed examination shows that drought that is moderate or severe according to current climate standards will become the norm in the future. Not only will incidences of severe and extreme drought increase dramatically in the future, but extreme wet events will also become more probable. Furthermore, the increasing drought risk in Southwest China and the Qinghai‐Tibetan Plateau is nearly twice that for other parts of China.
In this study, fine‐resolution multimodel climate projections over China are developed based on 35 climate models and two emissions scenarios ( RCP4 .5 and RCP8 .5) from phase five of the Coupled Model Intercomparison Project ( CMIP5 ) by means of Bias Correction and Spatial Disaggregation. The yearly‐averaged temperature is projected to increase by 0.8 to 1.6 °C (0.8 to 1.7 °C), 1.5 to 2.7 °C (2 to 3.7 °C), and 1.9 to 3.3 °C (3.4 to 6 °C) under RCP4 .5 ( RCP8 .5) in three time slices (2010–2039, 2040–2069, and 2070–2099), respectively. The most warming occurs in winter and the least in summer, and the inland areas in the northwest will warm much faster than the southeast. Under the background of surface warming, the probability of extreme low temperatures in winter defined as the monthly temperature being lower than the 9th percentile of the climatological distribution will sharply reduce to 0.1–1.7% under RCP4 .5 for the period 2010–2039 and even lower for the following decades. For precipitation change, a remarkable increase is found over most areas of China except the Southwest, ranging from approximately 2 to 20%. The projected precipitation changes are highly robust in northern China, but inconsistent in southern China. In spite of widespread precipitation increases, most areas of China quantified by the Palmer Drought Severity Index are projected to become drier as a consequence of increasing evaporation driven by temperature increases. Detailed examination shows that drought that is moderate or severe according to current climate standards will become the norm in the future. Not only will incidences of severe and extreme drought increase dramatically in the future, but extreme wet events will also become more probable. Furthermore, the increasing drought risk in Southwest China and the Qinghai‐Tibetan Plateau is nearly twice that for other parts of China.
In this study, fine-resolution multimodel climate projections over China are developed based on 35 climate models and two emissions scenarios (RCP4.5 and RCP8.5) from phase five of the Coupled Model Intercomparison Project (CMIP5) by means of Bias Correction and Spatial Disaggregation. The yearly-averaged temperature is projected to increase by 0.8 to 1.6 degree C (0.8 to 1.7 degree C), 1.5 to 2.7 degree C (2 to 3.7 degree C), and 1.9 to 3.3 degree C (3.4 to 6 degree C) under RCP4.5 (RCP8.5) in three time slices (2010-2039, 2040-2069, and 2070-2099), respectively. The most warming occurs in winter and the least in summer, and the inland areas in the northwest will warm much faster than the southeast. Under the background of surface warming, the probability of extreme low temperatures in winter defined as the monthly temperature being lower than the 9th percentile of the climatological distribution will sharply reduce to 0.1-1.7% under RCP4.5 for the period 2010-2039 and even lower for the following decades. For precipitation change, a remarkable increase is found over most areas of China except the Southwest, ranging from approximately 2 to 20%. The projected precipitation changes are highly robust in northern China, but inconsistent in southern China. In spite of widespread precipitation increases, most areas of China quantified by the Palmer Drought Severity Index are projected to become drier as a consequence of increasing evaporation driven by temperature increases. Detailed examination shows that drought that is moderate or severe according to current climate standards will become the norm in the future. Not only will incidences of severe and extreme drought increase dramatically in the future, but extreme wet events will also become more probable. Furthermore, the increasing drought risk in Southwest China and the Qinghai-Tibetan Plateau is nearly twice that for other parts of China.
In this study, fine-resolution multimodel climate projections over China are developed based on 35 climate models and two emissions scenarios (RCP4.5 and RCP8.5) from phase five of the Coupled Model Intercomparison Project (CMIP5) by means of Bias Correction and Spatial Disaggregation. The yearly-averaged temperature is projected to increase by 0.8 to 1.6°C (0.8 to 1.7°C), 1.5 to 2.7°C (2 to 3.7°C), and 1.9 to 3.3°C (3.4 to 6°C) under RCP4.5 (RCP8.5) in three time slices (2010-2039, 2040-2069, and 2070-2099), respectively. The most warming occurs in winter and the least in summer, and the inland areas in the northwest will warm much faster than the southeast. Under the background of surface warming, the probability of extreme low temperatures in winter defined as the monthly temperature being lower than the 9th percentile of the climatological distribution will sharply reduce to 0.1-1.7% under RCP4.5 for the period 2010-2039 and even lower for the following decades. For precipitation change, a remarkable increase is found over most areas of China except the Southwest, ranging from approximately 2 to 20%. The projected precipitation changes are highly robust in northern China, but inconsistent in southern China. In spite of widespread precipitation increases, most areas of China quantified by the Palmer Drought Severity Index are projected to become drier as a consequence of increasing evaporation driven by temperature increases. Detailed examination shows that drought that is moderate or severe according to current climate standards will become the norm in the future. Not only will incidences of severe and extreme drought increase dramatically in the future, but extreme wet events will also become more probable. Furthermore, the increasing drought risk in Southwest China and the Qinghai-Tibetan Plateau is nearly twice that for other parts of China. [PUBLICATION ABSTRACT]
Author Wang, Lin
Chen, Wen
Author_xml – sequence: 1
  givenname: Lin
  surname: Wang
  fullname: Wang, Lin
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Wen
  surname: Chen
  fullname: Chen, Wen
  organization: Chinese Academy of Sciences
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28376439$$DView record in Pascal Francis
BookMark eNp10UFrHCEUB3ApKXSTFvoRhFLoIbPR0ZnRYxjaJiUhOaRncdznxsXRrc4Q8u3rZLctlPak4M_n-_tO0UmIARB6T8maElJf7KJZM1HXr9CKEtlVhAhxglZESFkJTsUbdJrzjhAiJW1XaHuJ-9vr-waPs5_cGDfg8T7FHZjJxYCjxXae5gR4gnEPSS_78yLAuL2b9ILOsQ4bbLwb9RR93DqjPd6kOG8fJ-wC7h9d0G_Ra6t9hnfH9Qx9__L5ob-qbu6-XveXN5VhTVtX3WClJby2pO0Mgc7KjllqOQfdDsCHDWsNI9KUcyGF7Eyr9QDCME1hGLhhZ-jToW4J8WOGPKnRZQPe6wBxzoo2NeeMtFQU-uEvuotzCqW7oqhoCGu4LOrjUelcgtmkg3FZ7VOJm55VLVjXcra49cGZFHNOYJU5_s-UtPOKErXMp7xh1DKfP53-vvCr5j9odaBPzsPzf536dte_-J-HT6Dw
CitedBy_id crossref_primary_10_1016_j_scitotenv_2018_11_362
crossref_primary_10_3389_fenvs_2021_656639
crossref_primary_10_3390_f14020331
crossref_primary_10_1016_j_dendro_2018_11_006
crossref_primary_10_1002_joc_6674
crossref_primary_10_1029_2020JD033742
crossref_primary_10_1016_j_pce_2020_102838
crossref_primary_10_1175_WAF_D_21_0108_1
crossref_primary_10_1002_joc_5105
crossref_primary_10_1016_j_ecolind_2021_107588
crossref_primary_10_1002_joc_7407
crossref_primary_10_5194_essd_11_1931_2019
crossref_primary_10_1016_j_jhydrol_2017_07_001
crossref_primary_10_1007_s00382_024_07344_6
crossref_primary_10_3390_rs13173531
crossref_primary_10_1002_joc_8062
crossref_primary_10_1007_s00477_020_01948_0
crossref_primary_10_1002_joc_8063
crossref_primary_10_1016_j_jhydrol_2021_126502
crossref_primary_10_1016_S2095_3119_16_61545_9
crossref_primary_10_1007_s00382_020_05557_z
crossref_primary_10_1175_JHM_D_21_0116_1
crossref_primary_10_1002_joc_6682
crossref_primary_10_3389_fenvs_2022_863575
crossref_primary_10_1016_j_eja_2020_126126
crossref_primary_10_3390_rs14205097
crossref_primary_10_1002_joc_5233
crossref_primary_10_1007_s00477_015_1149_7
crossref_primary_10_1002_joc_6206
crossref_primary_10_1016_j_proeng_2016_07_602
crossref_primary_10_1016_j_agrformet_2017_12_077
crossref_primary_10_1016_j_atmosres_2020_105303
crossref_primary_10_1002_ece3_11264
crossref_primary_10_1007_s00704_020_03172_w
crossref_primary_10_1038_s41598_022_13713_0
crossref_primary_10_3390_su14127374
crossref_primary_10_1016_j_agrformet_2016_08_008
crossref_primary_10_1088_2515_7620_ac620e
crossref_primary_10_1016_j_agrformet_2018_08_009
crossref_primary_10_1029_2019EA000962
crossref_primary_10_2166_nh_2021_151
crossref_primary_10_1038_s41598_018_19477_w
crossref_primary_10_1007_s00382_017_3623_z
crossref_primary_10_1007_s12517_020_06359_7
crossref_primary_10_3354_cr01576
crossref_primary_10_3390_rs14184658
crossref_primary_10_1002_joc_7783
crossref_primary_10_1016_j_jhydrol_2016_01_001
crossref_primary_10_1002_joc_4039
crossref_primary_10_1016_j_scitotenv_2019_02_182
crossref_primary_10_1007_s00376_021_1075_1
crossref_primary_10_3389_feart_2022_1061369
crossref_primary_10_1016_j_accre_2020_09_003
crossref_primary_10_1016_j_trd_2022_103395
crossref_primary_10_1007_s11069_021_04851_1
crossref_primary_10_1016_j_ecolmodel_2017_11_009
crossref_primary_10_1007_s00382_016_3510_z
crossref_primary_10_1016_j_scitotenv_2020_141258
crossref_primary_10_1175_JCLI_D_19_0084_1
crossref_primary_10_1175_JHM_D_14_0236_1
crossref_primary_10_1016_j_atmosres_2021_105828
crossref_primary_10_1016_j_catena_2019_104343
crossref_primary_10_1016_j_jhydrol_2021_126643
crossref_primary_10_1007_s00376_016_6136_5
crossref_primary_10_1016_j_jenvman_2023_118934
crossref_primary_10_1175_JHM_D_18_0251_1
crossref_primary_10_1029_2021EF002614
crossref_primary_10_3390_su12093684
crossref_primary_10_1007_s00382_022_06379_x
crossref_primary_10_1002_joc_4043
crossref_primary_10_1016_j_jhydrol_2015_04_002
crossref_primary_10_1007_s00477_017_1463_3
crossref_primary_10_1016_j_jhydrol_2022_128435
crossref_primary_10_1002_joc_7312
crossref_primary_10_34133_olar_0016
crossref_primary_10_1007_s10584_021_03286_8
crossref_primary_10_1016_j_ejrh_2024_101767
crossref_primary_10_1007_s13351_024_3144_8
crossref_primary_10_3390_w14192996
crossref_primary_10_1007_s12517_020_05316_8
crossref_primary_10_1007_s10584_022_03359_2
crossref_primary_10_1016_j_atmosres_2023_106675
crossref_primary_10_1155_2018_1818727
crossref_primary_10_1016_j_jenvman_2022_115361
crossref_primary_10_1360_TB_2022_0032
crossref_primary_10_1002_joc_6907
crossref_primary_10_3390_rs14010115
crossref_primary_10_1002_2013JD021190
crossref_primary_10_1007_s11269_020_02553_0
crossref_primary_10_1016_j_scitotenv_2019_02_188
crossref_primary_10_1175_JHM_D_16_0204_1
crossref_primary_10_1007_s12517_019_4571_1
crossref_primary_10_1016_j_gecco_2023_e02541
crossref_primary_10_3390_atmos13020232
crossref_primary_10_3390_f14112234
crossref_primary_10_1007_s10584_018_2161_y
crossref_primary_10_3389_feart_2020_00086
crossref_primary_10_3390_rs11111333
crossref_primary_10_1016_j_scitotenv_2020_141481
crossref_primary_10_1007_s00382_022_06344_8
crossref_primary_10_1029_2022WR032380
crossref_primary_10_1007_s11104_024_06998_9
crossref_primary_10_1016_j_jnc_2024_126618
crossref_primary_10_1002_joc_7842
crossref_primary_10_1007_s00704_017_2189_3
crossref_primary_10_1007_s11258_024_01405_w
crossref_primary_10_1016_j_ejrh_2018_12_007
crossref_primary_10_3390_atmos15040434
crossref_primary_10_3390_w14213499
crossref_primary_10_3390_w9070475
crossref_primary_10_1371_journal_pone_0163718
crossref_primary_10_1016_j_earscirev_2022_103957
crossref_primary_10_1002_2016JD025276
crossref_primary_10_1016_j_agrformet_2016_11_129
crossref_primary_10_1155_2020_2409068
crossref_primary_10_3390_atmos14091408
crossref_primary_10_1007_s00376_014_4102_7
crossref_primary_10_3390_w11091771
crossref_primary_10_5194_acp_19_887_2019
crossref_primary_10_1080_02626667_2020_1764959
crossref_primary_10_5814_j_issn_1674_764x_2020_03_008
crossref_primary_10_1007_s00703_020_00750_5
crossref_primary_10_1038_s41598_024_76848_2
crossref_primary_10_1016_j_jhydrol_2019_01_019
crossref_primary_10_1016_j_crm_2019_100207
crossref_primary_10_1002_joc_7297
crossref_primary_10_1002_joc_8146
crossref_primary_10_1016_j_atmosres_2024_107481
crossref_primary_10_1002_joc_7616
crossref_primary_10_3390_rs15123008
crossref_primary_10_3390_su11102856
crossref_primary_10_1016_j_scitotenv_2019_05_345
crossref_primary_10_1016_j_envsoft_2024_106127
crossref_primary_10_3390_w12010230
crossref_primary_10_1007_s00704_024_04891_0
crossref_primary_10_3390_biology10010063
crossref_primary_10_1002_joc_6769
crossref_primary_10_1016_j_gecco_2024_e03198
crossref_primary_10_1007_s13351_020_9152_4
crossref_primary_10_1038_srep18813
crossref_primary_10_1002_joc_8150
crossref_primary_10_1007_s00382_020_05411_2
crossref_primary_10_3390_su11123413
crossref_primary_10_1002_joc_7064
crossref_primary_10_1021_acs_est_0c00706
crossref_primary_10_5194_piahs_371_89_2015
crossref_primary_10_1002_met_1738
crossref_primary_10_1007_s00704_021_03625_w
crossref_primary_10_1007_s00382_021_05734_8
crossref_primary_10_1002_joc_6892
crossref_primary_10_1007_s11783_019_1202_8
crossref_primary_10_1007_s00382_019_04624_4
crossref_primary_10_1016_j_jhydrol_2014_12_011
crossref_primary_10_1002_joc_4594
crossref_primary_10_1007_s00704_021_03745_3
crossref_primary_10_3390_rs15143641
crossref_primary_10_1016_j_pce_2022_103234
crossref_primary_10_1007_s00704_016_1743_8
crossref_primary_10_1659_MRD_JOURNAL_D_15_00041_1
crossref_primary_10_1080_13683500_2021_1956442
crossref_primary_10_1007_s00704_016_1935_2
crossref_primary_10_1088_1748_9326_acf0d7
crossref_primary_10_1029_2019JD031317
crossref_primary_10_1007_s00382_014_2236_z
crossref_primary_10_3390_rs70809998
crossref_primary_10_3390_w11091790
crossref_primary_10_1016_j_jhydrol_2018_10_012
crossref_primary_10_5194_piahs_376_97_2018
crossref_primary_10_1175_JCLI_D_20_0304_1
crossref_primary_10_1002_joc_8046
crossref_primary_10_1002_joc_5331
crossref_primary_10_1175_JAMC_D_18_0266_1
crossref_primary_10_3390_rs16071303
crossref_primary_10_1002_joc_7634
crossref_primary_10_3389_fclim_2021_762997
crossref_primary_10_1007_s00382_016_3066_y
crossref_primary_10_1186_s40645_020_00325_3
crossref_primary_10_1016_j_jenvman_2025_124520
crossref_primary_10_3390_land13040458
crossref_primary_10_3389_fenvs_2023_1251789
crossref_primary_10_1007_s00704_018_2398_4
crossref_primary_10_1002_joc_7483
crossref_primary_10_3390_w11091855
crossref_primary_10_1002_joc_6038
crossref_primary_10_1002_joc_6279
crossref_primary_10_1007_s11069_019_03811_0
crossref_primary_10_1002_joc_7009
crossref_primary_10_1155_2016_1879024
crossref_primary_10_1016_j_atmosres_2020_105375
crossref_primary_10_1002_joc_8219
crossref_primary_10_1016_j_foreco_2019_117524
crossref_primary_10_1007_s00382_021_05691_2
crossref_primary_10_1016_j_foreco_2021_119436
crossref_primary_10_1007_s00382_019_04809_x
crossref_primary_10_3389_fpls_2024_1430025
crossref_primary_10_3390_atmos12101274
crossref_primary_10_3390_rs14225674
crossref_primary_10_3390_cli13020031
crossref_primary_10_3390_rs16213997
crossref_primary_10_1155_2018_5215093
crossref_primary_10_3390_cli6020030
crossref_primary_10_1175_JHM_D_19_0290_1
crossref_primary_10_1016_j_agrformet_2018_06_027
crossref_primary_10_1016_j_gloplacha_2024_104380
crossref_primary_10_3390_cli11120245
crossref_primary_10_1002_joc_7137
crossref_primary_10_1016_j_atmosres_2025_107946
crossref_primary_10_3390_w10081031
crossref_primary_10_3390_w15122265
crossref_primary_10_1175_JHM_D_22_0006_1
crossref_primary_10_1038_s41598_020_73456_8
crossref_primary_10_1175_JHM_D_17_0180_1
crossref_primary_10_1007_s11442_019_1582_5
crossref_primary_10_3390_w11050997
crossref_primary_10_1016_j_atmosres_2021_105763
crossref_primary_10_1016_j_wace_2021_100304
crossref_primary_10_1360_TB_2022_0643
crossref_primary_10_1007_s11269_018_1975_8
crossref_primary_10_1016_j_jenvman_2019_109623
crossref_primary_10_1007_s10661_015_4303_2
crossref_primary_10_46830_wrirpt_21_00031
crossref_primary_10_2166_nh_2023_142
crossref_primary_10_1016_j_foreco_2022_120131
crossref_primary_10_1016_j_fcr_2023_109112
crossref_primary_10_1002_joc_7386
crossref_primary_10_1029_2022EF002681
crossref_primary_10_3389_feart_2020_00017
crossref_primary_10_1007_s10584_015_1576_y
crossref_primary_10_1139_cjce_2018_0692
crossref_primary_10_3390_w15213840
crossref_primary_10_1007_s00382_018_4445_3
crossref_primary_10_1038_s41598_023_48650_z
crossref_primary_10_1088_1748_9326_ac97ac
crossref_primary_10_1007_s00382_020_05404_1
crossref_primary_10_1007_s00704_019_02895_9
crossref_primary_10_1007_s42991_024_00445_z
crossref_primary_10_1021_acs_estlett_2c00104
crossref_primary_10_3390_w12071996
crossref_primary_10_1029_2020WR027698
crossref_primary_10_1016_j_ecoinf_2021_101459
crossref_primary_10_1007_s00704_017_2149_y
crossref_primary_10_3390_atmos8010015
crossref_primary_10_1007_s13143_018_0072_5
crossref_primary_10_1016_j_agwat_2024_109239
crossref_primary_10_1002_joc_7152
crossref_primary_10_1155_2019_1545746
crossref_primary_10_1002_joc_7150
crossref_primary_10_1016_j_atmosres_2017_10_024
crossref_primary_10_1016_j_jseaes_2017_02_002
crossref_primary_10_1002_joc_8485
crossref_primary_10_1007_s11069_022_05361_4
crossref_primary_10_1186_s40663_019_0189_8
crossref_primary_10_1093_icb_icae043
crossref_primary_10_1175_JHM_D_15_0058_1
crossref_primary_10_1016_j_scitotenv_2019_134076
crossref_primary_10_1007_s00477_014_0953_9
crossref_primary_10_31497_zrzyxb_20220718
crossref_primary_10_1002_joc_4328
crossref_primary_10_1007_s00704_015_1584_x
crossref_primary_10_1016_j_scib_2017_09_023
crossref_primary_10_1007_s11069_020_03928_7
crossref_primary_10_1016_j_scitotenv_2017_11_326
crossref_primary_10_1007_s00704_019_02914_9
crossref_primary_10_1016_j_jhydrol_2018_08_057
crossref_primary_10_1007_s13351_020_9208_5
crossref_primary_10_1002_joc_4295
crossref_primary_10_3390_w16101441
crossref_primary_10_1007_s00704_018_2648_5
crossref_primary_10_1007_s00704_023_04795_5
crossref_primary_10_1002_joc_5388
crossref_primary_10_1016_j_ejrh_2023_101494
crossref_primary_10_1007_s00024_020_02631_9
crossref_primary_10_1029_2020JD033263
crossref_primary_10_1007_s00704_016_1930_7
crossref_primary_10_1007_s00376_020_0077_8
crossref_primary_10_1002_joc_5706
crossref_primary_10_1007_s12517_024_12162_5
crossref_primary_10_1016_j_accre_2022_03_003
crossref_primary_10_2166_nh_2021_069
crossref_primary_10_1016_j_scitotenv_2024_170305
crossref_primary_10_1016_j_agwat_2021_107238
crossref_primary_10_1175_JCLI_D_16_0536_1
crossref_primary_10_1002_joc_8543
crossref_primary_10_1007_s10980_021_01309_4
crossref_primary_10_1016_j_scitotenv_2019_136074
crossref_primary_10_1016_j_ejrh_2015_06_006
crossref_primary_10_1007_s00704_021_03751_5
crossref_primary_10_1007_s00704_021_03775_x
crossref_primary_10_1175_JHM_D_16_0118_1
crossref_primary_10_1002_joc_7450
crossref_primary_10_1080_02723646_2019_1706704
crossref_primary_10_1175_JCLI_D_13_00465_1
crossref_primary_10_3390_f16010004
crossref_primary_10_1016_j_agrformet_2021_108770
crossref_primary_10_1016_j_agrformet_2024_109965
crossref_primary_10_1016_j_jhydrol_2021_126091
crossref_primary_10_1016_j_scitotenv_2018_05_324
crossref_primary_10_1002_2014JD022994
crossref_primary_10_1029_2024EF005147
crossref_primary_10_1016_j_scitotenv_2018_01_300
crossref_primary_10_1007_s00382_018_4543_2
crossref_primary_10_1016_j_jhydrol_2024_132315
crossref_primary_10_3390_ijerph18116029
crossref_primary_10_1016_j_ejrh_2024_101661
crossref_primary_10_3390_ijerph15050839
crossref_primary_10_1007_s00382_016_3024_8
crossref_primary_10_3390_w12030904
crossref_primary_10_1002_asl_830
crossref_primary_10_1016_j_scitotenv_2020_144654
crossref_primary_10_1002_2015JD024159
crossref_primary_10_1016_j_scitotenv_2020_140297
crossref_primary_10_1175_JCLI_D_21_0561_1
crossref_primary_10_3390_w16060880
crossref_primary_10_1016_j_jher_2016_10_003
crossref_primary_10_3390_w11101958
crossref_primary_10_46234_ccdcw2021_174
crossref_primary_10_1016_j_agwat_2017_08_008
crossref_primary_10_1155_2019_2820769
crossref_primary_10_1029_2021JD035005
crossref_primary_10_1007_s00704_018_2456_y
crossref_primary_10_1029_2018EF001103
crossref_primary_10_1016_j_jhydrol_2019_124323
crossref_primary_10_3390_atmos12060787
crossref_primary_10_3390_su71115029
crossref_primary_10_1029_2020WR027931
crossref_primary_10_1016_j_atmosres_2018_08_008
crossref_primary_10_1029_2018WR023053
crossref_primary_10_1016_j_agsy_2019_01_006
crossref_primary_10_1029_2019EF001280
crossref_primary_10_1007_s00382_016_3302_5
crossref_primary_10_1007_s00382_023_06778_8
crossref_primary_10_1007_s00704_018_2541_2
crossref_primary_10_1007_s00704_019_03024_2
crossref_primary_10_1007_s10584_023_03646_6
crossref_primary_10_1029_2018EF000932
crossref_primary_10_1016_j_fmre_2024_01_023
crossref_primary_10_1016_j_accre_2018_01_003
crossref_primary_10_1371_journal_pone_0158872
crossref_primary_10_1029_2017JD027825
crossref_primary_10_1002_ird_2467
crossref_primary_10_1016_j_scib_2017_12_021
crossref_primary_10_1029_2021GL095795
crossref_primary_10_1155_2016_9472605
crossref_primary_10_1016_j_envexpbot_2025_106087
crossref_primary_10_3390_atmos12091143
crossref_primary_10_1061__ASCE_EE_1943_7870_0001394
crossref_primary_10_1016_j_scitotenv_2023_167632
crossref_primary_10_1007_s41748_021_00273_y
crossref_primary_10_1016_j_jenvman_2022_116646
crossref_primary_10_1016_j_quaint_2017_05_005
Cites_doi 10.1029/2006GL027809
10.1007/s10584‐006‐9117‐3
10.1007/S00703‐006‐0184‐9
10.1175/JCLI3848.1
10.1016/j.gloplacha.2008.12.013
10.1029/2001JD000659
10.1175/1520‐0450(1984)023<1100:TPDSIL>2.0.CO;2
10.1111/j.1752‐1688.2000.tb04276.x
10.1080/16742834.2012.11447047
10.1175/1520‐0442(2004)017<2335:ASPDSI>2.0.CO;2
10.1007/s10651‐007‐0018‐z
10.1029/2010JD015001
10.1029/2010JD015541
10.1175/JCLI3952.1
10.1175/2010BAMS2857.1
10.5194/hessd‐10‐597‐2013
10.1029/2007EO470006
10.1175/BAMS‐88‐9‐1383
10.1175/1520‐0442(2002)015<1141:COAURA>2.0.CO;2
10.1175/BAMS‐D‐11‐00094.1
10.1007/s00704‐009‐0134‐9
10.1029/2003JD003651
10.1038/nature08823
10.1002/hyp.7913
10.1029/92GB01822
10.1029/2004JD005669
10.5194/hess‐16‐3383‐2012
10.1007/s00376‐010‐1016‐x
10.1007/s00376‐010‐0080‐6
10.1007/s00376‐009‐0101‐5
10.1080/16742834.2012.11447042
10.1002/9781118165881
10.1007/s00704‐011‐0442‐8
10.2307/210739
10.1029/2009JD012882
10.1017/CBO9781139177245.006
10.1002/joc.1593
10.1002/joc.1843
10.1175/1520‐0442(2003)016<0799:SPDOTN>2.0.CO;2
10.1007/s11434‐010‐3209‐1
10.1007/s00704‐011‐0519‐4
10.1007/BF03342050
10.1023/B:CLIM.0000013685.99609.9e
10.1016/j.jhydrol.2008.02.003
10.1007/s00376-009-9072-9
10.5194/hess‐12‐551‐2008
10.1029/90RG02636
10.3354/cr030079
10.1175/2009MWR2952.1
10.5194/hess‐11‐1373‐2007
10.1029/2008GL033840
10.1177/030913339702100403
ContentType Journal Article
Copyright 2013 Royal Meteorological Society
2015 INIST-CNRS
2014 Royal Meteorological Society
Copyright_xml – notice: 2013 Royal Meteorological Society
– notice: 2015 INIST-CNRS
– notice: 2014 Royal Meteorological Society
DBID AAYXX
CITATION
IQODW
7TG
7TN
F1W
H96
KL.
L.G
7TV
7U1
7UA
C1K
DOI 10.1002/joc.3822
DatabaseName CrossRef
Pascal-Francis
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Pollution Abstracts
Risk Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
Risk Abstracts
Pollution Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
CrossRef
Risk Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1097-0088
EndPage 2078
ExternalDocumentID 3282789081
28376439
10_1002_joc_3822
JOC3822
Genre article
GeographicLocations Far East
Asia
China
China, People's Rep
GeographicLocations_xml – name: China, People's Rep
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: Grants 41025017 and 41230527
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
VOH
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WWD
WXSBR
WYISQ
XG1
XJT
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
08R
8W4
AAPBV
ABFLS
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IPNFZ
IQODW
WIN
7TG
7TN
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F1W
H96
KL.
L.G
7TV
7U1
7UA
C1K
ID FETCH-LOGICAL-c3562-7bf9f042f067c0e7f973f1f44ea6be4bd36c309cf0689897c6aabe8c3a1ebb4c3
IEDL.DBID DR2
ISSN 0899-8418
IngestDate Fri Jul 11 01:16:18 EDT 2025
Sun Jul 13 04:29:33 EDT 2025
Fri Nov 25 06:03:45 EST 2022
Thu Apr 24 23:07:33 EDT 2025
Tue Jul 01 01:36:51 EDT 2025
Wed Jan 22 17:12:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Multimodel
Coupled model
Emission scenario
General circulation models
atmospheric precipitation
climate warming
bias correction and spatial disaggregation
Climate models
digital simulation
Climate prediction
greenhouse gas
Atmospheric temperature
drought
global change
China
Severity score
Palmer Drought Severity Index
Error correction
Natural hazards
climate change projection
climate change
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3562-7bf9f042f067c0e7f973f1f44ea6be4bd36c309cf0689897c6aabe8c3a1ebb4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1518503549
PQPubID 996368
PageCount 20
ParticipantIDs proquest_miscellaneous_1524430618
proquest_journals_1518503549
pascalfrancis_primary_28376439
crossref_citationtrail_10_1002_joc_3822
crossref_primary_10_1002_joc_3822
wiley_primary_10_1002_joc_3822_JOC3822
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2014
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: May 2014
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
– name: Bognor Regis
PublicationTitle International journal of climatology
PublicationYear 2014
Publisher John Wiley & Sons, Ltd
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References 2011; 116
1993; 7
2010; 99
2002; 15
2004; 62
1984; 23
2010; 463
2008; 35
2003; 16
2008; 32
2012; 16
2008b; 353
2007; 34
2013; 10
2005; 30
2002; 107
2011; 25
2011; 28
2009; 66
2006; 93
2005; 110
2012
1997; 21
2010a; 115
2006; 11
2009
2008; 12
2007
2006; 19
2012; 36
2010b; 55
2007; 11
2007; 14
2009; 26
2012; 108
2009; 137
1994; 43
2009; 29
1948; 38
2012; 93
1991; 29
2003; 108
2008a; 28
2011; 106
2000; 36
2004; 17
2010c; 27
1965
2007; 80
2005; 10
2013
2010; 92
2007; 88
2012; 5
2003; 20
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
Wang S (e_1_2_9_47_1) 2007
e_1_2_9_10_1
e_1_2_9_56_1
Wang L (e_1_2_9_46_1) 2013
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
Chen W (e_1_2_9_5_1) 2006; 11
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
Ma Y (e_1_2_9_27_1) 2012; 36
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_4_1
e_1_2_9_60_1
Liu Z (e_1_2_9_25_1) 2012; 5
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
Chen W (e_1_2_9_6_1) 2008; 32
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
Allen RG (e_1_2_9_2_1) 1994; 43
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
Ren G (e_1_2_9_35_1) 2005; 10
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 30
  start-page: 79
  year: 2005
  end-page: 82
  article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
  publication-title: Clim. Res.
– volume: 36
  start-page: 397
  year: 2012
  end-page: 410
  article-title: Interannual and interdecadal variations of precipitation over eastern China during Meiyu season and their relationships with the atmospheric circulation and SST
  publication-title: Chin. J. Atmos. Sci.
– volume: 10
  start-page: 597
  year: 2013
  end-page: 624
  article-title: Derivation of RCM‐driven potential evapotranspiration for hydrological climate change impact analysis in Great Britain: a comparison of methods and associated uncertainty in future projections
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
– year: 2009
– volume: 16
  start-page: 3383
  year: 2012
  end-page: 3390
  article-title: Technical note: downscaling RCM precipitation to the station scale using statistical transformations: a comparison of methods
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 93
  start-page: 165
  year: 2006
  end-page: 175
  article-title: The interdecadal variations of the summer monsoon rainfall over South China
  publication-title: Meteorol. Atmos. Phys.
– volume: 11
  start-page: 259
  year: 2006
  end-page: 269
  article-title: The coupling relationship between summer rainfall in China and global sea surface temperature
  publication-title: Clim. Environ. Res.
– volume: 35
  start-page: L12403
  year: 2008
  article-title: Revisiting the parameterization of potential evaporation as a driver of long‐term water balance trends
  publication-title: Geophys. Res. Lett.
– volume: 16
  start-page: 799
  year: 2003
  end-page: 816
  article-title: Statistical precipitation downscaling over the northwestern United States using numerically simulated precipitation as a predictor
  publication-title: J. Clim.
– volume: 88
  start-page: 1383
  year: 2007
  end-page: 1394
  article-title: The WCRP CMIP3 multimodel dataset: a new era in climate change research
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 29
  start-page: 191
  year: 1991
  end-page: 216
  article-title: Approaches to the simulation of regional climate change: a review
  publication-title: Rev. Geophys.
– volume: 25
  start-page: 1466
  year: 2011
  end-page: 1478
  article-title: Assessing temperature‐based PET equations under a changing climate in temperate, deciduous forests
  publication-title: Hydrol. Process.
– volume: 38
  start-page: 55
  year: 1948
  end-page: 94
  article-title: An approach toward a rational classification of climate
  publication-title: Geogr. Rev.
– volume: 80
  start-page: 337
  year: 2007
  end-page: 367
  article-title: Using regional climate model data to simulate historical and future river flows in northwest England
  publication-title: Clim. Change
– volume: 11
  start-page: 1373
  year: 2007
  end-page: 1390
  article-title: Spatial disaggregation of bias‐corrected GCM precipitation for improved hydrologic simulation: Ping River Basin, Thailand
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 29
  start-page: 2056
  year: 2009
  end-page: 2071
  article-title: A multimodel assessment of future climatological droughts in the United Kingdom
  publication-title: Int. J. Climatol.
– volume: 66
  start-page: 235
  year: 2009
  end-page: 252
  article-title: Simulations of the impacts of dynamic vegetation on interannual and interdecadal variability of Asian summer monsoon with modern and mid‐Holocene orbital forcings
  publication-title: Glob. Planet. Change
– volume: 23
  start-page: 1100
  year: 1984
  end-page: 1109
  article-title: The Palmer Drought Severity Index: limitations and assumptions
  publication-title: J. Clim. Appl. Meteorol.
– volume: 5
  start-page: 1275
  year: 2012
  end-page: 1280
  article-title: Comprehensive analysis of drought disasters in China from 1483 to 2010
  publication-title: Diaster Adv.
– volume: 14
  start-page: 249
  year: 2007
  end-page: 266
  article-title: Multivariate Bayesian analysis of atmosphere–ocean general circulation models
  publication-title: Environ. Ecol. Stat.
– volume: 110
  start-page: D14110
  year: 2005
  article-title: Relationship between stationary planetary wave activity and the East Asian winter monsoon
  publication-title: J. Geophys. Res.
– volume: 12
  start-page: 551
  year: 2008
  end-page: 563
  article-title: Utility of daily vs. monthly large‐scale climate data: an intercomparison of two statistical downscaling methods
  publication-title: Hydrol. Earth Syst Sci.
– volume: 108
  start-page: 4614
  year: 2003
  article-title: Long‐term climate variations in China and global warming signals
  publication-title: J. Geophys. Res.
– year: 1965
– volume: 27
  start-page: 901
  year: 2010c
  end-page: 920
  article-title: The variations of dominant convection modes over Asia, Indian Ocean, and western Pacific Ocean during the summers of 1997‐2004
  publication-title: Adv. Atmos. Sci.
– volume: 116
  start-page: D12115
  year: 2011
  article-title: Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008
  publication-title: J. Geophys. Res.
– volume: 36
  start-page: 387
  year: 2000
  end-page: 397
  article-title: A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States
  publication-title: J. Am. Water Resour. Assoc.
– volume: 353
  start-page: 143
  year: 2008b
  end-page: 158
  article-title: Multimodel projections of catchment‐scale precipitation regime
  publication-title: J. Hydrol.
– volume: 5
  start-page: 527
  year: 2012
  end-page: 533
  article-title: The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi‐model ensemble
  publication-title: Atmos. Oceanic Sci. Lett.
– volume: 92
  start-page: 47
  year: 2010
  end-page: 60
  article-title: The Great 2008 Chinese ice storm: its socioeconomic–ecological impact and sustainability lessons learned
  publication-title: Bull. Am. Meteorol. Soc.
– start-page: 109
  year: 2012
  end-page: 230
– volume: 32
  start-page: 950
  year: 2008
  end-page: 966
  article-title: Studies of the dynamical processes of East Asian monsoon system and the quasi‐stationary planetary wave activities
  publication-title: Chin. J. Atmos. Sci.
– volume: 28
  start-page: 843
  year: 2008a
  end-page: 858
  article-title: A framework for developing high‐resolution multi‐model climate projections: 21st century scenarios for the UK
  publication-title: Int. J. Climatol.
– volume: 137
  start-page: 3978
  year: 2009
  end-page: 3991
  article-title: Synoptic‐scale controls of persistent low temperature and icy weather over southern China in January 2008
  publication-title: Mon. Weather Rev.
– volume: 19
  start-page: 4137
  year: 2006
  end-page: 4153
  article-title: Can CGCMs simulate the twentieth‐century “warming hole” in the central United States?
  publication-title: J. Clim.
– volume: 99
  start-page: 187
  year: 2010
  end-page: 192
  article-title: Statistical bias correction for daily precipitation in regional climate models over Europe
  publication-title: Theor. Appl. Climatol.
– volume: 10
  start-page: 717
  year: 2005
  end-page: 727
  article-title: Changes of surface air temperature in China during 1951–2004
  publication-title: Clim. Environ. Res.
– volume: 20
  start-page: 55
  year: 2003
  end-page: 69
  article-title: The progresses of recent studies on the variabilities of the East Asian monsoon and their causes
  publication-title: Adv. Atmos. Sci.
– volume: 106
  start-page: 481
  year: 2011
  end-page: 488
  article-title: Inter‐decadal variability of summer rainfall in Eastern China detected by the Lepage test
  publication-title: Theor. Appl. Climatol.
– volume: 116
  start-page: D03106
  year: 2011
  article-title: The sensitivity of the PDSI to the Thornthwaite and Penman‐Monteith parameterizations for potential evapotranspiration
  publication-title: J. Geophys. Res.
– year: 2007
– volume: 28
  start-page: 1023
  year: 2011
  end-page: 1029
  article-title: An abrupt increase in the summer high temperature extreme days across China in the mid‐1990s
  publication-title: Adv. Atmos. Sci.
– volume: 28
  start-page: 464
  year: 2011
  end-page: 476
  article-title: Projection of future precipitation change over China with a high‐resolution global atmospheric model
  publication-title: Adv. Atmos. Sci.
– volume: 26
  start-page: 101
  year: 2009
  end-page: 108
  article-title: Linkage between Mei‐yu Precipitation and North Atlantic SST on the decadal timescale
  publication-title: Adv. Atmos. Sci.
– volume: 19
  start-page: 5843
  year: 2006
  end-page: 5858
  article-title: Twentieth‐century surface air temperature over China and the globe simulated by coupled climate models
  publication-title: J. Clim.
– volume: 34
  start-page: L01701
  year: 2007
  article-title: Possible connection between Pacific oceanic interdecadal pathway and East Asian winter monsoon
  publication-title: Geophys. Res. Lett.
– volume: 108
  start-page: 119
  year: 2012
  end-page: 133
  article-title: Interdecadal change in the relationship of southern China summer rainfall with tropical Indo‐Pacific SST
  publication-title: Theor. Appl. Climatol.
– volume: 5
  start-page: 514
  year: 2012
  end-page: 520
  article-title: Projections of 2.0°C warming over the globe and China under RCP4.5
  publication-title: Atmos. Oceanic Sci. Lett.
– volume: 7
  start-page: 97
  year: 1993
  end-page: 108
  article-title: Specifying land surface characteristics in general circulation models: soil profile data set and derived water‐holding capacities
  publication-title: Global Biogeochem. Cycles
– volume: 21
  start-page: 530
  year: 1997
  end-page: 548
  article-title: Downscaling general circulation model output: a review of methods and limitations
  publication-title: Prog. Phys. Geogr.
– volume: 55
  start-page: 1974
  year: 2010b
  end-page: 1982
  article-title: Assessment of the uncertainties in temperature change in China during the last century
  publication-title: Chin. Sci. Bull.
– volume: 463
  start-page: 747
  year: 2010
  end-page: 756
  article-title: The next generation of scenarios for climate change research and assessment
  publication-title: Nature
– volume: 15
  start-page: 1141
  year: 2002
  end-page: 1158
  article-title: Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “reliability ensemble averaging” (REA) method
  publication-title: J. Clim.
– year: 2013
  article-title: Equiratio cumulative distribution function matching as an improvement to the equidistant approach in bias correction of precipitation
  publication-title: Atmos. Sci. Let.
– volume: 107
  start-page: 4429
  year: 2002
  article-title: Long‐range experimental hydrologic forecasting for the eastern United States
  publication-title: J. Geophys. Res.
– volume: 43
  start-page: 35
  year: 1994
  end-page: 92
  article-title: An update for the calculation of reference evapotranspiration
  publication-title: Bull. Int. Comm. Irrig. Drain.
– volume: 88
  start-page: 504
  year: 2007
  article-title: Fine‐resolution climate projections enhance regional climate change impact studies
  publication-title: EOS Trans. Am. Geophys. Union
– volume: 62
  start-page: 189
  year: 2004
  end-page: 216
  article-title: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs
  publication-title: Clim. Change
– volume: 17
  start-page: 2335
  year: 2004
  end-page: 2351
  article-title: A self‐calibrating Palmer Drought Severity Index
  publication-title: J. Clim.
– volume: 115
  start-page: D10101
  year: 2010a
  article-title: Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching
  publication-title: J. Geophys. Res.
– volume: 93
  start-page: 485
  year: 2012
  end-page: 498
  article-title: An overview of CMIP5 and the experiment design
  publication-title: Bull. Am. Meteorol. Soc.
– ident: e_1_2_9_62_1
  doi: 10.1029/2006GL027809
– ident: e_1_2_9_10_1
  doi: 10.1007/s10584‐006‐9117‐3
– ident: e_1_2_9_61_1
  doi: 10.1007/S00703‐006‐0184‐9
– ident: e_1_2_9_20_1
  doi: 10.1175/JCLI3848.1
– ident: e_1_2_9_21_1
  doi: 10.1016/j.gloplacha.2008.12.013
– ident: e_1_2_9_55_1
  doi: 10.1029/2001JD000659
– ident: e_1_2_9_3_1
  doi: 10.1175/1520‐0450(1984)023<1100:TPDSIL>2.0.CO;2
– year: 2013
  ident: e_1_2_9_46_1
  article-title: Equiratio cumulative distribution function matching as an improvement to the equidistant approach in bias correction of precipitation
  publication-title: Atmos. Sci. Let.
– ident: e_1_2_9_16_1
  doi: 10.1111/j.1752‐1688.2000.tb04276.x
– ident: e_1_2_9_59_1
  doi: 10.1080/16742834.2012.11447047
– volume: 11
  start-page: 259
  year: 2006
  ident: e_1_2_9_5_1
  article-title: The coupling relationship between summer rainfall in China and global sea surface temperature
  publication-title: Clim. Environ. Res.
– ident: e_1_2_9_50_1
  doi: 10.1175/1520‐0442(2004)017<2335:ASPDSI>2.0.CO;2
– ident: e_1_2_9_11_1
  doi: 10.1007/s10651‐007‐0018‐z
– volume: 32
  start-page: 950
  year: 2008
  ident: e_1_2_9_6_1
  article-title: Studies of the dynamical processes of East Asian monsoon system and the quasi‐stationary planetary wave activities
  publication-title: Chin. J. Atmos. Sci.
– ident: e_1_2_9_36_1
  doi: 10.1029/2010JD015001
– ident: e_1_2_9_8_1
  doi: 10.1029/2010JD015541
– ident: e_1_2_9_60_1
  doi: 10.1175/JCLI3952.1
– ident: e_1_2_9_64_1
  doi: 10.1175/2010BAMS2857.1
– ident: e_1_2_9_34_1
  doi: 10.5194/hessd‐10‐597‐2013
– ident: e_1_2_9_29_1
  doi: 10.1029/2007EO470006
– ident: e_1_2_9_30_1
  doi: 10.1175/BAMS‐88‐9‐1383
– ident: e_1_2_9_13_1
  doi: 10.1175/1520‐0442(2002)015<1141:COAURA>2.0.CO;2
– ident: e_1_2_9_41_1
  doi: 10.1175/BAMS‐D‐11‐00094.1
– ident: e_1_2_9_33_1
  doi: 10.1007/s00704‐009‐0134‐9
– ident: e_1_2_9_18_1
  doi: 10.1029/2003JD003651
– ident: e_1_2_9_31_1
  doi: 10.1038/nature08823
– ident: e_1_2_9_39_1
  doi: 10.1002/hyp.7913
– ident: e_1_2_9_48_1
  doi: 10.1029/92GB01822
– ident: e_1_2_9_4_1
  doi: 10.1029/2004JD005669
– ident: e_1_2_9_15_1
  doi: 10.5194/hess‐16‐3383‐2012
– ident: e_1_2_9_9_1
  doi: 10.1007/s00376‐010‐1016‐x
– ident: e_1_2_9_49_1
  doi: 10.1007/s00376‐010‐0080‐6
– ident: e_1_2_9_14_1
  doi: 10.1007/s00376‐009‐0101‐5
– volume: 10
  start-page: 717
  year: 2005
  ident: e_1_2_9_35_1
  article-title: Changes of surface air temperature in China during 1951–2004
  publication-title: Clim. Environ. Res.
– ident: e_1_2_9_58_1
  doi: 10.1080/16742834.2012.11447042
– ident: e_1_2_9_7_1
  doi: 10.1002/9781118165881
– ident: e_1_2_9_26_1
  doi: 10.1007/s00704‐011‐0442‐8
– ident: e_1_2_9_42_1
  doi: 10.2307/210739
– volume-title: Climate of China
  year: 2007
  ident: e_1_2_9_47_1
– ident: e_1_2_9_22_1
  doi: 10.1029/2009JD012882
– ident: e_1_2_9_37_1
  doi: 10.1017/CBO9781139177245.006
– ident: e_1_2_9_43_1
  doi: 10.1002/joc.1593
– ident: e_1_2_9_45_1
  doi: 10.1002/joc.1843
– ident: e_1_2_9_51_1
  doi: 10.1175/1520‐0442(2003)016<0799:SPDOTN>2.0.CO;2
– ident: e_1_2_9_54_1
– ident: e_1_2_9_23_1
  doi: 10.1007/s11434‐010‐3209‐1
– ident: e_1_2_9_40_1
– ident: e_1_2_9_57_1
  doi: 10.1007/s00704‐011‐0519‐4
– ident: e_1_2_9_32_1
– ident: e_1_2_9_19_1
  doi: 10.1007/BF03342050
– volume: 36
  start-page: 397
  year: 2012
  ident: e_1_2_9_27_1
  article-title: Interannual and interdecadal variations of precipitation over eastern China during Meiyu season and their relationships with the atmospheric circulation and SST
  publication-title: Chin. J. Atmos. Sci.
– ident: e_1_2_9_56_1
  doi: 10.1023/B:CLIM.0000013685.99609.9e
– volume: 5
  start-page: 1275
  year: 2012
  ident: e_1_2_9_25_1
  article-title: Comprehensive analysis of drought disasters in China from 1483 to 2010
  publication-title: Diaster Adv.
– ident: e_1_2_9_44_1
  doi: 10.1016/j.jhydrol.2008.02.003
– ident: e_1_2_9_24_1
  doi: 10.1007/s00376-009-9072-9
– ident: e_1_2_9_28_1
  doi: 10.5194/hess‐12‐551‐2008
– ident: e_1_2_9_12_1
  doi: 10.1029/90RG02636
– ident: e_1_2_9_53_1
  doi: 10.3354/cr030079
– ident: e_1_2_9_63_1
  doi: 10.1175/2009MWR2952.1
– ident: e_1_2_9_38_1
  doi: 10.5194/hess‐11‐1373‐2007
– ident: e_1_2_9_17_1
  doi: 10.1029/2008GL033840
– ident: e_1_2_9_52_1
  doi: 10.1177/030913339702100403
– volume: 43
  start-page: 35
  year: 1994
  ident: e_1_2_9_2_1
  article-title: An update for the calculation of reference evapotranspiration
  publication-title: Bull. Int. Comm. Irrig. Drain.
SSID ssj0009916
Score 2.572731
Snippet ABSTRACT In this study, fine‐resolution multimodel climate projections over China are developed based on 35 climate models and two emissions scenarios (RCP4.5...
In this study, fine‐resolution multimodel climate projections over China are developed based on 35 climate models and two emissions scenarios ( RCP4 .5 and...
In this study, fine-resolution multimodel climate projections over China are developed based on 35 climate models and two emissions scenarios (RCP4.5 and...
SourceID proquest
pascalfrancis
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2059
SubjectTerms bias correction and spatial disaggregation
China
climate change projection
Climatology. Bioclimatology. Climate change
Earth, ocean, space
Exact sciences and technology
External geophysics
Meteorology
Palmer Drought Severity Index
Title A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjoc.3822
https://www.proquest.com/docview/1518503549
https://www.proquest.com/docview/1524430618
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iSRDfYnWVCLJe7Npt0tdxKYourIooCB5KkyayurTLPi7-emfSh64oiKdSMm2nmUzyZTr9hpCTSHPPhR2brVjGbO5lkS2Y9G2uAqy2o9zAxDsGN_7VI-8_eU9VViX-C1PyQzQBN_QMM1-jg6diev5JGvpayA6D5Q2mX0zVQjx0_8kchbDHAMgoskPeDWveWcc9ry9cWIlWx-kUOkWX1SwW4OZX0GpWnct18lzrWyabvHXmM9GR79-oHP_3QhtkrQKjtFeOnk2ypPItYg0ARxcTE26nbRqPhgBqzdk2eenReHB951GTh2iq6NAqlgP2pYWmJUcJRcariq75DCSUHI4rMvAzmuYZlc1dcZDQzBQLmtFhTk1B7x3yeHnxEF_ZVakGWzJAUHYgdKTB_zUsftJRgY4Cpruac5X6QnGRMV8yJ5LQjvUqA-mnqVChZGlXCcEl2yXLeZGrPUKl8KBBAhDKIh76oQCIARMy49oHcKm0RU5rsyWyUh3LaYySkoHZTaAjE-xIixw3kuOSu-MHmaMFyzeCyAqEaM0irXooJJV7TxPQKPQcBntreEbTDI6JX1vSXBVzlAHkBBuybmiRtrH7r0ok_dsYj_t_FTwgKwDceJl42SLLs8lcHQI4mokj4wYfEWEM8Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RemglROlLhFeN1NILWXZj53XoAS1Fu8DSqgKJWxo7NlpAyYrdFaJ_qX-lP6ozzoNuVSQuHHqKIo8sx57xfH7k-wDex0b4Hq7YXM0z7go_i13JVeAKHZLajvZCu98xOA56p-LgzD-bg5_1vzAlP0Sz4UaRYedrCnDakN65Yw29KFSLY36rblQe6tsbXK-NP_X3cHA_eN7-55Nuz60kBVzFMdO7oTSxQT81OEmrtg5NHHLTMULoNJBayIwHirdjheWkqxiqIE2ljhRPO1pKoTjW-wSekoA4EfXvfbvjqiKgZSFrHLuR6EQ1023b26lbOpP7FkbpGIfBlPoZMwD3T5hs89z-C_hV91B5veWyNZ3IlvrxF3nkf9KFS7BY4W22WwbIS5jT-StwBrhUKK7tiQLbYt2rIeJ2-_YazndZd9D_6jN71dIKBbFquwpdmBWGlTQsjEi9KkbqbbTQajiq-M63WZpnTDW1UhywzOohTdgwZ1az_A2cPsp3v4X5vMj1MjAlfSxQiPWyWERBJBFFYc7hwgSIn7Vx4GPtJ4mqmk6KIVdJSTLtJThwCQ2cA5uN5aikJ_mHzcaMqzWGRHxEgNSBtdr3kmoGGyfYoshvc19g8WZTjHMPHSiluS6mZIPgENecnciBLeto9zYiOfjSpefKQw3fwbPeyeAoOeofH67Cc8Sporxnugbzk-upXkcsOJEbNgYZfH9sj_0NV_ttKA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9swFD7iIk1IaGMXRDYuRtrYC2nT2Ln4gQfUUlFYGZqGxFuIHRsVUFLRVtP2k_ZX9qd27FxYp03aCw97iiIfWY59js_nS74P4C3XLPBxxeYqmlGXBRl3BZWhy1Rk1HaUH9n9juFZeHzBTi6DywX4Xv8LU_JDNBtuJjLsfG0CfJzp9gNp6E0hWxTTW3Wh8lR9_YLLtcnBoIdj-873-0efu8dupSjgSoqJ3o2E5hrdVOMcLT0VaR5R3dGMqTQUiomMhpJ6XGK5kVWMZJimQsWSph0lBJMU612EZRZ63MhE9D49UFUZnGURK-duzDpxTXTr-e26pXOpb3WcTnAUdCmfMYdvf0XJNs31n8GPuoPK2y23rdlUtOS337gj_48eXIOnFdomh2V4PIcFlb8AZ4gLheLenieQPdK9GyFqt28v4fqQdIeD84DYi5ZWJohUm1XowKTQpCRhIYbSq-Kj3kcLJUfjiu18n6R5RmRTq4kCklk1pCkZ5cQqlr-Ci0f57nVYyotcbQCRIsACiUgv4ywOY4EYCjMOZTpE9Ky0A-9rN0lk1XSjF3KXlBTTfoIDl5iBc2C3sRyX5CR_sNme87TG0NAeGTjqwGbtekk1f00SbFEceDRgWLzbFOPMY46T0lwVM2OD0BBXnJ3YgT3rZ39tRHLysWuer__VcAeenPf6yYfB2ekbWEGQyspLppuwNL2fqS0EglOxbSOQwNVjO-xPnSVr1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CMIP5+multimodel+projection+of+future+temperature%2C+precipitation%2C+and+climatological+drought+in+China&rft.jtitle=International+journal+of+climatology&rft.au=Wang%2C+Lin&rft.au=Chen%2C+Wen&rft.date=2014-05-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0899-8418&rft.eissn=1097-0088&rft.volume=34&rft.issue=6&rft.spage=2059&rft.epage=2078&rft_id=info:doi/10.1002%2Fjoc.3822&rft.externalDBID=10.1002%252Fjoc.3822&rft.externalDocID=JOC3822
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-8418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-8418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-8418&client=summon