On Using Approximate Computing to Build an Error Detection Scheme for Arithmetic Circuits

Selecting the ideal trade-off between reliability improvement and cost (i.e., area, timing and power overhead) associated with a fault tolerant architecture generally requires an extensive Design Space Exploration. In this paper, we present a feasibility study that addresses the problem of selective...

Full description

Saved in:
Bibliographic Details
Published inJournal of electronic testing Vol. 36; no. 1; pp. 33 - 46
Main Authors Deveautour, B., Virazel, A., Girard, P., Gherman, V.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2020
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Selecting the ideal trade-off between reliability improvement and cost (i.e., area, timing and power overhead) associated with a fault tolerant architecture generally requires an extensive Design Space Exploration. In this paper, we present a feasibility study that addresses the problem of selective hardening of arithmetic circuits by considering a duplication/comparison scheme as error detection architecture. Four different selective hardening methods have been investigated and compared: i) a full duplication scheme, ii) a reduced duplication scheme based on a structural susceptibility analysis, iii) a reduced duplication scheme based on the logical weight of the arithmetic circuit outputs and iv) a reduced duplication scheme that uses an approximate version of the arithmetic circuit. Experimental results performed on adder and multiplier case studies demonstrate the interest of using approximate structures in a duplication scheme since they provide much better error detection capability than other selective hardening methods with lower area and power overheads. Note that all experiments have been done without considering the area and power overhead due to the comparators. This may slightly biased the results from a quantitative point of view, although it does not jeopardize the main conclusion about the interest of using approximate structures as duplication scheme. Moreover, validations using a gate-level fault injection campaign have shown that approximate structures offer a better reliability level compared to the other considered duplication scenarios.
AbstractList Selecting the ideal trade-off between reliability improvement and cost (i.e., area, timing and power overhead) associated with a fault tolerant architecture generally requires an extensive Design Space Exploration. In this paper, we present a feasibility study that addresses the problem of selective hardening of arithmetic circuits by considering a duplication/comparison scheme as error detection architecture. Four different selective hardening methods have been investigated and compared: i) a full duplication scheme, ii) a reduced duplication scheme based on a structural susceptibility analysis, iii) a reduced duplication scheme based on the logical weight of the arithmetic circuit outputs and iv) a reduced duplication scheme that uses an approximate version of the arithmetic circuit. Experimental results performed on adder and multiplier case studies demonstrate the interest of using approximate structures in a duplication scheme since they provide much better error detection capability than other selective hardening methods with lower area and power overheads. Note that all experiments have been done without considering the area and power overhead due to the comparators. This may slightly biased the results from a quantitative point of view, although it does not jeopardize the main conclusion about the interest of using approximate structures as duplication scheme. Moreover, validations using a gate-level fault injection campaign have shown that approximate structures offer a better reliability level compared to the other considered duplication scenarios.
Author Gherman, V.
Deveautour, B.
Girard, P.
Virazel, A.
Author_xml – sequence: 1
  givenname: B.
  surname: Deveautour
  fullname: Deveautour, B.
  organization: LIRMM – University of Montpellier, CNRS
– sequence: 2
  givenname: A.
  orcidid: 0000-0001-7398-7107
  surname: Virazel
  fullname: Virazel, A.
  email: Arnaud.Virazel@lirmm.fr
  organization: LIRMM – University of Montpellier, CNRS
– sequence: 3
  givenname: P.
  surname: Girard
  fullname: Girard, P.
  organization: LIRMM – University of Montpellier, CNRS
– sequence: 4
  givenname: V.
  surname: Gherman
  fullname: Gherman, V.
  organization: CEA – LIST, Laboratoire Fiabilité et Intégration Capteurs
BackLink https://hal-lirmm.ccsd.cnrs.fr/lirmm-02395626$$DView record in HAL
BookMark eNp9kE1LAzEQhoMoWD_-gKeAR1mdJGazPdZaP6DQg_bgKWS3ExvpbmqSFf33Rlf05mlgeJ6XmfeA7Ha-Q0JOGJwzAHURGVSiLIBDAbKSVSF3yIhJJQpQXO2SEYy5KCqmLvfJQYwvkCUuyxF5WnR0GV33TCfbbfDvrjUJ6dS32z59bZOnV73brKjp6CwEH-g1JmyS8x19aNbYIrV5OQkurVtMrqFTF5repXhE9qzZRDz-mYdkeTN7nN4V88Xt_XQyLxohZSqsNICsUrysS1whKDPml6DG1tp6pRAM1rbmdVkra4yxRrC6slxJNNlsJIpDcjbkrs1Gb0N-IHxob5y-m8z1xoW21cDFWJa8fGOZPh3o_OxrjzHpF9-HLh-ouchX8KqsVKb4QDXBxxjQ_gYz0F-F66HwnAz6u3AtsyQGKWa4e8bwF_2P9Qmz-IYl
CitedBy_id crossref_primary_10_1016_j_vlsi_2023_102068
crossref_primary_10_1109_TVLSI_2023_3272226
Cites_doi 10.1109/AEECT.2017.8257753
10.1109/TEST.2003.1271075
10.1007/s10836-016-5578-0
10.1109/DSD.2013.95
10.1109/ISVLSI.2008.22
10.1109/VTS.2010.5469589
10.1016/j.microrel.2015.06.125
10.1109/ETS.2008.30
10.1109/LATW.2012.6261262
10.1007/s10836-017-5640-6
10.1109/DATE.2011.5763020
10.1109/ETS.2015.7138733
10.1109/MDT.2010.120
10.1109/TR.2016.2604918
10.1109/DATE.2009.5090716
10.1109/TNS.2008.2006265
10.23919/DATE.2017.7926993
10.1109/LASCAS.2015.7250415
10.1109/IOLTS.2014.6873678
10.1109/LATW.2018.8349681
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7XB
88I
88K
8AO
8BQ
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M2P
M2T
M7S
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
1XC
DOI 10.1007/s10836-020-05858-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Telecommunications (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Science Database
Telecommunications Database
Engineering Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
Materials Business File
ProQuest Telecommunications
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Engineering Database
Aluminium Industry Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest Telecommunications (Alumni Edition)
Ceramic Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
Corrosion Abstracts
ProQuest Central (Alumni)
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 1573-0727
EndPage 46
ExternalDocumentID oai_HAL_lirmm_02395626v1
10_1007_s10836_020_05858_5
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYOK
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAG
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADMVV
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEKVL
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M2P
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
_50
~A9
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AGQEE
AGRTI
AIGIU
CITATION
H13
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7XB
88K
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
M2T
PQEST
PQUKI
PRINS
Q9U
1XC
ID FETCH-LOGICAL-c355t-f5a0e18726b6ede07a924079fffbd7e0aebfb2b6b7faaafa31b8f275eaf5ac5e3
IEDL.DBID U2A
ISSN 0923-8174
IngestDate Wed Oct 02 06:37:59 EDT 2024
Wed Sep 25 17:54:41 EDT 2024
Thu Sep 12 18:35:01 EDT 2024
Sat Dec 16 12:05:49 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fault tolerance
Error detection
Arithmetic circuit
Duplication scheme
Selective hardening
Approximate computing
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-f5a0e18726b6ede07a924079fffbd7e0aebfb2b6b7faaafa31b8f275eaf5ac5e3
ORCID 0000-0001-7398-7107
0000-0003-0722-8772
0000-0003-1055-2696
PQID 2387228687
PQPubID 54186
PageCount 14
ParticipantIDs hal_primary_oai_HAL_lirmm_02395626v1
proquest_journals_2387228687
crossref_primary_10_1007_s10836_020_05858_5
springer_journals_10_1007_s10836_020_05858_5
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle Theory and Applications
PublicationTitle Journal of electronic testing
PublicationTitleAbbrev J Electron Test
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References WaliIVirazelABosioAGirardPPravossoudovitchSSonza ReordaMA hybrid fault-tolerant architecture for highly reliable processing coresJournal of Electronic Testing – Theory and Applications201632214716110.1007/s10836-016-5578-0
WaliIDeveautourBVirazelABosioAGirardPSonza ReordaMA low-cost reliability vs. cost trade-off methodology to selectively harden logic circuitsJournal of Electronic Testing – Theory and Applications20173331253610.1007/s10836-017-5640-6
NanGate. Nangate 45nm open cell library. [Online]. Available: http://www.nangate.com/?page id=2325
Polian I, Reddy S, Becker B (2008) Scalable Calculation of Logical Masking Effects for Selective Hardening Against Soft Errors. In: Proc. of IEEE Annual Symposium on VLSI, pp 257–262
Wali I, Deveautour B, Virazel A, Bosio A, Dilillo L, Girard P (2015) An Effective Hybrid Fault-Tolerant Architecture for Pipelined Cores. In: Proc. of IEEE European Test Symposium, pp 1–6
WirthGKastensmidtLFernandaIRSingle event transients in logic circuits-load and propagation induced pulse broadeningIEEE Trans Nucl Sci20085562928293510.1109/TNS.2008.2006265
Weidling S, Sogomonyan ES, Goessel M (2013) Error Correction of Transient Errors in a Sum-Bit Duplicated Adder by Error Detection. In: Proc. of Euromicro Conference on Digital System Design, pp 855–862
Mrazek V, Hrbacek R, Vasicek Z, Sekanina L (2017) Evoapprox8b: Library of Approx Adders and Multipliers for Circuit Design and Benchmarking of Approximation Methods. In: Proc. of IEEE/ACM/EDAA Design Automation and Test in Europe, pp 258–261
PolianIHayesJSelective hardening: toward cost-effective error toleranceIEEE Design Test of Computers2011283546310.1109/MDT.2010.120
Al-Maaitah K, Qiqieh I, Soltan A, Yakovlev A (2017) Configurable-accuracy approximate adder design with light-weight fast convergence error recovery circuit. In: Proc. IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), pp 1–6
GomesIACMartinsMReisAKastensmidtFLExploring the use of approximate TMR to mask transient faults in logic with low area overheadMicroelectron Reliab2015559–102072207610.1016/j.microrel.2015.06.125
Krstić M, Weidling S, Petrović V, Goessel M (2014) Improved circuitry for soft error correction in combinational logic in pipelined designs. In: Proc. of IEEE 20th International On-Line Testing Symposium, pp 93–98
Design Compiler. [Online]. Available: https://www.synopsys.com
Leveugle R, Calvez A, Maistri P, Vanhauwaert P (2009) Statistical fault injection: Quantified error and confidence. In: Proc. of IEEE/ACM/EDAA Design Automation and Test in Europe, pp 502–506
Pagliarini SN et al (2012) Selective Hardening Methodology for Combinational Logic. In: Proc. of IEEE Latin American Test Workshop, pp 1–6
Sanchez-ClementeAJEntrenaLHrbacekRSekaninaLError mitigation using approximate logic circuits : a comparison of probabilistic and evolutionary approachesIEEE Trans Reliab20166541871188310.1109/TR.2016.2604918
Bottoni C, Coeffic B, Daveau J-M, Naviner L, Roche P (2015) Partial Triplication of a Sparc-v8 Microprocessor using Fault Injection. In: Proc. of IEEE Latin American Symposium on Circuits and Systems, pp 1–4
Fazeli M, Ahmadian S, Miremadi S, Asadi H, Tahoori M (2011) Soft Error Rate Estimation of Digital Circuits in the Presence of Multiple Event Transients. In: Proc. of Design Automation and Test in Europe, pp 1–6
Maniatakos M, Makris Y (2010) Workload-Driven Selective Hardening of Control State Elements in Modern Microprocessors. In: Proc. of IEEE VLSI Test Symposium, pp 159–164
Zoellin C, Wunderlich H, Polian I, Becker B (2008) Selective Hardening in early Design Steps. In: Proc. of IEEE European Test Symposium, pp 185–190
Mohanram K, Touba N (2003) Cost-Effective Approach for Reducing Soft Error Failure Rate in Logic Circuits. In: Proc. of IEEE Int. Test Conference, pp 893–901
Traiola M, Virazel A, Girard P, Barbareschi M, Bosio A (2018) Testing approximate digital circuits: Challenges and opportunities. In: Proc. of IEEE Latin American Test Symposium, pp 1–6
5858_CR4
5858_CR7
5858_CR6
5858_CR1
I Wali (5858_CR19) 2017; 33
5858_CR3
5858_CR20
5858_CR2
5858_CR10
5858_CR11
AJ Sanchez-Clemente (5858_CR15) 2016; 65
5858_CR22
5858_CR12
5858_CR14
5858_CR16
I Polian (5858_CR13) 2011; 28
5858_CR17
G Wirth (5858_CR21) 2008; 55
IAC Gomes (5858_CR5) 2015; 55
5858_CR9
I Wali (5858_CR18) 2016; 32
5858_CR8
References_xml – ident: 5858_CR1
  doi: 10.1109/AEECT.2017.8257753
– ident: 5858_CR3
– ident: 5858_CR9
  doi: 10.1109/TEST.2003.1271075
– volume: 32
  start-page: 147
  issue: 2
  year: 2016
  ident: 5858_CR18
  publication-title: Journal of Electronic Testing – Theory and Applications
  doi: 10.1007/s10836-016-5578-0
  contributor:
    fullname: I Wali
– ident: 5858_CR20
  doi: 10.1109/DSD.2013.95
– ident: 5858_CR14
  doi: 10.1109/ISVLSI.2008.22
– ident: 5858_CR8
  doi: 10.1109/VTS.2010.5469589
– volume: 55
  start-page: 2072
  issue: 9–10
  year: 2015
  ident: 5858_CR5
  publication-title: Microelectron Reliab
  doi: 10.1016/j.microrel.2015.06.125
  contributor:
    fullname: IAC Gomes
– ident: 5858_CR11
– ident: 5858_CR22
  doi: 10.1109/ETS.2008.30
– ident: 5858_CR12
  doi: 10.1109/LATW.2012.6261262
– volume: 33
  start-page: 25
  issue: 31
  year: 2017
  ident: 5858_CR19
  publication-title: Journal of Electronic Testing – Theory and Applications
  doi: 10.1007/s10836-017-5640-6
  contributor:
    fullname: I Wali
– ident: 5858_CR4
  doi: 10.1109/DATE.2011.5763020
– ident: 5858_CR17
  doi: 10.1109/ETS.2015.7138733
– volume: 28
  start-page: 54
  issue: 3
  year: 2011
  ident: 5858_CR13
  publication-title: IEEE Design Test of Computers
  doi: 10.1109/MDT.2010.120
  contributor:
    fullname: I Polian
– volume: 65
  start-page: 1871
  issue: 4
  year: 2016
  ident: 5858_CR15
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2016.2604918
  contributor:
    fullname: AJ Sanchez-Clemente
– ident: 5858_CR7
  doi: 10.1109/DATE.2009.5090716
– volume: 55
  start-page: 2928
  issue: 6
  year: 2008
  ident: 5858_CR21
  publication-title: IEEE Trans Nucl Sci
  doi: 10.1109/TNS.2008.2006265
  contributor:
    fullname: G Wirth
– ident: 5858_CR10
  doi: 10.23919/DATE.2017.7926993
– ident: 5858_CR2
  doi: 10.1109/LASCAS.2015.7250415
– ident: 5858_CR6
  doi: 10.1109/IOLTS.2014.6873678
– ident: 5858_CR16
  doi: 10.1109/LATW.2018.8349681
SSID ssj0007256
Score 2.2227225
Snippet Selecting the ideal trade-off between reliability improvement and cost (i.e., area, timing and power overhead) associated with a fault tolerant architecture...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 33
SubjectTerms Architecture
Arithmetic
CAE) and Design
Circuit reliability
Circuits and Systems
Comparators
Computer-Aided Engineering (CAD
Electrical Engineering
Engineering
Engineering Sciences
Error correction & detection
Error detection
Fault tolerance
Feasibility studies
Hardening
Micro and nanotechnologies
Microelectronics
Reproduction (copying)
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9RADLbacgEkBAXE0oLm0FsZbV6TmT1VS-l2hYAeoFI5jWYSjxqJzZY0Rf35tbNJd0Gi17xGsh37m7E_G-CAIX5qaHdiEhdkNikj6TLtZebyEnVcZg6ZO_z1Wz4_zz5fqIstmA9cGC6rHHxi56jLZcFn5GMKLTpJTG702Hk-BSja8dHVb8nzozjP2g_T2IZHMffEY8747PTeJ-ukm-MaEZyRhkB4T5_pSXQm5UJcTgobZaT6K0RtX3KB5Ab6_Cdh2sWh2XN41gNIMV1p_AVsYb0LT6cb-YBdeLLRZfAl_DyrRVcZIKbcQPy2IpCKYjXOga-2S_GRh2MLV4uTplk24hO2XYVWLb6TThcoCNnSilV7uWDOoziumuKmaq9fwfns5MfxXPYTFWRBuKKVQbkIYxJk7nMsMdJuwju6SQjBlxojhz74xOdeB-dccGnsTUi0QkdvFgrT17BTL2t8AwILVSilMTcxZmnIXNCBsGJZeEIQQUUjOByEaK9WjTPsukUyi9ySyG0ncqtGcEByvn-Qe17Pp1_sr6pZLCzzbwmm5X_iEewPirD9v3Zt15Yxgg-Dcta3_7_o24e_tgePk84quHZlH3ba5gbfEQJp_fvOuO4APyTYBg
  priority: 102
  providerName: ProQuest
Title On Using Approximate Computing to Build an Error Detection Scheme for Arithmetic Circuits
URI https://link.springer.com/article/10.1007/s10836-020-05858-5
https://www.proquest.com/docview/2387228687/abstract/
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02395626
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3Nb9MwFMCf6HaBwwQMRMeofNhti5Q4cewes9Gu2heIrdJ2suzkWYtEU5RliD-fZ7ddC4LDTpESJ5bee7F_1vsCOPCInyo6nShuXJQNqzgymbRRZvIKZVJlBn3u8OVVPplmZ7fidp3HHYLdVx7JsFBv5Lqp1MfLet-tEioSPdj28OBNecqLp-VX8tCyNSZyiRTx9jJT5t_f-GM36t37WMgN0PzLNxq2nPFr2FmyIisWyn0DL7B5C682Kgjuwt2XhgWvPyt8cfBfNQEoskWrBn-3m7Nj3_iamYaN2nbess_Yheirhl2TvmbIiFppirq7n_l8RnZSt-Vj3T28g-l4dHMyiZbdEqKSmKGLnDAxJkry3OZYYSzN0J_Whs45W0mMDVpnuc2tdMYYZ9LEKselQENvlgLT97DVzBv8AAxLUQohMVcJZqnLjJOOOLAqLdGBE3EfDldS0z8WRTH0uvyxl7EmGesgYy36cECCfRro61lPigv9vW5nM-1zawnB8p9JH_ZXktfL_-hBE1BIzlWuZB-OVtpYP_7_pHvPG_4RXvJgFj5OZR-2uvYRPxFtdHYAPTU-HcB2cXp3PqLr8ejq67dBsLnfVe3P0g
link.rule.ids 230,315,786,790,891,12792,21416,27957,27958,33408,33779,41116,41558,42185,42627,43635,43840,52146,52269,74392,74659
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB7RcuAhVVBABFrYQ2-wwq_1bk4ofYQAaTnQSuW02rVnVUvEKY6L-PnMOE4TkODq10oz45lvdx4fwAFD_NTQ7sQkLshsWEbSZdrLzOUl6rjMHHLv8OlZPrnIPl2qy_7AbdGXVa58Yueoy3nBZ-TvKLToJDG50e-vf0hmjeLsak-hsQV3s5RCJ3eKjz_cemKddOytEYEYaQh6900zfeucSbn8llPBRhmp_ghMW1dcFrmBOf9Kk3bRZ_wIdnrYKEZLPT-GO1jvwsPRRhZgFx5szBZ8At--1KKrBxAjHhv-qyJoimJJ4sBX27k4ZEps4Wpx0jTzRhxj29Vl1eIraXKGgvAsrVi1VzPudBRHVVPcVO3iKVyMT86PJrLnUZAFoYlWBuUijEl8uc-xxEi7Ie_jhiEEX2qMHPrgE597HZxzwaWxNyHRCh29WShMn8F2Pa_xOQgsVKGUxtzEmKUhc0EHQohl4Qk3BBUN4M1KiPZ6OS7Drgcjs8gtidx2IrdqAAck59sHedL1ZDS136tmNrPcdUvgLP8ZD2BvpQjb_2ELu7aHAbxdKWd9-9-Lvvj_117Dvcn56dROP559fgn3k85CuHplD7bb5gb3CYO0_lVnaL8B3k7XNA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9NADLfYJiFAmmCA6D7gHvYG0fJ1H31C3daqwCgTMGk8ne4SnxaJpluaIf78-dLrWpDgNcnlJNuxfxf_bAMceoifKTqdqNS4KO-XcWRyaaPciBJlUuYGfe3w54kYX-QfL_ll4D_NA61y6RM7R13OCv-P_IhCi0xTJZQ8coEWcX46en99E_kJUj7TGsZpbMCWzAUnC986Hk7Ov977ZZl2s1xjgjSRIiAeSmhCIZ3KPBnXJ4YVVxH_I0xtXHmS5BoC_Stp2sWi0VPYDiCSDRZafwYPsN6BJ4O1nMAOPF7rNPgcfnypWccOYAPfRPx3RUAV2WKkg7_aztixH5DNTM2GTTNr2Cm2HUurZt9Ir1NkhG5px6q9mvq6R3ZSNcVt1c5fwMVo-P1kHIWpClFB2KKNHDcxJiRMYQWWGEvT96e6vnPOlhJjg9bZ1AornTHGmSyxyqWSo6GVBcfsJWzWsxpfAcOCF5xLFCrBPHO5cdIRXiwLSyjC8bgHb5dC1NeL5hl61SbZi1yTyHUncs17cEhyvn_Q970eD870z6qZTrWvwSWoJn4lPdhfKkKH722uV9bRg3dL5axu_3vT3f-_7Q08JCvTZx8mn_bgUdoZiKey7MNm29ziAQGS1r4OlnYHy-Pc1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Using+Approximate+Computing+to+Build+an+Error+Detection+Scheme+for+Arithmetic+Circuits&rft.jtitle=Journal+of+electronic+testing&rft.au=Deveautour%2C+Bastien&rft.au=Virazel%2C+Arnaud&rft.au=Girard%2C+Patrick&rft.au=Gherman%2C+Valentin&rft.date=2020-02-01&rft.pub=Springer+Verlag&rft.issn=0923-8174&rft.eissn=1573-0727&rft.volume=36&rft.spage=33&rft.epage=46&rft_id=info:doi/10.1007%2Fs10836-020-05858-5&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_lirmm_02395626v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0923-8174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0923-8174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0923-8174&client=summon