State of health prediction for lithium-ion batteries using multiple-view feature fusion and support vector regression ensemble

Lithium-ion batteries have been widely used in many electronic systems. Accurately estimating the state of health (SOH) of a lithium-ion battery is important for ensuring its safety and reliability. Among the various kinds of methods for predicting the SOH of lithium-ion batteries, machine-learning-...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of machine learning and cybernetics Vol. 10; no. 9; pp. 2269 - 2282
Main Authors Ma, Chao, Zhai, Xu, Wang, Zhaopei, Tian, Mingguang, Yu, Qiusheng, Liu, Lei, Liu, Hao, Wang, Hao, Yang, Xibei
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1868-8071
1868-808X
DOI10.1007/s13042-018-0865-y

Cover

Loading…
Abstract Lithium-ion batteries have been widely used in many electronic systems. Accurately estimating the state of health (SOH) of a lithium-ion battery is important for ensuring its safety and reliability. Among the various kinds of methods for predicting the SOH of lithium-ion batteries, machine-learning-based methods are the most popular. However, two common critical problems in machine-learning-based methods are extracting discriminative features and effectively utilizing the extracted features. In this study, we focused on solving these two issues. First, a sliding-window-based feature extraction technology (SWBFE) was designed to effectively extract features from different views in the discharge process of lithium-ion batteries. Second, we developed a multiple-view feature fusion with a support vector regression (SVR) ensemble strategy (MVFF-ESVR) for enhancing the performance in fusing multiple extracted features. The basic idea of MVFF-ESVR is to transform the feature-level fusion problem into a decision-level fusion problem. More specifically, for each feature, an SVR was modeled on the corresponding training set, and the AdaBoost and Stacking algorithms were utilized to incorporate multiple trained SVRs for generating two ensemble SVR models. By combining SWBFE with MVFF-ESVR, we further implemented two predictors, namely, Ada-TargetSOH and Sta-TargetSOH, for robust prediction of lithium-ion battery SOH. To evaluate the efficacy of the proposed predictors, we applied Ada-TargetSOH and Sta-TargetSOH on three types of lithium-ion battery datasets. The experimental results have demonstrated that our predictors outperform other existing lithium-ion battery SOH predictors.
AbstractList Lithium-ion batteries have been widely used in many electronic systems. Accurately estimating the state of health (SOH) of a lithium-ion battery is important for ensuring its safety and reliability. Among the various kinds of methods for predicting the SOH of lithium-ion batteries, machine-learning-based methods are the most popular. However, two common critical problems in machine-learning-based methods are extracting discriminative features and effectively utilizing the extracted features. In this study, we focused on solving these two issues. First, a sliding-window-based feature extraction technology (SWBFE) was designed to effectively extract features from different views in the discharge process of lithium-ion batteries. Second, we developed a multiple-view feature fusion with a support vector regression (SVR) ensemble strategy (MVFF-ESVR) for enhancing the performance in fusing multiple extracted features. The basic idea of MVFF-ESVR is to transform the feature-level fusion problem into a decision-level fusion problem. More specifically, for each feature, an SVR was modeled on the corresponding training set, and the AdaBoost and Stacking algorithms were utilized to incorporate multiple trained SVRs for generating two ensemble SVR models. By combining SWBFE with MVFF-ESVR, we further implemented two predictors, namely, Ada-TargetSOH and Sta-TargetSOH, for robust prediction of lithium-ion battery SOH. To evaluate the efficacy of the proposed predictors, we applied Ada-TargetSOH and Sta-TargetSOH on three types of lithium-ion battery datasets. The experimental results have demonstrated that our predictors outperform other existing lithium-ion battery SOH predictors.
Author Tian, Mingguang
Liu, Hao
Zhai, Xu
Yu, Qiusheng
Ma, Chao
Wang, Zhaopei
Yang, Xibei
Liu, Lei
Wang, Hao
Author_xml – sequence: 1
  givenname: Chao
  surname: Ma
  fullname: Ma, Chao
  organization: Information and Communication Branch, State Grid Shandong Electric Power CO
– sequence: 2
  givenname: Xu
  surname: Zhai
  fullname: Zhai, Xu
  organization: Information and Communication Branch, State Grid Shandong Electric Power CO
– sequence: 3
  givenname: Zhaopei
  surname: Wang
  fullname: Wang, Zhaopei
  organization: Information and Communication Branch, State Grid Shandong Electric Power CO
– sequence: 4
  givenname: Mingguang
  surname: Tian
  fullname: Tian, Mingguang
  organization: Information and Communication Branch, State Grid Shandong Electric Power CO
– sequence: 5
  givenname: Qiusheng
  surname: Yu
  fullname: Yu, Qiusheng
  organization: Information and Communication Branch, State Grid Shandong Electric Power CO
– sequence: 6
  givenname: Lei
  surname: Liu
  fullname: Liu, Lei
  organization: Information and Communication Branch, State Grid Shandong Electric Power CO
– sequence: 7
  givenname: Hao
  surname: Liu
  fullname: Liu, Hao
  organization: NARI Group Corporation (State Grid Electric Power Research Institute)
– sequence: 8
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
  email: stevenwangh@sina.cn
  organization: Information and Communication Branch, State Grid Shandong Electric Power CO
– sequence: 9
  givenname: Xibei
  surname: Yang
  fullname: Yang, Xibei
  email: jxjxy_yxb@just.edu.cn
  organization: School of Computer, Jiangsu University of Science and Technology
BookMark eNp9kMFqGzEQhkVxoG7qB8hN0LPakeRdaY_FpEkhkEMS6E1otbO2zHp3I2ldfMmzR45DCoVEF0nM980M_xcy64ceCbng8J0DqB-RS1gKBlwz0GXBDp_InOtSMw36z-ztrfhnsohxC_mUICWIOXm6SzYhHVq6QdulDR0DNt4lP_S0HQLtfNr4aceO_9qmhMFjpFP0_Zrupi75sUO29_iXtmjTFJC2uZhh2zc0TuM4hET36FLuFXAdML5UsY-4qzv8Ss5a20VcvN7n5OHX5f3qmt3cXv1e_bxhThZFYihK5YSCklelKJploxSXEmtXa7RQgLbgoC6kdryuVNWIWstllbm6VcWyRHlOvp36jmF4nDAmsx2m0OeRRlQChFSZy5Q6US4MMQZsjfM5nrxwCtZ3hoM55m1OeZuctznmbQ7Z5P-ZY_A7Gw4fOuLkxMz2awz_dnpfegZCVJez
CitedBy_id crossref_primary_10_1016_j_est_2023_108419
crossref_primary_10_1016_j_isci_2024_109685
crossref_primary_10_1016_j_apenergy_2021_117346
crossref_primary_10_1016_j_apenergy_2022_120516
crossref_primary_10_1016_j_jpowsour_2024_234189
crossref_primary_10_3390_batteries11010032
crossref_primary_10_1016_j_est_2022_106051
crossref_primary_10_3390_ma18010145
crossref_primary_10_1016_j_rser_2023_113576
crossref_primary_10_3390_app15020778
crossref_primary_10_3390_en13082057
crossref_primary_10_1016_j_ymssp_2022_110004
crossref_primary_10_1007_s42835_020_00607_2
crossref_primary_10_1016_j_egyai_2021_100089
crossref_primary_10_3390_en16020803
crossref_primary_10_3390_en15145053
crossref_primary_10_1016_j_rser_2019_109405
crossref_primary_10_20964_2022_02_03
crossref_primary_10_1016_j_est_2023_107965
crossref_primary_10_1016_j_rser_2023_114077
crossref_primary_10_1016_j_est_2022_104480
crossref_primary_10_3390_electronics11081216
crossref_primary_10_1016_j_est_2024_111896
crossref_primary_10_1177_09576509241299000
crossref_primary_10_1115_1_4045445
crossref_primary_10_3390_s23229190
crossref_primary_10_1155_2021_2221702
crossref_primary_10_1016_j_energy_2022_124851
crossref_primary_10_3390_en16020674
crossref_primary_10_3390_wevj15020068
crossref_primary_10_1016_j_rser_2021_111903
crossref_primary_10_1088_1674_1056_ab90f8
crossref_primary_10_1115_1_4052535
crossref_primary_10_1016_j_egyr_2023_01_108
crossref_primary_10_1109_ACCESS_2019_2923095
crossref_primary_10_1016_j_jechem_2024_09_021
crossref_primary_10_1016_j_eswa_2022_116817
crossref_primary_10_3390_wevj12030113
crossref_primary_10_1016_j_est_2023_108667
crossref_primary_10_1016_j_est_2023_107218
crossref_primary_10_1109_JIOT_2021_3055977
Cites_doi 10.1109/34.667881
10.1016/j.energy.2004.03.031
10.1109/TIM.2008.2005965
10.1016/j.ymssp.2012.08.016
10.1016/S0004-3702(97)00063-5
10.1007/s00726-013-1472-6
10.1109/TFUZZ.2014.2371479
10.1109/TIM.2015.2444237
10.1016/j.microrel.2013.03.010
10.1016/j.ress.2015.07.013
10.1007/s00726-016-2274-4
10.1016/j.ijepes.2012.04.050
10.1016/j.microrel.2012.12.003
10.1016/S0031-3203(02)00262-5
10.1016/j.jpowsour.2011.03.101
10.1016/j.ijfatigue.2006.05.001
10.3390/en7106492
10.3354/cr030079
10.1016/S0004-3702(97)00043-X
10.1016/j.jpowsour.2012.10.001
10.1016/j.jpowsour.2015.08.091
10.1016/j.patcog.2004.12.013
10.1109/TNB.2012.2208473
10.1016/j.microrel.2015.02.025
10.1109/TCYB.2013.2245891
10.1016/j.jpowsour.2011.08.040
10.1016/j.jpowsour.2014.01.085
10.1177/002224377701400320
10.1016/0020-0255(87)90007-7
10.3390/en9110896
10.1109/MIM.2008.4579269
10.3758/BF03193511
10.1016/j.jpowsour.2014.07.116
10.3390/en6063082
10.1016/j.jpowsour.2012.11.146
10.1016/j.jpowsour.2016.04.119
10.1016/j.jpowsour.2015.04.166
10.1109/TCBB.2013.104
10.1016/j.jpowsour.2013.03.129
10.3390/en7020520
10.1109/TR.2014.2299152
10.1109/TCYB.2013.2263382
10.1023/B:STCO.0000035301.49549.88
10.1016/S0893-6080(05)80023-1
10.1016/j.jpowsour.2014.07.176
10.1016/j.apenergy.2014.08.059
10.1016/B978-0-12-386981-4.50011-4
10.1016/j.apenergy.2014.04.077
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2018
Springer-Verlag GmbH Germany, part of Springer Nature 2018.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s13042-018-0865-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1868-808X
EndPage 2282
ExternalDocumentID 10_1007_s13042_018_0865_y
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61572242
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
HCIFZ
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O93
O9J
P2P
P9P
PT4
PTHSS
QOS
R89
R9I
RLLFE
ROL
RSV
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7X
Z83
Z88
ZMTXR
~A9
2VQ
AARHV
AAYXX
AAYZH
ABBRH
ABDBE
ABFSG
ABULA
ACSTC
ADKFA
AEBTG
AEZWR
AFDZB
AFHIU
AFLOW
AFOHR
AGJBK
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
CITATION
H13
O9-
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c355t-e267c270619625d4d77133ebcb8ea0508a0c0b538c1b979d2b8349d4dbf7546e3
IEDL.DBID BENPR
ISSN 1868-8071
IngestDate Sun Sep 07 13:32:42 EDT 2025
Tue Jul 01 03:50:59 EDT 2025
Thu Apr 24 22:56:55 EDT 2025
Fri Feb 21 02:40:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Lithium-ion batteries
Support vector regression
Multiple-view feature fusion
Ensemble learning
State of health
Sliding window
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-e267c270619625d4d77133ebcb8ea0508a0c0b538c1b979d2b8349d4dbf7546e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2920237754
PQPubID 2043904
PageCount 14
ParticipantIDs proquest_journals_2920237754
crossref_citationtrail_10_1007_s13042_018_0865_y
crossref_primary_10_1007_s13042_018_0865_y
springer_journals_10_1007_s13042_018_0865_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of machine learning and cybernetics
PublicationTitleAbbrev Int. J. Mach. Learn. & Cyber
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Yu, Wu, Shen (CR47) 2012; 11
Wang, Xing, Li (CR61) 2015; 23
Bai, Wang, Hu (CR27) 2014; 135
Saha, Kai, Poll (CR35) 2009; 58
Biagetti, Sciubba (CR5) 2004; 29
Klass, Behm, Lindbergh (CR30) 2014; 270
Joachims (CR37) 1998; -98
Dong, Jin, Lou (CR7) 2014; 271
Qin, Zeng, Guo (CR59) 2016; 9
Tang, Yu, Wang (CR10) 2014; 7
CR31
Xing, Ma, Tsui (CR24) 2013; 53
Wu, Wang, Zhang (CR33) 2016; 327
Andre, Appel, Soczka-Guth (CR34) 2013; 224
Zheng, Fang (CR13) 2015; 144
Yu (CR14) 2015; 64
Liu, Zhou, Pan (CR32) 2015; 63
Wang, Wang, Feng (CR60) 2014; 44
Orchard, Tang, Saha (CR53) 2010; 19
Rasmussen, Williams (CR18) 2006
CR42
Kohavi, John (CR44) 1997; 97
Willmott, Matsuura (CR57) 2005; 30
Blum, Langley (CR36) 1997; 97
Rezvanizaniani, Liu, Chen (CR3) 2014; 256
Kim, Son, Mukherjee (CR2) 2015; 282
Sepasi, Ghorbani, Liaw (CR25) 2015; 299
Wang, Miao, Pecht (CR38) 2013; 239
Basak, Pal, Patranabis (CR49) 2007; 11
Wolpert (CR51) 1992; 5
He, Williard, Osterman (CR15) 2011; 196
CR19
Si, Wang, Hu (CR23) 2013; 35
Goebel, Saha, Saxena (CR9) 2010; 11
CR52
Yager (CR62) 1987; 41
CR50
Nuhic, Terzimehic, Soczka-Guth (CR8) 2013; 239
Dieckmann, Rieskamp (CR46) 2007; 35
Eddahech, Briat, Bertrand (CR16) 2012; 42
Wang, Zhao, Su (CR28) 2014; 7
Hu, Han, Li (CR43) 2016; 48
Miao, Cui, Xie (CR12) 2013; 36
Liao, Köttig (CR4) 2014; 63
Li, Xu (CR11) 2015; 55
Liu, Pang, Zhou (CR20) 2013; 53
Sun, Zeng, Liu (CR41) 2005; 38
Chen, Miao, Zheng (CR17) 2013; 6
Qin, Zeng, Guo (CR58) 2015; 55
Kittler, Hatef, Duin (CR63) 1998; 20
Yu, Hu, Wu (CR45) 2013; 44
Armstrong, Overton (CR56) 1977; 14
Majidian, Saidi (CR6) 2007; 29
CR22
CR21
Smola, Schölkopf (CR48) 2004; 14
Wang, He, Wang (CR26) 2013; 44
Zhang, Lee (CR1) 2011; 196
Yu, Hu, Yang (CR55) 2013; 10
Pedregosa, Gramfort, Michel (CR54) 2011; 12
Yang, Yang, Zhang (CR40) 2003; 36
Hu, Jain, Schmidt (CR39) 2015; 289
Zhou, Huang, Chen (CR29) 2016; 321
865_CR19
T Joachims (865_CR37) 1998; -98
CJ Willmott (865_CR57) 2005; 30
J Kittler (865_CR63) 1998; 20
V Klass (865_CR30) 2014; 270
J Wu (865_CR33) 2016; 327
A Nuhic (865_CR8) 2013; 239
JG Kim (865_CR2) 2015; 282
S Wang (865_CR28) 2014; 7
865_CR52
RR Yager (865_CR62) 1987; 41
Y Zhou (865_CR29) 2016; 321
865_CR50
B Saha (865_CR35) 2009; 58
A Dieckmann (865_CR46) 2007; 35
ME Orchard (865_CR53) 2010; 19
T Biagetti (865_CR5) 2004; 29
G Bai (865_CR27) 2014; 135
CE Rasmussen (865_CR18) 2006
J Zhang (865_CR1) 2011; 196
F Li (865_CR11) 2015; 55
D Basak (865_CR49) 2007; 11
DJ Yu (865_CR45) 2013; 44
AL Blum (865_CR36) 1997; 97
JS Armstrong (865_CR56) 1977; 14
865_CR22
865_CR21
DJ Yu (865_CR55) 2013; 10
H Dong (865_CR7) 2014; 271
Y Chen (865_CR17) 2013; 6
XZ Wang (865_CR60) 2014; 44
D Andre (865_CR34) 2013; 224
XS Si (865_CR23) 2013; 35
Q-S Sun (865_CR41) 2005; 38
L Liao (865_CR4) 2014; 63
SM Rezvanizaniani (865_CR3) 2014; 256
K Goebel (865_CR9) 2010; 11
A Eddahech (865_CR16) 2012; 42
865_CR31
DH Wolpert (865_CR51) 1992; 5
X Zheng (865_CR13) 2015; 144
XZ Wang (865_CR26) 2013; 44
W He (865_CR15) 2011; 196
XZ Wang (865_CR61) 2015; 23
S Tang (865_CR10) 2014; 7
D Wang (865_CR38) 2013; 239
D Liu (865_CR32) 2015; 63
Y Xing (865_CR24) 2013; 53
T Qin (865_CR59) 2016; 9
Q Miao (865_CR12) 2013; 36
F Pedregosa (865_CR54) 2011; 12
J Yang (865_CR40) 2003; 36
T Qin (865_CR58) 2015; 55
S Sepasi (865_CR25) 2015; 299
J Yu (865_CR14) 2015; 64
R Kohavi (865_CR44) 1997; 97
865_CR42
A Majidian (865_CR6) 2007; 29
J Hu (865_CR43) 2016; 48
DJ Yu (865_CR47) 2012; 11
AJ Smola (865_CR48) 2004; 14
C Hu (865_CR39) 2015; 289
D Liu (865_CR20) 2013; 53
References_xml – volume: 36
  start-page: 47
  issue: 8
  year: 2013
  end-page: 32
  ident: CR12
  article-title: Remaining useful life prediction of the lithium-ion battery using particle filtering
  publication-title: J Chongqing University
– ident: CR22
– volume: 20
  start-page: 226
  issue: 3
  year: 1998
  end-page: 239
  ident: CR63
  article-title: On combining classifiers
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.667881
– volume: 29
  start-page: 12
  year: 2004
  end-page: 15
  ident: CR5
  article-title: Automatic diagnostics and prognostics of energy conversion processes via knowledge-based systems
  publication-title: Energy
  doi: 10.1016/j.energy.2004.03.031
– volume: 58
  start-page: 291
  issue: 2
  year: 2009
  end-page: 296
  ident: CR35
  article-title: Prognostics methods for battery health monitoring using a bayesian framework
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2008.2005965
– volume: 35
  start-page: 219237
  year: 2013
  ident: CR23
  article-title: A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2012.08.016
– volume: -98
  start-page: 137
  year: 1998
  end-page: 142
  ident: CR37
  article-title: Text categorization with support vector machines: learning with many relevant features
  publication-title: Mach Learn: ECML
– volume: 97
  start-page: 245
  issue: 1
  year: 1997
  end-page: 271
  ident: CR36
  article-title: Selection of relevant features and examples in machine learning
  publication-title: Artif Intell
  doi: 10.1016/S0004-3702(97)00063-5
– volume: 44
  start-page: 1365
  issue: 5
  year: 2013
  end-page: 1379
  ident: CR45
  article-title: Learning protein multi-view features in complex space
  publication-title: Amino Acids
  doi: 10.1007/s00726-013-1472-6
– volume: 23
  start-page: 1638
  issue: 5
  year: 2015
  end-page: 1654
  ident: CR61
  article-title: A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2014.2371479
– ident: CR42
– volume: 11
  start-page: 203
  issue: 10
  year: 2007
  end-page: 224
  ident: CR49
  article-title: Support vector regression
  publication-title: Neural Inf Process Lett Rev
– ident: CR21
– volume: 64
  start-page: 2937
  issue: 11
  year: 2015
  end-page: 2949
  ident: CR14
  article-title: State-of-health monitoring and prediction of lithium-ion battery using probabilistic indication and state-space model
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2015.2444237
– ident: CR19
– volume: 53
  start-page: 832
  issue: 6
  year: 2013
  end-page: 839
  ident: CR20
  article-title: Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression
  publication-title: Microelectron Reliab
  doi: 10.1016/j.microrel.2013.03.010
– volume: 144
  start-page: 7482
  year: 2015
  ident: CR13
  article-title: An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2015.07.013
– volume: 48
  start-page: 1
  issue: 11
  year: 2016
  end-page: 15
  ident: CR43
  article-title: TargetCrys: protein crystallization prediction by fusing multi-view features with two-layered SVM
  publication-title: Amino Acids
  doi: 10.1007/s00726-016-2274-4
– volume: 19
  start-page: 209
  issue: 3
  year: 2010
  end-page: 218
  ident: CR53
  article-title: Risk-sensitive particle-filtering-based prognosis framework for estimation of remaining useful life in energy storage devices
  publication-title: Stud Inf Control
– volume: 42
  start-page: 487
  issue: 1
  year: 2012
  end-page: 494
  ident: CR16
  article-title: Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2012.04.050
– volume: 53
  start-page: 811
  issue: 6
  year: 2013
  end-page: 820
  ident: CR24
  article-title: An ensemble model for predicting the remaining useful performance of lithium-ion batteries
  publication-title: Microelectron Reliab
  doi: 10.1016/j.microrel.2012.12.003
– volume: 36
  start-page: 1369
  issue: 6
  year: 2003
  end-page: 1381
  ident: CR40
  article-title: Feature fusion: parallel strategy vs. serial strategy
  publication-title: Pattern Recognit
  doi: 10.1016/S0031-3203(02)00262-5
– ident: CR50
– volume: 196
  start-page: 6007
  issue: 15
  year: 2011
  end-page: 6014
  ident: CR1
  article-title: A review on prognostics and health monitoring of Li-ion battery
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2011.03.101
– year: 2006
  ident: CR18
  publication-title: Gaussian processes for machine learning
– volume: 12
  start-page: 2825
  issue: 10
  year: 2011
  end-page: 2830
  ident: CR54
  article-title: Scikit-learn: machine learning in python
  publication-title: J Mach Learn Res
– volume: 29
  start-page: 489
  issue: 3
  year: 2007
  end-page: 498
  ident: CR6
  article-title: Comparison of Fuzzy logic and neural network in life prediction of boiler tubes
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2006.05.001
– volume: 7
  start-page: 6492
  issue: 10
  year: 2014
  end-page: 6508
  ident: CR28
  article-title: Prognostics of lithium-ion batteries based on battery performance analysis and flexible support vector regression
  publication-title: Energies
  doi: 10.3390/en7106492
– volume: 30
  start-page: 79
  issue: 1
  year: 2005
  ident: CR57
  article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
  publication-title: Clim Res
  doi: 10.3354/cr030079
– volume: 97
  start-page: 273324
  year: 1997
  ident: CR44
  article-title: Wrappers for feature subset selection
  publication-title: Artif Intell
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 224
  start-page: 20
  issue: 5
  year: 2013
  end-page: 27
  ident: CR34
  article-title: Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.10.001
– volume: 299
  start-page: 246254
  year: 2015
  ident: CR25
  article-title: Inline state of health estimation of lithium-ion batteries using state of charge calculation
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2015.08.091
– volume: 38
  start-page: 2437
  issue: 12
  year: 2005
  end-page: 2448
  ident: CR41
  article-title: A new method of feature fusion and its application in image recognition
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2004.12.013
– volume: 11
  start-page: 375
  issue: 4
  year: 2012
  end-page: 385
  ident: CR47
  article-title: Enhancing membrane protein subcellular localization prediction by parallel fusion of multi-view features
  publication-title: IEEE Trans Nanobiosci
  doi: 10.1109/TNB.2012.2208473
– volume: 55
  start-page: 1035
  issue: 7
  year: 2015
  end-page: 1045
  ident: CR11
  article-title: A new prognostics method for state of health estimation of lithium-ion batteries based on a mixture of Gaussian process models and particle filter
  publication-title: Microelectron Reliab
  doi: 10.1016/j.microrel.2015.02.025
– volume: 55
  start-page: 12801284
  year: 2015
  ident: CR58
  article-title: Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO–SVR model
  publication-title: Microelectron Reliab
– volume: 44
  start-page: 21
  issue: 1
  year: 2013
  end-page: 39
  ident: CR26
  article-title: Non-naive bayesian classifiers for classification problems with continuous attributes
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2013.2245891
– volume: 196
  start-page: 10314
  issue: 23
  year: 2011
  end-page: 10321
  ident: CR15
  article-title: Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2011.08.040
– volume: 256
  start-page: 110
  issue: 12
  year: 2014
  end-page: 124
  ident: CR3
  article-title: Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.01.085
– volume: 14
  start-page: 396
  issue: 3
  year: 1977
  end-page: 402
  ident: CR56
  article-title: Estimating nonresponse bias in mail surveys
  publication-title: J Market Res
  doi: 10.1177/002224377701400320
– volume: 41
  start-page: 93
  issue: 2
  year: 1987
  end-page: 137
  ident: CR62
  article-title: On the dempster-shafer framework and new combination rules
  publication-title: Inf Sci
  doi: 10.1016/0020-0255(87)90007-7
– volume: 9
  start-page: 896
  issue: 11
  year: 2016
  ident: CR59
  article-title: A rest time-based prognostic framework for state of health estimation of lithium-ion batteries with regeneration phenomena
  publication-title: Energies
  doi: 10.3390/en9110896
– volume: 11
  start-page: 33
  issue: 4
  year: 2010
  end-page: 40
  ident: CR9
  article-title: Prognostics in battery health management
  publication-title: IEEE Instrum Meas Mag
  doi: 10.1109/MIM.2008.4579269
– volume: 35
  start-page: 1801
  issue: 7
  year: 2007
  end-page: 1813
  ident: CR46
  article-title: The influence of information redundancy on probabilistic inferences
  publication-title: Memory Cognition
  doi: 10.3758/BF03193511
– volume: 270
  start-page: 262
  issue: 3
  year: 2014
  end-page: 272
  ident: CR30
  article-title: A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.07.116
– volume: 6
  start-page: 3082
  issue: 6
  year: 2013
  end-page: 3096
  ident: CR17
  article-title: Quantitative analysis of lithium-ion battery capacity prediction via adaptive bathtub-shaped function
  publication-title: Energies
  doi: 10.3390/en6063082
– volume: 282
  start-page: 299322
  year: 2015
  ident: CR2
  article-title: A review of lithium and non-lithium based solid state batteries
  publication-title: J Power Sour
– volume: 239
  start-page: 680688
  year: 2013
  ident: CR8
  article-title: Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2012.11.146
– volume: 321
  start-page: 110
  year: 2016
  ident: CR29
  article-title: A novel health indicator for on-line lithium-ion batteries remaining useful life prediction
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2016.04.119
– volume: 289
  start-page: 105113
  year: 2015
  ident: CR39
  article-title: Online estimation of lithium-ion battery capacity using sparse Bayesian learning
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2015.04.166
– volume: 10
  start-page: 994
  issue: 4
  year: 2013
  end-page: 1008
  ident: CR55
  article-title: Designing template-free predictor for targeting protein-ligand binding sites with classifier ensemble and spatial clustering
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2013.104
– volume: 239
  start-page: 253
  issue: 10
  year: 2013
  end-page: 264
  ident: CR38
  article-title: Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.03.129
– volume: 7
  start-page: 520
  issue: 2
  year: 2014
  end-page: 547
  ident: CR10
  article-title: Remaining useful life prediction of lithium-ion batteries based on the wiener process with measurement error
  publication-title: Energies
  doi: 10.3390/en7020520
– ident: CR52
– ident: CR31
– volume: 63
  start-page: 191
  issue: 1
  year: 2014
  end-page: 207
  ident: CR4
  article-title: Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2014.2299152
– volume: 63
  start-page: 143151
  year: 2015
  ident: CR32
  article-title: Lithium-ion battery remaining useful life estimation with an optimized Relevance Vector Machine algorithm with incremental learning
  publication-title: Measurement
– volume: 44
  start-page: 620
  issue: 5
  year: 2014
  end-page: 635
  ident: CR60
  article-title: A new approach to classifier fusion based on upper integral
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2013.2263382
– volume: 14
  start-page: 199222
  issue: 3
  year: 2004
  ident: CR48
  article-title: A tutorial on support vector regression
  publication-title: Stat Comput
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 5
  start-page: 241
  issue: 2
  year: 1992
  end-page: 259
  ident: CR51
  article-title: Stacked generalization
  publication-title: Neural networks
  doi: 10.1016/S0893-6080(05)80023-1
– volume: 271
  start-page: 114123
  year: 2014
  ident: CR7
  article-title: Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2014.07.176
– volume: 327
  start-page: 457464
  year: 2016
  ident: CR33
  article-title: A novel state of health estimation method of Li-ion battery using group method of data handling
  publication-title: J Power Sour
– volume: 135
  start-page: 247260
  year: 2014
  ident: CR27
  article-title: A generic model-free approach for lithium-ion battery health management
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.08.059
– volume: 44
  start-page: 21
  issue: 1
  year: 2013
  ident: 865_CR26
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2013.2245891
– ident: 865_CR22
– volume: 321
  start-page: 110
  year: 2016
  ident: 865_CR29
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2016.04.119
– volume: 38
  start-page: 2437
  issue: 12
  year: 2005
  ident: 865_CR41
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2004.12.013
– volume: 29
  start-page: 489
  issue: 3
  year: 2007
  ident: 865_CR6
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2006.05.001
– volume: 239
  start-page: 253
  issue: 10
  year: 2013
  ident: 865_CR38
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.03.129
– volume: 14
  start-page: 396
  issue: 3
  year: 1977
  ident: 865_CR56
  publication-title: J Market Res
  doi: 10.1177/002224377701400320
– volume: 196
  start-page: 6007
  issue: 15
  year: 2011
  ident: 865_CR1
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2011.03.101
– volume: 29
  start-page: 12
  year: 2004
  ident: 865_CR5
  publication-title: Energy
  doi: 10.1016/j.energy.2004.03.031
– volume: 36
  start-page: 47
  issue: 8
  year: 2013
  ident: 865_CR12
  publication-title: J Chongqing University
– ident: 865_CR19
  doi: 10.1016/B978-0-12-386981-4.50011-4
– volume: 30
  start-page: 79
  issue: 1
  year: 2005
  ident: 865_CR57
  publication-title: Clim Res
  doi: 10.3354/cr030079
– ident: 865_CR52
– volume: 11
  start-page: 375
  issue: 4
  year: 2012
  ident: 865_CR47
  publication-title: IEEE Trans Nanobiosci
  doi: 10.1109/TNB.2012.2208473
– volume: 11
  start-page: 203
  issue: 10
  year: 2007
  ident: 865_CR49
  publication-title: Neural Inf Process Lett Rev
– volume: 135
  start-page: 247260
  year: 2014
  ident: 865_CR27
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.08.059
– ident: 865_CR21
– volume: 63
  start-page: 191
  issue: 1
  year: 2014
  ident: 865_CR4
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2014.2299152
– volume: 282
  start-page: 299322
  year: 2015
  ident: 865_CR2
  publication-title: J Power Sour
– volume: 270
  start-page: 262
  issue: 3
  year: 2014
  ident: 865_CR30
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.07.116
– volume: 97
  start-page: 273324
  year: 1997
  ident: 865_CR44
  publication-title: Artif Intell
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 224
  start-page: 20
  issue: 5
  year: 2013
  ident: 865_CR34
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.10.001
– ident: 865_CR42
– volume: 7
  start-page: 520
  issue: 2
  year: 2014
  ident: 865_CR10
  publication-title: Energies
  doi: 10.3390/en7020520
– volume: 64
  start-page: 2937
  issue: 11
  year: 2015
  ident: 865_CR14
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2015.2444237
– volume: 63
  start-page: 143151
  year: 2015
  ident: 865_CR32
  publication-title: Measurement
– volume: 20
  start-page: 226
  issue: 3
  year: 1998
  ident: 865_CR63
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.667881
– volume: 7
  start-page: 6492
  issue: 10
  year: 2014
  ident: 865_CR28
  publication-title: Energies
  doi: 10.3390/en7106492
– volume: 48
  start-page: 1
  issue: 11
  year: 2016
  ident: 865_CR43
  publication-title: Amino Acids
  doi: 10.1007/s00726-016-2274-4
– volume: 53
  start-page: 832
  issue: 6
  year: 2013
  ident: 865_CR20
  publication-title: Microelectron Reliab
  doi: 10.1016/j.microrel.2013.03.010
– volume: 239
  start-page: 680688
  year: 2013
  ident: 865_CR8
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2012.11.146
– volume: 256
  start-page: 110
  issue: 12
  year: 2014
  ident: 865_CR3
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.01.085
– volume: 42
  start-page: 487
  issue: 1
  year: 2012
  ident: 865_CR16
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2012.04.050
– volume: 35
  start-page: 1801
  issue: 7
  year: 2007
  ident: 865_CR46
  publication-title: Memory Cognition
  doi: 10.3758/BF03193511
– volume: 299
  start-page: 246254
  year: 2015
  ident: 865_CR25
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2015.08.091
– volume: 271
  start-page: 114123
  year: 2014
  ident: 865_CR7
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2014.07.176
– volume: 97
  start-page: 245
  issue: 1
  year: 1997
  ident: 865_CR36
  publication-title: Artif Intell
  doi: 10.1016/S0004-3702(97)00063-5
– volume: 23
  start-page: 1638
  issue: 5
  year: 2015
  ident: 865_CR61
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2014.2371479
– volume: 35
  start-page: 219237
  year: 2013
  ident: 865_CR23
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2012.08.016
– volume: 36
  start-page: 1369
  issue: 6
  year: 2003
  ident: 865_CR40
  publication-title: Pattern Recognit
  doi: 10.1016/S0031-3203(02)00262-5
– volume: 19
  start-page: 209
  issue: 3
  year: 2010
  ident: 865_CR53
  publication-title: Stud Inf Control
– volume: 41
  start-page: 93
  issue: 2
  year: 1987
  ident: 865_CR62
  publication-title: Inf Sci
  doi: 10.1016/0020-0255(87)90007-7
– volume: 6
  start-page: 3082
  issue: 6
  year: 2013
  ident: 865_CR17
  publication-title: Energies
  doi: 10.3390/en6063082
– volume: 58
  start-page: 291
  issue: 2
  year: 2009
  ident: 865_CR35
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2008.2005965
– volume-title: Gaussian processes for machine learning
  year: 2006
  ident: 865_CR18
– ident: 865_CR50
– volume: 44
  start-page: 1365
  issue: 5
  year: 2013
  ident: 865_CR45
  publication-title: Amino Acids
  doi: 10.1007/s00726-013-1472-6
– volume: 10
  start-page: 994
  issue: 4
  year: 2013
  ident: 865_CR55
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2013.104
– volume: 289
  start-page: 105113
  year: 2015
  ident: 865_CR39
  publication-title: J Power Sour
  doi: 10.1016/j.jpowsour.2015.04.166
– volume: 144
  start-page: 7482
  year: 2015
  ident: 865_CR13
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2015.07.013
– volume: 55
  start-page: 12801284
  year: 2015
  ident: 865_CR58
  publication-title: Microelectron Reliab
– volume: 196
  start-page: 10314
  issue: 23
  year: 2011
  ident: 865_CR15
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2011.08.040
– volume: 14
  start-page: 199222
  issue: 3
  year: 2004
  ident: 865_CR48
  publication-title: Stat Comput
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 55
  start-page: 1035
  issue: 7
  year: 2015
  ident: 865_CR11
  publication-title: Microelectron Reliab
  doi: 10.1016/j.microrel.2015.02.025
– volume: 327
  start-page: 457464
  year: 2016
  ident: 865_CR33
  publication-title: J Power Sour
– volume: 11
  start-page: 33
  issue: 4
  year: 2010
  ident: 865_CR9
  publication-title: IEEE Instrum Meas Mag
  doi: 10.1109/MIM.2008.4579269
– volume: 53
  start-page: 811
  issue: 6
  year: 2013
  ident: 865_CR24
  publication-title: Microelectron Reliab
  doi: 10.1016/j.microrel.2012.12.003
– volume: -98
  start-page: 137
  year: 1998
  ident: 865_CR37
  publication-title: Mach Learn: ECML
– volume: 44
  start-page: 620
  issue: 5
  year: 2014
  ident: 865_CR60
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2013.2263382
– volume: 12
  start-page: 2825
  issue: 10
  year: 2011
  ident: 865_CR54
  publication-title: J Mach Learn Res
– volume: 9
  start-page: 896
  issue: 11
  year: 2016
  ident: 865_CR59
  publication-title: Energies
  doi: 10.3390/en9110896
– ident: 865_CR31
  doi: 10.1016/j.apenergy.2014.04.077
– volume: 5
  start-page: 241
  issue: 2
  year: 1992
  ident: 865_CR51
  publication-title: Neural networks
  doi: 10.1016/S0893-6080(05)80023-1
SSID ssj0000603302
ssib031263576
ssib033405570
Score 2.3646953
Snippet Lithium-ion batteries have been widely used in many electronic systems. Accurately estimating the state of health (SOH) of a lithium-ion battery is important...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2269
SubjectTerms Algorithms
Artificial Intelligence
Complex Systems
Computational Intelligence
Control
Datasets
Design
Electronic systems
Engineering
Feature extraction
Lithium
Lithium-ion batteries
Machine learning
Mechatronics
Neural networks
Original Article
Pattern Recognition
Rechargeable batteries
Robotics
Support vector machines
Systems Biology
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA4uFz2IK44b7-DBhUAnSdP0KOIwCHpyYG4ladNR0DrMInjxt_teF6uigse2aQv9kr7v5X35wthxLpQVxoY8jY3myuYZN7FTPNDWi1gLJz3Nd9zc6v5AXQ_DYb2Oe9qo3ZuSZPmnbhe7UeaNqS85KuuQvy6y5RBTd9LxDcRF04lkl-xV2hgrpSptpj4mXgKN5yototGGzHi7TbXzp7d8jVctCf1WNy3DUW-drdU8Ei4q4DfYgi822eond8FNtlGP2ymc1ObSp1vsrWSX8JxDtQISxhMq1RA8gPwVkJXfP8yfOB270nsTU2kgdfwIGvEhp3IC5L70BIV8ThNuYIsMpvMx0Xl4KUsBMPGjSmVbACbL_sk9-m026F3dXfZ5vQcDT5GJzLgXOkpFhFEfgQszlUWU1XqXOuNtgOzOBmng8K-Zdl0cxZlwRqoY27k8CpX2coctFc-F32WQZVppq8MoT42SUltMHWOLDCePIisz02FB86WTtDYop30yHpPWWpnASRCchMBJXjvs7OOWceXO8Vfjgwa-pB6o04Q26xKSbAA77LyBtL3868P2_tV6n60g0aq1aQdsaTaZ-0MkMzN3VHbedxLy6Zk
  priority: 102
  providerName: Springer Nature
Title State of health prediction for lithium-ion batteries using multiple-view feature fusion and support vector regression ensemble
URI https://link.springer.com/article/10.1007/s13042-018-0865-y
https://www.proquest.com/docview/2920237754
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB6x7YULYnmIwlL5wIGHLFLbcZwTalG7KxAVQlRaTpHtOAvSblr6QNoLv52ZxNkIJPYUJXZ88Iztbx7-BuBFJZQVxqbc50ZzZauSm9wpnmgbRK6Fk4H8HZ-W-mylPpyn59Hhtotpld2e2GzU5dqTj_wtVVUSkvja3m1-cqoaRdHVWELjCIa4BZt0AMPZfPn5S6dRckJcK_2BK6VqOKduvDCJxm9tYqLRhph5J13os7lfR8Y-WttE4qxTfv334dUj0n-CqM3ZtLgP9yKoZNNWC47hTqgfwHFctjv2MnJLv3oIvxtwydYVay9Ass2WIjUkHYbwlSEo__7jcMXp3TXUm2hJM0qOv2Bd7iGnmWJVaChBWXUgfxuzdcl2hw2hefariQSwbbhok2xrhrZyuHKX4RGsFvOv7894LMHAPQKRPQ9CZ15keOij3NJSlRkZtcF5Z4JNENzZxCcON00_cXmWl8IZqXLs5yqUlA7yMQzqdR2eACtLrbTVaVZ5o6TUFi3H3CLAqbLMytKMIOnmtvCRn5zKZFwWPbMyiaNAcRQkjuJ6BK9vftm05By3dT7pBFbEdboreq0awZtOiH3zfwd7evtgz-AuAquYi3YCg_32EJ4jeNm7MRyZxekYhtPFbLak5-m3j_Nx1FtsXYnpHyCN7kY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9gAXRHmIQIE9gMRDK5zd9do-IMSjVUrbCKFW6s3syy1S64Q8QLnwk_iNzNjeWiDRW4-ONxsrM5755rHfADythDIiNyl3Ra65MpXneWEVT7QJotDCykD5joOxHh2pT8fp8Rr8jmdhqK0y2sTGUPuJoxz5a5qqJCTxtb2dfuc0NYqqq3GERqsWe2H1E0O2-ZvdjyjfZ0LsbB9-GPFuqgB36FsXPAidOZGhH8NHSb3yGcVpwTqbB5MgXjGJSyzaATe0RVZ4YXOpClxnK_xxHSTuew02EGYU-BZtvN8ef_4SNVgOiduld_BSqobj6iLrk2j8rG2EzHVOTMDDWGptzvNRcgGjeyKN1ilf_e0sewT8T9G28YU7t-BmB2LZu1brNmEt1LdhszMTc_a847J-cQd-NWCWTSrWHrhk0xlVhkgbGMJlhkHA6bflOadr21B9YuTOqBn_hMVeR06SYVVoKEhZtaT8HjO1Z_PllKIH9qOpPLBZOGmbemuGsXk4t2fhLhxdiXDuwXo9qcN9YN5rpY1Os8rlSkptMFItDAKqKsuM9PkAkvjflq7jQ6exHGdlz-RM4ihRHCWJo1wN4OXFV6YtGchli7eiwMrOLszLXosH8CoKsb_9380eXL7ZE7g-OjzYL_d3x3sP4QaCuq4PbgvWF7NleITAaWEfd9rK4OtVvyB_AHSbJXU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3BVkJwaGmhYqGADxz4kNts7DjOsSpdCoWKA5XKKfgrBdGmq92kUjnw2_EkdgMVICGOSexEtif2e57xG4AnVcpVKlVGTSEF5aqyVBaa00QolxYi1czhfse7A7F3yN8cZUchz-kiRrtHl2R_pgFVmupma2arreHgG7JwT4NRXVlk9OI6LHHUZh_B0varj_u70aTYBMVWhhWXMd6JTl1uwyTC3-sjE6WQKM07ib7P333n19VrgKRXvKjd4jRdgU-xWX1MytfNttGb5tsVxcf_aPdtWA7AlWz3lrYK11y9Brd-kjNcg9UwUSzI06Bm_ewOfO_gLDmrSH_kkszm6BtCeyAeMBNPAz5_aU8pXutO7NNzd4Lh-MckRjtS9F-QynUipKRqcYePqNqSRTtD_kDOO98DmbvjPqy3Jp6du1N94u7C4XT3w84eDUkfqPHQp6EuFblJcw8zvKVkltscabTTRkunEg8nVWIS7adpM9FFXthUS8YLX05XecaFY-swqs9qdw-ItYILJbK8MpIzJpTnqoXykKrKc8WsHEMSB7M0QREdE3OclIOWM_Z36fu7xP4uL8bw_LLKrJcD-VvhjWghZZgZFiVmB0sZ6g6O4UUc8OHxH192_59KP4Yb719Oy7evD_YfwE0P8kJc3AaMmnnrHnog1ehH4Wf5AfxPEoU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+of+health+prediction+for+lithium-ion+batteries+using+multiple-view+feature+fusion+and+support+vector+regression+ensemble&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Ma%2C+Chao&rft.au=Zhai%2C+Xu&rft.au=Wang%2C+Zhaopei&rft.au=Tian%2C+Mingguang&rft.date=2019-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=10&rft.issue=9&rft.spage=2269&rft.epage=2282&rft_id=info:doi/10.1007%2Fs13042-018-0865-y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon