Uniform boundedness and compactness for the commutator of an extension of Riesz transform on stratified Lie groups

Let be a stratified Lie group, and let be a basis of the left-invariant vector fields of degree one on and be the sub-Laplacian of . Given that , this article studies the commutators of order and establishes their uniform two-weight boundedness from to for any and via space, assuming that and . Base...

Full description

Saved in:
Bibliographic Details
Published inAdvances in nonlinear analysis Vol. 14; no. 1; pp. 1207 - 1230
Main Authors Han, Xueting, Chen, Yanping
Format Journal Article
LanguageEnglish
Published De Gruyter 04.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Let be a stratified Lie group, and let be a basis of the left-invariant vector fields of degree one on and be the sub-Laplacian of . Given that , this article studies the commutators of order and establishes their uniform two-weight boundedness from to for any and via space, assuming that and . Based on this, we also give the characterization of space with respect to the uniform weighted compactness of for . As a consequence of our results, the corresponding boundedness and compactness for commutators of Riesz transforms on can be recovered as
AbstractList Let G {\mathcal{G}} be a stratified Lie group, and let { X j } 1 ≤ j ≤ n 1 {\left\{{X}_{j}\right\}}_{1\le j\le {n}_{1}} be a basis of the left-invariant vector fields of degree one on G {\mathcal{G}} and Δ = − ∑ j = 1 n 1 X j 2 \Delta =-{\sum }_{j=1}^{{n}_{1}}{X}_{j}^{2} be the sub-Laplacian of G {\mathcal{G}} . Given that 0 ≤ α < Q 0\le \alpha \lt {\mathbb{Q}} , this article studies the commutators [ b , X j Δ − 1 + α 2 ] m , j = 1 , … , n 1 {\left[b,{X}_{j}{\Delta }^{-\frac{1+\alpha }{2}}]}^{m},\hspace{0.33em}j=1,\ldots ,{n}_{1} of order m ∈ N m\in {\mathbb{N}} and establishes their uniform two-weight boundedness from L p ( μ p ) {L}^{p}\left({\mu }^{p}) to L q ( w q ) {L}^{q}\left({w}^{q}) for any 0 < α < Q 0\lt \alpha \lt {\mathbb{Q}} and 1 q = 1 p − α Q \frac{1}{q}=\frac{1}{p}-\frac{\alpha }{{\mathbb{Q}}} via BMO ν 1 ⁄ m ( G ) {{\rm{BMO}}}_{{\nu }^{1/m}}\left({\mathcal{G}}) space, assuming that μ , w ∈ A p , q \mu ,w\in {A}_{p,q} and ν = μ w \nu =\frac{\mu }{w} . Based on this, we also give the characterization of VMO ( G ) {\rm{VMO}}\left({\mathcal{G}}) space with respect to the uniform weighted compactness of [ b , X j Δ − 1 + α 2 ] \left[b,{X}_{j}{\Delta }^{-\tfrac{1+\alpha }{2}}] for 0 ≤ α < Q 0\le \alpha \lt {\mathbb{Q}} . As a consequence of our results, the corresponding boundedness and compactness for commutators of Riesz transforms on G {\mathcal{G}} can be recovered as α → 0 \alpha \to 0 .
Let be a stratified Lie group, and let be a basis of the left-invariant vector fields of degree one on and be the sub-Laplacian of . Given that , this article studies the commutators of order and establishes their uniform two-weight boundedness from to for any and via space, assuming that and . Based on this, we also give the characterization of space with respect to the uniform weighted compactness of for . As a consequence of our results, the corresponding boundedness and compactness for commutators of Riesz transforms on can be recovered as
Let G{\mathcal{G}} be a stratified Lie group, and let {Xj}1≤j≤n1{\left\{{X}_{j}\right\}}_{1\le j\le {n}_{1}} be a basis of the left-invariant vector fields of degree one on G{\mathcal{G}} and Δ=−∑j=1n1Xj2\Delta =-{\sum }_{j=1}^{{n}_{1}}{X}_{j}^{2} be the sub-Laplacian of G{\mathcal{G}}. Given that 0≤α<Q0\le \alpha \lt {\mathbb{Q}}, this article studies the commutators [b,XjΔ−1+α2]m,j=1,…,n1{\left[b,{X}_{j}{\Delta }^{-\frac{1+\alpha }{2}}]}^{m},\hspace{0.33em}j=1,\ldots ,{n}_{1} of order m∈Nm\in {\mathbb{N}} and establishes their uniform two-weight boundedness from Lp(μp){L}^{p}\left({\mu }^{p}) to Lq(wq){L}^{q}\left({w}^{q}) for any 0<α<Q0\lt \alpha \lt {\mathbb{Q}} and 1q=1p−αQ\frac{1}{q}=\frac{1}{p}-\frac{\alpha }{{\mathbb{Q}}} via BMOν1⁄m(G){{\rm{BMO}}}_{{\nu }^{1/m}}\left({\mathcal{G}}) space, assuming that μ,w∈Ap,q\mu ,w\in {A}_{p,q} and ν=μw\nu =\frac{\mu }{w}. Based on this, we also give the characterization of VMO(G){\rm{VMO}}\left({\mathcal{G}}) space with respect to the uniform weighted compactness of [b,XjΔ−1+α2]\left[b,{X}_{j}{\Delta }^{-\tfrac{1+\alpha }{2}}] for 0≤α<Q0\le \alpha \lt {\mathbb{Q}}. As a consequence of our results, the corresponding boundedness and compactness for commutators of Riesz transforms on G{\mathcal{G}} can be recovered as α→0\alpha \to 0.
Author Chen, Yanping
Han, Xueting
Author_xml – sequence: 1
  givenname: Xueting
  surname: Han
  fullname: Han, Xueting
  email: xueting.han@xs.ustb.edu.cn
  organization: School of Mathematics and Physics, University of Science and Technology Beijing, 100083, Beijing, China
– sequence: 2
  givenname: Yanping
  surname: Chen
  fullname: Chen, Yanping
  email: chenyanping@mail.neu.edu.cn
  organization: Department of Mathematics, Northeastern University, Shenyang, 110004, Liaoning, China
BookMark eNp1UU1rGzEUFCGFJI7Pve4f2EYfq5XVWwhJGjAESg25Ca305MrYkpG0NM6vr9YOIZe8y5sZ3gw85gqdhxgAoe8E_yCc8BtduW4pprzFWNIzdEmJJK3k-OX8E75A85w3uM6CEyHwJUqr4F1Mu2aIY7BgA-Tc6GAbE3d7bcqR14Om_IVJ241Fl0qjq1cNvBYI2ccw8d8e8ltTkg75mFjVXFnxzoNtlh6adYrjPl-jb05vM8zf9wytHu7_3P1ql8-PT3e3y9YwzkvruKHQWykGI3tJuO0ZXgwWeiGcMJQaYTvXGW0tY2bQnanqIIUQzHDeDx2boadTro16o_bJ73Q6qKi9OgoxrZVOxZstqIVw1GmDNTDZUUsG1knZEVcxY71d1KybU5ZJMecE7iOPYDU1oI4NqKkBNTVQHT9Pjn96WyBZWKfxUIHaxDGF-vdXTtIR9h_vwpJw
Cites_doi 10.1016/j.jfa.2010.02.004
10.1016/j.aim.2020.107001
10.1016/j.jde.2023.10.027
10.1017/CBO9780511662485
10.1512/iumj.2020.69.7959
10.1016/j.nonrwa.2019.04.004
10.1007/BF02387385
10.1007/s11118-008-9114-4
10.1007/978-0-387-09432-8
10.1007/978-3-540-71897-0
10.1007/978-0-387-09434-2
10.1016/j.jfa.2016.05.002
10.1016/j.jfa.2012.09.013
10.1016/j.jfa.2019.05.008
10.1007/s00205-018-1320-7
10.1016/j.matpur.2018.06.012
10.1007/s00025-021-01578-0
10.1007/s00013-012-0453-4
10.1515/9780691222455
10.1016/j.jfa.2020.108887
10.1016/j.jmaa.2021.125869
10.1007/BF02386204
10.4064/cm126-1-1
10.1016/j.jfa.2021.109196
10.1016/j.jde.2022.11.035
10.1515/agms-2020-0116
10.1007/s10013-016-0210-2
10.1007/s12220-019-00308-x
10.1142/9789812770561
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1515/anona-2025-0092
DatabaseName CrossRef
DOAJ Open Access Full Text
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-950X
EndPage 1230
ExternalDocumentID oai_doaj_org_article_87f2fac0ae3942d1b349941f42d336d8
10_1515_anona_2025_0092
10_1515_anona_2025_0092141
GroupedDBID 0R~
0~D
4.4
AAFPC
AAFWJ
AAQCX
AASOL
AASQH
ABAOT
ABAQN
ABFKT
ABIQR
ABSOE
ABUVI
ABXMZ
ACGFS
ACXLN
ACZBO
ADGQD
ADGYE
ADJVZ
ADOZN
AEJTT
AENEX
AEQDQ
AEXIE
AFBAA
AFBDD
AFCXV
AFPKN
AFQUK
AHGSO
AIERV
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BAKPI
BBCWN
CFGNV
EBS
GROUPED_DOAJ
HZ~
IY9
J9A
O9-
OK1
QD8
SA.
AAYXX
CITATION
ID FETCH-LOGICAL-c355t-f5c2e6d97bc96915d6308bde677f7c22c7d4f4cadd33cba4cf7cb97773c556b43
IEDL.DBID DOA
ISSN 2191-950X
IngestDate Wed Aug 27 01:26:46 EDT 2025
Thu Jul 10 08:37:53 EDT 2025
Thu Jul 10 10:28:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-f5c2e6d97bc96915d6308bde677f7c22c7d4f4cadd33cba4cf7cb97773c556b43
OpenAccessLink https://doaj.org/article/87f2fac0ae3942d1b349941f42d336d8
PageCount 31
ParticipantIDs doaj_primary_oai_doaj_org_article_87f2fac0ae3942d1b349941f42d336d8
crossref_primary_10_1515_anona_2025_0092
walterdegruyter_journals_10_1515_anona_2025_0092141
PublicationCentury 2000
PublicationDate 2025-07-04
PublicationDateYYYYMMDD 2025-07-04
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-04
  day: 04
PublicationDecade 2020
PublicationTitle Advances in nonlinear analysis
PublicationYear 2025
Publisher De Gruyter
Publisher_xml – name: De Gruyter
References 2025070412063746281_j_anona-2025-0092_ref_008
2025070412063746281_j_anona-2025-0092_ref_009
2025070412063746281_j_anona-2025-0092_ref_022
2025070412063746281_j_anona-2025-0092_ref_001
2025070412063746281_j_anona-2025-0092_ref_023
2025070412063746281_j_anona-2025-0092_ref_002
2025070412063746281_j_anona-2025-0092_ref_024
2025070412063746281_j_anona-2025-0092_ref_003
2025070412063746281_j_anona-2025-0092_ref_025
2025070412063746281_j_anona-2025-0092_ref_004
2025070412063746281_j_anona-2025-0092_ref_026
2025070412063746281_j_anona-2025-0092_ref_005
2025070412063746281_j_anona-2025-0092_ref_027
2025070412063746281_j_anona-2025-0092_ref_006
2025070412063746281_j_anona-2025-0092_ref_028
2025070412063746281_j_anona-2025-0092_ref_007
2025070412063746281_j_anona-2025-0092_ref_029
2025070412063746281_j_anona-2025-0092_ref_020
2025070412063746281_j_anona-2025-0092_ref_021
2025070412063746281_j_anona-2025-0092_ref_019
2025070412063746281_j_anona-2025-0092_ref_011
2025070412063746281_j_anona-2025-0092_ref_012
2025070412063746281_j_anona-2025-0092_ref_013
2025070412063746281_j_anona-2025-0092_ref_014
2025070412063746281_j_anona-2025-0092_ref_015
2025070412063746281_j_anona-2025-0092_ref_016
2025070412063746281_j_anona-2025-0092_ref_017
2025070412063746281_j_anona-2025-0092_ref_018
2025070412063746281_j_anona-2025-0092_ref_030
2025070412063746281_j_anona-2025-0092_ref_031
2025070412063746281_j_anona-2025-0092_ref_010
2025070412063746281_j_anona-2025-0092_ref_032
References_xml – ident: 2025070412063746281_j_anona-2025-0092_ref_021
  doi: 10.1016/j.jfa.2010.02.004
– ident: 2025070412063746281_j_anona-2025-0092_ref_028
– ident: 2025070412063746281_j_anona-2025-0092_ref_003
  doi: 10.1016/j.aim.2020.107001
– ident: 2025070412063746281_j_anona-2025-0092_ref_008
  doi: 10.1016/j.jde.2023.10.027
– ident: 2025070412063746281_j_anona-2025-0092_ref_029
  doi: 10.1017/CBO9780511662485
– ident: 2025070412063746281_j_anona-2025-0092_ref_001
  doi: 10.1512/iumj.2020.69.7959
– ident: 2025070412063746281_j_anona-2025-0092_ref_030
  doi: 10.1016/j.nonrwa.2019.04.004
– ident: 2025070412063746281_j_anona-2025-0092_ref_026
  doi: 10.1007/BF02387385
– ident: 2025070412063746281_j_anona-2025-0092_ref_005
  doi: 10.1007/s11118-008-9114-4
– ident: 2025070412063746281_j_anona-2025-0092_ref_013
  doi: 10.1007/978-0-387-09432-8
– ident: 2025070412063746281_j_anona-2025-0092_ref_002
  doi: 10.1007/978-3-540-71897-0
– ident: 2025070412063746281_j_anona-2025-0092_ref_014
  doi: 10.1007/978-0-387-09434-2
– ident: 2025070412063746281_j_anona-2025-0092_ref_019
  doi: 10.1016/j.jfa.2016.05.002
– ident: 2025070412063746281_j_anona-2025-0092_ref_018
  doi: 10.1016/j.jfa.2012.09.013
– ident: 2025070412063746281_j_anona-2025-0092_ref_025
– ident: 2025070412063746281_j_anona-2025-0092_ref_004
  doi: 10.1016/j.jfa.2019.05.008
– ident: 2025070412063746281_j_anona-2025-0092_ref_032
  doi: 10.1007/s00205-018-1320-7
– ident: 2025070412063746281_j_anona-2025-0092_ref_010
  doi: 10.1016/j.matpur.2018.06.012
– ident: 2025070412063746281_j_anona-2025-0092_ref_015
  doi: 10.1007/s00025-021-01578-0
– ident: 2025070412063746281_j_anona-2025-0092_ref_024
  doi: 10.1007/s00013-012-0453-4
– ident: 2025070412063746281_j_anona-2025-0092_ref_012
  doi: 10.1515/9780691222455
– ident: 2025070412063746281_j_anona-2025-0092_ref_031
  doi: 10.1016/j.jfa.2020.108887
– ident: 2025070412063746281_j_anona-2025-0092_ref_020
  doi: 10.1016/j.jmaa.2021.125869
– ident: 2025070412063746281_j_anona-2025-0092_ref_011
  doi: 10.1007/BF02386204
– ident: 2025070412063746281_j_anona-2025-0092_ref_017
  doi: 10.4064/cm126-1-1
– ident: 2025070412063746281_j_anona-2025-0092_ref_006
  doi: 10.1016/j.jfa.2021.109196
– ident: 2025070412063746281_j_anona-2025-0092_ref_007
  doi: 10.1016/j.jde.2022.11.035
– ident: 2025070412063746281_j_anona-2025-0092_ref_016
  doi: 10.1515/agms-2020-0116
– ident: 2025070412063746281_j_anona-2025-0092_ref_027
  doi: 10.1007/s10013-016-0210-2
– ident: 2025070412063746281_j_anona-2025-0092_ref_009
  doi: 10.1007/s12220-019-00308-x
– ident: 2025070412063746281_j_anona-2025-0092_ref_023
  doi: 10.1142/9789812770561
– ident: 2025070412063746281_j_anona-2025-0092_ref_022
SSID ssj0000851770
Score 2.3213696
Snippet Let be a stratified Lie group, and let be a basis of the left-invariant vector fields of degree one on and be the sub-Laplacian of . Given that , this article...
Let G {\mathcal{G}} be a stratified Lie group, and let { X j } 1 ≤ j ≤ n 1 {\left\{{X}_{j}\right\}}_{1\le j\le {n}_{1}} be a basis of the left-invariant vector...
Let G{\mathcal{G}} be a stratified Lie group, and let {Xj}1≤j≤n1{\left\{{X}_{j}\right\}}_{1\le j\le {n}_{1}} be a basis of the left-invariant vector fields of...
SourceID doaj
crossref
walterdegruyter
SourceType Open Website
Index Database
Publisher
StartPage 1207
SubjectTerms 22E30
42B20
42B35
43A15
BMO space
Riesz transform
stratified Lie groups
VMO space
Title Uniform boundedness and compactness for the commutator of an extension of Riesz transform on stratified Lie groups
URI https://www.degruyter.com/doi/10.1515/anona-2025-0092
https://doaj.org/article/87f2fac0ae3942d1b349941f42d336d8
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSwMxFA7Skz0UV6wbOXjwEjoz2WaOKpYi6kEs9BayioJV2imiv96XzFSqIF68TcJjZvhekve9LF8QOim0TzpyRGQ-EIj4FSk10wT6ZKis1FLbeN755laMxuxqwicrV33FPWGNPHAD3KCUoQjaZvDOihUuNxQ4OssDPFMqXDrmCzFvJZl6anZf5VJmrZYPxOyBhmxaQ5soOIk6Q9_CUFLr76LeW1qhdv5htnivlyuiKdAMN1CvZYj4rPmzTbTmp1uou6IbuI1mwBQj2cQmXorkXRyusJ46nHaU2zqVwQADu4t1z4s65tb4JYAVTvPecZIslu8gU_7A9ZK-YqhtlHQDcFN8_ehxOvcx30Hj4eX9xYi0lycQCxSiJoHbwgtXSWMrUeXcCZqVxnkhZZC2KKx0LDALwxul1mhmodYAGZTUci4Mo7uoA5D5PYRLYyiXlS21pUxYY8pozcvCc-GCKPvodImlem00MlTMLQB2lWBXEXYVYe-j84j1l1kUt04V4HLVulz95fI-oj88pdqON__tuznL9__j0wdovWlCkmTsEHXq2cIfASupzXFqgJ-f1uNv
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKe4AeKp6i5eUDBy7WJvErOZaKssC2SNBKvVn22C5ItFtts0Lw65lxsquC4MItHo2VaDz2fDOxPzP2svGp8MgJU6UsMOJ3ovXKC5yTuQPrrQc673x0bKan6v2ZPttgB6uzMLStMqbzxfJHPzCkTuIcllQoW3MNYASeeMyNPY5wowWxBk2-9BffbrEtg_AfXXtrf_r288d1qYVQhbXVSOzzl-6_xaRC3b_Ndr6X39Xrb7kRdQ7vsp0RLvL9YXzvsY10eZ9t3yARfMAWCBsJefJANySlSGsX95eRl-3l0Jc2KnCEeiS7WPaUaPN5Ri1eiuBUMaP2J0ybf_J-hWU5Sgda3YxAlc--Jl4OgVw_ZKeHb04OpmK8SUEA4oleZA1NMrGzATrT1ToaWbUhJmNtttA0YKPKCnCtkxKCV4DSgMjQStDaBCUfsU00WXrMeBuC1LaD1oNUBkJoSVu3TdImZtPuslcrW7qrgTDDUaKBZnfF7I7M7sjsu-w12XqtRkzXRTBfnLtx4rjW5iZ7qNCnOtXEOkjM0VSd8VlKE_F98o-RcuMsvP7Xe2tV7_1Xrxfs9vTkaOZm744_PGF3Bv-xolJP2Wa_WKZniE_68Hz0v18kQudZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgKyF6qHiKUh4-cOBibRK_kmNbWBYoBQGVerPssV1xoFtts0L01zPjpKsFwYVbPBrL0fgx34ztz4y9aHwqPHLCVCkL9PidaL3yAudk7sB664HuO384NvMT9e5Un27chaFjlTGdLVc_-4EhdRoXsKJE2ZprAD3w1GNs7LGHGy2INWh6EfNNtmVMJ_WEbe3P33z5uM60EKiwthp5ff5S-zeXVJj7t9nOj7Jbvf6VDaczu8N2RrTI94fuvctupPN7bHuDQ_A-WyJqJODJAz2QlCItXdyfR15Ol0NfyqjAEemR7PuqpzibLzJq8ZIDp4QZlT9j1HzF-2soy1E6sOpmxKn86Fvi5Q7I5QN2Mnv99XAuxocUBCCc6EXW0CQTOxugM12to5FVG2Iy1mYLTQM2qqwAlzopIXgFKA0IDK0ErU1Q8iGboMnSI8bbEKS2HbQepDIQQkvaum2SNjGbdpe9vLaluxj4MhzFGWh2V8zuyOyOzL7LDsjWazUiui6CxfLMjfPGtTY32UOFQ6pTTayDxBBN1Rm_pTQR25N_9JQbJ-Hlv9qtVf34v2o9Z7c-vZq5o7fH7_fY7WH4WFGpJ2zSL1fpKaKTPjwbh98v0YLmfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uniform+boundedness+and+compactness+for+the+commutator+of+an+extension+of+Riesz+transform+on+stratified+Lie+groups&rft.jtitle=Advances+in+nonlinear+analysis&rft.au=Han%2C+Xueting&rft.au=Chen%2C+Yanping&rft.date=2025-07-04&rft.issn=2191-950X&rft.eissn=2191-950X&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1515%2Fanona-2025-0092&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_anona_2025_0092
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2191-950X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2191-950X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2191-950X&client=summon