Integrating Flexible Ultralight 3D Ni Micromesh Current Collector with NiCo Bimetallic Hydroxide for Smart Hybrid Supercapacitors

Flexible and lightweight supercapacitors with superior mechanical flexibility and outstanding capacity are regarded as an ideal power source for wearable electronic devices. Meanwhile, incorporating additional novel characters such as transparency and electrochromism can further benefit the developm...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 24
Main Authors Zhang, Guanhua, Hu, Jin, Nie, Yan, Zhao, Yanli, Wang, Lei, Li, Yizhou, Liu, Huaizhi, Tang, Lizhen, Zhang, Xianan, Li, Du, Sun, Ling, Duan, Huigao
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Flexible and lightweight supercapacitors with superior mechanical flexibility and outstanding capacity are regarded as an ideal power source for wearable electronic devices. Meanwhile, incorporating additional novel characters such as transparency and electrochromism can further benefit the development of smart supercapacitors. Nevertheless, the application of the commonly used planar‐structural current collectors is seriously restricted by their intrinsic properties such as poor rigidity, large thickness, and limited loading surface area. Flexible and ultralight current collectors with 3D architecture, high conductivity, and easy integration are believed to be the most appropriate alternatives to build high‐performance supercapacitors. In this study, a novel and scalable manufacturing technique is developed to produce a flexible and ultralight 3D Ni micromesh (3D NM) current collector for supercapacitor. Flexible smart supercapacitor integrated by 3D NM and high active Ni–Co bimetallic hydroxide (3D NM@NiCo BH) delivers a considerable rate performance (60.6% capacity retention from 1 to 50 mA cm−2). Furthermore, the fabricated hybrid supercapacitor device integrated with electrochromic functionality can visually indicate the energy level by a color display. This flexible electrochromic supercapacitor based on ultralight 3D Ni micromesh provides a novel insight into multifunctional energy storage systems for smart wearable electronic devices. A flexible ultralight 3D Ni micromesh is fabricated via lithography and a selective electrodeposition process. The flexible smart supercapacitor integrated by 3D Ni micromesh and high‐active Ni–Co bimetallic hydroxide delivers a considerable specific capacity, high rate capability, and satisfactory cycling stability. In addition, the device shows an electrochromic functionality to indicate the energy level by a color display visually.
AbstractList Flexible and lightweight supercapacitors with superior mechanical flexibility and outstanding capacity are regarded as an ideal power source for wearable electronic devices. Meanwhile, incorporating additional novel characters such as transparency and electrochromism can further benefit the development of smart supercapacitors. Nevertheless, the application of the commonly used planar‐structural current collectors is seriously restricted by their intrinsic properties such as poor rigidity, large thickness, and limited loading surface area. Flexible and ultralight current collectors with 3D architecture, high conductivity, and easy integration are believed to be the most appropriate alternatives to build high‐performance supercapacitors. In this study, a novel and scalable manufacturing technique is developed to produce a flexible and ultralight 3D Ni micromesh (3D NM) current collector for supercapacitor. Flexible smart supercapacitor integrated by 3D NM and high active Ni–Co bimetallic hydroxide (3D NM@NiCo BH) delivers a considerable rate performance (60.6% capacity retention from 1 to 50 mA cm−2). Furthermore, the fabricated hybrid supercapacitor device integrated with electrochromic functionality can visually indicate the energy level by a color display. This flexible electrochromic supercapacitor based on ultralight 3D Ni micromesh provides a novel insight into multifunctional energy storage systems for smart wearable electronic devices. A flexible ultralight 3D Ni micromesh is fabricated via lithography and a selective electrodeposition process. The flexible smart supercapacitor integrated by 3D Ni micromesh and high‐active Ni–Co bimetallic hydroxide delivers a considerable specific capacity, high rate capability, and satisfactory cycling stability. In addition, the device shows an electrochromic functionality to indicate the energy level by a color display visually.
Flexible and lightweight supercapacitors with superior mechanical flexibility and outstanding capacity are regarded as an ideal power source for wearable electronic devices. Meanwhile, incorporating additional novel characters such as transparency and electrochromism can further benefit the development of smart supercapacitors. Nevertheless, the application of the commonly used planar‐structural current collectors is seriously restricted by their intrinsic properties such as poor rigidity, large thickness, and limited loading surface area. Flexible and ultralight current collectors with 3D architecture, high conductivity, and easy integration are believed to be the most appropriate alternatives to build high‐performance supercapacitors. In this study, a novel and scalable manufacturing technique is developed to produce a flexible and ultralight 3D Ni micromesh (3D NM) current collector for supercapacitor. Flexible smart supercapacitor integrated by 3D NM and high active Ni–Co bimetallic hydroxide (3D NM@NiCo BH) delivers a considerable rate performance (60.6% capacity retention from 1 to 50 mA cm−2). Furthermore, the fabricated hybrid supercapacitor device integrated with electrochromic functionality can visually indicate the energy level by a color display. This flexible electrochromic supercapacitor based on ultralight 3D Ni micromesh provides a novel insight into multifunctional energy storage systems for smart wearable electronic devices.
Flexible and lightweight supercapacitors with superior mechanical flexibility and outstanding capacity are regarded as an ideal power source for wearable electronic devices. Meanwhile, incorporating additional novel characters such as transparency and electrochromism can further benefit the development of smart supercapacitors. Nevertheless, the application of the commonly used planar‐structural current collectors is seriously restricted by their intrinsic properties such as poor rigidity, large thickness, and limited loading surface area. Flexible and ultralight current collectors with 3D architecture, high conductivity, and easy integration are believed to be the most appropriate alternatives to build high‐performance supercapacitors. In this study, a novel and scalable manufacturing technique is developed to produce a flexible and ultralight 3D Ni micromesh (3D NM) current collector for supercapacitor. Flexible smart supercapacitor integrated by 3D NM and high active Ni–Co bimetallic hydroxide (3D NM@NiCo BH) delivers a considerable rate performance (60.6% capacity retention from 1 to 50 mA cm −2 ). Furthermore, the fabricated hybrid supercapacitor device integrated with electrochromic functionality can visually indicate the energy level by a color display. This flexible electrochromic supercapacitor based on ultralight 3D Ni micromesh provides a novel insight into multifunctional energy storage systems for smart wearable electronic devices.
Author Zhang, Guanhua
Duan, Huigao
Sun, Ling
Nie, Yan
Wang, Lei
Liu, Huaizhi
Tang, Lizhen
Hu, Jin
Zhao, Yanli
Zhang, Xianan
Li, Du
Li, Yizhou
Author_xml – sequence: 1
  givenname: Guanhua
  orcidid: 0000-0002-2751-5202
  surname: Zhang
  fullname: Zhang, Guanhua
  organization: Hunan University
– sequence: 2
  givenname: Jin
  surname: Hu
  fullname: Hu, Jin
  organization: Hunan University
– sequence: 3
  givenname: Yan
  surname: Nie
  fullname: Nie, Yan
  organization: Hunan University
– sequence: 4
  givenname: Yanli
  surname: Zhao
  fullname: Zhao, Yanli
  organization: Hunan University
– sequence: 5
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  organization: Hunan University
– sequence: 6
  givenname: Yizhou
  surname: Li
  fullname: Li, Yizhou
  organization: Hunan University
– sequence: 7
  givenname: Huaizhi
  surname: Liu
  fullname: Liu, Huaizhi
  organization: Hunan University
– sequence: 8
  givenname: Lizhen
  surname: Tang
  fullname: Tang, Lizhen
  organization: Hunan University
– sequence: 9
  givenname: Xianan
  surname: Zhang
  fullname: Zhang, Xianan
  organization: Hunan University
– sequence: 10
  givenname: Du
  surname: Li
  fullname: Li, Du
  organization: Hunan University
– sequence: 11
  givenname: Ling
  surname: Sun
  fullname: Sun, Ling
  organization: Beijing Guyue New Materials Research Institute
– sequence: 12
  givenname: Huigao
  surname: Duan
  fullname: Duan, Huigao
  email: duanhg@hnu.edu.cn
  organization: Hunan University
BookMark eNqFkE1PAjEQhhujiYBePTfxDLbb_egecREhAT0gibdNtzsLJWWL3RLg6D-3BIOJifHUmcn7tJ2njS5rUwNCd5T0KCHBgyirdS8gwbFJyQVq0ZjGXUYCfnmu6fs1ajfNihCaJCxsoc9x7WBhhVP1Ag817FWhAc-1s0KrxdJhNsAvCk-VtGYNzRJnW2uhdjgzWoN0xuKdckufyQx-VGtwQmsl8ehQWrNXJeDKR2ZrYZ2fFVaVeLbdgJViI6TyeHODriqhG7j9PjtoPnx6y0bdyevzOOtPupJFMelySGIeyEgSKFJORVWKpOIiipKCEkh9U1ZFROMyKGkQy5DFBQ-TkDES8QoEYR10f7p3Y83HFhqXr8zW1v7JPIhYGvI04aFPhaeU37dpLFS5_6W3Y2pvROmckvzoNz_Kzs-yPdb7hW2s8ksf_gbSE7BTGg7_pPP-YDj9Yb8ABiWV4w
CitedBy_id crossref_primary_10_1021_acsami_2c13829
crossref_primary_10_1007_s10853_023_08594_1
crossref_primary_10_3390_molecules27123951
crossref_primary_10_1002_adfm_202210997
crossref_primary_10_1016_j_cej_2023_144339
crossref_primary_10_1002_admt_202300972
crossref_primary_10_1021_acs_chemmater_2c01798
crossref_primary_10_1002_adfm_202104909
crossref_primary_10_1039_D2TA06580K
crossref_primary_10_1016_j_jelechem_2023_117154
crossref_primary_10_1021_acsaem_1c02410
crossref_primary_10_1016_j_xcrp_2022_101193
crossref_primary_10_1007_s10008_023_05686_5
crossref_primary_10_1016_j_ssi_2021_115747
crossref_primary_10_1039_D4TA02190H
crossref_primary_10_3390_nano14010022
crossref_primary_10_1016_j_est_2021_103032
crossref_primary_10_1016_j_est_2024_110948
crossref_primary_10_1039_D1NJ03939C
crossref_primary_10_1016_j_fuel_2024_133639
crossref_primary_10_1088_1402_4896_ac45a8
crossref_primary_10_1007_s12598_024_02742_5
crossref_primary_10_1016_j_est_2023_109132
crossref_primary_10_1002_ange_202420903
crossref_primary_10_1021_acs_cgd_2c01015
crossref_primary_10_1021_acsaem_1c03517
crossref_primary_10_1002_smll_202302479
crossref_primary_10_1002_adfm_202300419
crossref_primary_10_1021_acsami_3c00024
crossref_primary_10_3390_molecules28196806
crossref_primary_10_1016_j_elecom_2022_107373
crossref_primary_10_1039_D1QI01601F
crossref_primary_10_1039_D4NR04021J
crossref_primary_10_1016_j_cej_2024_154247
crossref_primary_10_1002_adfm_202106550
crossref_primary_10_1016_j_cej_2021_132259
crossref_primary_10_3390_nano13101610
crossref_primary_10_1016_j_carbon_2023_118187
crossref_primary_10_1016_j_apsusc_2021_150900
crossref_primary_10_1016_j_jelechem_2022_116568
crossref_primary_10_3390_catal13071110
crossref_primary_10_1016_j_carbpol_2022_119645
crossref_primary_10_1016_j_ccr_2021_214242
crossref_primary_10_1021_acs_inorgchem_5c00109
crossref_primary_10_1021_acsami_1c12953
crossref_primary_10_1007_s40820_022_01002_4
crossref_primary_10_1016_j_ssi_2021_115723
crossref_primary_10_1016_j_jallcom_2024_174819
crossref_primary_10_1021_acs_inorgchem_3c00783
crossref_primary_10_1016_j_jcis_2022_09_033
crossref_primary_10_1016_j_apsusc_2021_151323
crossref_primary_10_1002_adfm_202307835
crossref_primary_10_1002_cssc_202400890
crossref_primary_10_1039_D3QI02027D
crossref_primary_10_1002_admi_202102254
crossref_primary_10_1016_j_cej_2021_131799
crossref_primary_10_1002_adma_202407719
crossref_primary_10_1039_D1TA10574D
crossref_primary_10_1039_D4TA00979G
crossref_primary_10_1021_acsaem_3c01157
crossref_primary_10_1002_smll_202201628
crossref_primary_10_1016_j_mser_2022_100713
crossref_primary_10_1016_j_jcis_2021_10_025
crossref_primary_10_1016_j_cej_2021_132272
crossref_primary_10_1002_cssc_202301367
crossref_primary_10_1016_j_jcis_2024_07_018
crossref_primary_10_1016_j_est_2023_109224
crossref_primary_10_1002_batt_202200454
crossref_primary_10_1002_smm2_1158
crossref_primary_10_1016_j_apcatb_2023_123276
crossref_primary_10_1007_s42114_022_00452_z
crossref_primary_10_1002_eem2_12651
crossref_primary_10_1016_j_cej_2021_130895
crossref_primary_10_1021_acsphotonics_1c01223
crossref_primary_10_1016_j_jallcom_2023_169129
crossref_primary_10_1002_smsc_202100012
crossref_primary_10_1039_D2TA06251H
crossref_primary_10_1002_batt_202400335
crossref_primary_10_1002_pat_70144
crossref_primary_10_1016_j_jcis_2021_09_159
crossref_primary_10_1021_acsaem_1c01814
crossref_primary_10_1016_j_energy_2021_121767
crossref_primary_10_1186_s42825_024_00154_w
crossref_primary_10_1002_anie_202420903
crossref_primary_10_1088_2058_8585_ac03a0
crossref_primary_10_1016_j_est_2023_106815
crossref_primary_10_1039_D3CP00450C
crossref_primary_10_1021_acsami_4c17552
crossref_primary_10_1039_D2TA02399G
crossref_primary_10_1002_smtd_202300792
crossref_primary_10_1016_j_cej_2022_140905
crossref_primary_10_1016_j_cej_2023_141527
crossref_primary_10_1002_admt_202101638
crossref_primary_10_1002_advs_202203800
crossref_primary_10_1021_acsami_1c17356
crossref_primary_10_1039_D1DT02055B
crossref_primary_10_1021_acsanm_2c03669
crossref_primary_10_1002_ente_202100449
crossref_primary_10_1016_j_pmatsci_2024_101244
crossref_primary_10_1021_acsaem_2c00947
crossref_primary_10_1002_cey2_335
crossref_primary_10_1021_acsanm_4c04729
crossref_primary_10_1021_acsenergylett_3c00159
crossref_primary_10_1016_j_mtchem_2023_101435
crossref_primary_10_1016_j_est_2022_106338
crossref_primary_10_1002_advs_202104877
crossref_primary_10_1021_acsomega_4c01890
crossref_primary_10_1016_j_jallcom_2022_166811
crossref_primary_10_20517_energymater_2024_142
crossref_primary_10_1002_aoc_7986
crossref_primary_10_1039_D2NR03516B
crossref_primary_10_1007_s42823_024_00784_4
crossref_primary_10_1016_j_cej_2025_160216
crossref_primary_10_1002_eem2_12303
crossref_primary_10_1007_s12274_022_5168_7
Cites_doi 10.1016/j.nanoen.2018.10.067
10.1016/j.cej.2019.122979
10.1366/0003702904085769
10.1016/j.joule.2019.01.013
10.1039/c1ee01685g
10.1021/acsanm.8b02355
10.1088/2631-7990/abba12
10.1016/j.mattod.2018.11.002
10.1039/C5RA17481C
10.1021/jp908548f
10.1088/1361-6463/aab0d8
10.1002/adfm.201606422
10.1002/adma.201603436
10.1002/adfm.201605307
10.1016/j.electacta.2020.135988
10.1021/acsnano.5b06648
10.1021/acs.nanolett.9b05152
10.1016/j.jpowsour.2017.08.039
10.1016/j.nanoen.2020.104720
10.1016/j.electacta.2018.12.035
10.1002/adfm.201806298
10.1039/C8NR01485J
10.1039/C8EE02029A
10.1039/C9TA01303B
10.1021/acs.chemrev.8b00252
10.1021/acsami.5b12180
10.1016/j.cej.2019.123150
10.1002/adma.201907143
10.1039/C7EE02390A
10.1002/advs.201802002
10.1039/C8TA03143F
10.1002/smll.201702295
10.1016/j.nanoen.2019.04.003
10.1002/smll.201702829
10.1039/c4ee00960f
10.1002/adfm.201803272
10.1021/acsami.8b19825
10.1039/C8TA07561A
10.1016/j.cej.2020.125054
10.1038/nnano.2013.84
10.1016/j.cclet.2018.12.005
10.1002/smll.202000293
10.1021/acsnano.7b04368
10.1002/smll.201501037
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202100290
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202100290
ADFM202100290
Genre article
GrantInformation_xml – fundername: Science and Technology Bureau Foundation of Changsha City
  funderid: kh1904005
– fundername: National Natural Science Foundation of China
  funderid: 51702095; 51722503
– fundername: Natural Science Foundation of Hunan Province
  funderid: 2018JJ3041
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 531118090016
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3560-8e7682c5c0eb981afda7f8a557b10e9a7fdfb516d2d126c436b847433058fea03
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 03:39:48 EDT 2025
Thu Apr 24 23:06:04 EDT 2025
Tue Jul 01 04:12:28 EDT 2025
Wed Jan 22 16:57:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3560-8e7682c5c0eb981afda7f8a557b10e9a7fdfb516d2d126c436b847433058fea03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2751-5202
PQID 2539489784
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_2539489784
crossref_citationtrail_10_1002_adfm_202100290
crossref_primary_10_1002_adfm_202100290
wiley_primary_10_1002_adfm_202100290_ADFM202100290
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2019 2019 2017 2020 2020 2020; 3 12 29 382 32 2
2015; 5
2019; 61
2020; 383
2019 2019 2016; 11 55 10
2020; 341
2019; 2
2017; 27
2017; 10
2018 2011 2017; 6 4 27
2018 2020; 6 20
2018 2019; 28 297
2020 2019 2010 1990; 16 6 114 44
2018; 51
2017 2018 2019; 11 29 25
2014 2020 2018 2018; 7 395 118 14
2015 2020; 11 72
2013; 8
2017; 365
2018; 10
2018; 14
2016 2019; 8 29
e_1_2_9_10_2
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_10_3
e_1_2_9_11_2
e_1_2_9_12_1
e_1_2_9_13_3
e_1_2_9_15_1
e_1_2_9_13_2
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_17_3
e_1_2_9_19_1
e_1_2_9_17_2
e_1_2_9_18_1
e_1_2_9_17_4
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_23_2
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_5_3
e_1_2_9_7_1
e_1_2_9_1_6
e_1_2_9_5_2
e_1_2_9_6_1
e_1_2_9_1_5
e_1_2_9_2_4
e_1_2_9_4_2
e_1_2_9_5_1
e_1_2_9_1_4
e_1_2_9_2_3
e_1_2_9_3_2
e_1_2_9_4_1
e_1_2_9_1_3
e_1_2_9_2_2
e_1_2_9_3_1
e_1_2_9_1_2
e_1_2_9_2_1
e_1_2_9_1_1
e_1_2_9_9_1
References_xml – volume: 10
  start-page: 2534
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 6 4 27
  start-page: 4496
  year: 2018 2011 2017
  publication-title: J. Mater. Chem. A Energy Environ. Sci. Adv. Funct. Mater.
– volume: 61
  start-page: 18
  year: 2019
  publication-title: Nano Energy
– volume: 8 29
  start-page: 4724
  year: 2016 2019
  publication-title: ACS Appl. Mater. Interfaces Adv. Funct. Mater.
– volume: 11 55 10
  start-page: 5095 506 1273
  year: 2019 2019 2016
  publication-title: ACS Appl. Mater. Interfaces Nano Energy ACS Nano
– volume: 51
  year: 2018
  publication-title: J. Phys. D: Appl. Phys.
– volume: 2
  start-page: 1484
  year: 2019
  publication-title: ACS Appl. Nano Mater
– volume: 14
  year: 2018
  publication-title: Small
– volume: 11 72
  start-page: 4666
  year: 2015 2020
  publication-title: Small Nano Energy
– volume: 28 297
  start-page: 767
  year: 2018 2019
  publication-title: Adv. Funct. Mater. Electrochim. Acta
– volume: 8
  start-page: 421
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 341
  year: 2020
  publication-title: Electrochim. Acta
– volume: 16 6 114 44
  start-page: 111 105
  year: 2020 2019 2010 1990
  publication-title: Small Adv. Sci. J. Phys. Chem. C Appl. Spectrosc.
– volume: 3 12 29 382 32 2
  start-page: 613 96
  year: 2019 2019 2017 2020 2020 2020
  publication-title: Joule Energy Environ. Sci. Adv. Mater. Chem. Eng. J. Adv. Mater. Int. J. Extreme Manuf.
– volume: 7 395 118 14
  start-page: 2160 9233
  year: 2014 2020 2018 2018
  publication-title: Energy Environ. Sci. Chem. Eng. J. Chem. Rev. Small
– volume: 383
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 365
  start-page: 126
  year: 2017
  publication-title: J. Power Sources
– volume: 10
  start-page: 8728
  year: 2018
  publication-title: Nanoscale
– volume: 7
  start-page: 8184
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 11 29 25
  start-page: 1731 35
  year: 2017 2018 2019
  publication-title: ACS Nano Chin. Chem. Lett. Mater. Today
– volume: 6 20
  start-page: 1915
  year: 2018 2020
  publication-title: J. Mater. Chem. A Nano Lett.
– ident: e_1_2_9_5_2
  doi: 10.1016/j.nanoen.2018.10.067
– ident: e_1_2_9_1_4
  doi: 10.1016/j.cej.2019.122979
– ident: e_1_2_9_17_4
  doi: 10.1366/0003702904085769
– ident: e_1_2_9_1_1
  doi: 10.1016/j.joule.2019.01.013
– ident: e_1_2_9_13_2
  doi: 10.1039/c1ee01685g
– ident: e_1_2_9_22_1
  doi: 10.1021/acsanm.8b02355
– ident: e_1_2_9_1_6
  doi: 10.1088/2631-7990/abba12
– ident: e_1_2_9_10_3
  doi: 10.1016/j.mattod.2018.11.002
– ident: e_1_2_9_16_1
  doi: 10.1039/C5RA17481C
– ident: e_1_2_9_17_3
  doi: 10.1021/jp908548f
– ident: e_1_2_9_12_1
  doi: 10.1088/1361-6463/aab0d8
– ident: e_1_2_9_13_3
  doi: 10.1002/adfm.201606422
– ident: e_1_2_9_1_3
  doi: 10.1002/adma.201603436
– ident: e_1_2_9_14_1
  doi: 10.1002/adfm.201605307
– ident: e_1_2_9_15_1
  doi: 10.1016/j.electacta.2020.135988
– ident: e_1_2_9_5_3
  doi: 10.1021/acsnano.5b06648
– ident: e_1_2_9_3_2
  doi: 10.1021/acs.nanolett.9b05152
– ident: e_1_2_9_19_1
  doi: 10.1016/j.jpowsour.2017.08.039
– ident: e_1_2_9_11_2
  doi: 10.1016/j.nanoen.2020.104720
– ident: e_1_2_9_23_2
  doi: 10.1016/j.electacta.2018.12.035
– ident: e_1_2_9_4_2
  doi: 10.1002/adfm.201806298
– ident: e_1_2_9_21_1
  doi: 10.1039/C8NR01485J
– ident: e_1_2_9_1_2
  doi: 10.1039/C8EE02029A
– ident: e_1_2_9_6_1
  doi: 10.1039/C9TA01303B
– ident: e_1_2_9_2_3
  doi: 10.1021/acs.chemrev.8b00252
– ident: e_1_2_9_4_1
  doi: 10.1021/acsami.5b12180
– ident: e_1_2_9_18_1
  doi: 10.1016/j.cej.2019.123150
– ident: e_1_2_9_1_5
  doi: 10.1002/adma.201907143
– ident: e_1_2_9_7_1
  doi: 10.1039/C7EE02390A
– ident: e_1_2_9_17_2
  doi: 10.1002/advs.201802002
– ident: e_1_2_9_3_1
  doi: 10.1039/C8TA03143F
– ident: e_1_2_9_9_1
  doi: 10.1002/smll.201702295
– ident: e_1_2_9_20_1
  doi: 10.1016/j.nanoen.2019.04.003
– ident: e_1_2_9_2_4
  doi: 10.1002/smll.201702829
– ident: e_1_2_9_2_1
  doi: 10.1039/c4ee00960f
– ident: e_1_2_9_23_1
  doi: 10.1002/adfm.201803272
– ident: e_1_2_9_5_1
  doi: 10.1021/acsami.8b19825
– ident: e_1_2_9_13_1
  doi: 10.1039/C8TA07561A
– ident: e_1_2_9_2_2
  doi: 10.1016/j.cej.2020.125054
– ident: e_1_2_9_8_1
  doi: 10.1038/nnano.2013.84
– ident: e_1_2_9_10_2
  doi: 10.1016/j.cclet.2018.12.005
– ident: e_1_2_9_17_1
  doi: 10.1002/smll.202000293
– ident: e_1_2_9_10_1
  doi: 10.1021/acsnano.7b04368
– ident: e_1_2_9_11_1
  doi: 10.1002/smll.201501037
SSID ssj0017734
Score 2.6569762
Snippet Flexible and lightweight supercapacitors with superior mechanical flexibility and outstanding capacity are regarded as an ideal power source for wearable...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 3D metal micromesh
Accumulators
Bimetals
Collectors
electrochromic
Electrochromism
Electronic devices
Energy levels
Energy storage
flexible electrodes
Intermetallic compounds
Materials science
smart supercapacitors
Storage systems
Supercapacitors
transparent electrodes
Wearable technology
Title Integrating Flexible Ultralight 3D Ni Micromesh Current Collector with NiCo Bimetallic Hydroxide for Smart Hybrid Supercapacitors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202100290
https://www.proquest.com/docview/2539489784
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDDwRhQK8oDEFEicp8dCqQqiDJRK3SK_IiL6Uh8DbPxz7pI0bZEQEmy5yI5i--z77nz-TMgFXhGXcFtYoZswy_NEYHGfRZYUgO25CHQo0VFsPQXNjvfQ9btLp_hzfogy4IYzI1uvcYILOblekIYKneBJcoYiR6cdE7YQFT2X_FFOGObbyoGDCV5Od87aaLPr1eqrVmkBNZcBa2ZxGjtEzP81TzR5u5pN5ZX6-Ebj-J_G7JLtAo7SWq4_e2TNDPbJ1hJJ4QH5vC8YJUCiDeTPlD1DO70sRAKePXXr9CmlrSyzz0xeaUH5RLOYBO4JUAz2QpnbIb1J-wbgfi9VtPmuoWWpNhRwM233QYfhHR4go-3ZyIwVmHGV4mVAh6TTuHu5bVrFxQ2WcgFBWZEBJ4YpX9lG8sgRiRZhEgnfh4G3DQdBJ9J3As20wwLluYEEI-m5sPZEiRG2e0TWB8OBOSY0kInizIBF0cbTWolQKdzc5KHi0vZZhVjzgYtVwWqOl2v04pyPmcXYtXHZtRVyWZYf5XweP5aszvUgLub1JGa-y70IPG-vQlg2oL98Ja7VG61SOvlLpVOyic95flqVrE_HM3MGSGgqz8lGrd56bJ9nWv8FskcClg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TgMxELUQFEDBjQinCySqhV3v6RISogBJCkIkupWvFSuSgHIU0PHnzOzFISEkKG3Zq7U99rwZj98Qcowp4hJuCyt0E2Z5nggs7rPIkgKwPReBDiUaip1u0Op71_d-GU2Ib2FyfojK4YY7IzuvcYOjQ_rsgzVU6ASfkjMscrDaFzCtd2ZV3VYMUk4Y5hfLgYMhXs59ydtos7Ov_b_qpQ-w-RmyZjqnuUpk-bd5qMnj6WwqT9XrNyLHfw1njawUiJSe5yK0TubMaIMsf-Ip3CRvVwWpBJRoEyk05cDQ_iDzkoBxT90G7aa0kwX3mckDLVifaOaWwGsBiv5eaFN_ohfp0ADiH6SKtl40DC3VhgJ0pr0hiDHU4Rsy2ps9m7ECTa5SzAe0RfrNy7t6yypyN1jKBRBlRQbsGKZ8ZRvJI0ckWoRJJHwf1t42HAo6kb4TaKYdFijPDSToSc-F4ydKjLDdbTI_ehqZHUIDmSjODCgVbTytlQiVwvtNHioubZ_ViFWuXKwKYnPMrzGIc0pmFuPUxtXU1shJ1f45p_T4seV-KQhxsbUnMfNd7kVgfHs1wrIV_eUr8Xmj2alKu3_pdEQWW3eddty-6t7skSWsz8PV9sn8dDwzBwCMpvIwE_13sJgFHQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFLYmJqFxYMA20Y2BD0g7BRLHceIjo0RlW6tpUKm3yD9FRCkVtIftxn_Oe0kayiSEBEdbdhTbz37fe37-HiH7mCLOy1AFaexZwLkSgUxYFmgF2F4qYVONhmJ_IHpD_mOUjJZe8df8EK3DDXdGdV7jBp9af_hAGqqsx5fkDIsSjPa3XIQZynX3T0sgFaVpfa8sIozwikYL2saQHT7u_1gtPWDNZcRaqZz8PVGLn60jTS4P5jN9YP79x-P4mtFskPUGj9KjWoA2yRs32SJrSyyFH8jdaUMpASWaI4GmHjs6HFc-EjDtadylg5L2q9A-d3tBG84nWjkl8FKAorcX2hxf0-_llQO8Py4N7f21MLLSOgrAmZ5dgRBDHb4go2fzqbsxoMdNidmAPpJhfnJ-3AuazA2BiQFCBZkDK4aZxIROyyxS3qrUZypJYOVDJ6FgvU4iYZmNmDA8Fhq0JI_h8Mm8U2H8iaxMridum1ChvZHMgUqxjltrVGoM3m7K1EgdJqxDgsXCFaahNcfsGuOiJmRmBU5t0U5th3xr209rQo8nW-4s5KBoNvZtwZJY8gxMb94hrFrQZ75SHHXzflv6_JJOe2T1dzcvfp0Ofn4h77C6jlXbISuzm7n7Cqhopncrwb8HtiQD1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+Flexible+Ultralight+3D+Ni+Micromesh+Current+Collector+with+NiCo+Bimetallic+Hydroxide+for+Smart+Hybrid+Supercapacitors&rft.jtitle=Advanced+functional+materials&rft.au=Zhang%2C+Guanhua&rft.au=Hu%2C+Jin&rft.au=Nie%2C+Yan&rft.au=Zhao%2C+Yanli&rft.date=2021-06-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=24&rft_id=info:doi/10.1002%2Fadfm.202100290&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202100290
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon