Simultaneous Kernel Learning and Label Imputation for Pattern Classification with Partially Labeled Data
The kernel function plays a central role in modern pattern classification for its ability to capture the inherent affinity structure of the underlying data manifold. While the kernel function can be chosen by human experts with domain knowledge, it is often more principled and promising to learn it...
Saved in:
Published in | INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol. 17; no. 1; pp. 10 - 16 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
한국지능시스템학회
31.03.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1598-2645 2093-744X |
DOI | 10.5391/IJFIS.2017.17.1.10 |
Cover
Loading…
Abstract | The kernel function plays a central role in modern pattern classification for its ability to capture the inherent affinity structure of the underlying data manifold. While the kernel function can be chosen by human experts with domain knowledge, it is often more principled and promising to learn it directly from data. This idea of kernel learning has been studied considerably in machine learning and pattern recognition. However, most kernel learning algorithms assume fully supervised setups requiring expensive class label annotation for the training data. In this paper we consider kernel learning in the semi-supervised setup where only a fraction of data points need to be labeled. We propose two approaches: the first extends the idea of label propagation along the data similarity graph, in which we simultaneously learn the kernel and impute the labels of the unlabeled data. The second aims to minimize the dual loss in the support vector machines (SVM) classifier learning with respect to the kernel parameters and the missing labels. We provide reasonable and effective approximate solution methods for these optimization problems. These approaches exploit both labeled and unlabeled data in kernel leaning, where we empirically demonstrate the effectiveness on several benchmark datasets with partially labeled learning setups. KCI Citation Count: 0 |
---|---|
AbstractList | The kernel function plays a central role in modern pattern classification for its ability to capture the inherent affinity structure of the underlying data manifold. While the kernel function can be chosen by human experts with domain knowledge, it is often more principled and promising to learn it directly from data. This idea of kernel learning has been studied considerably in machine learning and pattern recognition. However, most kernel learning algorithms assume fully supervised setups requiring expensive class label annotation for the training data. In this paper we consider kernel learning in the semi-supervised setup where only a fraction of data points need to be labeled. We propose two approaches: the first extends the idea of label propagation along the data similarity graph, in which we simultaneously learn the kernel and impute the labels of the unlabeled data. The second aims to minimize the dual loss in the support vector machines (SVM) classifier learning with respect to the kernel parameters and the missing labels. We provide reasonable and effective approximate solution methods for these optimization problems. These approaches exploit both labeled and unlabeled data in kernel leaning, where we empirically demonstrate the effectiveness on several benchmark datasets with partially labeled learning setups. KCI Citation Count: 0 |
Author | Minyoung Kim |
Author_xml | – sequence: 1 givenname: Minyoung surname: Kim fullname: Kim, Minyoung organization: Department of Electronics & IT Media Engineering, Seoul National University of Science & Technology, Seoul, Korea |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002208261$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9UMtKw0AUHUTBqv0BV9m4cJE6z0yylPqKFiu2grvhJpmpg-lEJlPEv3dqigsXwoUL53HP5Ryhfdc5jdApwRPBCnJR3t-UiwnFRE62MyF4D40oLlgqOX_dRyMiijylGReHaNz3tsIsozInhIzQ28KuN20Ap7tNnzxo73SbzDR4Z90qAdckM6giVK4_NgGC7VxiOp88QQhRm0xbiAeNrQfq04a3yPlgoW2_BqtukisIcIIODLS9Hu_2MXq5uV5O79LZ_LacXs7SmgkRUlNJ3hRZVXGsNce5yBhl2BAggmWaFBxDBKuIZFlDeQUSTN3UmpqKykIadozOh7vOG_VeW9WB_dmrTr17dfm8LBVhPC-EiFo6aGvf9b3XRn14uwb_pQhW22rVT7VqW63aTsSjKf9jqu3QTPBg2_-tZ7vfNjFHNxZ-Ax_nV9dYEloIKdg3CwuODA |
CitedBy_id | crossref_primary_10_1109_JSTARS_2019_2895070 crossref_primary_10_1007_s42835_019_00177_y |
Cites_doi | 10.1145/1553374.1553510 10.7551/mitpress/3206.001.0001 10.7551/mitpress/4175.001.0001 10.1109/ICCV.2009.5459169 10.1007/3-540-44581-1_27 10.1007/978-1-4757-2440-0 |
ContentType | Journal Article |
DBID | DBRKI TDB AAYXX CITATION ACYCR |
DOI | 10.5391/IJFIS.2017.17.1.10 |
DatabaseName | DBPIA - 디비피아 Nurimedia DBPIA Journals CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2093-744X |
EndPage | 16 |
ExternalDocumentID | oai_kci_go_kr_ARTI_1348955 10_5391_IJFIS_2017_17_1_10 NODE07129575 |
GroupedDBID | .UV ALMA_UNASSIGNED_HOLDINGS DBRKI TDB AAYXX CITATION ACYCR M~E |
ID | FETCH-LOGICAL-c355t-fb74d96bb40ee408563230f1a1536e1940a085b0f166d24ba7afcdce2fb2797f3 |
ISSN | 1598-2645 |
IngestDate | Tue Nov 21 21:31:54 EST 2023 Thu Jul 03 08:45:23 EDT 2025 Thu Apr 24 23:03:16 EDT 2025 Thu Feb 06 13:34:14 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Semi-supervised learning Pattern classification Kernel learning Optimization |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c355t-fb74d96bb40ee408563230f1a1536e1940a085b0f166d24ba7afcdce2fb2797f3 |
Notes | G704-001602.2017.17.1.005 |
OpenAccessLink | http://www.ijfis.org/journal/download_pdf.php?doi=10.5391/IJFIS.2017.17.1.10 |
PageCount | 7 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_1348955 crossref_primary_10_5391_IJFIS_2017_17_1_10 crossref_citationtrail_10_5391_IJFIS_2017_17_1_10 nurimedia_primary_NODE07129575 |
PublicationCentury | 2000 |
PublicationDate | 2017-03-31 |
PublicationDateYYYYMMDD | 2017-03-31 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-31 day: 31 |
PublicationDecade | 2010 |
PublicationTitle | INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS |
PublicationYear | 2017 |
Publisher | 한국지능시스템학회 |
Publisher_xml | – name: 한국지능시스템학회 |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref4 – ident: ref3 – ident: ref5 – ident: ref6 – ident: ref7 doi: 10.1145/1553374.1553510 – ident: ref2 doi: 10.7551/mitpress/3206.001.0001 – ident: ref13 doi: 10.7551/mitpress/4175.001.0001 – ident: ref9 doi: 10.1109/ICCV.2009.5459169 – ident: ref14 doi: 10.1007/3-540-44581-1_27 – ident: ref1 doi: 10.1007/978-1-4757-2440-0 – ident: ref8 – ident: ref16 – ident: ref10 – ident: ref11 – ident: ref17 – ident: ref12 – ident: ref15 |
SSID | ssib036278111 ssib053376760 ssib044740918 ssib005299754 |
Score | 2.0005004 |
Snippet | The kernel function plays a central role in modern pattern classification for its ability to capture the inherent affinity structure of the underlying data... |
SourceID | nrf crossref nurimedia |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 10 |
SubjectTerms | 전기공학 |
Title | Simultaneous Kernel Learning and Label Imputation for Pattern Classification with Partially Labeled Data |
URI | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE07129575 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002208261 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | International Journal of Fuzzy Logic and Intelligent systems, 2017, 17(1), , pp.10-16 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF456aG9VK3aqu4jWlXlZOEaWFj2iG3cOHHdSLalJBe0wNJacUll2Yf00N_Tn9kZFgNuor4kBGi8i_HOx-y3eB6EvJUYTJlYmemxNDOZnaVmzBxppsziibRS5qRFts-pd7xgJ-fueav1o-G1tN3E3eTbnXEl_6NVkIFeMUr2HzRbXRQEcA76hT1oGPZ_pePZEv0BZa7Qj_VUrXO12iVM1ZGHExmDaIyFG2qnwrMipWau62Gip5D-qHgje4bfIlerG90V2OhQB69VDPaOHLpwBMo5WlxeXnSK2grayRgaTibj9-F03pldzOZh4_X3Mr9BK9M5XX5pvnaAqayMwyuBYoRDQ7iGGBhhYPRdIxga4cAIOPpnhH3DD4zARYnfL9oMCgnDXr7upbuL4iQw_EHTBgsfHe_0n92qkNk94ZicaWfOynDzWwDVVrh0lNXzuQ7l_HWmcB2BM8X4ZDSeoYMf7-LW3fXcy8A9_TgMgYnZAqjtAblnw4IEa2V8-B7WlgxmdV4TM2AFGMFbWU7GOKyjaxYAHJt7XIew736tjujC-3p3-672WNNBvob9_XyLBSDAijQI0fwReViuZGigYfmYtFT-hHxuQpJqSNIdJCnAgha4ojUkKUCSlpCk-5CkCElaQZKWkKQIyadkMQrng2OzLOZhJkBpN2YWc5YKL45ZTylMq-c5sPrNLAlTrqcswXoShDFIPC-1WSy5zJI0UXYW21zwzHlGDvPrXD0nlHvSFolwpacwvR6LlRvbdppkHvNTR_ptYu0GK0rKTPdYcGUVwYoXBzgqBjjCAY5wA3mbdKo-X3Wel9-2fgM6iK6SZYTp2fH46Tq6WkewCB1HlsN84bptclSpqLpmE0sv_tTgJXlQP3qvyOFmvVWvgQNv4qMCfj8BTZufTQ |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+Kernel+Learning+and+Label+Imputation+for+Pattern+Classification+with+Partially+Labeled+Data&rft.jtitle=INTERNATIONAL+JOURNAL+of+FUZZY+LOGIC+and+INTELLIGENT+SYSTEMS&rft.au=Minyoung+Kim&rft.date=2017-03-31&rft.pub=%ED%95%9C%EA%B5%AD%EC%A7%80%EB%8A%A5%EC%8B%9C%EC%8A%A4%ED%85%9C%ED%95%99%ED%9A%8C&rft.issn=1598-2645&rft.eissn=2093-744X&rft.volume=17&rft.issue=1&rft.spage=10&rft.epage=16&rft_id=info:doi/10.5391%2FIJFIS.2017.17.1.10&rft.externalDocID=NODE07129575 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-2645&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-2645&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-2645&client=summon |