A Deep Reinforcement Learning Based Offloading Game in Edge Computing
Edge computing is a new paradigm to provide strong computing capability at the edge of pervasive radio access networks close to users. A critical research challenge of edge computing is to design an efficient offloading strategy to decide which tasks can be offloaded to edge servers with limited res...
Saved in:
Published in | IEEE transactions on computers Vol. 69; no. 6; pp. 883 - 893 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9340 1557-9956 |
DOI | 10.1109/TC.2020.2969148 |
Cover
Loading…
Abstract | Edge computing is a new paradigm to provide strong computing capability at the edge of pervasive radio access networks close to users. A critical research challenge of edge computing is to design an efficient offloading strategy to decide which tasks can be offloaded to edge servers with limited resources. Although many research efforts attempt to address this challenge, they need centralized control, which is not practical because users are rational individuals with interests to maximize their benefits. In this article, we study to design a decentralized algorithm for computation offloading, so that users can independently choose their offloading decisions. Game theory has been applied in the algorithm design. Different from existing work, we address the challenge that users may refuse to expose their information about network bandwidth and preference. Therefore, it requires that our solution should make the offloading decision without such knowledge. We formulate the problem as a partially observable Markov decision process (POMDP), which is solved by a policy gradient deep reinforcement learning (DRL) based approach. Extensive simulation results show that our proposal significantly outperforms existing solutions. |
---|---|
AbstractList | Edge computing is a new paradigm to provide strong computing capability at the edge of pervasive radio access networks close to users. A critical research challenge of edge computing is to design an efficient offloading strategy to decide which tasks can be offloaded to edge servers with limited resources. Although many research efforts attempt to address this challenge, they need centralized control, which is not practical because users are rational individuals with interests to maximize their benefits. In this article, we study to design a decentralized algorithm for computation offloading, so that users can independently choose their offloading decisions. Game theory has been applied in the algorithm design. Different from existing work, we address the challenge that users may refuse to expose their information about network bandwidth and preference. Therefore, it requires that our solution should make the offloading decision without such knowledge. We formulate the problem as a partially observable Markov decision process (POMDP), which is solved by a policy gradient deep reinforcement learning (DRL) based approach. Extensive simulation results show that our proposal significantly outperforms existing solutions. |
Author | Zhan, Yufeng Zhang, Jiang Li, Peng Guo, Song |
Author_xml | – sequence: 1 givenname: Yufeng surname: Zhan fullname: Zhan, Yufeng email: zhanyf1989@gmail.com organization: Department of Computing, The Hong Kong Polytechnic University, Hong Kong – sequence: 2 givenname: Song orcidid: 0000-0001-9831-2202 surname: Guo fullname: Guo, Song email: song.guo@polyu.edu.cn organization: Department of Computing, The Hong Kong Polytechnic University, Hong Kong – sequence: 3 givenname: Peng orcidid: 0000-0003-4981-0496 surname: Li fullname: Li, Peng email: pengli@u-aizu.ac.jp organization: School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu, Japan – sequence: 4 givenname: Jiang surname: Zhang fullname: Zhang, Jiang email: bitzj2015@outlook.com organization: School of Automation, Beijing Institute of Technology, Beijing, China |
BookMark | eNp9kMFLwzAYxYMouE3PHrwEPHf7krRNcpx1TmEwkHkOWftlZKxpTbuD_70dGx48ePrg8X7vfbwxuQ5NQEIeGEwZAz3bFFMOHKZc55ql6oqMWJbJROssvyYjAKYSLVK4JeOu2wNAzkGPyGJOXxBb-oE-uCaWWGPo6QptDD7s6LPtsKJr5w6NrU7C0tZIfaCLaoe0aOr22A_yHblx9tDh_eVOyOfrYlO8Jav18r2Yr5JSZFmfOIXCVqVA4CoVskxlbi0oJkBV-Zbp1PLhReW2rHJQCu0sMCGkdlxLlJCKCXk657ax-Tpi15t9c4xhqDQ8BcYElxkfXLOzq4xN10V0po2-tvHbMDCnrcymMKetzGWrgcj-EKXvbe-b0EfrD_9wj2fOI-Jvi9K5ZEyJH0PJdVg |
CODEN | ITCOB4 |
CitedBy_id | crossref_primary_10_3390_electronics13122387 crossref_primary_10_1109_JIOT_2023_3247013 crossref_primary_10_1016_j_suscom_2025_101099 crossref_primary_10_1109_TKDE_2021_3130265 crossref_primary_10_1155_2022_7844719 crossref_primary_10_1109_TNSM_2023_3267809 crossref_primary_10_2139_ssrn_4156476 crossref_primary_10_1109_JIOT_2022_3157677 crossref_primary_10_1016_j_asoc_2021_108361 crossref_primary_10_1109_JIOT_2021_3078620 crossref_primary_10_1109_TMC_2021_3053136 crossref_primary_10_1145_3639824 crossref_primary_10_1002_spe_3301 crossref_primary_10_1109_TWC_2023_3306880 crossref_primary_10_1007_s10586_022_03768_z crossref_primary_10_1109_TSC_2024_3478826 crossref_primary_10_1109_TNSE_2021_3115054 crossref_primary_10_1109_JSYST_2022_3190926 crossref_primary_10_1109_COMST_2024_3353265 crossref_primary_10_1109_TMC_2024_3506221 crossref_primary_10_1049_tje2_12207 crossref_primary_10_1109_MNET_2024_3352031 crossref_primary_10_1145_3715695 crossref_primary_10_1109_TC_2021_3074806 crossref_primary_10_1109_JIOT_2024_3391296 crossref_primary_10_3390_fi15120391 crossref_primary_10_1016_j_phycom_2024_102460 crossref_primary_10_1109_TMC_2021_3096846 crossref_primary_10_1109_ACCESS_2023_3322650 crossref_primary_10_1109_JIOT_2022_3146239 crossref_primary_10_1109_LCOMM_2021_3075690 crossref_primary_10_1109_TC_2020_2993561 crossref_primary_10_1016_j_future_2022_11_025 crossref_primary_10_1109_TC_2023_3238138 crossref_primary_10_1109_JIOT_2022_3176289 crossref_primary_10_3390_electronics11091357 crossref_primary_10_1007_s40747_023_01322_x crossref_primary_10_1109_JIOT_2023_3265344 crossref_primary_10_1109_ACCESS_2021_3109132 crossref_primary_10_1109_JIOT_2022_3189445 crossref_primary_10_1016_j_comnet_2021_108523 crossref_primary_10_1109_TWC_2022_3230407 crossref_primary_10_1109_JIOT_2020_3042433 crossref_primary_10_1109_TCCN_2021_3103511 crossref_primary_10_1016_j_future_2022_11_017 crossref_primary_10_1109_JIOT_2023_3315770 crossref_primary_10_1109_TNSE_2022_3188921 crossref_primary_10_3390_electronics13142747 crossref_primary_10_1016_j_compeleceng_2022_108552 crossref_primary_10_1016_j_compeleceng_2022_108278 crossref_primary_10_1109_JIOT_2022_3209987 crossref_primary_10_1109_COMST_2022_3199544 crossref_primary_10_1109_JIOT_2023_3332401 crossref_primary_10_1109_COMST_2021_3106401 crossref_primary_10_1109_TC_2022_3176803 crossref_primary_10_1109_TNSM_2024_3447753 crossref_primary_10_1016_j_adhoc_2023_103178 crossref_primary_10_1007_s11390_023_2839_0 crossref_primary_10_1109_JIOT_2024_3360183 crossref_primary_10_1109_TCC_2024_3381646 crossref_primary_10_1016_j_phycom_2022_101867 crossref_primary_10_1109_TC_2021_3131040 crossref_primary_10_1109_TWC_2023_3325654 crossref_primary_10_1186_s13677_022_00340_3 crossref_primary_10_1109_TII_2022_3227652 crossref_primary_10_1016_j_comnet_2024_110564 crossref_primary_10_1109_TNSE_2023_3283410 crossref_primary_10_1109_JIOT_2021_3091508 crossref_primary_10_1109_OJCOMS_2024_3426278 crossref_primary_10_1109_TVT_2024_3427814 crossref_primary_10_1109_TSC_2024_3495503 crossref_primary_10_1007_s00607_025_01443_w crossref_primary_10_1109_TC_2021_3099723 crossref_primary_10_1049_tje2_12250 crossref_primary_10_1145_3464419 crossref_primary_10_1109_TWC_2022_3152573 crossref_primary_10_1109_TNSM_2023_3250395 crossref_primary_10_1109_TC_2024_3355767 crossref_primary_10_1007_s00521_023_08905_2 crossref_primary_10_1145_3603703 crossref_primary_10_1145_3491217 crossref_primary_10_3390_app12126154 crossref_primary_10_1145_3555802 crossref_primary_10_1007_s10586_024_04893_7 crossref_primary_10_1109_TVT_2024_3367657 crossref_primary_10_1109_COMST_2023_3338153 crossref_primary_10_1109_TNSM_2023_3271769 crossref_primary_10_1109_TITS_2021_3114295 crossref_primary_10_1049_cmu2_12334 crossref_primary_10_1109_TNSE_2022_3141728 crossref_primary_10_1109_ACCESS_2021_3082259 crossref_primary_10_1109_JIOT_2024_3374969 crossref_primary_10_1016_j_jnca_2023_103669 crossref_primary_10_1016_j_sysarc_2024_103139 crossref_primary_10_1109_TC_2021_3072072 crossref_primary_10_1109_JIOT_2020_3025365 crossref_primary_10_4018_IJDCF_332066 crossref_primary_10_1109_TNSM_2022_3210827 crossref_primary_10_1109_TC_2024_3416734 crossref_primary_10_1109_JIOT_2020_3016644 crossref_primary_10_1109_TR_2024_3399389 crossref_primary_10_1007_s10115_022_01746_w crossref_primary_10_1109_TNSE_2021_3136942 crossref_primary_10_1109_OJCOMS_2023_3265425 crossref_primary_10_1109_TMC_2024_3376377 crossref_primary_10_1109_JIOT_2021_3091142 crossref_primary_10_1109_TNET_2021_3106937 crossref_primary_10_1007_s11276_021_02750_8 crossref_primary_10_1109_TC_2023_3343102 crossref_primary_10_1016_j_cosrev_2024_100656 crossref_primary_10_1109_ACCESS_2020_3025047 crossref_primary_10_1109_TMC_2024_3399766 crossref_primary_10_1109_JSAC_2023_3345433 crossref_primary_10_1016_j_compchemeng_2024_108601 crossref_primary_10_1109_TMC_2024_3437745 crossref_primary_10_1109_TPDS_2021_3119948 crossref_primary_10_3390_app12136566 crossref_primary_10_1109_LWC_2020_2989147 crossref_primary_10_1142_S0218126624502839 crossref_primary_10_1016_j_comnet_2022_109430 crossref_primary_10_1109_TC_2022_3169436 crossref_primary_10_1109_TMC_2024_3407958 crossref_primary_10_1109_TSUSC_2023_3240457 crossref_primary_10_1109_TMC_2023_3262233 crossref_primary_10_1109_JIOT_2023_3241222 |
Cites_doi | 10.1109/TC.2016.2620469 10.1109/TMC.2017.2687918 10.1109/TPDS.2014.2316834 10.1109/GLOCOM.2017.8254503 10.1145/584007.584008 10.1109/TC.2018.2818144 10.1109/INFCOM.2012.6195685 10.1109/MNET.2019.1800544 10.1109/TWC.2016.2633522 10.1038/nature20101 10.1109/JPROC.2019.2922285 10.1109/TSIPN.2015.2448520 10.1145/2046614.2046619 10.1109/TETC.2017.2693286 10.1109/TMC.2018.2829874 10.1145/3072959.3073624 10.1109/JIOT.2020.2967772 10.1109/TMC.2018.2847337 10.1109/TVT.2018.2881191 10.1109/TMC.2018.2877623 10.1016/j.comnet.2017.03.015 10.1109/TVT.2017.2740724 10.1109/ICCChina.2015.7448613 10.1109/ISCC.2012.6249269 10.1145/2479942.2479946 10.1109/TNET.2015.2487344 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TC.2020.2969148 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1557-9956 |
EndPage | 893 |
ExternalDocumentID | 10_1109_TC_2020_2969148 8967118 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61872310 funderid: 10.13039/501100001809 – fundername: JSPS Grants-in-Aid for Scientific Research grantid: JP19K20258 – fundername: General Research Fund of the Research Grants Council of Hong Kong grantid: PolyU 152221/19E |
GroupedDBID | --Z -DZ -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETEA AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 TWZ UHB UPT XZL YZZ AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c355t-f8e3adc3e028437c476aa081308d6b194a29348fb1df0c39fa013379f297e7043 |
IEDL.DBID | RIE |
ISSN | 0018-9340 |
IngestDate | Mon Jun 30 06:55:55 EDT 2025 Tue Jul 01 00:27:40 EDT 2025 Thu Apr 24 23:12:37 EDT 2025 Wed Aug 27 02:42:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c355t-f8e3adc3e028437c476aa081308d6b194a29348fb1df0c39fa013379f297e7043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4981-0496 0000-0001-9831-2202 |
PQID | 2401132752 |
PQPubID | 85452 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2401132752 crossref_primary_10_1109_TC_2020_2969148 crossref_citationtrail_10_1109_TC_2020_2969148 ieee_primary_8967118 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on computers |
PublicationTitleAbbrev | TC |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref15 heess (ref36) 2015 ref14 ref31 ref30 ref10 goodfellow (ref42) 2016 ref2 schulman (ref39) 2017 ref16 ref19 ref18 (ref11) 2013 schulman (ref38) 2015 lowe (ref33) 2017 li (ref40) 2018 ref24 ref23 ref26 osborne (ref32) 1994 ref25 ref20 bansal (ref41) 2017 hu (ref27) 2003; 4 ref22 ref21 ref29 hausknecht (ref35) 2015 ref8 sutton (ref37) 2000 ref7 sun (ref1) 2015 ref9 ref4 xian (ref17) 2007; 2 ref3 lillicrap (ref28) 2015 ref6 ref5 (ref12) 2016 |
References_xml | – ident: ref5 doi: 10.1109/TC.2016.2620469 – year: 2017 ident: ref41 article-title: Emergent complexity via multi-agent competition – year: 1994 ident: ref32 publication-title: A Course in Game Theory – year: 2017 ident: ref39 article-title: Proximal policy optimization algorithms – ident: ref26 doi: 10.1109/TMC.2017.2687918 – ident: ref7 doi: 10.1109/TPDS.2014.2316834 – ident: ref31 doi: 10.1109/GLOCOM.2017.8254503 – ident: ref15 doi: 10.1145/584007.584008 – start-page: 1889 year: 2015 ident: ref38 article-title: Trust region policy optimization publication-title: Proc 31st Int Conf Mach Learn – year: 2013 ident: ref11 article-title: Increasing mobile operators value proposition with edge computing publication-title: Technical Brief – ident: ref6 doi: 10.1109/TC.2018.2818144 – year: 2018 ident: ref40 article-title: Distributional advantage actor-critic publication-title: CoRR – start-page: 6379 year: 2017 ident: ref33 article-title: Multi-agent actor-critic for mixed cooperative-competitive environments publication-title: Proc 31st Int Conf Neural Inf Process Syst – ident: ref16 doi: 10.1109/INFCOM.2012.6195685 – year: 2016 ident: ref12 article-title: Using mobile edge computing to improve mobile network performance and profitability – ident: ref13 doi: 10.1109/MNET.2019.1800544 – ident: ref21 doi: 10.1109/TWC.2016.2633522 – start-page: 1057 year: 2000 ident: ref37 article-title: Policy gradient methods for reinforcement learning with function approximation publication-title: Proc 12th Int Conf Neural Inf Process Syst – ident: ref34 doi: 10.1038/nature20101 – ident: ref4 doi: 10.1109/JPROC.2019.2922285 – ident: ref20 doi: 10.1109/TSIPN.2015.2448520 – volume: 2 start-page: 1 year: 2007 ident: ref17 article-title: Adaptive computation offloading for energy conservation on battery-powered systems publication-title: Proc Int Conf Parallel Distrib Syst – ident: ref30 doi: 10.1145/2046614.2046619 – year: 2015 ident: ref36 article-title: Memory-based control with recurrent neural networks – ident: ref14 doi: 10.1109/TETC.2017.2693286 – year: 2015 ident: ref1 article-title: DeepID3: Face recognition with very deep neural networks – ident: ref9 doi: 10.1109/TMC.2018.2829874 – ident: ref3 doi: 10.1145/3072959.3073624 – ident: ref29 doi: 10.1109/JIOT.2020.2967772 – ident: ref10 doi: 10.1109/TMC.2018.2847337 – ident: ref24 doi: 10.1109/TVT.2018.2881191 – ident: ref22 doi: 10.1109/TMC.2018.2877623 – ident: ref25 doi: 10.1016/j.comnet.2017.03.015 – year: 2015 ident: ref28 article-title: Continuous control with deep reinforcement learning – ident: ref23 doi: 10.1109/TVT.2017.2740724 – ident: ref19 doi: 10.1109/ICCChina.2015.7448613 – start-page: 29 year: 2015 ident: ref35 article-title: Deep recurrent Q-learning for partially observable MDPs publication-title: Proc AAAI Fall Symp – ident: ref2 doi: 10.1109/ISCC.2012.6249269 – ident: ref18 doi: 10.1145/2479942.2479946 – volume: 4 start-page: 1039 year: 2003 ident: ref27 article-title: Nash Q-learning for general-sum stochastic games publication-title: J Mach Learn Res – year: 2016 ident: ref42 publication-title: Deep Learning – ident: ref8 doi: 10.1109/TNET.2015.2487344 |
SSID | ssj0006209 |
Score | 2.6406572 |
Snippet | Edge computing is a new paradigm to provide strong computing capability at the edge of pervasive radio access networks close to users. A critical research... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 883 |
SubjectTerms | Algorithms Computation offloading Computational modeling Computer simulation Decision theory Deep learning deep reinforcement learning (DRL) Edge computing Game theory Games Markov processes Nash equilibrium partially observable Markov decision process (POMDP) Reinforcement learning Servers Task analysis |
Title | A Deep Reinforcement Learning Based Offloading Game in Edge Computing |
URI | https://ieeexplore.ieee.org/document/8967118 https://www.proquest.com/docview/2401132752 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS-wwEB_Ukx78fA_XL3Lw4MHWtEmT5qjrqggqyAreSpom8lB3RXcv_vVO0nQRn4K3UjIh5GPmN8nMbwD2S6GzRkiWZD5DhmvFE0RFRVIwjfCUSUprn-B8dS0u7vjlfXE_B4ezXBhrbQg-s6n_DG_5zdhM_VXZUamEREA8D_O4zdpcrZnWFV04R4YHmHEaaXwyqo6GffQDc5rmSqjMF_r5ZIFCSZX_9HAwLmcrcNUNq40peUynkzo1718YG3877lVYjiiTHLfbYg3m7GgdVroKDiQe6HVY-kRHuAGDY3Jq7Qu5tYFO1YSbQxIZWB_ICRq8htw49zQOgffkXD9b8m9EBs2DJW3n-PsP3J0Nhv2LJJZZSAyCjUniSst0Y5hFqMGZNFwKrREpMFo2os4U1wgJeOnqrHHUMOU0wkYmlcuVtJJy9hcWRuOR3QQinMqlqnNXlJoLVBcG5VCF5IVhuXFND9Ju6isTOch9KYynKvgiVFXDfuXXqopr1YODmcBLS7_xc9MNP_OzZnHSe7DTrW0Vj-dbhTAmQzdcFvnW91LbsOj7bmPCdmBh8jq1u4g-JvVe2HYfgWPSMw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Bb9MwFH4a4wA7rLAyrWwDHzhwIJkTO3Z8HKWlwDok1Em7RY5jT4itnUZ72a_fs-NUFTCJWxTZiWX7vfc9-73vAbwrhc4aIVmS-QwZrhVPEBUVScE0wlMmKa19gvP0XEwu-NfL4nILPqxzYay1IfjMpv4x3OU3C7PyR2UnpRISAfETeIp2nxdtttZa74ouoCNDEWacRiKfjKqT2RA9wZymuRIq86V-NmxQKKrylyYO5mXcg2k3sDaq5Fe6Wtapuf-Ds_F_R_4CdiPOJKftxngJW3a-B72uhgOJIr0HOxuEhH0YnZJP1t6SHzYQqppwdkgiB-sV-YgmryHfnbtehNB78lnfWPJzTkbNlSXtx_H1K7gYj2bDSRILLSQG4cYycaVlujHMItjgTBouhdaIFRgtG1FnimsEBbx0ddY4aphyGoEjk8rlSlpJOduH7flibg-ACKdyqercFaXmAhWGwX6oRPLCsNy4ZgBpN_WViSzkvhjGdRW8Eaqq2bDya1XFtRrA-3WH25aA4_GmfT_z62Zx0gdw1K1tFQX0d4VAJkNHXBb563_3egvPJrPpWXX25fzbITz3_2kjxI5ge3m3sseIRZb1m7AFHwCwbtWA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Reinforcement+Learning+Based+Offloading+Game+in+Edge+Computing&rft.jtitle=IEEE+transactions+on+computers&rft.au=Zhan%2C+Yufeng&rft.au=Guo%2C+Song&rft.au=Li%2C+Peng&rft.au=Zhang%2C+Jiang&rft.date=2020-06-01&rft.pub=IEEE&rft.issn=0018-9340&rft.volume=69&rft.issue=6&rft.spage=883&rft.epage=893&rft_id=info:doi/10.1109%2FTC.2020.2969148&rft.externalDocID=8967118 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9340&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9340&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9340&client=summon |