Simultaneous Kernel Learning and Label Imputation for Pattern Classification with Partially Labeled Data

The kernel function plays a central role in modern pattern classification for its ability to capture the inherent affinity structure of the underlying data manifold. While the kernel function can be chosen by human experts with domain knowledge, it is often more principled and promising to learn it...

Full description

Saved in:
Bibliographic Details
Published inINTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol. 17; no. 1; pp. 10 - 16
Main Author Kim, Minyoung
Format Journal Article
LanguageEnglish
Published 한국지능시스템학회 31.03.2017
Subjects
Online AccessGet full text
ISSN1598-2645
2093-744X
DOI10.5391/IJFIS.2017.17.1.10

Cover

Loading…
Abstract The kernel function plays a central role in modern pattern classification for its ability to capture the inherent affinity structure of the underlying data manifold. While the kernel function can be chosen by human experts with domain knowledge, it is often more principled and promising to learn it directly from data. This idea of kernel learning has been studied considerably in machine learning and pattern recognition. However, most kernel learning algorithms assume fully supervised setups requiring expensive class label annotation for the training data. In this paper we consider kernel learning in the semi-supervised setup where only a fraction of data points need to be labeled. We propose two approaches: the first extends the idea of label propagation along the data similarity graph, in which we simultaneously learn the kernel and impute the labels of the unlabeled data. The second aims to minimize the dual loss in the support vector machines (SVM) classifier learning with respect to the kernel parameters and the missing labels. We provide reasonable and effective approximate solution methods for these optimization problems. These approaches exploit both labeled and unlabeled data in kernel leaning, where we empirically demonstrate the effectiveness on several benchmark datasets with partially labeled learning setups. KCI Citation Count: 0
AbstractList The kernel function plays a central role in modern pattern classification for its ability to capture the inherent affinity structure of the underlying data manifold. While the kernel function can be chosen by human experts with domain knowledge, it is often more principled and promising to learn it directly from data. This idea of kernel learning has been studied considerably in machine learning and pattern recognition. However, most kernel learning algorithms assume fully supervised setups requiring expensive class label annotation for the training data. In this paper we consider kernel learning in the semi-supervised setup where only a fraction of data points need to be labeled. We propose two approaches: the first extends the idea of label propagation along the data similarity graph, in which we simultaneously learn the kernel and impute the labels of the unlabeled data. The second aims to minimize the dual loss in the support vector machines (SVM) classifier learning with respect to the kernel parameters and the missing labels. We provide reasonable and effective approximate solution methods for these optimization problems. These approaches exploit both labeled and unlabeled data in kernel leaning, where we empirically demonstrate the effectiveness on several benchmark datasets with partially labeled learning setups. KCI Citation Count: 0
Author Minyoung Kim
Author_xml – sequence: 1
  givenname: Minyoung
  surname: Kim
  fullname: Kim, Minyoung
  organization: Department of Electronics & IT Media Engineering, Seoul National University of Science & Technology, Seoul, Korea
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002208261$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9UMtKw0AUHUTBqv0BV9m4cJE6z0yylPqKFiu2grvhJpmpg-lEJlPEv3dqigsXwoUL53HP5Ryhfdc5jdApwRPBCnJR3t-UiwnFRE62MyF4D40oLlgqOX_dRyMiijylGReHaNz3tsIsozInhIzQ28KuN20Ap7tNnzxo73SbzDR4Z90qAdckM6giVK4_NgGC7VxiOp88QQhRm0xbiAeNrQfq04a3yPlgoW2_BqtukisIcIIODLS9Hu_2MXq5uV5O79LZ_LacXs7SmgkRUlNJ3hRZVXGsNce5yBhl2BAggmWaFBxDBKuIZFlDeQUSTN3UmpqKykIadozOh7vOG_VeW9WB_dmrTr17dfm8LBVhPC-EiFo6aGvf9b3XRn14uwb_pQhW22rVT7VqW63aTsSjKf9jqu3QTPBg2_-tZ7vfNjFHNxZ-Ax_nV9dYEloIKdg3CwuODA
CitedBy_id crossref_primary_10_1109_JSTARS_2019_2895070
crossref_primary_10_1007_s42835_019_00177_y
Cites_doi 10.1145/1553374.1553510
10.7551/mitpress/3206.001.0001
10.7551/mitpress/4175.001.0001
10.1109/ICCV.2009.5459169
10.1007/3-540-44581-1_27
10.1007/978-1-4757-2440-0
ContentType Journal Article
DBID DBRKI
TDB
AAYXX
CITATION
ACYCR
DOI 10.5391/IJFIS.2017.17.1.10
DatabaseName DBPIA - 디비피아
Nurimedia DBPIA Journals
CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2093-744X
EndPage 16
ExternalDocumentID oai_kci_go_kr_ARTI_1348955
10_5391_IJFIS_2017_17_1_10
NODE07129575
GroupedDBID .UV
ALMA_UNASSIGNED_HOLDINGS
DBRKI
TDB
AAYXX
CITATION
ACYCR
M~E
ID FETCH-LOGICAL-c355t-fb74d96bb40ee408563230f1a1536e1940a085b0f166d24ba7afcdce2fb2797f3
ISSN 1598-2645
IngestDate Tue Nov 21 21:31:54 EST 2023
Thu Jul 03 08:45:23 EDT 2025
Thu Apr 24 23:03:16 EDT 2025
Thu Feb 06 13:34:14 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Semi-supervised learning
Pattern classification
Kernel learning
Optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c355t-fb74d96bb40ee408563230f1a1536e1940a085b0f166d24ba7afcdce2fb2797f3
Notes G704-001602.2017.17.1.005
OpenAccessLink http://www.ijfis.org/journal/download_pdf.php?doi=10.5391/IJFIS.2017.17.1.10
PageCount 7
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_1348955
crossref_primary_10_5391_IJFIS_2017_17_1_10
crossref_citationtrail_10_5391_IJFIS_2017_17_1_10
nurimedia_primary_NODE07129575
PublicationCentury 2000
PublicationDate 2017-03-31
PublicationDateYYYYMMDD 2017-03-31
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-31
  day: 31
PublicationDecade 2010
PublicationTitle INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS
PublicationYear 2017
Publisher 한국지능시스템학회
Publisher_xml – name: 한국지능시스템학회
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref4
– ident: ref3
– ident: ref5
– ident: ref6
– ident: ref7
  doi: 10.1145/1553374.1553510
– ident: ref2
  doi: 10.7551/mitpress/3206.001.0001
– ident: ref13
  doi: 10.7551/mitpress/4175.001.0001
– ident: ref9
  doi: 10.1109/ICCV.2009.5459169
– ident: ref14
  doi: 10.1007/3-540-44581-1_27
– ident: ref1
  doi: 10.1007/978-1-4757-2440-0
– ident: ref8
– ident: ref16
– ident: ref10
– ident: ref11
– ident: ref17
– ident: ref12
– ident: ref15
SSID ssib036278111
ssib053376760
ssib044740918
ssib005299754
Score 2.0005004
Snippet The kernel function plays a central role in modern pattern classification for its ability to capture the inherent affinity structure of the underlying data...
SourceID nrf
crossref
nurimedia
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 10
SubjectTerms 전기공학
Title Simultaneous Kernel Learning and Label Imputation for Pattern Classification with Partially Labeled Data
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE07129575
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002208261
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX International Journal of Fuzzy Logic and Intelligent systems, 2017, 17(1), , pp.10-16
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF456aG9VK3aqu4jWlXlZOEaWFj2iG3cOHHdSLalJBe0wNJacUll2Yf00N_Tn9kZFgNuor4kBGi8i_HOx-y3eB6EvJUYTJlYmemxNDOZnaVmzBxppsziibRS5qRFts-pd7xgJ-fueav1o-G1tN3E3eTbnXEl_6NVkIFeMUr2HzRbXRQEcA76hT1oGPZ_pePZEv0BZa7Qj_VUrXO12iVM1ZGHExmDaIyFG2qnwrMipWau62Gip5D-qHgje4bfIlerG90V2OhQB69VDPaOHLpwBMo5WlxeXnSK2grayRgaTibj9-F03pldzOZh4_X3Mr9BK9M5XX5pvnaAqayMwyuBYoRDQ7iGGBhhYPRdIxga4cAIOPpnhH3DD4zARYnfL9oMCgnDXr7upbuL4iQw_EHTBgsfHe_0n92qkNk94ZicaWfOynDzWwDVVrh0lNXzuQ7l_HWmcB2BM8X4ZDSeoYMf7-LW3fXcy8A9_TgMgYnZAqjtAblnw4IEa2V8-B7WlgxmdV4TM2AFGMFbWU7GOKyjaxYAHJt7XIew736tjujC-3p3-672WNNBvob9_XyLBSDAijQI0fwReViuZGigYfmYtFT-hHxuQpJqSNIdJCnAgha4ojUkKUCSlpCk-5CkCElaQZKWkKQIyadkMQrng2OzLOZhJkBpN2YWc5YKL45ZTylMq-c5sPrNLAlTrqcswXoShDFIPC-1WSy5zJI0UXYW21zwzHlGDvPrXD0nlHvSFolwpacwvR6LlRvbdppkHvNTR_ptYu0GK0rKTPdYcGUVwYoXBzgqBjjCAY5wA3mbdKo-X3Wel9-2fgM6iK6SZYTp2fH46Tq6WkewCB1HlsN84bptclSpqLpmE0sv_tTgJXlQP3qvyOFmvVWvgQNv4qMCfj8BTZufTQ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+Kernel+Learning+and+Label+Imputation+for+Pattern+Classification+with+Partially+Labeled+Data&rft.jtitle=INTERNATIONAL+JOURNAL+of+FUZZY+LOGIC+and+INTELLIGENT+SYSTEMS&rft.au=Minyoung+Kim&rft.date=2017-03-31&rft.pub=%ED%95%9C%EA%B5%AD%EC%A7%80%EB%8A%A5%EC%8B%9C%EC%8A%A4%ED%85%9C%ED%95%99%ED%9A%8C&rft.issn=1598-2645&rft.eissn=2093-744X&rft.volume=17&rft.issue=1&rft.spage=10&rft.epage=16&rft_id=info:doi/10.5391%2FIJFIS.2017.17.1.10&rft.externalDocID=NODE07129575
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-2645&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-2645&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-2645&client=summon