Field emitter electrostatics: a review with special emphasis on modern high-precision finite-element modelling
This review of the quantitative electrostatics of field emitters, covering analytical, numerical and ‘fitted formula’ approaches, is thought the first of its kind in the 100 years of the subject. The review relates chiefly to situations where emitters operate in an electronically ideal manner, and z...
Saved in:
Published in | Journal of physics. Condensed matter Vol. 34; no. 49; pp. 493001 - 493039 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
07.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This review of the quantitative electrostatics of field emitters, covering analytical, numerical and ‘fitted formula’ approaches, is thought the first of its kind in the 100 years of the subject. The review relates chiefly to situations where emitters operate in an electronically ideal manner, and zero-current electrostatics is applicable. Terminology is carefully described and is ‘polarity independent’, so that the review applies to both field electron and field ion emitters. It also applies more generally to charged, pointed electron-conductors—which exhibit the ‘electrostatic lightning-rod effect’, but are poorly discussed in general electricity and magnetism literature. Modern electron-conductor electrostatics is an application of the chemical thermodynamics and statistical mechanics of electrons. In related theory, the primary role of classical electrostatic potentials (rather than fields) becomes apparent. Space and time limitations have meant that the review cannot be comprehensive in both detail and scope. Rather, it focuses chiefly on the electrostatics of two common basic emitter forms: the needle-shaped emitters used in traditional projection technologies; and the post-shaped emitters often used in modelling large-area multi-emitter electron sources. In the post-on-plane context, we consider in detail both the electrostatics of the single post and the interaction between two identical posts that occurs as a result of electrostatic depolarization (often called ‘screening’ or ‘shielding’). Core to the review are discussions of the ‘minimum domain dimensions’ method for implementing effective finite-element-method electrostatic simulations, and of the variant of this that leads to very precise estimates of dimensionless field enhancement factors (error typically less than 0.001% in simple situations where analytical comparisons exist). Brief outline discussions, and some core references, are given for each of many ‘related considerations’ that are relevant to the electrostatic situations, methods and results described. Many areas of field emitter electrostatics are suggested where further research and/or separate mini-reviews would probably be useful. |
---|---|
AbstractList | This review of the quantitative electrostatics of field emitters, covering analytical, numerical and ‘fitted formula’ approaches, is thought the first of its kind in the 100 years of the subject. The review relates chiefly to situations where emitters operate in an electronically ideal manner, and zero-current electrostatics is applicable. Terminology is carefully described and is ‘polarity independent’, so that the review applies to both field electron and field ion emitters. It also applies more generally to charged, pointed electron-conductors—which exhibit the ‘electrostatic lightning-rod effect’, but are poorly discussed in general electricity and magnetism literature. Modern electron-conductor electrostatics is an application of the chemical thermodynamics and statistical mechanics of electrons. In related theory, the primary role of classical electrostatic potentials (rather than fields) becomes apparent. Space and time limitations have meant that the review cannot be comprehensive in both detail and scope. Rather, it focuses chiefly on the electrostatics of two common basic emitter forms: the needle-shaped emitters used in traditional projection technologies; and the post-shaped emitters often used in modelling large-area multi-emitter electron sources. In the post-on-plane context, we consider in detail both the electrostatics of the single post and the interaction between two identical posts that occurs as a result of electrostatic depolarization (often called ‘screening’ or ‘shielding’). Core to the review are discussions of the ‘minimum domain dimensions’ method for implementing effective finite-element-method electrostatic simulations, and of the variant of this that leads to very precise estimates of dimensionless field enhancement factors (error typically less than 0.001% in simple situations where analytical comparisons exist). Brief outline discussions, and some core references, are given for each of many ‘related considerations’ that are relevant to the electrostatic situations, methods and results described. Many areas of field emitter electrostatics are suggested where further research and/or separate mini-reviews would probably be useful. This review of the quantitative electrostatics of field emitters, covering analytical, numerical and 'fitted formula' approaches, is thought the first of its kind in the 100 years of the subject. The review relates chiefly to situations where emitters operate in an electronically ideal manner, and zero-current electrostatics is applicable. Terminology is carefully described and is 'polarity independent', so that the review applies to both field electron and field ion emitters. It also applies more generally to charged, pointed electron-conductors-which exhibit the 'electrostatic lightning-rod effect', but are poorly discussed in general electricity and magnetism literature. Modern electron-conductor electrostatics is an application of the chemical thermodynamics and statistical mechanics of electrons. In related theory, the primary role of classical electrostatic potentials (rather than fields) becomes apparent. Space and time limitations have meant that the review cannot be comprehensive in both detail and scope. Rather, it focuses chiefly on the electrostatics of two common basic emitter forms: the needle-shaped emitters used in traditional projection technologies; and the post-shaped emitters often used in modelling large-area multi-emitter electron sources. In the post-on-plane context, we consider in detail both the electrostatics of the single post and the interaction between two identical posts that occurs as a result of electrostatic depolarization (often called 'screening' or 'shielding'). Core to the review are discussions of the 'minimum domain dimensions' method for implementing effective finite-element-method electrostatic simulations, and of the variant of this that leads to very precise estimates of dimensionless field enhancement factors (error typically less than 0.001% in simple situations where analytical comparisons exist). Brief outline discussions, and some core references, are given for each of many 'related considerations' that are relevant to the electrostatic situations, methods and results described. Many areas of field emitter electrostatics are suggested where further research and/or separate mini-reviews would probably be useful.This review of the quantitative electrostatics of field emitters, covering analytical, numerical and 'fitted formula' approaches, is thought the first of its kind in the 100 years of the subject. The review relates chiefly to situations where emitters operate in an electronically ideal manner, and zero-current electrostatics is applicable. Terminology is carefully described and is 'polarity independent', so that the review applies to both field electron and field ion emitters. It also applies more generally to charged, pointed electron-conductors-which exhibit the 'electrostatic lightning-rod effect', but are poorly discussed in general electricity and magnetism literature. Modern electron-conductor electrostatics is an application of the chemical thermodynamics and statistical mechanics of electrons. In related theory, the primary role of classical electrostatic potentials (rather than fields) becomes apparent. Space and time limitations have meant that the review cannot be comprehensive in both detail and scope. Rather, it focuses chiefly on the electrostatics of two common basic emitter forms: the needle-shaped emitters used in traditional projection technologies; and the post-shaped emitters often used in modelling large-area multi-emitter electron sources. In the post-on-plane context, we consider in detail both the electrostatics of the single post and the interaction between two identical posts that occurs as a result of electrostatic depolarization (often called 'screening' or 'shielding'). Core to the review are discussions of the 'minimum domain dimensions' method for implementing effective finite-element-method electrostatic simulations, and of the variant of this that leads to very precise estimates of dimensionless field enhancement factors (error typically less than 0.001% in simple situations where analytical comparisons exist). Brief outline discussions, and some core references, are given for each of many 'related considerations' that are relevant to the electrostatic situations, methods and results described. Many areas of field emitter electrostatics are suggested where further research and/or separate mini-reviews would probably be useful. |
Author | de Assis, Thiago A Forbes, Richard G Dall’Agnol, Fernando F |
Author_xml | – sequence: 1 givenname: Thiago A orcidid: 0000-0003-2332-1096 surname: de Assis fullname: de Assis, Thiago A organization: Instituto de Física, Universidade Federal da Bahia, Campus Universitário da Federação , Rua Barão de Jeremoabo s/n, 40170-115 Salvador, BA, Brazil – sequence: 2 givenname: Fernando F orcidid: 0000-0003-3551-3466 surname: Dall’Agnol fullname: Dall’Agnol, Fernando F organization: Universidade Federal de Santa Catarina Department of Exact Sciences and Education (CEE), Campus Blumenau, Rua João Pessoa, 2514, Velha, Blumenau 89036-004, SC, Brazil – sequence: 3 givenname: Richard G orcidid: 0000-0002-8621-3298 surname: Forbes fullname: Forbes, Richard G organization: University of Surrey Advanced Technology Institute & School of Computer Science and Electronic Engineering, Guildford, Surrey GU2 7XH, United Kingdom |
BookMark | eNp9kE1P5DAMhiMEEsPHnWOOHCgkbdqm3BBiWCQkLrvS3iJP6jJGbVKSDGj_PZmdFQek5WTJfl7Lfo7YvvMOGTuT4lIKra9k1ciiUfr3FdiuFLDHFp-tfbYQXV0VutPqkB3F-CKEULpSC-aWhGPPcaKUMHAc0abgY4JENl5z4AHfCN_5O6U1jzNagjHT8xoiRe4dn3yPwfE1Pa-LOeR5pNwdyFHCIq-b0KW_0DiSez5hBwOMEU__1WP2a3n38_ZH8fh0_3B781jYqq5TgWqFrQCLK73CAXoF0PSlHWAAgUNpm64vm1LoWklZVUpC268QBQiJULetrY7Z-W7vHPzrBmMyE0WbbwCHfhNN2UrV1HVX64yKHWrz3zHgYOZAE4Q_RgqzVWu2Hs3Wo9mpzZHmS8TS1ph3KQCN3wUvdkHys3nxm-CyhP_jHwvUkgQ |
CODEN | JCOMEL |
CitedBy_id | crossref_primary_10_1109_TED_2024_3476240 crossref_primary_10_1103_PhysRevB_107_075426 crossref_primary_10_1063_5_0138100 crossref_primary_10_1016_j_elstat_2023_103867 crossref_primary_10_1016_j_carbon_2024_118936 crossref_primary_10_1063_5_0153635 crossref_primary_10_1088_1361_6463_ad9616 crossref_primary_10_1116_6_0003016 crossref_primary_10_1103_PhysRevLett_130_106204 crossref_primary_10_1116_6_0002478 crossref_primary_10_1109_TED_2023_3283231 crossref_primary_10_1116_6_0002739 crossref_primary_10_1063_10_0030409 crossref_primary_10_1116_6_0002315 crossref_primary_10_1116_6_0002317 |
Cites_doi | 10.1063/1.2996005 10.1063/1.4921709 10.1016/j.ultramic.2018.11.007 10.1016/j.physe.2019.01.005 10.1016/S0304-3991(02)00297-8 10.1088/0031-9120/24/3/309 10.1098/rspa.2013.0271 10.1016/j.ultramic.2017.10.016 10.1002/sia.2938 10.1016/j.cartre.2020.100008 10.1098/rspa.1929.0147 10.1063/1.5025694 10.1116/6.0000949 10.1063/1.5063901 10.1209/0295-5075/85/17001 10.1116/1.5063733 10.1088/1361-648X/aad84c 10.1016/j.nima.2003.11.167 10.1049/el:20045581 10.1016/0378-5963(83)90073-9 10.1103/PhysRev.102.1464 10.1016/j.diamond.2009.08.008 10.1063/1.3665390 10.1063/1.5122971 10.1063/1.2771375 10.1063/1.322600 10.1063/1.2041824 10.7567/1347-4065/ab5fef 10.1088/0031-8949/38/2/029 10.1016/S0304-3991(97)00132-0 10.1016/j.phpro.2008.07.080 10.1116/6.0000033 10.1063/1.5093416 10.1088/0022-3727/18/6/006 10.1038/s41598-022-06670-1 10.24033/asens.287 10.1046/j.1365-2818.2001.00890.x 10.1016/j.mtcomm.2022.103654 10.1016/S0304-3991(99)00098-4 10.1063/1.3253760 10.1103/PhysRev.31.900 10.1103/PhysRev.89.799 10.1098/rsos.190912 10.1116/1.4989428 10.1080/00268970410001727673 10.1063/1.3549705 10.1116/1.5144510 10.1116/1.5111455 10.1063/1.4973584 10.1116/6.0001886 10.1063/1.5041019 10.1063/1.4798926 10.1063/1.1448403 10.1063/1.3466992 10.1098/rspa.1928.0091 10.1109/JEDS.2019.2940086 10.1088/1361-648X/aadbdf 10.48550/arXiv.1504.06134 10.1116/1.5127118 10.1116/1.4953076 10.1017/S1431927615015184 10.1039/D0NR00739K 10.1088/0022-3727/48/38/385203 10.1088/0957-4484/27/44/44LT01 10.1088/1361-648X/aa8567 10.1007/BF00550007 10.1063/1.2008363 10.1103/PhysRev.92.45 10.1038/s41586-018-0223-y 10.1063/1.4940410 10.1103/PhysRev.21.419 10.1088/1361-6463/aaaba6 10.1116/1.1880072 10.1002/adma.200501267 10.1098/rsos.201986 10.1103/PhysRevLett.89.197602 10.1116/1.590857 10.1063/1.1744158 10.1116/1.3574391 10.1098/rsos.220748 10.1116/1.586867 10.1063/1.2964109 10.1007/BF01340034 10.1088/0031-8949/82/03/035602 10.1063/1.5126245 10.1063/1.1638617 10.1002/pssb.19690320103 10.1088/1742-6596/1400/5/055011 10.1134/1.1994978 10.1088/1361-648X/aaba9f 10.1109/IVNC.2017.8051530 10.1016/j.rinp.2021.104822 10.1063/1.1814439 10.1143/JJAP.43.L427 10.1063/5.0030100 10.1063/1.4961216 10.1103/PhysRevLett.92.106803 10.1088/0022-3727/11/14/003 10.1063/1.5133740 10.1063/1.5126674 10.1016/0169-4332(95)00521-8 10.1116/1.2894898 10.1098/rspa.2010.0460 10.1116/1.4971768 10.1063/1.5117289 10.1016/j.ultramic.2015.02.012 10.1142/S1793292006000112 10.1063/1.3615846 10.1016/0039-6028(80)90055-2 10.1088/0957-4484/16/1/018 10.1063/1.1430507 10.1021/nl051397d 10.1098/rspa.2007.0030 10.1063/1.5132561 10.1109/16.81650 10.1063/1.4959150 10.1063/1.5091712 10.1063/1.3097239 10.1116/1.5064403 10.1016/j.ultramic.2012.12.007 10.1002/aelm.201700295 10.1063/1.1709157 10.1103/PhysRevSeriesI.32.492 10.1063/1.4953813 10.1063/1.2188389 10.1063/1.1722347 10.1016/j.ultramic.2015.10.018 10.1016/S0360-0564(08)60526-X 10.1080/13642810208218358 10.1116/1.2188403 10.1016/j.mser.2004.12.001 10.1002/j.1538-7305.1951.tb03688.x 10.1080/13642810208218357 10.1016/j.ultramic.2021.113462 10.1103/PhysRevB.100.165421 10.1063/1.1576310 10.1063/1.332879 10.1098/rspa.2011.0025 10.1063/1.4929983 10.1039/D0TC05873D 10.1103/PhysRev.2.450 10.1002/1521-4095(200102)13:3<184::AID-ADMA184>3.0.CO;2-I 10.1117/12.451277 10.1016/j.ultramic.2021.113362 10.1116/1.3684425 10.1063/1.2799423 10.21236/AD0602844 10.1063/1.4979320 10.1016/S0042-207X(98)00302-9 10.1088/0022-3727/4/9/305 10.1063/1.1721330 10.1039/c0cs00126k 10.1063/1.4983680 10.1016/j.ultramic.2009.01.006 10.1103/PhysRevLett.9.417 10.1063/1.1713118 10.1063/1.1743515 |
ContentType | Journal Article |
Copyright | 2022 The Author(s). Published by IOP Publishing Ltd Creative Commons Attribution license. |
Copyright_xml | – notice: 2022 The Author(s). Published by IOP Publishing Ltd – notice: Creative Commons Attribution license. |
DBID | O3W TSCCA AAYXX CITATION 7X8 |
DOI | 10.1088/1361-648X/ac920a |
DatabaseName | Institute of Physics Open Access IOPscience (Open Access) CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1361-648X |
ExternalDocumentID | 10_1088_1361_648X_ac920a cmac920a |
GrantInformation_xml | – fundername: Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil grantid: 310311/2020-9. |
GroupedDBID | --- -~X 1JI 4.4 53G 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABHWH ABLJU ABQJV ABVAM ACAFW ACGFS ACHIP ACNCT AEFHF AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A O3W P2P PJBAE RIN RNS RO9 ROL RPA SY9 TN5 TSCCA W28 WH7 XPP YQT ZMT ~02 AAYXX ADEQX CITATION 7X8 |
ID | FETCH-LOGICAL-c355t-e4be70aceb8befad4aa6d2cfafa0ef2c69d2620854113341a7dbee0a01ea577c3 |
IEDL.DBID | O3W |
ISSN | 0953-8984 1361-648X |
IngestDate | Fri Jul 11 04:07:53 EDT 2025 Thu Apr 24 23:03:21 EDT 2025 Tue Jul 01 02:46:46 EDT 2025 Wed Aug 21 03:34:59 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c355t-e4be70aceb8befad4aa6d2cfafa0ef2c69d2620854113341a7dbee0a01ea577c3 |
Notes | JPCM-120676.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8621-3298 0000-0003-3551-3466 0000-0003-2332-1096 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1361-648X/ac920a |
PQID | 2714655958 |
PQPubID | 23479 |
PageCount | 39 |
ParticipantIDs | proquest_miscellaneous_2714655958 crossref_citationtrail_10_1088_1361_648X_ac920a crossref_primary_10_1088_1361_648X_ac920a iop_journals_10_1088_1361_648X_ac920a |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-07 |
PublicationDateYYYYMMDD | 2022-12-07 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-07 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | Journal of physics. Condensed matter |
PublicationTitleAbbrev | JPhysCM |
PublicationTitleAlternate | J. Phys.: Condens. Matter |
PublicationYear | 2022 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Pogorelov (cmac920abib50) 2009; 85 Gomer (cmac920abib59) 1957; 28 Forbes (cmac920abib62) 2021 Dall’Agnol (cmac920abib147) 2020; 117 Bonard (cmac920abib181) 2001; 13 Rohrbach (cmac920abib48) 1971 Dwivedi (cmac920abib13) 2021; 9 Biswas (cmac920abib44) 2018; 185 Harris (cmac920abib177) 2016; 119 Sun (cmac920abib115) 2013; 113 Langmuir (cmac920abib103) 1923; 21 Filippov (cmac920abib82) 2021; 230 de Souza (cmac920abib182) 2020; 127 Zhu (cmac920abib76) 2005; 16 de Assis (cmac920abib150) 2016; 27 Zhbanov (cmac920abib184) 2011; 110 Murata (cmac920abib173) 2001; 4510 Smith (cmac920abib175) 2009; 94 Purcell (cmac920abib108) 2022 Forbes (cmac920abib171) 1978; 11 Forbes (cmac920abib5) 2020 Forbes (cmac920abib19) 2011; 467 Chen (cmac920abib85) 2010; 18 Forbes (cmac920abib29) 2015; 8 Tanaka (cmac920abib80) 2004; 43 Kokkorakis (cmac920abib81) 2004; 95 Gröning (cmac920abib100) 1999; 17 Filippov (cmac920abib118) 2022; 233 Amorim (cmac920abib24) 2018; 30 Kokkorakis (cmac920abib64) 2002; 291 Bocharov (cmac920abib174) 2005; 50 Dyke (cmac920abib39) 1953; 24 Hii (cmac920abib167) 2006; 24 Spindt (cmac920abib8) 1976; 47 Harris (cmac920abib119) 2015; 48 Forbes (cmac920abib72) 2018 Forbes (cmac920abib129) 1980; 93 Kosmahl (cmac920abib49) 1991; 38 Forbes (cmac920abib89) 2019; 37 Morgan (cmac920abib97) 1970; 5 Masur (cmac920abib187) 2021 Russell (cmac920abib91) 1962; 9 Wang (cmac920abib164) 1982; 96 Edgcombe (cmac920abib67) 2002; 82 Fowler (cmac920abib21) 1928; 119 Vibrans (cmac920abib54) 1964; 35 Toijala (cmac920abib139) 2019; 100 Edgcombe (cmac920abib68) 1998 de Assis (cmac920abib71) 2019; 37 Nevrovskii (cmac920abib161) 1982; 27 Forbes (cmac920abib16) 2007; 463 Forbes (cmac920abib88) 2017; 110 Miller (cmac920abib113) 2007; 91 Lepetit (cmac920abib136) 2016; 120 Forbes (cmac920abib25) 2021; 8 Rose (cmac920abib38) 1956; 27 Forbes (cmac920abib46) 2003; 95 Zeng (cmac920abib78) 2009; 18 Filippov (cmac920abib117) 2019; 1400 Xu (cmac920abib168) 2006; 88 Roveri (cmac920abib79) 2016; 160 Latham (cmac920abib47) 1981 Rolland (cmac920abib34) 2015; 21 Yanagisawa (cmac920abib145) 2022; 12 Braun (cmac920abib92) 1975 Dyke (cmac920abib28) 1953; 89 Forbes (cmac920abib106) 1999; 104 Wang (cmac920abib110) 2011; 109 Bonard (cmac920abib163) 2002; 89 de Assis (cmac920abib179) 2018; 30 Tang (cmac920abib116) 2011; 110 Biswas (cmac920abib20) 2019; 37 Lauritsen (cmac920abib30) 1929 Biswas (cmac920abib42) 2018; 25 Zheng (cmac920abib120) 2020; 12 Jensen (cmac920abib159) 2019; 126 Murphy (cmac920abib15) 1956; 102 Forbes (cmac920abib52) 2016; 120 Gomer (cmac920abib40) 1955; 7 Spindt (cmac920abib107) 1983; 16 Smith (cmac920abib166) 2005; 87 Langmuir (cmac920abib102) 1913; 2 Allaham (cmac920abib18) 2022; 31 Pogorelov (cmac920abib57) 2010; 108 de Assis (cmac920abib151) 2017; 121 Miller (cmac920abib55) 1967; 38 Miller (cmac920abib162) 1984; 55 Vibrans (cmac920abib53) 1964 Harris (cmac920abib183) 2015; 5 Saito (cmac920abib14) 2022 Gomer (cmac920abib41) 1961 Li (cmac920abib112) 2022 Becker (cmac920abib37) 1951; 30 Nicolaescu (cmac920abib56) 1993; 11 Katnagallu (cmac920abib128) 2018; 51 Sanchez (cmac920abib138) 2004; 102 Forbes (cmac920abib127) 1985; 18 Egorov (cmac920abib3) 2017 Forbes (cmac920abib7) 2009 Edgcombe (cmac920abib65) 2001; 203 le Fèbre (cmac920abib169) 2008; 26 Huang (cmac920abib146) 2005; 87 Mousa (cmac920abib94) 1996; 94–95 Lepetit (cmac920abib137) 2019; 125 Jensen (cmac920abib4) 2018 Liang (cmac920abib2) 2014 Miller (cmac920abib99) 2014 Stern (cmac920abib104) 1929; 124 Forbes (cmac920abib130) 1999; 79 Biswas (cmac920abib160) 2020; 38 Forbes (cmac920abib23) 2019; 6 Watcharotone (cmac920abib114) 2008; 1 Fink (cmac920abib140) 1988; 38 Maxwell (cmac920abib31) 1891 A Kishimoto (cmac920abib142) 2008; 40 Filippov (cmac920abib26) 2022 Eyring (cmac920abib35) 1928; 31 Vinogradova (cmac920abib126) 2021; 30 Forbes (cmac920abib172) 1998; 73 de Castro (cmac920abib135) 2019; 126 Li (cmac920abib134) 2015; 159 Rudra (cmac920abib125) 2019; 9 Ciarlet (cmac920abib69) 2002 Marcelino (cmac920abib156) 2017; 35 Jin (cmac920abib70) 2014 Shen (cmac920abib111) 2017; 3 Qin (cmac920abib132) 2011; 29 Harris (cmac920abib122) 2015; 106 Fursey (cmac920abib95) 1969; 32 Schottky (cmac920abib149) 1923; 14 Spindt (cmac920abib9) 2001 Forbes (cmac920abib27) 2013; 469 Coelho (cmac920abib36) 1971; 4 Qin (cmac920abib109) 2011; 467 Bachmann (cmac920abib87) 2017; 35 Biswas (cmac920abib124) 2018; 25 Harris (cmac920abib152) 2019; 125 Evtukh (cmac920abib1) 2015 Saito (cmac920abib10) 2010 Zhai (cmac920abib12) 2011; 40 Wang (cmac920abib133) 2008; 104 Notte (cmac920abib141) 2008; 931 Minoux (cmac920abib90) 2005; 5 Forbes (cmac920abib93) 1996 Esat (cmac920abib143) 2018; 558 Sarkar (cmac920abib43) 2019; 37 Dall’Agnol (cmac920abib74) 2021; 39 Miller (cmac920abib153) 2009; 106 Child (cmac920abib101) 1911; 32 Smith (cmac920abib165) 2005; 23 Fowler (cmac920abib32) 1936 Forbes (cmac920abib96) 2017 Miranda (cmac920abib83) 2004; 40 Ohta (cmac920abib144) 2020; 59 Dall’Agnol (cmac920abib180) 2017; 29 Edgcombe (cmac920abib66) 2002; 82 Harris (cmac920abib123) 2017; 121 Zheng (cmac920abib131) 2004; 92 Miller (cmac920abib6) 2014 Lewin (cmac920abib61) 2015 Xu (cmac920abib11) 2005; 48 Read (cmac920abib75) 2004; 519 Harris (cmac920abib157) 2019; 125 Fricker (cmac920abib63) 1989; 254 Forbes (cmac920abib17) 2019; 126 Zhong (cmac920abib154) 2002; 80 Egorov (cmac920abib121) 1999; 53 Sarka (cmac920abib148) 2021; 2 Podenok (cmac920abib77) 2006; 1 Biswas (cmac920abib45) 2019; 109 Vurpillot (cmac920abib98) 2013; 132 Barbour (cmac920abib105) 1953; 92 Biswas (cmac920abib170) 2020; 38 Gomer (cmac920abib58) 1957; 26 Jensen (cmac920abib155) 2016; 6 Forbes (cmac920abib22) 2018 Robin (cmac920abib33) 1886; 3 Feynman (cmac920abib60) 1964 Dall’Agnol (cmac920abib73) 2018; 30 Bieker (cmac920abib185) 2019; 7 Pogorelov (cmac920abib51) 2009; 109 Wisitsora-at (cmac920abib86) 2012; 35 Jo (cmac920abib178) 2003; 82 Edgcombe (cmac920abib186) 2019; 198 Cha (cmac920abib84) 2006; 18 de Carvalho Neto (cmac920abib158) 2019; 126 Harris (cmac920abib176) 2016; 34 Masur (cmac920abib188) 2022; 40 |
References_xml | – volume: 104 year: 1999 ident: cmac920abib106 article-title: Exact analysis of surface field reduction due to field emitted vacuum space-charge, in plane-parallel geometry, using simple dimensionless equations publication-title: J. Appl. Phys. doi: 10.1063/1.2996005 – volume: 106 year: 2015 ident: cmac920abib122 article-title: Shielding in ungated field emitter arrays publication-title: Appl. Phys. Lett. doi: 10.1063/1.4921709 – volume: 198 start-page: 26 year: 2019 ident: cmac920abib186 article-title: Analysis of a capped carbon nanotube by linear-scaling density-functional theory publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2018.11.007 – volume: 109 start-page: 179 year: 2019 ident: cmac920abib45 article-title: The cosine law of field enhancement factor: generic emitter shapes publication-title: Physica E doi: 10.1016/j.physe.2019.01.005 – volume: 95 start-page: 57 year: 2003 ident: cmac920abib46 article-title: Some comments on models for field enhancement publication-title: Ultramicroscopy doi: 10.1016/S0304-3991(02)00297-8 – volume: 254 start-page: 157 year: 1989 ident: cmac920abib63 article-title: Why does charge concentrate on points? publication-title: Phys. Educ. doi: 10.1088/0031-9120/24/3/309 – volume: 469 year: 2013 ident: cmac920abib27 article-title: Development of a simple quantitative test for lack of field emission orthodoxy publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2013.0271 – volume: 185 start-page: 1 year: 2018 ident: cmac920abib44 article-title: Variation of field enhancement factor near the emitter tip publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2017.10.016 – volume: 27 start-page: 180 year: 1982 ident: cmac920abib161 publication-title: Sov. Phys. Tech. Phys. – volume: 40 start-page: 1669 year: 2008 ident: cmac920abib142 article-title: Behaviors of single CO2 molecule on pentagon at carbon nanotube tip observed by field emission microscopy publication-title: Surf. Interface Anal. doi: 10.1002/sia.2938 – volume: 2 year: 2021 ident: cmac920abib148 article-title: Enhancement of field emission performance of graphene nanowalls: the role of compound-cathode architecture and anode proximity effect publication-title: Carbon Trends doi: 10.1016/j.cartre.2020.100008 – volume: 124 start-page: 699 year: 1929 ident: cmac920abib104 article-title: Further studies in the emission of electrons from cold metals publication-title: Proc. R. Soc. A doi: 10.1098/rspa.1929.0147 – year: 2018 ident: cmac920abib72 article-title: Physical explanation of the universal “inverse-3rd-power-of-separation” law found numerically for the electrostatic interaction between two protruding nanostructures – volume: 25 year: 2018 ident: cmac920abib42 article-title: A universal formula for the field enhancement factor publication-title: Phys. Plasmas doi: 10.1063/1.5025694 – year: 2015 ident: cmac920abib1 – volume: 39 year: 2021 ident: cmac920abib74 article-title: Determining the field enhancement factors of various field electron emitters with high numerical accuracy publication-title: J. Vac. Sci. Technol. B doi: 10.1116/6.0000949 – volume: 125 year: 2019 ident: cmac920abib137 article-title: A three dimensional numerical quantum mechanical model of electronic field emission from metallic surfaces with nanoscale corrugation publication-title: J. Appl. Phys. doi: 10.1063/1.5063901 – volume: 85 year: 2009 ident: cmac920abib50 article-title: Enhancement factor, electrostatic force and emission current in a nanoneedle emitter publication-title: Europhys. Lett. doi: 10.1209/0295-5075/85/17001 – volume: 37 year: 2019 ident: cmac920abib71 article-title: Minimal domain size necessary to simulate the field enhancement factor numerically with specified precision publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.5063733 – volume: 30 year: 2018 ident: cmac920abib73 article-title: Physics-based derivation of a formula for the mutual depolarization of two post-like field emitters publication-title: J. Phys.: Condens. Matter doi: 10.1088/1361-648X/aad84c – volume: 519 start-page: 305 year: 2004 ident: cmac920abib75 article-title: Field enhancement factors of random arrays of carbon nanotubes publication-title: Nucl. Instrum. Meth. Phys. Res. A doi: 10.1016/j.nima.2003.11.167 – volume: 40 start-page: 1153 year: 2004 ident: cmac920abib83 article-title: Method for extracting series resistance in MOS devices using Fowler–Nordheim plot publication-title: Electron. Lett. doi: 10.1049/el:20045581 – volume: 16 start-page: 268 year: 1983 ident: cmac920abib107 article-title: Field emission cathode array development for high-current-density applications publication-title: Appl. Surf. Sci. doi: 10.1016/0378-5963(83)90073-9 – volume: 102 start-page: 1464 year: 1956 ident: cmac920abib15 article-title: Thermionic emission, field emission and the transition region publication-title: Phys. Rev. doi: 10.1103/PhysRev.102.1464 – volume: 18 start-page: 1381 year: 2009 ident: cmac920abib78 article-title: Numerical calculations of field enhancement and field amplification factors for a vertical carbon nanotube in parallel-plate geometry publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2009.08.008 – volume: 110 year: 2011 ident: cmac920abib184 article-title: Screened field enhancement factor for the floating sphere model of a carbon nanotube array publication-title: J. Appl. Phys. doi: 10.1063/1.3665390 – year: 2018 ident: cmac920abib22 article-title: Comparison of the Lepetit field emission current-density calculations with the Modinos–Forbes uncertainty limits – year: 2021 ident: cmac920abib187 article-title: Theoretical and experimental secondary electron spin polarisation studies and 3D theory of field emission for nanoscale emitters – start-page: pp 387 year: 2020 ident: cmac920abib5 article-title: Renewing the mainstream theory of field and thermal electron emission – volume: 126 year: 2019 ident: cmac920abib135 article-title: On the quantum mechanics of how an ideal carbon nanotube field emitter can exhibit a constant field enhancement factor publication-title: J. Appl. Phys. doi: 10.1063/1.5122971 – volume: 91 year: 2007 ident: cmac920abib113 article-title: Electric field distribution on knife-edge field emitters publication-title: Appl. Phys. Lett. doi: 10.1063/1.2771375 – volume: 47 start-page: 5248 year: 1976 ident: cmac920abib8 article-title: Physical properties of thin-film field emission cathodes with molybdenum cones publication-title: J. Appl. Phys. doi: 10.1063/1.322600 – volume: 87 year: 2005 ident: cmac920abib166 article-title: Electron field emission from a single carbon nanotube: effects of anode location publication-title: Appl. Phys. Lett. doi: 10.1063/1.2041824 – volume: 59 year: 2020 ident: cmac920abib144 article-title: Study of the local barrier field variations for electron tunneling in field ionization at a step edge of W(112) with a micro-probe hole field ion microscope publication-title: Jpn. J. Appl. Phys. doi: 10.7567/1347-4065/ab5fef – volume: 38 start-page: 260 year: 1988 ident: cmac920abib140 article-title: Point source for ions and electrons publication-title: Phys. Scr. doi: 10.1088/0031-8949/38/2/029 – start-page: pp 318 year: 1998 ident: cmac920abib68 article-title: Determination of F-N parameters for carbon contamination grown nano-tip field emitters: a combined experimental and computational approach – volume: 73 start-page: 31 year: 1998 ident: cmac920abib172 article-title: Calculation of the electrical-surface (image-plane) position for aluminium publication-title: Surf. Sci. doi: 10.1016/S0304-3991(97)00132-0 – volume: 1 start-page: 71 year: 2008 ident: cmac920abib114 article-title: Possibilities for graphene for field emission: modeling studies using the BEM publication-title: Phys. Proc. doi: 10.1016/j.phpro.2008.07.080 – volume: 38 year: 2020 ident: cmac920abib170 article-title: Electrostatic shielding versus anode-proximity in large area field emitters publication-title: J. Vac. Sci. Technol. B doi: 10.1116/6.0000033 – volume: 125 year: 2019 ident: cmac920abib152 article-title: Investigation of the Schottky conjecture for compound structures modeled with line charges publication-title: J. Appl. Phys. doi: 10.1063/1.5093416 – volume: 18 start-page: 973 year: 1985 ident: cmac920abib127 article-title: Seeing atoms: the origins of local contrast in field ion images publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/18/6/006 – volume: 12 start-page: 2714 year: 2022 ident: cmac920abib145 article-title: Field emission microscope for a single fullerene molecule publication-title: Sci. Rep. doi: 10.1038/s41598-022-06670-1 – volume: 3 start-page: 3 year: 1886 ident: cmac920abib33 article-title: Sur la distribution de l’électricité à la surface des conducteurs fermés des conducteurs ouverts publication-title: Ann. Sci. Éc. Norm. Supér. doi: 10.24033/asens.287 – volume: 203 start-page: 188 year: 2001 ident: cmac920abib65 article-title: Microscopy and computational modelling to elucidate the enhancement factor for field electron emitters publication-title: J. Microsc. doi: 10.1046/j.1365-2818.2001.00890.x – year: 2018 ident: cmac920abib4 – volume: 31 year: 2022 ident: cmac920abib18 article-title: Interpretation of field emission current-voltage data: background theory and detailed simulation testing of a user-friendly webtool publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2022.103654 – volume: 79 start-page: 25 year: 1999 ident: cmac920abib130 article-title: The electrical surface as centroid of the surface-induced charge publication-title: Ultramicroscopy doi: 10.1016/S0304-3991(99)00098-4 – volume: 106 year: 2009 ident: cmac920abib153 article-title: Schottky’s conjecture on multiplication of field enhancement factors publication-title: J. Appl. Phys. doi: 10.1063/1.3253760 – volume: 31 start-page: 900 year: 1928 ident: cmac920abib35 article-title: Fields currents from points publication-title: Phys. Rev. doi: 10.1103/PhysRev.31.900 – volume: 89 start-page: 799 year: 1953 ident: cmac920abib28 article-title: Field emission: large current densities, space charge and the vacuum arc publication-title: Phys. Rev. doi: 10.1103/PhysRev.89.799 – volume: 6 year: 2019 ident: cmac920abib23 article-title: The Murphy–Good plot: a better method of analysing field emission data publication-title: R. Soc. Open. Sci. doi: 10.1098/rsos.190912 – volume: 35 year: 2017 ident: cmac920abib156 article-title: Unexpected validity of Schottky’s conjecture for two-stage field emitters: a response via Schwarz–Christoffel transformation publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.4989428 – year: 2002 ident: cmac920abib69 – volume: 102 start-page: 1045 year: 2004 ident: cmac920abib138 article-title: Field-evaporation from first-principles publication-title: Mol. Phys. doi: 10.1080/00268970410001727673 – volume: 109 year: 2011 ident: cmac920abib110 article-title: Field electron emission characteristic of graphene publication-title: J. Appl. Phys. doi: 10.1063/1.3549705 – volume: 38 year: 2020 ident: cmac920abib160 article-title: Schottky conjecture and beyond publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.5144510 – start-page: pp 105 year: 2001 ident: cmac920abib9 article-title: Spindt field emitter arrays – start-page: p 159 year: 2021 ident: cmac920abib62 article-title: Correction of conceptual error in Feynman’s textbook treatment of pointed-conductor electrostatics – volume: 37 year: 2019 ident: cmac920abib89 article-title: Why converting field emission voltages to macroscopic fields before making a Fowler–Nordheim plot has often led to spurious characterization results publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.5111455 – volume: 121 year: 2017 ident: cmac920abib151 article-title: Trade-off between the electrostatic efficiency and mechanical stability of two-stage field emitter structures publication-title: J. Appl. Phys. doi: 10.1063/1.4973584 – volume: 40 year: 2022 ident: cmac920abib188 article-title: On modeling the induced charge in density-functional calculations for field emitters publication-title: J. Vac. Sci. Technol. B doi: 10.1116/6.0001886 – volume: 25 year: 2018 ident: cmac920abib124 article-title: Shielding effects in random large area field emitters, the field enhancement factor distribution and current calculation publication-title: Phys. Plasmas doi: 10.1063/1.5041019 – volume: 113 year: 2013 ident: cmac920abib115 article-title: Analysis of nonuniform field emission from a sharp tip emitter of Lorentzian or hyperboloid shape publication-title: J. Appl. Phys. doi: 10.1063/1.4798926 – volume: 291 start-page: 4580 year: 2002 ident: cmac920abib64 article-title: Local electric field at the emitting surface of a carbon nanotube publication-title: J. Appl. Phys doi: 10.1063/1.1448403 – volume: 108 year: 2010 ident: cmac920abib57 article-title: Corrected field enhancement factor for the floating sphere model of carbon nanotube emitter publication-title: J. Appl. Phys. doi: 10.1063/1.3466992 – volume: 119 start-page: 173 year: 1928 ident: cmac920abib21 article-title: Electron emission in intense electric fields publication-title: Proc. R. Soc. A doi: 10.1098/rspa.1928.0091 – year: 2014 ident: cmac920abib70 – volume: 7 start-page: 997 year: 2019 ident: cmac920abib185 article-title: Simulation-based model of randomly distributed large-area field electron emitters publication-title: IEEE J. Electron Devices Soc. doi: 10.1109/JEDS.2019.2940086 – volume: 30 year: 2018 ident: cmac920abib24 article-title: Numerical analysis of the notional area in cold field electron emission from arrays publication-title: J. Phys.: Condens. Matter doi: 10.1088/1361-648X/aadbdf – volume: 8 start-page: 125 year: 2015 ident: cmac920abib29 article-title: Fowler–Nordheim plot analysis: a progress report publication-title: Jordan J. Phys. doi: 10.48550/arXiv.1504.06134 – volume: 37 year: 2019 ident: cmac920abib43 article-title: Electrostatic field enhancement on end-caps of cylindrical field-emitters publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.5127118 – volume: 34 year: 2016 ident: cmac920abib176 article-title: Control of bulk and edge screening effects in two-dimensional arrays of ungated field emitters publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.4953076 – volume: 21 start-page: 1649 year: 2015 ident: cmac920abib34 article-title: A meshless algorithm to model field evaporation in atom probe tomography publication-title: Microsc. Microanal. doi: 10.1017/S1431927615015184 – volume: 12 year: 2020 ident: cmac920abib120 article-title: Quantitative measurement of charge accumulation along a quasi-one-dimensional W5O15 nanowire during electron field emission publication-title: Nanoscale doi: 10.1039/D0NR00739K – volume: 48 year: 2015 ident: cmac920abib119 article-title: Modelling field emitter arrays using line charge distributions publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/48/38/385203 – volume: 27 start-page: 44LT01 year: 2016 ident: cmac920abib150 article-title: Mechanically stable nanostructures with desirable characteristic field enhancement factors: a response from scale invariance in electrostatics publication-title: Nanotechnology doi: 10.1088/0957-4484/27/44/44LT01 – volume: 29 start-page: 40LT01 year: 2017 ident: cmac920abib180 article-title: Close proximity electrostatic effect from small clusters of emitters publication-title: J. Phys.: Condens. Matter doi: 10.1088/1361-648X/aa8567 – volume: 5 start-page: 445 year: 1970 ident: cmac920abib97 article-title: Field ion microscopy of uranium dioxide publication-title: J. Mater. Sci doi: 10.1007/BF00550007 – volume: 87 year: 2005 ident: cmac920abib146 article-title: Giant field enhancement at carbon nanotube tips induced by multistage effect publication-title: Appl. Phys. Lett. doi: 10.1063/1.2008363 – start-page: pp 87 year: 2009 ident: cmac920abib7 article-title: Gas field ionization sources – volume: 92 start-page: 45 year: 1953 ident: cmac920abib105 article-title: Space-charge effects in field emission publication-title: Phys. Rev. doi: 10.1103/PhysRev.92.45 – volume: 558 start-page: 573 year: 2018 ident: cmac920abib143 article-title: A standing molecule as a single-electron field emitter publication-title: Nature doi: 10.1038/s41586-018-0223-y – year: 1964 ident: cmac920abib60 – volume: 119 year: 2016 ident: cmac920abib177 article-title: Edge enhancement control in linear arrays of ungated field emitters publication-title: J. Appl. Phys. doi: 10.1063/1.4940410 – volume: 21 start-page: 419 year: 1923 ident: cmac920abib103 article-title: The effect of space charge and initial velocities on the potential distribution and thermionic current between parallel plane electrodes publication-title: Phys. Rev. doi: 10.1103/PhysRev.21.419 – volume: 51 year: 2018 ident: cmac920abib128 article-title: Impact of local electrostatic field rearrangement on field ionization publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/aaaba6 – volume: 23 start-page: 632 year: 2005 ident: cmac920abib165 article-title: Effect of aspect ratio and anode location on the field emission properties of a single tip based emitter publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.1880072 – volume: 18 start-page: 553 year: 2006 ident: cmac920abib84 article-title: Field-emission behavior of a carbon-nanotube-implanted Co nanocomposite fabricated from pearl-necklace-structured carbon nanotube/Co powders publication-title: Adv. Mater. doi: 10.1002/adma.200501267 – year: 2014 ident: cmac920abib99 – volume: 8 year: 2021 ident: cmac920abib25 article-title: The pre-exponential voltage-exponent as a sensitive test parameter for field emission theories publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.201986 – volume: 89 year: 2002 ident: cmac920abib163 article-title: Field emission of individual carbon nanotubes in the scanning electron microscope publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.197602 – year: 1975 ident: cmac920abib92 article-title: Progress with the application of a high-resolution field electron spectrometer to semiconductors – volume: 17 start-page: 1970 year: 1999 ident: cmac920abib100 article-title: Field emission properties of nanocrystalline chemically vapor-deposited diamond films publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.590857 – year: 2014 ident: cmac920abib6 – volume: 28 start-page: 457 year: 1957 ident: cmac920abib59 article-title: Field emission from mercury whiskers publication-title: J. Chem. Phys. doi: 10.1063/1.1744158 – volume: 29 year: 2011 ident: cmac920abib132 article-title: Electric potential of a metallic nanowall between cathode and anode planes publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.3574391 – year: 2022 ident: cmac920abib26 article-title: Field emission: calculations supporting a new methodology of comparing theory with experiment doi: 10.1098/rsos.220748 – volume: 11 start-page: 392 year: 1993 ident: cmac920abib56 article-title: Physical basis for applying the Fowler–Nordheim J–E relationship to experimental I–V data publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.586867 – volume: 104 year: 2008 ident: cmac920abib133 article-title: Image potentials of single-walled carbon nanotubes in the field emission condition publication-title: J. Appl. Phys. doi: 10.1063/1.2964109 – volume: 14 start-page: 63 year: 1923 ident: cmac920abib149 article-title: Über kalte und warme elektronenentladungen publication-title: Z. Phys. doi: 10.1007/BF01340034 – volume: 18 year: 2010 ident: cmac920abib85 article-title: Nonlinear characteristics of the Fowler–Nordheim plots of carbon nanotube field emission publication-title: Phys. Scr. doi: 10.1088/0031-8949/82/03/035602 – volume: 126 year: 2019 ident: cmac920abib158 article-title: Analytical proof of Schottky’s conjecture for multi-stage field emitters publication-title: J. Appl. Phys. doi: 10.1063/1.5126245 – volume: 95 start-page: 1468 year: 2004 ident: cmac920abib81 article-title: Enhancement factor of open thick-wall carbon nanotubes publication-title: J. Appl. Phys. doi: 10.1063/1.1638617 – volume: 32 start-page: 23 year: 1969 ident: cmac920abib95 article-title: Field emission from p-type Si publication-title: Phys. Status Solidi doi: 10.1002/pssb.19690320103 – volume: 1400 year: 2019 ident: cmac920abib117 article-title: Investigation of the emission properties of a silicon blade-type cathode publication-title: J. Phys: Conf. Ser. doi: 10.1088/1742-6596/1400/5/055011 – volume: 50 start-page: 944 year: 2005 ident: cmac920abib174 article-title: Effect of screening on the emissivity of field electron emitters based on carbon nanotubes publication-title: Tech. Phys. doi: 10.1134/1.1994978 – volume: 30 year: 2018 ident: cmac920abib179 article-title: Evidence of universal inverse-third power law for the shielding-induced fractional decrease in apex field enhancement factor at large spacings: a response via accurate Laplace-type calculations publication-title: J. Phys.: Condens. Matter doi: 10.1088/1361-648X/aaba9f – year: 2017 ident: cmac920abib96 article-title: Comments on the relationship between voltage loss, reduction in field enhancement factor and saturation effects in Fowler–Nordheim plots doi: 10.1109/IVNC.2017.8051530 – volume: 30 year: 2021 ident: cmac920abib126 article-title: Effect of dielectrics on the field emission characterisrics in the diode system modelling publication-title: Results Phys. doi: 10.1016/j.rinp.2021.104822 – volume: 96 start-page: 6752 year: 1982 ident: cmac920abib164 article-title: Model calculation for the field enhancement factor of carbon nanotube publication-title: J. Appl. Phys. doi: 10.1063/1.1814439 – volume: 43 start-page: L427 year: 2004 ident: cmac920abib80 article-title: Comparison of capped carbon nanotube with open-ended one for field emission publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.43.L427 – start-page: pp 127 year: 2022 ident: cmac920abib108 article-title: Field emission from the edges of single-layer graphene – volume: 117 year: 2020 ident: cmac920abib147 article-title: Looped carbon nanotube fibers as cathodes with giant field enhancement factors publication-title: Appl. Phys. Lett. doi: 10.1063/5.0030100 – volume: 120 year: 2016 ident: cmac920abib136 article-title: Static electric field enhancement in nanoscale structures publication-title: J. Appl. Phys. doi: 10.1063/1.4961216 – year: 1891 A ident: cmac920abib31 – volume: 92 year: 2004 ident: cmac920abib131 article-title: Quantum-mechanical investigation of field-emission mechanism of a micrometer-long single-walled carbon nanotube publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.106803 – volume: 11 start-page: L161 year: 1978 ident: cmac920abib171 article-title: Negative work-function correction at a positively charged surface publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/11/14/003 – volume: 127 year: 2020 ident: cmac920abib182 article-title: A classical first-principles study of depolarization effects in small clusters of field emitters publication-title: J. Appl. Phys. doi: 10.1063/1.5133740 – year: 2015 ident: cmac920abib61 article-title: High-voltage breakdown, lightning, sparks, St-Elmo’s fire – year: 2017 ident: cmac920abib3 – volume: 9 year: 2019 ident: cmac920abib125 article-title: Verification of shielding effect predictions for large area field emitters publication-title: AIP Adv. doi: 10.1063/1.5126674 – volume: 94–95 start-page: 129 year: 1996 ident: cmac920abib94 article-title: Electron emission from carbon fibre tips publication-title: Appl. Surf. Sci. doi: 10.1016/0169-4332(95)00521-8 – volume: 26 start-page: 724 year: 2008 ident: cmac920abib169 article-title: Field emission at nanometer distances for high resolution positioning publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.2894898 – volume: 467 start-page: 1029 year: 2011 ident: cmac920abib109 article-title: Analytical treatment of cold field electron emission from a nanowall emitter, including quantum confinement effects publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2010.0460 – volume: 35 start-page: 0C2103 year: 2017 ident: cmac920abib87 article-title: Extraction of the characteristics of current-limiting elements from field emission measurement data publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.4971768 – volume: 126 year: 2019 ident: cmac920abib17 article-title: Comments on the continuing widespread and unnecessary use of a defective emission equation in field emission related literature publication-title: J. Appl. Phys. doi: 10.1063/1.5117289 – volume: 159 start-page: 162 year: 2015 ident: cmac920abib134 article-title: Density functional theory for field emission from carbon nano-structures publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2015.02.012 – year: 2014 ident: cmac920abib2 – volume: 1 start-page: 87 year: 2006 ident: cmac920abib77 article-title: Electric field enhancement factors around a metallic end-capped cylinder publication-title: Nanotechnol. Rev. doi: 10.1142/S1793292006000112 – volume: 110 year: 2011 ident: cmac920abib116 article-title: Analysis of electric field screening by the proximity of two knife-edge field emitters publication-title: J. Appl. Phys. doi: 10.1063/1.3615846 – volume: 93 start-page: 192 year: 1980 ident: cmac920abib129 article-title: An array model for the field adsorption of helium on tungsten (111) publication-title: Surf. Sci. doi: 10.1016/0039-6028(80)90055-2 – year: 1971 ident: cmac920abib48 – volume: 16 start-page: 88 year: 2005 ident: cmac920abib76 article-title: Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films publication-title: Nanotechnology doi: 10.1088/0957-4484/16/1/018 – volume: 80 start-page: 506 year: 2002 ident: cmac920abib154 article-title: Universal field-emission model for carbon nanotubes on a metal tip publication-title: Appl. Phys. Lett. doi: 10.1063/1.1430507 – volume: 5 start-page: 2135 year: 2005 ident: cmac920abib90 article-title: Achieving high-current carbon nanotube emitters publication-title: Nano Lett. doi: 10.1021/nl051397d – volume: 463 start-page: 2907 year: 2007 ident: cmac920abib16 article-title: Reformulation of the standard theory of Fowler–Nordheim tunnelling and cold field electron emission publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2007.0030 – volume: 126 year: 2019 ident: cmac920abib159 article-title: Analytic model of a compound thermal-field emitter and its performance publication-title: J. Appl. Phys. doi: 10.1063/1.5132561 – volume: 38 start-page: 1534 year: 1991 ident: cmac920abib49 article-title: Analytic evaluation of field emission enhancement factors for ellipsoidal cones and elliptic cross-section wedges publication-title: IEEE Trans. Electron Devices doi: 10.1109/16.81650 – volume: 120 year: 2016 ident: cmac920abib52 article-title: Physical electrostatics of small field emitter arrays/clusters publication-title: J. Appl. Phys. doi: 10.1063/1.4959150 – volume: 125 year: 2019 ident: cmac920abib157 article-title: Verifications of Schottky’s conjecture publication-title: J. Appl. Phys. doi: 10.1063/1.5091712 – volume: 94 year: 2009 ident: cmac920abib175 article-title: Maximizing the electron field emission performance of carbon nanotube arrays publication-title: Appl. Phys. Lett. doi: 10.1063/1.3097239 – volume: 37 year: 2019 ident: cmac920abib20 article-title: Curvature correction to the field emission current publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.5064403 – volume: 132 start-page: 152 year: 2013 ident: cmac920abib98 article-title: A model to predict image formation in atom probe tomography publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2012.12.007 – volume: 3 year: 2017 ident: cmac920abib111 article-title: An analytical modeling of field electron emission for a vertical wedged ordered nanostructure publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201700295 – volume: 38 start-page: 4501 year: 1967 ident: cmac920abib55 article-title: Change in field intensification factor β of an electrode projection (whisker) at short gap lengths publication-title: J. Appl. Phys. doi: 10.1063/1.1709157 – volume: 32 start-page: 492 year: 1911 ident: cmac920abib101 article-title: Discharge from hot CaO publication-title: Phys. Rev. I doi: 10.1103/PhysRevSeriesI.32.492 – volume: 6 year: 2016 ident: cmac920abib155 article-title: Schottky’s conjecture, field emitters and the point charge model publication-title: AIP Adv. doi: 10.1063/1.4953813 – year: 2022 ident: cmac920abib14 – volume: 88 year: 2006 ident: cmac920abib168 article-title: Geometrical enhancement of field emission of individual nanotubes studied by in situ transmission electron microscopy publication-title: Appl. Phys. Lett. doi: 10.1063/1.2188389 – start-page: pp 173 year: 2022 ident: cmac920abib112 article-title: Theoretical coherent field emission of graphene – volume: 27 start-page: 215 year: 1956 ident: cmac920abib38 article-title: On the magnification and resolution of the field emission electron microscope publication-title: J. Appl. Phys. doi: 10.1063/1.1722347 – volume: 160 start-page: 247 year: 2016 ident: cmac920abib79 article-title: Simulation of the enhancement factor from an individual 3D hemisphere-on-post field emitter by using finite elements method publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2015.10.018 – year: 1936 ident: cmac920abib32 – volume: 7 start-page: 93 year: 1955 ident: cmac920abib40 article-title: Field emission microscopy and some applications to catalysis and chemisorption publication-title: Adv. Catal. doi: 10.1016/S0360-0564(08)60526-X – volume: 82 start-page: 1009 year: 2002 ident: cmac920abib67 article-title: Experimental and computational study of field emission characteristics from amorphous carbon single nanotips grown by carbon contamination. II. Theory publication-title: Phil. Mag. B doi: 10.1080/13642810208218358 – volume: 24 start-page: 1081 year: 2006 ident: cmac920abib167 article-title: Characterising field emission from individual carbon nanotubes at small distances publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.2188403 – volume: 48 start-page: 47 year: 2005 ident: cmac920abib11 article-title: Novel cold cathode materials and applications publication-title: Mater. Sci. Eng. R doi: 10.1016/j.mser.2004.12.001 – volume: 30 start-page: 907 year: 1951 ident: cmac920abib37 article-title: The use of the field emission electron microscope in adsorption studies of W on W and Ba on W publication-title: Bell System Tech. J. doi: 10.1002/j.1538-7305.1951.tb03688.x – volume: 82 start-page: 987 year: 2002 ident: cmac920abib66 article-title: Experimental and computational study of field emission characteristics from amorphous carbon single nanotips grown by carbon contamination. I. Experiments and computation publication-title: Phil. Mag. B doi: 10.1080/13642810208218357 – year: 1929 ident: cmac920abib30 article-title: Electron emission from metals in intense electric felds – volume: 233 year: 2022 ident: cmac920abib118 article-title: Properties of blade-like field emitters publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2021.113462 – volume: 100 year: 2019 ident: cmac920abib139 article-title: Ab initio calculation of field emission from metal surfaces with atomic-scale defects publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.165421 – volume: 82 start-page: 3520 year: 2003 ident: cmac920abib178 article-title: Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties publication-title: Appl. Phys. Lett. doi: 10.1063/1.1576310 – volume: 55 start-page: 158 year: 1984 ident: cmac920abib162 article-title: Influence of gap length on the field increase factor β of an electrode projection (whisker) publication-title: J. Appl. Phys. doi: 10.1063/1.332879 – volume: 467 start-page: 2927 year: 2011 ident: cmac920abib19 article-title: Transmission coefficients for the exact triangular barrier: an exact general analytical theory that can replace Fowler & Nordheim’s 1928 theory publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2011.0025 – volume: 5 year: 2015 ident: cmac920abib183 article-title: Dependence of optimal spacing on applied field in ungated field emitter arrays publication-title: AIP Adv. doi: 10.1063/1.4929983 – volume: 9 start-page: 2620 year: 2021 ident: cmac920abib13 article-title: The rise of carbon materials for field emission publication-title: J. Mater. Chem. C doi: 10.1039/D0TC05873D – volume: 2 start-page: 450 year: 1913 ident: cmac920abib102 article-title: The effect of space charge and residual gases on thermionic currents in high vacuum publication-title: Phys. Rev. doi: 10.1103/PhysRev.2.450 – volume: 13 start-page: 184 year: 2001 ident: cmac920abib181 article-title: Tuning the field emission properties of patterned carbon nanotube films publication-title: Adv. Mater. doi: 10.1002/1521-4095(200102)13:3<184::AID-ADMA184>3.0.CO;2-I – volume: 4510 start-page: 156 year: 2001 ident: cmac920abib173 article-title: Computer simulation of electric field analysis for vertically aligned carbon nanotubes (1)—simulation method and computing model publication-title: Proc. SPIE doi: 10.1117/12.451277 – year: 1961 ident: cmac920abib41 – year: 2010 ident: cmac920abib10 – volume: 230 year: 2021 ident: cmac920abib82 article-title: Numerical simulations of field emission characteristics of open CNT publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2021.113362 – start-page: pp 58 year: 1996 ident: cmac920abib93 article-title: The electron energy distribution from very sharp field emitters – volume: 35 year: 2012 ident: cmac920abib86 article-title: Advanced nanodiamond emitter with pyramidal tip-on-pole structure for emission self-regulation publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.3684425 – year: 1981 ident: cmac920abib47 – volume: 931 start-page: 489 year: 2008 ident: cmac920abib141 article-title: An introduction to the helium ion microscope publication-title: AIP Conf. Proc. doi: 10.1063/1.2799423 – year: 1964 ident: cmac920abib53 article-title: Field emission in vacuum voltage breakdown doi: 10.21236/AD0602844 – volume: 110 year: 2017 ident: cmac920abib88 article-title: The theoretical link between voltage loss, reduction in field enhancement factor and Fowler–Nordheim-plot saturation publication-title: Appl. Phys. Lett. doi: 10.1063/1.4979320 – volume: 53 start-page: 295 year: 1999 ident: cmac920abib121 article-title: Optimization of multi-tip field emission electron source publication-title: Vacuum doi: 10.1016/S0042-207X(98)00302-9 – volume: 4 start-page: 1266 year: 1971 ident: cmac920abib36 article-title: Properties of the tip-plane configuration publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/4/9/305 – volume: 24 start-page: 570 year: 1953 ident: cmac920abib39 article-title: The field emitter: fabrication, electron microscopy and electric field calculations publication-title: J. Appl. Phys. doi: 10.1063/1.1721330 – volume: 40 start-page: 2986 year: 2011 ident: cmac920abib12 article-title: One-dimensional inorganic nanostructures: synthesis, field-emission and photodetection publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00126k – volume: 121 year: 2017 ident: cmac920abib123 article-title: Practical considerations in the modeling of field emitter arrays with line charge distributions publication-title: J. Appl. Phys. doi: 10.1063/1.4983680 – volume: 109 start-page: 373 year: 2009 ident: cmac920abib51 article-title: Field enhancement factor and field emission from a hemi-ellipsoidal metallic needle publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2009.01.006 – volume: 9 start-page: 417 year: 1962 ident: cmac920abib91 article-title: Direct measurement of the energy of electrons obtained from the surface of silicon by field emission publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.9.417 – volume: 35 start-page: 2855 year: 1964 ident: cmac920abib54 article-title: Vacuum voltage breakdown as a thermal instability of the emitting protrusion publication-title: J. Appl. Phys. doi: 10.1063/1.1713118 – volume: 26 start-page: 1333 year: 1957 ident: cmac920abib58 article-title: Field emission from mercury whiskers publication-title: J. Chem. Phys. doi: 10.1063/1.1743515 |
SSID | ssj0004834 |
Score | 2.5196352 |
SecondaryResourceType | review_article |
Snippet | This review of the quantitative electrostatics of field emitters, covering analytical, numerical and ‘fitted formula’ approaches, is thought the first of its... This review of the quantitative electrostatics of field emitters, covering analytical, numerical and 'fitted formula' approaches, is thought the first of its... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 493001 |
SubjectTerms | conducting post formula electrostatic depolarization field emission field emitter electrostatics field enhancement factor finite element method minimum simulation domain dimensions |
Title | Field emitter electrostatics: a review with special emphasis on modern high-precision finite-element modelling |
URI | https://iopscience.iop.org/article/10.1088/1361-648X/ac920a https://www.proquest.com/docview/2714655958 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA_bRPBF_MT5MSLogw9x65o2qT6JOKYP6oPDvZV8XHGg3bDb_28ujRNRxLdCr9dy1yS_5O5-R8iJETbLdCGZBRUzDhaY1m482sTjgQxD7phtcZ8OR_xunIwb5HJZCzOdhan_3F3WRMG1CUNCnOxGcRqxlMtxVxmny4GjlVimEndeD_HzV1Gk9CFl5FNjMpM8xCh_0_BtTWq69_6YmP1qM9gg6wEm0qv6ozZJA8otsurTNU21TcoBJp5ReJtgMQ4NvWywOMjdvqCK1hUpFE9ZaVW3mHfSsxdVTSo6Lembb4FGkayYzd5Dnx1aTBCBMqhTyr2Qp-zeIaPBzdP1kIXOCcw4_DBnwDWInjKgpYZCWa5UavumUIXqQdE3aWaRiF4mPHJ7VB4pYTVAT_UiUIkQJt4lrXJawh6hShsw1jkUDHdgy2YgC4faHAwpRMwFb5Pup-1yE2jFsbvFa-7D21LmaO0crZ3X1m6Ts-UTs5pS4w_ZU-eOPIyr6g-540-H5W58YNBDlTBdVHlfREgRlyVy_5-6DshaH2scMGdFHJLW_H0BRw55zHWHNG8fHjv-P_sAbcHV4Q |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELVgEYgLAkrFAqVGag89uLvZOLHDrYKuoK2AQxF7s_wxFitBNiK7_x-PY6gqEOIWKRMnmontl8zMe4R8scJVlfGSOdA54-CAGRPmoysiHqgw5Y7VFhfl2TX_NSkmSec09sLMmrT0fw-HHVFw58JUECcHWV5mrORyMtA2jKUHjfPLZKXIyxK1Gy7zm3-NkTKmlZFTjclK8pSnfG2U__al5XDvF4tz3HHGm2QjQUX6o3uwLbIE9TZZjSWbtv1A6jEWn1G4n2JDDk16NtggFE4fU027rhSKf1pp28nMB-vmVrfTls5qeh9l0CgSFrPmIWntUD9FFMqgKyuPRpG2e4dcj3_-PTljST2B2YAh5gy4ATHUFow04LXjWpduZL32egh-ZMvKIRm9LHgWvlN5poUzAEM9zEAXQtj8I-nVsxp2CdXGgnUhqGB5AFyuAukDcgtQxIucC94ngyffKZuoxVHh4k7FFLeUCr2t0Nuq83affHu-ouloNd6w_RrCodLcat-wO3oKmApzBBMfuobZolUjkSFNXFXIvXeO9ZmsXZ2O1Z_zi9_7ZH2ELQ9YwiIOSG_-sIBPAYjMzWF82R4BmizYxw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Field+emitter+electrostatics%3A+a+review+with+special+emphasis+on+modern+high-precision+finite-element+modelling&rft.jtitle=Journal+of+physics.+Condensed+matter&rft.au=de+Assis%2C+Thiago+A&rft.au=Dall%27Agnol%2C+Fernando+F&rft.au=bes%2C+Richard+G&rft.date=2022-12-07&rft.issn=1361-648X&rft.eissn=1361-648X&rft.volume=34&rft.issue=49&rft_id=info:doi/10.1088%2F1361-648X%2Fac920a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-8984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-8984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-8984&client=summon |