State of health prediction for lithium-ion batteries using multiple-view feature fusion and support vector regression ensemble
Lithium-ion batteries have been widely used in many electronic systems. Accurately estimating the state of health (SOH) of a lithium-ion battery is important for ensuring its safety and reliability. Among the various kinds of methods for predicting the SOH of lithium-ion batteries, machine-learning-...
Saved in:
Published in | International journal of machine learning and cybernetics Vol. 10; no. 9; pp. 2269 - 2282 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1868-8071 1868-808X |
DOI | 10.1007/s13042-018-0865-y |
Cover
Loading…
Abstract | Lithium-ion batteries have been widely used in many electronic systems. Accurately estimating the state of health (SOH) of a lithium-ion battery is important for ensuring its safety and reliability. Among the various kinds of methods for predicting the SOH of lithium-ion batteries, machine-learning-based methods are the most popular. However, two common critical problems in machine-learning-based methods are extracting discriminative features and effectively utilizing the extracted features. In this study, we focused on solving these two issues. First, a sliding-window-based feature extraction technology (SWBFE) was designed to effectively extract features from different views in the discharge process of lithium-ion batteries. Second, we developed a multiple-view feature fusion with a support vector regression (SVR) ensemble strategy (MVFF-ESVR) for enhancing the performance in fusing multiple extracted features. The basic idea of MVFF-ESVR is to transform the feature-level fusion problem into a decision-level fusion problem. More specifically, for each feature, an SVR was modeled on the corresponding training set, and the AdaBoost and Stacking algorithms were utilized to incorporate multiple trained SVRs for generating two ensemble SVR models. By combining SWBFE with MVFF-ESVR, we further implemented two predictors, namely, Ada-TargetSOH and Sta-TargetSOH, for robust prediction of lithium-ion battery SOH. To evaluate the efficacy of the proposed predictors, we applied Ada-TargetSOH and Sta-TargetSOH on three types of lithium-ion battery datasets. The experimental results have demonstrated that our predictors outperform other existing lithium-ion battery SOH predictors. |
---|---|
AbstractList | Lithium-ion batteries have been widely used in many electronic systems. Accurately estimating the state of health (SOH) of a lithium-ion battery is important for ensuring its safety and reliability. Among the various kinds of methods for predicting the SOH of lithium-ion batteries, machine-learning-based methods are the most popular. However, two common critical problems in machine-learning-based methods are extracting discriminative features and effectively utilizing the extracted features. In this study, we focused on solving these two issues. First, a sliding-window-based feature extraction technology (SWBFE) was designed to effectively extract features from different views in the discharge process of lithium-ion batteries. Second, we developed a multiple-view feature fusion with a support vector regression (SVR) ensemble strategy (MVFF-ESVR) for enhancing the performance in fusing multiple extracted features. The basic idea of MVFF-ESVR is to transform the feature-level fusion problem into a decision-level fusion problem. More specifically, for each feature, an SVR was modeled on the corresponding training set, and the AdaBoost and Stacking algorithms were utilized to incorporate multiple trained SVRs for generating two ensemble SVR models. By combining SWBFE with MVFF-ESVR, we further implemented two predictors, namely, Ada-TargetSOH and Sta-TargetSOH, for robust prediction of lithium-ion battery SOH. To evaluate the efficacy of the proposed predictors, we applied Ada-TargetSOH and Sta-TargetSOH on three types of lithium-ion battery datasets. The experimental results have demonstrated that our predictors outperform other existing lithium-ion battery SOH predictors. |
Author | Tian, Mingguang Liu, Hao Zhai, Xu Yu, Qiusheng Ma, Chao Wang, Zhaopei Yang, Xibei Liu, Lei Wang, Hao |
Author_xml | – sequence: 1 givenname: Chao surname: Ma fullname: Ma, Chao organization: Information and Communication Branch, State Grid Shandong Electric Power CO – sequence: 2 givenname: Xu surname: Zhai fullname: Zhai, Xu organization: Information and Communication Branch, State Grid Shandong Electric Power CO – sequence: 3 givenname: Zhaopei surname: Wang fullname: Wang, Zhaopei organization: Information and Communication Branch, State Grid Shandong Electric Power CO – sequence: 4 givenname: Mingguang surname: Tian fullname: Tian, Mingguang organization: Information and Communication Branch, State Grid Shandong Electric Power CO – sequence: 5 givenname: Qiusheng surname: Yu fullname: Yu, Qiusheng organization: Information and Communication Branch, State Grid Shandong Electric Power CO – sequence: 6 givenname: Lei surname: Liu fullname: Liu, Lei organization: Information and Communication Branch, State Grid Shandong Electric Power CO – sequence: 7 givenname: Hao surname: Liu fullname: Liu, Hao organization: NARI Group Corporation (State Grid Electric Power Research Institute) – sequence: 8 givenname: Hao surname: Wang fullname: Wang, Hao email: stevenwangh@sina.cn organization: Information and Communication Branch, State Grid Shandong Electric Power CO – sequence: 9 givenname: Xibei surname: Yang fullname: Yang, Xibei email: jxjxy_yxb@just.edu.cn organization: School of Computer, Jiangsu University of Science and Technology |
BookMark | eNp9kMFqGzEQhkVxoG7qB8hN0LPakeRdaY_FpEkhkEMS6E1otbO2zHp3I2ldfMmzR45DCoVEF0nM980M_xcy64ceCbng8J0DqB-RS1gKBlwz0GXBDp_InOtSMw36z-ztrfhnsohxC_mUICWIOXm6SzYhHVq6QdulDR0DNt4lP_S0HQLtfNr4aceO_9qmhMFjpFP0_Zrupi75sUO29_iXtmjTFJC2uZhh2zc0TuM4hET36FLuFXAdML5UsY-4qzv8Ss5a20VcvN7n5OHX5f3qmt3cXv1e_bxhThZFYihK5YSCklelKJploxSXEmtXa7RQgLbgoC6kdryuVNWIWstllbm6VcWyRHlOvp36jmF4nDAmsx2m0OeRRlQChFSZy5Q6US4MMQZsjfM5nrxwCtZ3hoM55m1OeZuctznmbQ7Z5P-ZY_A7Gw4fOuLkxMz2awz_dnpfegZCVJez |
CitedBy_id | crossref_primary_10_1016_j_est_2023_108419 crossref_primary_10_1016_j_isci_2024_109685 crossref_primary_10_1016_j_apenergy_2021_117346 crossref_primary_10_1016_j_apenergy_2022_120516 crossref_primary_10_1016_j_jpowsour_2024_234189 crossref_primary_10_3390_batteries11010032 crossref_primary_10_1016_j_est_2022_106051 crossref_primary_10_3390_ma18010145 crossref_primary_10_1016_j_rser_2023_113576 crossref_primary_10_3390_app15020778 crossref_primary_10_3390_en13082057 crossref_primary_10_1016_j_ymssp_2022_110004 crossref_primary_10_1007_s42835_020_00607_2 crossref_primary_10_1016_j_egyai_2021_100089 crossref_primary_10_3390_en16020803 crossref_primary_10_3390_en15145053 crossref_primary_10_1016_j_rser_2019_109405 crossref_primary_10_20964_2022_02_03 crossref_primary_10_1016_j_est_2023_107965 crossref_primary_10_1016_j_rser_2023_114077 crossref_primary_10_1016_j_est_2022_104480 crossref_primary_10_3390_electronics11081216 crossref_primary_10_1016_j_est_2024_111896 crossref_primary_10_1177_09576509241299000 crossref_primary_10_1115_1_4045445 crossref_primary_10_3390_s23229190 crossref_primary_10_1155_2021_2221702 crossref_primary_10_1016_j_energy_2022_124851 crossref_primary_10_3390_en16020674 crossref_primary_10_3390_wevj15020068 crossref_primary_10_1016_j_rser_2021_111903 crossref_primary_10_1088_1674_1056_ab90f8 crossref_primary_10_1115_1_4052535 crossref_primary_10_1016_j_egyr_2023_01_108 crossref_primary_10_1109_ACCESS_2019_2923095 crossref_primary_10_1016_j_jechem_2024_09_021 crossref_primary_10_1016_j_eswa_2022_116817 crossref_primary_10_3390_wevj12030113 crossref_primary_10_1016_j_est_2023_108667 crossref_primary_10_1016_j_est_2023_107218 crossref_primary_10_1109_JIOT_2021_3055977 |
Cites_doi | 10.1109/34.667881 10.1016/j.energy.2004.03.031 10.1109/TIM.2008.2005965 10.1016/j.ymssp.2012.08.016 10.1016/S0004-3702(97)00063-5 10.1007/s00726-013-1472-6 10.1109/TFUZZ.2014.2371479 10.1109/TIM.2015.2444237 10.1016/j.microrel.2013.03.010 10.1016/j.ress.2015.07.013 10.1007/s00726-016-2274-4 10.1016/j.ijepes.2012.04.050 10.1016/j.microrel.2012.12.003 10.1016/S0031-3203(02)00262-5 10.1016/j.jpowsour.2011.03.101 10.1016/j.ijfatigue.2006.05.001 10.3390/en7106492 10.3354/cr030079 10.1016/S0004-3702(97)00043-X 10.1016/j.jpowsour.2012.10.001 10.1016/j.jpowsour.2015.08.091 10.1016/j.patcog.2004.12.013 10.1109/TNB.2012.2208473 10.1016/j.microrel.2015.02.025 10.1109/TCYB.2013.2245891 10.1016/j.jpowsour.2011.08.040 10.1016/j.jpowsour.2014.01.085 10.1177/002224377701400320 10.1016/0020-0255(87)90007-7 10.3390/en9110896 10.1109/MIM.2008.4579269 10.3758/BF03193511 10.1016/j.jpowsour.2014.07.116 10.3390/en6063082 10.1016/j.jpowsour.2012.11.146 10.1016/j.jpowsour.2016.04.119 10.1016/j.jpowsour.2015.04.166 10.1109/TCBB.2013.104 10.1016/j.jpowsour.2013.03.129 10.3390/en7020520 10.1109/TR.2014.2299152 10.1109/TCYB.2013.2263382 10.1023/B:STCO.0000035301.49549.88 10.1016/S0893-6080(05)80023-1 10.1016/j.jpowsour.2014.07.176 10.1016/j.apenergy.2014.08.059 10.1016/B978-0-12-386981-4.50011-4 10.1016/j.apenergy.2014.04.077 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2018 Springer-Verlag GmbH Germany, part of Springer Nature 2018. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s13042-018-0865-y |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database (ProQuest) ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 1868-808X |
EndPage | 2282 |
ExternalDocumentID | 10_1007_s13042_018_0865_y |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61572242 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29~ 2JY 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFKRA AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS AUKKA AXYYD AYJHY BENPR BGLVJ BGNMA CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 HCIFZ HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O93 O9J P2P P9P PT4 PTHSS QOS R89 R9I RLLFE ROL RSV S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7X Z83 Z88 ZMTXR ~A9 2VQ AARHV AAYXX AAYZH ABBRH ABDBE ABFSG ABULA ACSTC ADKFA AEBTG AEZWR AFDZB AFHIU AFLOW AFOHR AGJBK AHPBZ AHSBF AHWEU AIXLP AJBLW ATHPR AYFIA CITATION H13 O9- PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c355t-e267c270619625d4d77133ebcb8ea0508a0c0b538c1b979d2b8349d4dbf7546e3 |
IEDL.DBID | BENPR |
ISSN | 1868-8071 |
IngestDate | Sun Sep 07 13:32:42 EDT 2025 Tue Jul 01 03:50:59 EDT 2025 Thu Apr 24 22:56:55 EDT 2025 Fri Feb 21 02:40:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Lithium-ion batteries Support vector regression Multiple-view feature fusion Ensemble learning State of health Sliding window |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c355t-e267c270619625d4d77133ebcb8ea0508a0c0b538c1b979d2b8349d4dbf7546e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2920237754 |
PQPubID | 2043904 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2920237754 crossref_citationtrail_10_1007_s13042_018_0865_y crossref_primary_10_1007_s13042_018_0865_y springer_journals_10_1007_s13042_018_0865_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | International journal of machine learning and cybernetics |
PublicationTitleAbbrev | Int. J. Mach. Learn. & Cyber |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Yu, Wu, Shen (CR47) 2012; 11 Wang, Xing, Li (CR61) 2015; 23 Bai, Wang, Hu (CR27) 2014; 135 Saha, Kai, Poll (CR35) 2009; 58 Biagetti, Sciubba (CR5) 2004; 29 Klass, Behm, Lindbergh (CR30) 2014; 270 Joachims (CR37) 1998; -98 Dong, Jin, Lou (CR7) 2014; 271 Qin, Zeng, Guo (CR59) 2016; 9 Tang, Yu, Wang (CR10) 2014; 7 CR31 Xing, Ma, Tsui (CR24) 2013; 53 Wu, Wang, Zhang (CR33) 2016; 327 Andre, Appel, Soczka-Guth (CR34) 2013; 224 Zheng, Fang (CR13) 2015; 144 Yu (CR14) 2015; 64 Liu, Zhou, Pan (CR32) 2015; 63 Wang, Wang, Feng (CR60) 2014; 44 Orchard, Tang, Saha (CR53) 2010; 19 Rasmussen, Williams (CR18) 2006 CR42 Kohavi, John (CR44) 1997; 97 Willmott, Matsuura (CR57) 2005; 30 Blum, Langley (CR36) 1997; 97 Rezvanizaniani, Liu, Chen (CR3) 2014; 256 Kim, Son, Mukherjee (CR2) 2015; 282 Sepasi, Ghorbani, Liaw (CR25) 2015; 299 Wang, Miao, Pecht (CR38) 2013; 239 Basak, Pal, Patranabis (CR49) 2007; 11 Wolpert (CR51) 1992; 5 He, Williard, Osterman (CR15) 2011; 196 CR19 Si, Wang, Hu (CR23) 2013; 35 Goebel, Saha, Saxena (CR9) 2010; 11 CR52 Yager (CR62) 1987; 41 CR50 Nuhic, Terzimehic, Soczka-Guth (CR8) 2013; 239 Dieckmann, Rieskamp (CR46) 2007; 35 Eddahech, Briat, Bertrand (CR16) 2012; 42 Wang, Zhao, Su (CR28) 2014; 7 Hu, Han, Li (CR43) 2016; 48 Miao, Cui, Xie (CR12) 2013; 36 Liao, Köttig (CR4) 2014; 63 Li, Xu (CR11) 2015; 55 Liu, Pang, Zhou (CR20) 2013; 53 Sun, Zeng, Liu (CR41) 2005; 38 Chen, Miao, Zheng (CR17) 2013; 6 Qin, Zeng, Guo (CR58) 2015; 55 Kittler, Hatef, Duin (CR63) 1998; 20 Yu, Hu, Wu (CR45) 2013; 44 Armstrong, Overton (CR56) 1977; 14 Majidian, Saidi (CR6) 2007; 29 CR22 CR21 Smola, Schölkopf (CR48) 2004; 14 Wang, He, Wang (CR26) 2013; 44 Zhang, Lee (CR1) 2011; 196 Yu, Hu, Yang (CR55) 2013; 10 Pedregosa, Gramfort, Michel (CR54) 2011; 12 Yang, Yang, Zhang (CR40) 2003; 36 Hu, Jain, Schmidt (CR39) 2015; 289 Zhou, Huang, Chen (CR29) 2016; 321 865_CR19 T Joachims (865_CR37) 1998; -98 CJ Willmott (865_CR57) 2005; 30 J Kittler (865_CR63) 1998; 20 V Klass (865_CR30) 2014; 270 J Wu (865_CR33) 2016; 327 A Nuhic (865_CR8) 2013; 239 JG Kim (865_CR2) 2015; 282 S Wang (865_CR28) 2014; 7 865_CR52 RR Yager (865_CR62) 1987; 41 Y Zhou (865_CR29) 2016; 321 865_CR50 B Saha (865_CR35) 2009; 58 A Dieckmann (865_CR46) 2007; 35 ME Orchard (865_CR53) 2010; 19 T Biagetti (865_CR5) 2004; 29 G Bai (865_CR27) 2014; 135 CE Rasmussen (865_CR18) 2006 J Zhang (865_CR1) 2011; 196 F Li (865_CR11) 2015; 55 D Basak (865_CR49) 2007; 11 DJ Yu (865_CR45) 2013; 44 AL Blum (865_CR36) 1997; 97 JS Armstrong (865_CR56) 1977; 14 865_CR22 865_CR21 DJ Yu (865_CR55) 2013; 10 H Dong (865_CR7) 2014; 271 Y Chen (865_CR17) 2013; 6 XZ Wang (865_CR60) 2014; 44 D Andre (865_CR34) 2013; 224 XS Si (865_CR23) 2013; 35 Q-S Sun (865_CR41) 2005; 38 L Liao (865_CR4) 2014; 63 SM Rezvanizaniani (865_CR3) 2014; 256 K Goebel (865_CR9) 2010; 11 A Eddahech (865_CR16) 2012; 42 865_CR31 DH Wolpert (865_CR51) 1992; 5 X Zheng (865_CR13) 2015; 144 XZ Wang (865_CR26) 2013; 44 W He (865_CR15) 2011; 196 XZ Wang (865_CR61) 2015; 23 S Tang (865_CR10) 2014; 7 D Wang (865_CR38) 2013; 239 D Liu (865_CR32) 2015; 63 Y Xing (865_CR24) 2013; 53 T Qin (865_CR59) 2016; 9 Q Miao (865_CR12) 2013; 36 F Pedregosa (865_CR54) 2011; 12 J Yang (865_CR40) 2003; 36 T Qin (865_CR58) 2015; 55 S Sepasi (865_CR25) 2015; 299 J Yu (865_CR14) 2015; 64 R Kohavi (865_CR44) 1997; 97 865_CR42 A Majidian (865_CR6) 2007; 29 J Hu (865_CR43) 2016; 48 DJ Yu (865_CR47) 2012; 11 AJ Smola (865_CR48) 2004; 14 C Hu (865_CR39) 2015; 289 D Liu (865_CR20) 2013; 53 |
References_xml | – volume: 36 start-page: 47 issue: 8 year: 2013 end-page: 32 ident: CR12 article-title: Remaining useful life prediction of the lithium-ion battery using particle filtering publication-title: J Chongqing University – ident: CR22 – volume: 20 start-page: 226 issue: 3 year: 1998 end-page: 239 ident: CR63 article-title: On combining classifiers publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.667881 – volume: 29 start-page: 12 year: 2004 end-page: 15 ident: CR5 article-title: Automatic diagnostics and prognostics of energy conversion processes via knowledge-based systems publication-title: Energy doi: 10.1016/j.energy.2004.03.031 – volume: 58 start-page: 291 issue: 2 year: 2009 end-page: 296 ident: CR35 article-title: Prognostics methods for battery health monitoring using a bayesian framework publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2008.2005965 – volume: 35 start-page: 219237 year: 2013 ident: CR23 article-title: A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2012.08.016 – volume: -98 start-page: 137 year: 1998 end-page: 142 ident: CR37 article-title: Text categorization with support vector machines: learning with many relevant features publication-title: Mach Learn: ECML – volume: 97 start-page: 245 issue: 1 year: 1997 end-page: 271 ident: CR36 article-title: Selection of relevant features and examples in machine learning publication-title: Artif Intell doi: 10.1016/S0004-3702(97)00063-5 – volume: 44 start-page: 1365 issue: 5 year: 2013 end-page: 1379 ident: CR45 article-title: Learning protein multi-view features in complex space publication-title: Amino Acids doi: 10.1007/s00726-013-1472-6 – volume: 23 start-page: 1638 issue: 5 year: 2015 end-page: 1654 ident: CR61 article-title: A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2014.2371479 – ident: CR42 – volume: 11 start-page: 203 issue: 10 year: 2007 end-page: 224 ident: CR49 article-title: Support vector regression publication-title: Neural Inf Process Lett Rev – ident: CR21 – volume: 64 start-page: 2937 issue: 11 year: 2015 end-page: 2949 ident: CR14 article-title: State-of-health monitoring and prediction of lithium-ion battery using probabilistic indication and state-space model publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2015.2444237 – ident: CR19 – volume: 53 start-page: 832 issue: 6 year: 2013 end-page: 839 ident: CR20 article-title: Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression publication-title: Microelectron Reliab doi: 10.1016/j.microrel.2013.03.010 – volume: 144 start-page: 7482 year: 2015 ident: CR13 article-title: An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2015.07.013 – volume: 48 start-page: 1 issue: 11 year: 2016 end-page: 15 ident: CR43 article-title: TargetCrys: protein crystallization prediction by fusing multi-view features with two-layered SVM publication-title: Amino Acids doi: 10.1007/s00726-016-2274-4 – volume: 19 start-page: 209 issue: 3 year: 2010 end-page: 218 ident: CR53 article-title: Risk-sensitive particle-filtering-based prognosis framework for estimation of remaining useful life in energy storage devices publication-title: Stud Inf Control – volume: 42 start-page: 487 issue: 1 year: 2012 end-page: 494 ident: CR16 article-title: Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2012.04.050 – volume: 53 start-page: 811 issue: 6 year: 2013 end-page: 820 ident: CR24 article-title: An ensemble model for predicting the remaining useful performance of lithium-ion batteries publication-title: Microelectron Reliab doi: 10.1016/j.microrel.2012.12.003 – volume: 36 start-page: 1369 issue: 6 year: 2003 end-page: 1381 ident: CR40 article-title: Feature fusion: parallel strategy vs. serial strategy publication-title: Pattern Recognit doi: 10.1016/S0031-3203(02)00262-5 – ident: CR50 – volume: 196 start-page: 6007 issue: 15 year: 2011 end-page: 6014 ident: CR1 article-title: A review on prognostics and health monitoring of Li-ion battery publication-title: J Power Sources doi: 10.1016/j.jpowsour.2011.03.101 – year: 2006 ident: CR18 publication-title: Gaussian processes for machine learning – volume: 12 start-page: 2825 issue: 10 year: 2011 end-page: 2830 ident: CR54 article-title: Scikit-learn: machine learning in python publication-title: J Mach Learn Res – volume: 29 start-page: 489 issue: 3 year: 2007 end-page: 498 ident: CR6 article-title: Comparison of Fuzzy logic and neural network in life prediction of boiler tubes publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2006.05.001 – volume: 7 start-page: 6492 issue: 10 year: 2014 end-page: 6508 ident: CR28 article-title: Prognostics of lithium-ion batteries based on battery performance analysis and flexible support vector regression publication-title: Energies doi: 10.3390/en7106492 – volume: 30 start-page: 79 issue: 1 year: 2005 ident: CR57 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Clim Res doi: 10.3354/cr030079 – volume: 97 start-page: 273324 year: 1997 ident: CR44 article-title: Wrappers for feature subset selection publication-title: Artif Intell doi: 10.1016/S0004-3702(97)00043-X – volume: 224 start-page: 20 issue: 5 year: 2013 end-page: 27 ident: CR34 article-title: Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.10.001 – volume: 299 start-page: 246254 year: 2015 ident: CR25 article-title: Inline state of health estimation of lithium-ion batteries using state of charge calculation publication-title: J Power Sour doi: 10.1016/j.jpowsour.2015.08.091 – volume: 38 start-page: 2437 issue: 12 year: 2005 end-page: 2448 ident: CR41 article-title: A new method of feature fusion and its application in image recognition publication-title: Pattern Recognit doi: 10.1016/j.patcog.2004.12.013 – volume: 11 start-page: 375 issue: 4 year: 2012 end-page: 385 ident: CR47 article-title: Enhancing membrane protein subcellular localization prediction by parallel fusion of multi-view features publication-title: IEEE Trans Nanobiosci doi: 10.1109/TNB.2012.2208473 – volume: 55 start-page: 1035 issue: 7 year: 2015 end-page: 1045 ident: CR11 article-title: A new prognostics method for state of health estimation of lithium-ion batteries based on a mixture of Gaussian process models and particle filter publication-title: Microelectron Reliab doi: 10.1016/j.microrel.2015.02.025 – volume: 55 start-page: 12801284 year: 2015 ident: CR58 article-title: Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO–SVR model publication-title: Microelectron Reliab – volume: 44 start-page: 21 issue: 1 year: 2013 end-page: 39 ident: CR26 article-title: Non-naive bayesian classifiers for classification problems with continuous attributes publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2013.2245891 – volume: 196 start-page: 10314 issue: 23 year: 2011 end-page: 10321 ident: CR15 article-title: Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method publication-title: J Power Sources doi: 10.1016/j.jpowsour.2011.08.040 – volume: 256 start-page: 110 issue: 12 year: 2014 end-page: 124 ident: CR3 article-title: Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.01.085 – volume: 14 start-page: 396 issue: 3 year: 1977 end-page: 402 ident: CR56 article-title: Estimating nonresponse bias in mail surveys publication-title: J Market Res doi: 10.1177/002224377701400320 – volume: 41 start-page: 93 issue: 2 year: 1987 end-page: 137 ident: CR62 article-title: On the dempster-shafer framework and new combination rules publication-title: Inf Sci doi: 10.1016/0020-0255(87)90007-7 – volume: 9 start-page: 896 issue: 11 year: 2016 ident: CR59 article-title: A rest time-based prognostic framework for state of health estimation of lithium-ion batteries with regeneration phenomena publication-title: Energies doi: 10.3390/en9110896 – volume: 11 start-page: 33 issue: 4 year: 2010 end-page: 40 ident: CR9 article-title: Prognostics in battery health management publication-title: IEEE Instrum Meas Mag doi: 10.1109/MIM.2008.4579269 – volume: 35 start-page: 1801 issue: 7 year: 2007 end-page: 1813 ident: CR46 article-title: The influence of information redundancy on probabilistic inferences publication-title: Memory Cognition doi: 10.3758/BF03193511 – volume: 270 start-page: 262 issue: 3 year: 2014 end-page: 272 ident: CR30 article-title: A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.07.116 – volume: 6 start-page: 3082 issue: 6 year: 2013 end-page: 3096 ident: CR17 article-title: Quantitative analysis of lithium-ion battery capacity prediction via adaptive bathtub-shaped function publication-title: Energies doi: 10.3390/en6063082 – volume: 282 start-page: 299322 year: 2015 ident: CR2 article-title: A review of lithium and non-lithium based solid state batteries publication-title: J Power Sour – volume: 239 start-page: 680688 year: 2013 ident: CR8 article-title: Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods publication-title: J Power Sour doi: 10.1016/j.jpowsour.2012.11.146 – volume: 321 start-page: 110 year: 2016 ident: CR29 article-title: A novel health indicator for on-line lithium-ion batteries remaining useful life prediction publication-title: J Power Sour doi: 10.1016/j.jpowsour.2016.04.119 – volume: 289 start-page: 105113 year: 2015 ident: CR39 article-title: Online estimation of lithium-ion battery capacity using sparse Bayesian learning publication-title: J Power Sour doi: 10.1016/j.jpowsour.2015.04.166 – volume: 10 start-page: 994 issue: 4 year: 2013 end-page: 1008 ident: CR55 article-title: Designing template-free predictor for targeting protein-ligand binding sites with classifier ensemble and spatial clustering publication-title: IEEE/ACM Trans Comput Biol Bioinf doi: 10.1109/TCBB.2013.104 – volume: 239 start-page: 253 issue: 10 year: 2013 end-page: 264 ident: CR38 article-title: Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.03.129 – volume: 7 start-page: 520 issue: 2 year: 2014 end-page: 547 ident: CR10 article-title: Remaining useful life prediction of lithium-ion batteries based on the wiener process with measurement error publication-title: Energies doi: 10.3390/en7020520 – ident: CR52 – ident: CR31 – volume: 63 start-page: 191 issue: 1 year: 2014 end-page: 207 ident: CR4 article-title: Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction publication-title: IEEE Trans Reliab doi: 10.1109/TR.2014.2299152 – volume: 63 start-page: 143151 year: 2015 ident: CR32 article-title: Lithium-ion battery remaining useful life estimation with an optimized Relevance Vector Machine algorithm with incremental learning publication-title: Measurement – volume: 44 start-page: 620 issue: 5 year: 2014 end-page: 635 ident: CR60 article-title: A new approach to classifier fusion based on upper integral publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2013.2263382 – volume: 14 start-page: 199222 issue: 3 year: 2004 ident: CR48 article-title: A tutorial on support vector regression publication-title: Stat Comput doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 5 start-page: 241 issue: 2 year: 1992 end-page: 259 ident: CR51 article-title: Stacked generalization publication-title: Neural networks doi: 10.1016/S0893-6080(05)80023-1 – volume: 271 start-page: 114123 year: 2014 ident: CR7 article-title: Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter publication-title: J Power Sour doi: 10.1016/j.jpowsour.2014.07.176 – volume: 327 start-page: 457464 year: 2016 ident: CR33 article-title: A novel state of health estimation method of Li-ion battery using group method of data handling publication-title: J Power Sour – volume: 135 start-page: 247260 year: 2014 ident: CR27 article-title: A generic model-free approach for lithium-ion battery health management publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.08.059 – volume: 44 start-page: 21 issue: 1 year: 2013 ident: 865_CR26 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2013.2245891 – ident: 865_CR22 – volume: 321 start-page: 110 year: 2016 ident: 865_CR29 publication-title: J Power Sour doi: 10.1016/j.jpowsour.2016.04.119 – volume: 38 start-page: 2437 issue: 12 year: 2005 ident: 865_CR41 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2004.12.013 – volume: 29 start-page: 489 issue: 3 year: 2007 ident: 865_CR6 publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2006.05.001 – volume: 239 start-page: 253 issue: 10 year: 2013 ident: 865_CR38 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.03.129 – volume: 14 start-page: 396 issue: 3 year: 1977 ident: 865_CR56 publication-title: J Market Res doi: 10.1177/002224377701400320 – volume: 196 start-page: 6007 issue: 15 year: 2011 ident: 865_CR1 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2011.03.101 – volume: 29 start-page: 12 year: 2004 ident: 865_CR5 publication-title: Energy doi: 10.1016/j.energy.2004.03.031 – volume: 36 start-page: 47 issue: 8 year: 2013 ident: 865_CR12 publication-title: J Chongqing University – ident: 865_CR19 doi: 10.1016/B978-0-12-386981-4.50011-4 – volume: 30 start-page: 79 issue: 1 year: 2005 ident: 865_CR57 publication-title: Clim Res doi: 10.3354/cr030079 – ident: 865_CR52 – volume: 11 start-page: 375 issue: 4 year: 2012 ident: 865_CR47 publication-title: IEEE Trans Nanobiosci doi: 10.1109/TNB.2012.2208473 – volume: 11 start-page: 203 issue: 10 year: 2007 ident: 865_CR49 publication-title: Neural Inf Process Lett Rev – volume: 135 start-page: 247260 year: 2014 ident: 865_CR27 publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.08.059 – ident: 865_CR21 – volume: 63 start-page: 191 issue: 1 year: 2014 ident: 865_CR4 publication-title: IEEE Trans Reliab doi: 10.1109/TR.2014.2299152 – volume: 282 start-page: 299322 year: 2015 ident: 865_CR2 publication-title: J Power Sour – volume: 270 start-page: 262 issue: 3 year: 2014 ident: 865_CR30 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.07.116 – volume: 97 start-page: 273324 year: 1997 ident: 865_CR44 publication-title: Artif Intell doi: 10.1016/S0004-3702(97)00043-X – volume: 224 start-page: 20 issue: 5 year: 2013 ident: 865_CR34 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.10.001 – ident: 865_CR42 – volume: 7 start-page: 520 issue: 2 year: 2014 ident: 865_CR10 publication-title: Energies doi: 10.3390/en7020520 – volume: 64 start-page: 2937 issue: 11 year: 2015 ident: 865_CR14 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2015.2444237 – volume: 63 start-page: 143151 year: 2015 ident: 865_CR32 publication-title: Measurement – volume: 20 start-page: 226 issue: 3 year: 1998 ident: 865_CR63 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.667881 – volume: 7 start-page: 6492 issue: 10 year: 2014 ident: 865_CR28 publication-title: Energies doi: 10.3390/en7106492 – volume: 48 start-page: 1 issue: 11 year: 2016 ident: 865_CR43 publication-title: Amino Acids doi: 10.1007/s00726-016-2274-4 – volume: 53 start-page: 832 issue: 6 year: 2013 ident: 865_CR20 publication-title: Microelectron Reliab doi: 10.1016/j.microrel.2013.03.010 – volume: 239 start-page: 680688 year: 2013 ident: 865_CR8 publication-title: J Power Sour doi: 10.1016/j.jpowsour.2012.11.146 – volume: 256 start-page: 110 issue: 12 year: 2014 ident: 865_CR3 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.01.085 – volume: 42 start-page: 487 issue: 1 year: 2012 ident: 865_CR16 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2012.04.050 – volume: 35 start-page: 1801 issue: 7 year: 2007 ident: 865_CR46 publication-title: Memory Cognition doi: 10.3758/BF03193511 – volume: 299 start-page: 246254 year: 2015 ident: 865_CR25 publication-title: J Power Sour doi: 10.1016/j.jpowsour.2015.08.091 – volume: 271 start-page: 114123 year: 2014 ident: 865_CR7 publication-title: J Power Sour doi: 10.1016/j.jpowsour.2014.07.176 – volume: 97 start-page: 245 issue: 1 year: 1997 ident: 865_CR36 publication-title: Artif Intell doi: 10.1016/S0004-3702(97)00063-5 – volume: 23 start-page: 1638 issue: 5 year: 2015 ident: 865_CR61 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2014.2371479 – volume: 35 start-page: 219237 year: 2013 ident: 865_CR23 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2012.08.016 – volume: 36 start-page: 1369 issue: 6 year: 2003 ident: 865_CR40 publication-title: Pattern Recognit doi: 10.1016/S0031-3203(02)00262-5 – volume: 19 start-page: 209 issue: 3 year: 2010 ident: 865_CR53 publication-title: Stud Inf Control – volume: 41 start-page: 93 issue: 2 year: 1987 ident: 865_CR62 publication-title: Inf Sci doi: 10.1016/0020-0255(87)90007-7 – volume: 6 start-page: 3082 issue: 6 year: 2013 ident: 865_CR17 publication-title: Energies doi: 10.3390/en6063082 – volume: 58 start-page: 291 issue: 2 year: 2009 ident: 865_CR35 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2008.2005965 – volume-title: Gaussian processes for machine learning year: 2006 ident: 865_CR18 – ident: 865_CR50 – volume: 44 start-page: 1365 issue: 5 year: 2013 ident: 865_CR45 publication-title: Amino Acids doi: 10.1007/s00726-013-1472-6 – volume: 10 start-page: 994 issue: 4 year: 2013 ident: 865_CR55 publication-title: IEEE/ACM Trans Comput Biol Bioinf doi: 10.1109/TCBB.2013.104 – volume: 289 start-page: 105113 year: 2015 ident: 865_CR39 publication-title: J Power Sour doi: 10.1016/j.jpowsour.2015.04.166 – volume: 144 start-page: 7482 year: 2015 ident: 865_CR13 publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2015.07.013 – volume: 55 start-page: 12801284 year: 2015 ident: 865_CR58 publication-title: Microelectron Reliab – volume: 196 start-page: 10314 issue: 23 year: 2011 ident: 865_CR15 publication-title: J Power Sources doi: 10.1016/j.jpowsour.2011.08.040 – volume: 14 start-page: 199222 issue: 3 year: 2004 ident: 865_CR48 publication-title: Stat Comput doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 55 start-page: 1035 issue: 7 year: 2015 ident: 865_CR11 publication-title: Microelectron Reliab doi: 10.1016/j.microrel.2015.02.025 – volume: 327 start-page: 457464 year: 2016 ident: 865_CR33 publication-title: J Power Sour – volume: 11 start-page: 33 issue: 4 year: 2010 ident: 865_CR9 publication-title: IEEE Instrum Meas Mag doi: 10.1109/MIM.2008.4579269 – volume: 53 start-page: 811 issue: 6 year: 2013 ident: 865_CR24 publication-title: Microelectron Reliab doi: 10.1016/j.microrel.2012.12.003 – volume: -98 start-page: 137 year: 1998 ident: 865_CR37 publication-title: Mach Learn: ECML – volume: 44 start-page: 620 issue: 5 year: 2014 ident: 865_CR60 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2013.2263382 – volume: 12 start-page: 2825 issue: 10 year: 2011 ident: 865_CR54 publication-title: J Mach Learn Res – volume: 9 start-page: 896 issue: 11 year: 2016 ident: 865_CR59 publication-title: Energies doi: 10.3390/en9110896 – ident: 865_CR31 doi: 10.1016/j.apenergy.2014.04.077 – volume: 5 start-page: 241 issue: 2 year: 1992 ident: 865_CR51 publication-title: Neural networks doi: 10.1016/S0893-6080(05)80023-1 |
SSID | ssj0000603302 ssib031263576 ssib033405570 |
Score | 2.3646953 |
Snippet | Lithium-ion batteries have been widely used in many electronic systems. Accurately estimating the state of health (SOH) of a lithium-ion battery is important... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2269 |
SubjectTerms | Algorithms Artificial Intelligence Complex Systems Computational Intelligence Control Datasets Design Electronic systems Engineering Feature extraction Lithium Lithium-ion batteries Machine learning Mechatronics Neural networks Original Article Pattern Recognition Rechargeable batteries Robotics Support vector machines Systems Biology |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA4uFz2IK44b7-DBhUAnSdP0KOIwCHpyYG4ladNR0DrMInjxt_teF6uigse2aQv9kr7v5X35wthxLpQVxoY8jY3myuYZN7FTPNDWi1gLJz3Nd9zc6v5AXQ_DYb2Oe9qo3ZuSZPmnbhe7UeaNqS85KuuQvy6y5RBTd9LxDcRF04lkl-xV2hgrpSptpj4mXgKN5yototGGzHi7TbXzp7d8jVctCf1WNy3DUW-drdU8Ei4q4DfYgi822eond8FNtlGP2ymc1ObSp1vsrWSX8JxDtQISxhMq1RA8gPwVkJXfP8yfOB270nsTU2kgdfwIGvEhp3IC5L70BIV8ThNuYIsMpvMx0Xl4KUsBMPGjSmVbACbL_sk9-m026F3dXfZ5vQcDT5GJzLgXOkpFhFEfgQszlUWU1XqXOuNtgOzOBmng8K-Zdl0cxZlwRqoY27k8CpX2coctFc-F32WQZVppq8MoT42SUltMHWOLDCePIisz02FB86WTtDYop30yHpPWWpnASRCchMBJXjvs7OOWceXO8Vfjgwa-pB6o04Q26xKSbAA77LyBtL3868P2_tV6n60g0aq1aQdsaTaZ-0MkMzN3VHbedxLy6Zk priority: 102 providerName: Springer Nature |
Title | State of health prediction for lithium-ion batteries using multiple-view feature fusion and support vector regression ensemble |
URI | https://link.springer.com/article/10.1007/s13042-018-0865-y https://www.proquest.com/docview/2920237754 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB6x7YULYnmIwlL5wIGHLFLbcZwTalG7KxAVQlRaTpHtOAvSblr6QNoLv52ZxNkIJPYUJXZ88Iztbx7-BuBFJZQVxqbc50ZzZauSm9wpnmgbRK6Fk4H8HZ-W-mylPpyn59Hhtotpld2e2GzU5dqTj_wtVVUSkvja3m1-cqoaRdHVWELjCIa4BZt0AMPZfPn5S6dRckJcK_2BK6VqOKduvDCJxm9tYqLRhph5J13os7lfR8Y-WttE4qxTfv334dUj0n-CqM3ZtLgP9yKoZNNWC47hTqgfwHFctjv2MnJLv3oIvxtwydYVay9Ass2WIjUkHYbwlSEo__7jcMXp3TXUm2hJM0qOv2Bd7iGnmWJVaChBWXUgfxuzdcl2hw2hefariQSwbbhok2xrhrZyuHKX4RGsFvOv7894LMHAPQKRPQ9CZ15keOij3NJSlRkZtcF5Z4JNENzZxCcON00_cXmWl8IZqXLs5yqUlA7yMQzqdR2eACtLrbTVaVZ5o6TUFi3H3CLAqbLMytKMIOnmtvCRn5zKZFwWPbMyiaNAcRQkjuJ6BK9vftm05By3dT7pBFbEdboreq0awZtOiH3zfwd7evtgz-AuAquYi3YCg_32EJ4jeNm7MRyZxekYhtPFbLak5-m3j_Nx1FtsXYnpHyCN7kY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9gAXRHmIQIE9gMRDK5zd9do-IMSjVUrbCKFW6s3syy1S64Q8QLnwk_iNzNjeWiDRW4-ONxsrM5755rHfADythDIiNyl3Ra65MpXneWEVT7QJotDCykD5joOxHh2pT8fp8Rr8jmdhqK0y2sTGUPuJoxz5a5qqJCTxtb2dfuc0NYqqq3GERqsWe2H1E0O2-ZvdjyjfZ0LsbB9-GPFuqgB36FsXPAidOZGhH8NHSb3yGcVpwTqbB5MgXjGJSyzaATe0RVZ4YXOpClxnK_xxHSTuew02EGYU-BZtvN8ef_4SNVgOiduld_BSqobj6iLrk2j8rG2EzHVOTMDDWGptzvNRcgGjeyKN1ilf_e0sewT8T9G28YU7t-BmB2LZu1brNmEt1LdhszMTc_a847J-cQd-NWCWTSrWHrhk0xlVhkgbGMJlhkHA6bflOadr21B9YuTOqBn_hMVeR06SYVVoKEhZtaT8HjO1Z_PllKIH9qOpPLBZOGmbemuGsXk4t2fhLhxdiXDuwXo9qcN9YN5rpY1Os8rlSkptMFItDAKqKsuM9PkAkvjflq7jQ6exHGdlz-RM4ihRHCWJo1wN4OXFV6YtGchli7eiwMrOLszLXosH8CoKsb_9380eXL7ZE7g-OjzYL_d3x3sP4QaCuq4PbgvWF7NleITAaWEfd9rK4OtVvyB_AHSbJXU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3BVkJwaGmhYqGADxz4kNts7DjOsSpdCoWKA5XKKfgrBdGmq92kUjnw2_EkdgMVICGOSexEtif2e57xG4AnVcpVKlVGTSEF5aqyVBaa00QolxYi1czhfse7A7F3yN8cZUchz-kiRrtHl2R_pgFVmupma2arreHgG7JwT4NRXVlk9OI6LHHUZh_B0varj_u70aTYBMVWhhWXMd6JTl1uwyTC3-sjE6WQKM07ib7P333n19VrgKRXvKjd4jRdgU-xWX1MytfNttGb5tsVxcf_aPdtWA7AlWz3lrYK11y9Brd-kjNcg9UwUSzI06Bm_ewOfO_gLDmrSH_kkszm6BtCeyAeMBNPAz5_aU8pXutO7NNzd4Lh-MckRjtS9F-QynUipKRqcYePqNqSRTtD_kDOO98DmbvjPqy3Jp6du1N94u7C4XT3w84eDUkfqPHQp6EuFblJcw8zvKVkltscabTTRkunEg8nVWIS7adpM9FFXthUS8YLX05XecaFY-swqs9qdw-ItYILJbK8MpIzJpTnqoXykKrKc8WsHEMSB7M0QREdE3OclIOWM_Z36fu7xP4uL8bw_LLKrJcD-VvhjWghZZgZFiVmB0sZ6g6O4UUc8OHxH192_59KP4Yb719Oy7evD_YfwE0P8kJc3AaMmnnrHnog1ehH4Wf5AfxPEoU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=State+of+health+prediction+for+lithium-ion+batteries+using+multiple-view+feature+fusion+and+support+vector+regression+ensemble&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Ma%2C+Chao&rft.au=Zhai%2C+Xu&rft.au=Wang%2C+Zhaopei&rft.au=Tian%2C+Mingguang&rft.date=2019-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=10&rft.issue=9&rft.spage=2269&rft.epage=2282&rft_id=info:doi/10.1007%2Fs13042-018-0865-y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon |