Integrating Flexible Ultralight 3D Ni Micromesh Current Collector with NiCo Bimetallic Hydroxide for Smart Hybrid Supercapacitors
Flexible and lightweight supercapacitors with superior mechanical flexibility and outstanding capacity are regarded as an ideal power source for wearable electronic devices. Meanwhile, incorporating additional novel characters such as transparency and electrochromism can further benefit the developm...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 24 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Flexible and lightweight supercapacitors with superior mechanical flexibility and outstanding capacity are regarded as an ideal power source for wearable electronic devices. Meanwhile, incorporating additional novel characters such as transparency and electrochromism can further benefit the development of smart supercapacitors. Nevertheless, the application of the commonly used planar‐structural current collectors is seriously restricted by their intrinsic properties such as poor rigidity, large thickness, and limited loading surface area. Flexible and ultralight current collectors with 3D architecture, high conductivity, and easy integration are believed to be the most appropriate alternatives to build high‐performance supercapacitors. In this study, a novel and scalable manufacturing technique is developed to produce a flexible and ultralight 3D Ni micromesh (3D NM) current collector for supercapacitor. Flexible smart supercapacitor integrated by 3D NM and high active Ni–Co bimetallic hydroxide (3D NM@NiCo BH) delivers a considerable rate performance (60.6% capacity retention from 1 to 50 mA cm−2). Furthermore, the fabricated hybrid supercapacitor device integrated with electrochromic functionality can visually indicate the energy level by a color display. This flexible electrochromic supercapacitor based on ultralight 3D Ni micromesh provides a novel insight into multifunctional energy storage systems for smart wearable electronic devices.
A flexible ultralight 3D Ni micromesh is fabricated via lithography and a selective electrodeposition process. The flexible smart supercapacitor integrated by 3D Ni micromesh and high‐active Ni–Co bimetallic hydroxide delivers a considerable specific capacity, high rate capability, and satisfactory cycling stability. In addition, the device shows an electrochromic functionality to indicate the energy level by a color display visually. |
---|---|
AbstractList | Flexible and lightweight supercapacitors with superior mechanical flexibility and outstanding capacity are regarded as an ideal power source for wearable electronic devices. Meanwhile, incorporating additional novel characters such as transparency and electrochromism can further benefit the development of smart supercapacitors. Nevertheless, the application of the commonly used planar‐structural current collectors is seriously restricted by their intrinsic properties such as poor rigidity, large thickness, and limited loading surface area. Flexible and ultralight current collectors with 3D architecture, high conductivity, and easy integration are believed to be the most appropriate alternatives to build high‐performance supercapacitors. In this study, a novel and scalable manufacturing technique is developed to produce a flexible and ultralight 3D Ni micromesh (3D NM) current collector for supercapacitor. Flexible smart supercapacitor integrated by 3D NM and high active Ni–Co bimetallic hydroxide (3D NM@NiCo BH) delivers a considerable rate performance (60.6% capacity retention from 1 to 50 mA cm−2). Furthermore, the fabricated hybrid supercapacitor device integrated with electrochromic functionality can visually indicate the energy level by a color display. This flexible electrochromic supercapacitor based on ultralight 3D Ni micromesh provides a novel insight into multifunctional energy storage systems for smart wearable electronic devices.
A flexible ultralight 3D Ni micromesh is fabricated via lithography and a selective electrodeposition process. The flexible smart supercapacitor integrated by 3D Ni micromesh and high‐active Ni–Co bimetallic hydroxide delivers a considerable specific capacity, high rate capability, and satisfactory cycling stability. In addition, the device shows an electrochromic functionality to indicate the energy level by a color display visually. Flexible and lightweight supercapacitors with superior mechanical flexibility and outstanding capacity are regarded as an ideal power source for wearable electronic devices. Meanwhile, incorporating additional novel characters such as transparency and electrochromism can further benefit the development of smart supercapacitors. Nevertheless, the application of the commonly used planar‐structural current collectors is seriously restricted by their intrinsic properties such as poor rigidity, large thickness, and limited loading surface area. Flexible and ultralight current collectors with 3D architecture, high conductivity, and easy integration are believed to be the most appropriate alternatives to build high‐performance supercapacitors. In this study, a novel and scalable manufacturing technique is developed to produce a flexible and ultralight 3D Ni micromesh (3D NM) current collector for supercapacitor. Flexible smart supercapacitor integrated by 3D NM and high active Ni–Co bimetallic hydroxide (3D NM@NiCo BH) delivers a considerable rate performance (60.6% capacity retention from 1 to 50 mA cm−2). Furthermore, the fabricated hybrid supercapacitor device integrated with electrochromic functionality can visually indicate the energy level by a color display. This flexible electrochromic supercapacitor based on ultralight 3D Ni micromesh provides a novel insight into multifunctional energy storage systems for smart wearable electronic devices. Flexible and lightweight supercapacitors with superior mechanical flexibility and outstanding capacity are regarded as an ideal power source for wearable electronic devices. Meanwhile, incorporating additional novel characters such as transparency and electrochromism can further benefit the development of smart supercapacitors. Nevertheless, the application of the commonly used planar‐structural current collectors is seriously restricted by their intrinsic properties such as poor rigidity, large thickness, and limited loading surface area. Flexible and ultralight current collectors with 3D architecture, high conductivity, and easy integration are believed to be the most appropriate alternatives to build high‐performance supercapacitors. In this study, a novel and scalable manufacturing technique is developed to produce a flexible and ultralight 3D Ni micromesh (3D NM) current collector for supercapacitor. Flexible smart supercapacitor integrated by 3D NM and high active Ni–Co bimetallic hydroxide (3D NM@NiCo BH) delivers a considerable rate performance (60.6% capacity retention from 1 to 50 mA cm −2 ). Furthermore, the fabricated hybrid supercapacitor device integrated with electrochromic functionality can visually indicate the energy level by a color display. This flexible electrochromic supercapacitor based on ultralight 3D Ni micromesh provides a novel insight into multifunctional energy storage systems for smart wearable electronic devices. |
Author | Zhang, Guanhua Duan, Huigao Sun, Ling Nie, Yan Wang, Lei Liu, Huaizhi Tang, Lizhen Hu, Jin Zhao, Yanli Zhang, Xianan Li, Du Li, Yizhou |
Author_xml | – sequence: 1 givenname: Guanhua orcidid: 0000-0002-2751-5202 surname: Zhang fullname: Zhang, Guanhua organization: Hunan University – sequence: 2 givenname: Jin surname: Hu fullname: Hu, Jin organization: Hunan University – sequence: 3 givenname: Yan surname: Nie fullname: Nie, Yan organization: Hunan University – sequence: 4 givenname: Yanli surname: Zhao fullname: Zhao, Yanli organization: Hunan University – sequence: 5 givenname: Lei surname: Wang fullname: Wang, Lei organization: Hunan University – sequence: 6 givenname: Yizhou surname: Li fullname: Li, Yizhou organization: Hunan University – sequence: 7 givenname: Huaizhi surname: Liu fullname: Liu, Huaizhi organization: Hunan University – sequence: 8 givenname: Lizhen surname: Tang fullname: Tang, Lizhen organization: Hunan University – sequence: 9 givenname: Xianan surname: Zhang fullname: Zhang, Xianan organization: Hunan University – sequence: 10 givenname: Du surname: Li fullname: Li, Du organization: Hunan University – sequence: 11 givenname: Ling surname: Sun fullname: Sun, Ling organization: Beijing Guyue New Materials Research Institute – sequence: 12 givenname: Huigao surname: Duan fullname: Duan, Huigao email: duanhg@hnu.edu.cn organization: Hunan University |
BookMark | eNqFkE1PAjEQhhujiYBePTfxDLbb_egecREhAT0gibdNtzsLJWWL3RLg6D-3BIOJifHUmcn7tJ2njS5rUwNCd5T0KCHBgyirdS8gwbFJyQVq0ZjGXUYCfnmu6fs1ajfNihCaJCxsoc9x7WBhhVP1Ag817FWhAc-1s0KrxdJhNsAvCk-VtGYNzRJnW2uhdjgzWoN0xuKdckufyQx-VGtwQmsl8ehQWrNXJeDKR2ZrYZ2fFVaVeLbdgJViI6TyeHODriqhG7j9PjtoPnx6y0bdyevzOOtPupJFMelySGIeyEgSKFJORVWKpOIiipKCEkh9U1ZFROMyKGkQy5DFBQ-TkDES8QoEYR10f7p3Y83HFhqXr8zW1v7JPIhYGvI04aFPhaeU37dpLFS5_6W3Y2pvROmckvzoNz_Kzs-yPdb7hW2s8ksf_gbSE7BTGg7_pPP-YDj9Yb8ABiWV4w |
CitedBy_id | crossref_primary_10_1021_acsami_2c13829 crossref_primary_10_1007_s10853_023_08594_1 crossref_primary_10_3390_molecules27123951 crossref_primary_10_1002_adfm_202210997 crossref_primary_10_1016_j_cej_2023_144339 crossref_primary_10_1002_admt_202300972 crossref_primary_10_1021_acs_chemmater_2c01798 crossref_primary_10_1002_adfm_202104909 crossref_primary_10_1039_D2TA06580K crossref_primary_10_1016_j_jelechem_2023_117154 crossref_primary_10_1021_acsaem_1c02410 crossref_primary_10_1016_j_xcrp_2022_101193 crossref_primary_10_1007_s10008_023_05686_5 crossref_primary_10_1016_j_ssi_2021_115747 crossref_primary_10_1039_D4TA02190H crossref_primary_10_3390_nano14010022 crossref_primary_10_1016_j_est_2021_103032 crossref_primary_10_1016_j_est_2024_110948 crossref_primary_10_1039_D1NJ03939C crossref_primary_10_1016_j_fuel_2024_133639 crossref_primary_10_1088_1402_4896_ac45a8 crossref_primary_10_1007_s12598_024_02742_5 crossref_primary_10_1016_j_est_2023_109132 crossref_primary_10_1002_ange_202420903 crossref_primary_10_1021_acs_cgd_2c01015 crossref_primary_10_1021_acsaem_1c03517 crossref_primary_10_1002_smll_202302479 crossref_primary_10_1002_adfm_202300419 crossref_primary_10_1021_acsami_3c00024 crossref_primary_10_3390_molecules28196806 crossref_primary_10_1016_j_elecom_2022_107373 crossref_primary_10_1039_D1QI01601F crossref_primary_10_1039_D4NR04021J crossref_primary_10_1016_j_cej_2024_154247 crossref_primary_10_1002_adfm_202106550 crossref_primary_10_1016_j_cej_2021_132259 crossref_primary_10_3390_nano13101610 crossref_primary_10_1016_j_carbon_2023_118187 crossref_primary_10_1016_j_apsusc_2021_150900 crossref_primary_10_1016_j_jelechem_2022_116568 crossref_primary_10_3390_catal13071110 crossref_primary_10_1016_j_carbpol_2022_119645 crossref_primary_10_1016_j_ccr_2021_214242 crossref_primary_10_1021_acs_inorgchem_5c00109 crossref_primary_10_1021_acsami_1c12953 crossref_primary_10_1007_s40820_022_01002_4 crossref_primary_10_1016_j_ssi_2021_115723 crossref_primary_10_1016_j_jallcom_2024_174819 crossref_primary_10_1021_acs_inorgchem_3c00783 crossref_primary_10_1016_j_jcis_2022_09_033 crossref_primary_10_1016_j_apsusc_2021_151323 crossref_primary_10_1002_adfm_202307835 crossref_primary_10_1002_cssc_202400890 crossref_primary_10_1039_D3QI02027D crossref_primary_10_1002_admi_202102254 crossref_primary_10_1016_j_cej_2021_131799 crossref_primary_10_1002_adma_202407719 crossref_primary_10_1039_D1TA10574D crossref_primary_10_1039_D4TA00979G crossref_primary_10_1021_acsaem_3c01157 crossref_primary_10_1002_smll_202201628 crossref_primary_10_1016_j_mser_2022_100713 crossref_primary_10_1016_j_jcis_2021_10_025 crossref_primary_10_1016_j_cej_2021_132272 crossref_primary_10_1002_cssc_202301367 crossref_primary_10_1016_j_jcis_2024_07_018 crossref_primary_10_1016_j_est_2023_109224 crossref_primary_10_1002_batt_202200454 crossref_primary_10_1002_smm2_1158 crossref_primary_10_1016_j_apcatb_2023_123276 crossref_primary_10_1007_s42114_022_00452_z crossref_primary_10_1002_eem2_12651 crossref_primary_10_1016_j_cej_2021_130895 crossref_primary_10_1021_acsphotonics_1c01223 crossref_primary_10_1016_j_jallcom_2023_169129 crossref_primary_10_1002_smsc_202100012 crossref_primary_10_1039_D2TA06251H crossref_primary_10_1002_batt_202400335 crossref_primary_10_1002_pat_70144 crossref_primary_10_1016_j_jcis_2021_09_159 crossref_primary_10_1021_acsaem_1c01814 crossref_primary_10_1016_j_energy_2021_121767 crossref_primary_10_1186_s42825_024_00154_w crossref_primary_10_1002_anie_202420903 crossref_primary_10_1088_2058_8585_ac03a0 crossref_primary_10_1016_j_est_2023_106815 crossref_primary_10_1039_D3CP00450C crossref_primary_10_1021_acsami_4c17552 crossref_primary_10_1039_D2TA02399G crossref_primary_10_1002_smtd_202300792 crossref_primary_10_1016_j_cej_2022_140905 crossref_primary_10_1016_j_cej_2023_141527 crossref_primary_10_1002_admt_202101638 crossref_primary_10_1002_advs_202203800 crossref_primary_10_1021_acsami_1c17356 crossref_primary_10_1039_D1DT02055B crossref_primary_10_1021_acsanm_2c03669 crossref_primary_10_1002_ente_202100449 crossref_primary_10_1016_j_pmatsci_2024_101244 crossref_primary_10_1021_acsaem_2c00947 crossref_primary_10_1002_cey2_335 crossref_primary_10_1021_acsanm_4c04729 crossref_primary_10_1021_acsenergylett_3c00159 crossref_primary_10_1016_j_mtchem_2023_101435 crossref_primary_10_1016_j_est_2022_106338 crossref_primary_10_1002_advs_202104877 crossref_primary_10_1021_acsomega_4c01890 crossref_primary_10_1016_j_jallcom_2022_166811 crossref_primary_10_20517_energymater_2024_142 crossref_primary_10_1002_aoc_7986 crossref_primary_10_1039_D2NR03516B crossref_primary_10_1007_s42823_024_00784_4 crossref_primary_10_1016_j_cej_2025_160216 crossref_primary_10_1002_eem2_12303 crossref_primary_10_1007_s12274_022_5168_7 |
Cites_doi | 10.1016/j.nanoen.2018.10.067 10.1016/j.cej.2019.122979 10.1366/0003702904085769 10.1016/j.joule.2019.01.013 10.1039/c1ee01685g 10.1021/acsanm.8b02355 10.1088/2631-7990/abba12 10.1016/j.mattod.2018.11.002 10.1039/C5RA17481C 10.1021/jp908548f 10.1088/1361-6463/aab0d8 10.1002/adfm.201606422 10.1002/adma.201603436 10.1002/adfm.201605307 10.1016/j.electacta.2020.135988 10.1021/acsnano.5b06648 10.1021/acs.nanolett.9b05152 10.1016/j.jpowsour.2017.08.039 10.1016/j.nanoen.2020.104720 10.1016/j.electacta.2018.12.035 10.1002/adfm.201806298 10.1039/C8NR01485J 10.1039/C8EE02029A 10.1039/C9TA01303B 10.1021/acs.chemrev.8b00252 10.1021/acsami.5b12180 10.1016/j.cej.2019.123150 10.1002/adma.201907143 10.1039/C7EE02390A 10.1002/advs.201802002 10.1039/C8TA03143F 10.1002/smll.201702295 10.1016/j.nanoen.2019.04.003 10.1002/smll.201702829 10.1039/c4ee00960f 10.1002/adfm.201803272 10.1021/acsami.8b19825 10.1039/C8TA07561A 10.1016/j.cej.2020.125054 10.1038/nnano.2013.84 10.1016/j.cclet.2018.12.005 10.1002/smll.202000293 10.1021/acsnano.7b04368 10.1002/smll.201501037 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202100290 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202100290 ADFM202100290 |
Genre | article |
GrantInformation_xml | – fundername: Science and Technology Bureau Foundation of Changsha City funderid: kh1904005 – fundername: National Natural Science Foundation of China funderid: 51702095; 51722503 – fundername: Natural Science Foundation of Hunan Province funderid: 2018JJ3041 – fundername: Fundamental Research Funds for the Central Universities funderid: 531118090016 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3560-8e7682c5c0eb981afda7f8a557b10e9a7fdfb516d2d126c436b847433058fea03 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 03:39:48 EDT 2025 Thu Apr 24 23:06:04 EDT 2025 Tue Jul 01 04:12:28 EDT 2025 Wed Jan 22 16:57:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3560-8e7682c5c0eb981afda7f8a557b10e9a7fdfb516d2d126c436b847433058fea03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2751-5202 |
PQID | 2539489784 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2539489784 crossref_citationtrail_10_1002_adfm_202100290 crossref_primary_10_1002_adfm_202100290 wiley_primary_10_1002_adfm_202100290_ADFM202100290 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2019 2019 2017 2020 2020 2020; 3 12 29 382 32 2 2015; 5 2019; 61 2020; 383 2019 2019 2016; 11 55 10 2020; 341 2019; 2 2017; 27 2017; 10 2018 2011 2017; 6 4 27 2018 2020; 6 20 2018 2019; 28 297 2020 2019 2010 1990; 16 6 114 44 2018; 51 2017 2018 2019; 11 29 25 2014 2020 2018 2018; 7 395 118 14 2015 2020; 11 72 2013; 8 2017; 365 2018; 10 2018; 14 2016 2019; 8 29 e_1_2_9_10_2 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_10_3 e_1_2_9_11_2 e_1_2_9_12_1 e_1_2_9_13_3 e_1_2_9_15_1 e_1_2_9_13_2 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_17_3 e_1_2_9_19_1 e_1_2_9_17_2 e_1_2_9_18_1 e_1_2_9_17_4 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_23_2 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_5_3 e_1_2_9_7_1 e_1_2_9_1_6 e_1_2_9_5_2 e_1_2_9_6_1 e_1_2_9_1_5 e_1_2_9_2_4 e_1_2_9_4_2 e_1_2_9_5_1 e_1_2_9_1_4 e_1_2_9_2_3 e_1_2_9_3_2 e_1_2_9_4_1 e_1_2_9_1_3 e_1_2_9_2_2 e_1_2_9_3_1 e_1_2_9_1_2 e_1_2_9_2_1 e_1_2_9_1_1 e_1_2_9_9_1 |
References_xml | – volume: 10 start-page: 2534 year: 2017 publication-title: Energy Environ. Sci. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 6 4 27 start-page: 4496 year: 2018 2011 2017 publication-title: J. Mater. Chem. A Energy Environ. Sci. Adv. Funct. Mater. – volume: 61 start-page: 18 year: 2019 publication-title: Nano Energy – volume: 8 29 start-page: 4724 year: 2016 2019 publication-title: ACS Appl. Mater. Interfaces Adv. Funct. Mater. – volume: 11 55 10 start-page: 5095 506 1273 year: 2019 2019 2016 publication-title: ACS Appl. Mater. Interfaces Nano Energy ACS Nano – volume: 51 year: 2018 publication-title: J. Phys. D: Appl. Phys. – volume: 2 start-page: 1484 year: 2019 publication-title: ACS Appl. Nano Mater – volume: 14 year: 2018 publication-title: Small – volume: 11 72 start-page: 4666 year: 2015 2020 publication-title: Small Nano Energy – volume: 28 297 start-page: 767 year: 2018 2019 publication-title: Adv. Funct. Mater. Electrochim. Acta – volume: 8 start-page: 421 year: 2013 publication-title: Nat. Nanotechnol. – volume: 341 year: 2020 publication-title: Electrochim. Acta – volume: 16 6 114 44 start-page: 111 105 year: 2020 2019 2010 1990 publication-title: Small Adv. Sci. J. Phys. Chem. C Appl. Spectrosc. – volume: 3 12 29 382 32 2 start-page: 613 96 year: 2019 2019 2017 2020 2020 2020 publication-title: Joule Energy Environ. Sci. Adv. Mater. Chem. Eng. J. Adv. Mater. Int. J. Extreme Manuf. – volume: 7 395 118 14 start-page: 2160 9233 year: 2014 2020 2018 2018 publication-title: Energy Environ. Sci. Chem. Eng. J. Chem. Rev. Small – volume: 383 year: 2020 publication-title: Chem. Eng. J. – volume: 365 start-page: 126 year: 2017 publication-title: J. Power Sources – volume: 10 start-page: 8728 year: 2018 publication-title: Nanoscale – volume: 7 start-page: 8184 year: 2019 publication-title: J. Mater. Chem. A – volume: 11 29 25 start-page: 1731 35 year: 2017 2018 2019 publication-title: ACS Nano Chin. Chem. Lett. Mater. Today – volume: 6 20 start-page: 1915 year: 2018 2020 publication-title: J. Mater. Chem. A Nano Lett. – ident: e_1_2_9_5_2 doi: 10.1016/j.nanoen.2018.10.067 – ident: e_1_2_9_1_4 doi: 10.1016/j.cej.2019.122979 – ident: e_1_2_9_17_4 doi: 10.1366/0003702904085769 – ident: e_1_2_9_1_1 doi: 10.1016/j.joule.2019.01.013 – ident: e_1_2_9_13_2 doi: 10.1039/c1ee01685g – ident: e_1_2_9_22_1 doi: 10.1021/acsanm.8b02355 – ident: e_1_2_9_1_6 doi: 10.1088/2631-7990/abba12 – ident: e_1_2_9_10_3 doi: 10.1016/j.mattod.2018.11.002 – ident: e_1_2_9_16_1 doi: 10.1039/C5RA17481C – ident: e_1_2_9_17_3 doi: 10.1021/jp908548f – ident: e_1_2_9_12_1 doi: 10.1088/1361-6463/aab0d8 – ident: e_1_2_9_13_3 doi: 10.1002/adfm.201606422 – ident: e_1_2_9_1_3 doi: 10.1002/adma.201603436 – ident: e_1_2_9_14_1 doi: 10.1002/adfm.201605307 – ident: e_1_2_9_15_1 doi: 10.1016/j.electacta.2020.135988 – ident: e_1_2_9_5_3 doi: 10.1021/acsnano.5b06648 – ident: e_1_2_9_3_2 doi: 10.1021/acs.nanolett.9b05152 – ident: e_1_2_9_19_1 doi: 10.1016/j.jpowsour.2017.08.039 – ident: e_1_2_9_11_2 doi: 10.1016/j.nanoen.2020.104720 – ident: e_1_2_9_23_2 doi: 10.1016/j.electacta.2018.12.035 – ident: e_1_2_9_4_2 doi: 10.1002/adfm.201806298 – ident: e_1_2_9_21_1 doi: 10.1039/C8NR01485J – ident: e_1_2_9_1_2 doi: 10.1039/C8EE02029A – ident: e_1_2_9_6_1 doi: 10.1039/C9TA01303B – ident: e_1_2_9_2_3 doi: 10.1021/acs.chemrev.8b00252 – ident: e_1_2_9_4_1 doi: 10.1021/acsami.5b12180 – ident: e_1_2_9_18_1 doi: 10.1016/j.cej.2019.123150 – ident: e_1_2_9_1_5 doi: 10.1002/adma.201907143 – ident: e_1_2_9_7_1 doi: 10.1039/C7EE02390A – ident: e_1_2_9_17_2 doi: 10.1002/advs.201802002 – ident: e_1_2_9_3_1 doi: 10.1039/C8TA03143F – ident: e_1_2_9_9_1 doi: 10.1002/smll.201702295 – ident: e_1_2_9_20_1 doi: 10.1016/j.nanoen.2019.04.003 – ident: e_1_2_9_2_4 doi: 10.1002/smll.201702829 – ident: e_1_2_9_2_1 doi: 10.1039/c4ee00960f – ident: e_1_2_9_23_1 doi: 10.1002/adfm.201803272 – ident: e_1_2_9_5_1 doi: 10.1021/acsami.8b19825 – ident: e_1_2_9_13_1 doi: 10.1039/C8TA07561A – ident: e_1_2_9_2_2 doi: 10.1016/j.cej.2020.125054 – ident: e_1_2_9_8_1 doi: 10.1038/nnano.2013.84 – ident: e_1_2_9_10_2 doi: 10.1016/j.cclet.2018.12.005 – ident: e_1_2_9_17_1 doi: 10.1002/smll.202000293 – ident: e_1_2_9_10_1 doi: 10.1021/acsnano.7b04368 – ident: e_1_2_9_11_1 doi: 10.1002/smll.201501037 |
SSID | ssj0017734 |
Score | 2.6569762 |
Snippet | Flexible and lightweight supercapacitors with superior mechanical flexibility and outstanding capacity are regarded as an ideal power source for wearable... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 3D metal micromesh Accumulators Bimetals Collectors electrochromic Electrochromism Electronic devices Energy levels Energy storage flexible electrodes Intermetallic compounds Materials science smart supercapacitors Storage systems Supercapacitors transparent electrodes Wearable technology |
Title | Integrating Flexible Ultralight 3D Ni Micromesh Current Collector with NiCo Bimetallic Hydroxide for Smart Hybrid Supercapacitors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202100290 https://www.proquest.com/docview/2539489784 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDDwRhQK8oDEFEicp8dCqQqiDJRK3SK_IiL6Uh8DbPxz7pI0bZEQEmy5yI5i--z77nz-TMgFXhGXcFtYoZswy_NEYHGfRZYUgO25CHQo0VFsPQXNjvfQ9btLp_hzfogy4IYzI1uvcYILOblekIYKneBJcoYiR6cdE7YQFT2X_FFOGObbyoGDCV5Od87aaLPr1eqrVmkBNZcBa2ZxGjtEzP81TzR5u5pN5ZX6-Ebj-J_G7JLtAo7SWq4_e2TNDPbJ1hJJ4QH5vC8YJUCiDeTPlD1DO70sRAKePXXr9CmlrSyzz0xeaUH5RLOYBO4JUAz2QpnbIb1J-wbgfi9VtPmuoWWpNhRwM233QYfhHR4go-3ZyIwVmHGV4mVAh6TTuHu5bVrFxQ2WcgFBWZEBJ4YpX9lG8sgRiRZhEgnfh4G3DQdBJ9J3As20wwLluYEEI-m5sPZEiRG2e0TWB8OBOSY0kInizIBF0cbTWolQKdzc5KHi0vZZhVjzgYtVwWqOl2v04pyPmcXYtXHZtRVyWZYf5XweP5aszvUgLub1JGa-y70IPG-vQlg2oL98Ja7VG61SOvlLpVOyic95flqVrE_HM3MGSGgqz8lGrd56bJ9nWv8FskcClg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TgMxELUQFEDBjQinCySqhV3v6RISogBJCkIkupWvFSuSgHIU0PHnzOzFISEkKG3Zq7U99rwZj98Qcowp4hJuCyt0E2Z5nggs7rPIkgKwPReBDiUaip1u0Op71_d-GU2Ib2FyfojK4YY7IzuvcYOjQ_rsgzVU6ASfkjMscrDaFzCtd2ZV3VYMUk4Y5hfLgYMhXs59ydtos7Ov_b_qpQ-w-RmyZjqnuUpk-bd5qMnj6WwqT9XrNyLHfw1njawUiJSe5yK0TubMaIMsf-Ip3CRvVwWpBJRoEyk05cDQ_iDzkoBxT90G7aa0kwX3mckDLVifaOaWwGsBiv5eaFN_ohfp0ADiH6SKtl40DC3VhgJ0pr0hiDHU4Rsy2ps9m7ECTa5SzAe0RfrNy7t6yypyN1jKBRBlRQbsGKZ8ZRvJI0ckWoRJJHwf1t42HAo6kb4TaKYdFijPDSToSc-F4ydKjLDdbTI_ehqZHUIDmSjODCgVbTytlQiVwvtNHioubZ_ViFWuXKwKYnPMrzGIc0pmFuPUxtXU1shJ1f45p_T4seV-KQhxsbUnMfNd7kVgfHs1wrIV_eUr8Xmj2alKu3_pdEQWW3eddty-6t7skSWsz8PV9sn8dDwzBwCMpvIwE_13sJgFHQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFLYmJqFxYMA20Y2BD0g7BRLHceIjo0RlW6tpUKm3yD9FRCkVtIftxn_Oe0kayiSEBEdbdhTbz37fe37-HiH7mCLOy1AFaexZwLkSgUxYFmgF2F4qYVONhmJ_IHpD_mOUjJZe8df8EK3DDXdGdV7jBp9af_hAGqqsx5fkDIsSjPa3XIQZynX3T0sgFaVpfa8sIozwikYL2saQHT7u_1gtPWDNZcRaqZz8PVGLn60jTS4P5jN9YP79x-P4mtFskPUGj9KjWoA2yRs32SJrSyyFH8jdaUMpASWaI4GmHjs6HFc-EjDtadylg5L2q9A-d3tBG84nWjkl8FKAorcX2hxf0-_llQO8Py4N7f21MLLSOgrAmZ5dgRBDHb4go2fzqbsxoMdNidmAPpJhfnJ-3AuazA2BiQFCBZkDK4aZxIROyyxS3qrUZypJYOVDJ6FgvU4iYZmNmDA8Fhq0JI_h8Mm8U2H8iaxMridum1ChvZHMgUqxjltrVGoM3m7K1EgdJqxDgsXCFaahNcfsGuOiJmRmBU5t0U5th3xr209rQo8nW-4s5KBoNvZtwZJY8gxMb94hrFrQZ75SHHXzflv6_JJOe2T1dzcvfp0Ofn4h77C6jlXbISuzm7n7Cqhopncrwb8HtiQD1Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+Flexible+Ultralight+3D+Ni+Micromesh+Current+Collector+with+NiCo+Bimetallic+Hydroxide+for+Smart+Hybrid+Supercapacitors&rft.jtitle=Advanced+functional+materials&rft.au=Zhang%2C+Guanhua&rft.au=Hu%2C+Jin&rft.au=Nie%2C+Yan&rft.au=Zhao%2C+Yanli&rft.date=2021-06-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=24&rft_id=info:doi/10.1002%2Fadfm.202100290&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202100290 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |