Ultrathin 2D Conjugated Polymer Nanosheets for Solar Fuel Generation

Two-dimensional (2D) polymers are fascinating as they exhibit unique physical, chemical, mechanical, and electronic properties that are completely different from those of traditional linear or branched polymers. They are very promising for applications in catalysis, separation, optoelectronics, ener...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of polymer science Vol. 37; no. 2; pp. 101 - 114
Main Authors Zhang, Xin-Lei, Wang, Lei, Chen, Liang, Ma, Xiao-Yu, Xu, Hang-Xun
Format Journal Article
LanguageEnglish
Published Beijing Chinese Chemical Society and Institute of Chemistry, CAS 01.02.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two-dimensional (2D) polymers are fascinating as they exhibit unique physical, chemical, mechanical, and electronic properties that are completely different from those of traditional linear or branched polymers. They are very promising for applications in catalysis, separation, optoelectronics, energy storage, and nanomedicine. Recently, ultrathin 2D conjugated polymers have emerged as advanced materials for converting solar energy into chemical energy. The inherent 2D planar structure with in-plane periodicity offers many features that are highly desirable for photon-involved catalytic energy conversion processes, including high absorption coefficients, large surface areas, abundant surface active sites, and efficient charge separation. Moreover, the possibility of finely tuning the optoelectronic and structural properties through precise molecular engineering has opened up new opportunities for design and synthesis of novel 2D polymer nanosheets with unprecedented applications. Herein, we highlight recent advances in developing ultrathin 2D conjugated polymer nanosheets for solar-to-chemical energy conversion. Specifically, we discuss emerging applications of ultrathin 2D conjugated polymer nanosheets for solar-driven water splitting and CO 2 reduction. Meanwhile, future challenges and prospects for design and synthesis of ultrathin 2D conjugated polymer nanosheets for solar fuel generation are also included.
AbstractList Two-dimensional (2D) polymers are fascinating as they exhibit unique physical, chemical, mechanical, and electronic properties that are completely different from those of traditional linear or branched polymers. They are very promising for applications in catalysis, separation, optoelectronics, energy storage, and nanomedicine. Recently, ultrathin 2D conjugated polymers have emerged as advanced materials for converting solar energy into chemical energy. The inherent 2D planar structure with in-plane periodicity offers many features that are highly desirable for photon-involved catalytic energy conversion processes, including high absorption coefficients, large surface areas, abundant surface active sites, and efficient charge separation. Moreover, the possibility of finely tuning the optoelectronic and structural properties through precise molecular engineering has opened up new opportunities for design and synthesis of novel 2D polymer nanosheets with unprecedented applications. Herein, we highlight recent advances in developing ultrathin 2D conjugated polymer nanosheets for solar-to-chemical energy conversion. Specifically, we discuss emerging applications of ultrathin 2D conjugated polymer nanosheets for solar-driven water splitting and CO 2 reduction. Meanwhile, future challenges and prospects for design and synthesis of ultrathin 2D conjugated polymer nanosheets for solar fuel generation are also included.
Two-dimensional (2D) polymers are fascinating as they exhibit unique physical, chemical, mechanical, and electronic properties that are completely different from those of traditional linear or branched polymers. They are very promising for applications in catalysis, separation, optoelectronics, energy storage, and nanomedicine. Recently, ultrathin 2D conjugated polymers have emerged as advanced materials for converting solar energy into chemical energy. The inherent 2D planar structure with in-plane periodicity offers many features that are highly desirable for photon-involved catalytic energy conversion processes, including high absorption coefficients, large surface areas, abundant surface active sites, and efficient charge separation. Moreover, the possibility of finely tuning the optoelectronic and structural properties through precise molecular engineering has opened up new opportunities for design and synthesis of novel 2D polymer nanosheets with unprecedented applications. Herein, we highlight recent advances in developing ultrathin 2D conjugated polymer nanosheets for solar-to-chemical energy conversion. Specifically, we discuss emerging applications of ultrathin 2D conjugated polymer nanosheets for solar-driven water splitting and CO2 reduction. Meanwhile, future challenges and prospects for design and synthesis of ultrathin 2D conjugated polymer nanosheets for solar fuel generation are also included.
Author Wang, Lei
Zhang, Xin-Lei
Ma, Xiao-Yu
Chen, Liang
Xu, Hang-Xun
Author_xml – sequence: 1
  givenname: Xin-Lei
  surname: Zhang
  fullname: Zhang, Xin-Lei
  organization: Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China
– sequence: 2
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  organization: Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China
– sequence: 3
  givenname: Liang
  surname: Chen
  fullname: Chen, Liang
  organization: Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China
– sequence: 4
  givenname: Xiao-Yu
  surname: Ma
  fullname: Ma, Xiao-Yu
  organization: Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China
– sequence: 5
  givenname: Hang-Xun
  surname: Xu
  fullname: Xu, Hang-Xun
  email: hxu@ustc.edu.cn
  organization: Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China
BookMark eNp9kNFKwzAUhoNMcJs-gHcBr6s5SZOsl7K5KQwVdNchbdOto0tm0sL29mZWEAS9Ojffd85__hEaWGcNQtdAboEQeReAAEwSAllCQUJyOENDSFmWCErYAA0J5SKRQmYXaBTClhCRSi6HaLZqWq_bTW0xneGps9turVtT4lfXHHfG42dtXdgY0wZcOY_fXKM9nnemwQtjTVRrZy_ReaWbYK6-5xit5g_v08dk-bJ4mt4vk4Jx3ialSUVeiqKSmkHGS1HlRDOqc8J4WeqUaAmSGs0rkaeTvDQTnmcgSASrdCKAjdFNv3fv3UdnQqu2rvM2nlQUBAMphKSRkj1VeBeCN5Uq6vYrZ_y0bhQQdapM9ZWpWJk6VaYO0YRf5t7XO-2P_zq0d0Jk7dr4n0x_S59BeYCS
CitedBy_id crossref_primary_10_1016_j_colsurfa_2023_132702
crossref_primary_10_1002_adma_201904433
crossref_primary_10_1007_s12274_020_2976_5
crossref_primary_10_1021_acsmacrolett_2c00035
crossref_primary_10_1007_s10118_021_2574_3
crossref_primary_10_1002_open_202000041
crossref_primary_10_1016_j_scib_2020_08_009
crossref_primary_10_1002_smll_201903643
crossref_primary_10_3390_nano12234299
crossref_primary_10_1038_s41467_021_22879_6
crossref_primary_10_1021_jacs_4c05351
crossref_primary_10_1039_D3CS00782K
crossref_primary_10_1021_acs_nanolett_9b01458
Cites_doi 10.1021/jacs.7b06708
10.1002/anie.201408882
10.1039/C6NR00546B
10.1016/j.apcatb.2014.10.016
10.1039/C4CS00213J
10.1016/j.apcatb.2017.08.041
10.1021/ja308249k
10.1021/jacs.6b11878
10.1002/solr.201800006
10.1021/nn403328h
10.1021/jacs.7b04829
10.1039/C7NR00534B
10.1021/acs.nanolett.7b04675
10.1021/ja511552k
10.1002/smtd.201700080
10.1002/adma.201605308
10.1038/nnano.2015.340
10.1021/ar00051a007
10.1039/C4CC02553A
10.1038/nchem.1628
10.1021/ar300227e
10.1039/B802262N
10.1039/c3cs60160a
10.1063/1.2718755
10.1039/c2cc16892h
10.1021/cm2019586
10.1002/anie.200705710
10.1002/adma.201702428
10.1002/anie.201710557
10.1002/anie.201701627
10.1021/acs.chemrev.6b00075
10.1039/C7SC01747B
10.1021/jacs.8b00571
10.1002/adma.201705208
10.1002/adma.201702415
10.1021/la00003a035
10.1002/adma.201500033
10.1002/adma.201505281
10.1021/jacs.6b01744
10.1021/jacs.8b04007
10.1021/jacs.7b11255
10.1007/s10118-017-1886-9
10.1126/science.aad1920
10.1007/s10118-018-2070-6
10.1021/nn7001536
10.1021/acs.chemrev.5b00654
10.1126/sciadv.aat6378
10.1007/s10118-017-1996-4
10.1021/ja512018j
10.1002/adfm.201200922
10.1073/pnas.0603395103
10.1021/jacs.7b05025
10.1002/anie.201205521
10.1016/j.apcatb.2013.05.051
10.1021/acs.chemrev.7b00286
10.1002/adma.201800868
10.1002/adma.201204453
10.1039/C7SE00344G
10.1002/anie.201510542
10.1038/ncomms13461
10.1039/c3ee44189j
10.1002/ppsc.201700251
10.1021/jz502646d
10.1039/C7CC02648J
10.1039/B715563H
10.1002/anie.201712949
10.1039/C6CS00727A
10.1021/cs4000624
10.1021/jacs.6b01997
10.1038/nchem.2008
10.1039/C6CY02178F
10.1038/nmat5063
10.1002/adma.201704548
10.1038/nchem.1265
10.1038/nchem.2007
10.1038/nnano.2014.207
10.1021/ja403464h
10.1021/jacs.6b12776
10.1002/ange.201411170
10.1039/C1JM14312C
ContentType Journal Article
Copyright Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Copyright Springer Science & Business Media 2019
Copyright_xml – notice: Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Copyright Springer Science & Business Media 2019
DBID AAYXX
CITATION
DOI 10.1007/s10118-019-2171-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1439-6203
EndPage 114
ExternalDocumentID 10_1007_s10118_019_2171_x
GroupedDBID -EM
-SB
-S~
06D
0R~
0VY
1N0
29B
2B.
2C.
2KG
2VQ
30V
4.4
406
408
40D
5GY
5VR
5XA
5XC
67Z
6J9
8TC
92E
92I
92Q
93N
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BGNMA
CAG
CAJEB
CCEZO
CDRFL
CHBEP
COF
CS3
CSCUP
CW9
DDRTE
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
ESBYG
EST
ESX
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HF~
HMJXF
HRMNR
HVGLF
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
ML~
NPVJJ
NQJWS
NU0
O9-
O9J
P9N
PT4
Q--
R9I
RIG
RLLFE
ROL
RSV
RWJ
S1Z
S27
S3B
SCL
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TCJ
TGP
TSG
TUS
U1G
U2A
U5L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z7R
Z7V
Z7X
ZE2
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c355t-de46bd6cf7a3195d6fb0a32ab035dda40a7172ea5f6b48bde85b9160d6ff48613
IEDL.DBID U2A
ISSN 0256-7679
IngestDate Fri Jul 25 11:10:07 EDT 2025
Tue Jul 01 02:13:22 EDT 2025
Thu Apr 24 22:53:10 EDT 2025
Fri Feb 21 02:35:26 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Nanosheets
Conjugated polymers
2D polymers
Photocatalysis
Energy conversion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-de46bd6cf7a3195d6fb0a32ab035dda40a7172ea5f6b48bde85b9160d6ff48613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2163176672
PQPubID 2043655
PageCount 14
ParticipantIDs proquest_journals_2163176672
crossref_citationtrail_10_1007_s10118_019_2171_x
crossref_primary_10_1007_s10118_019_2171_x
springer_journals_10_1007_s10118_019_2171_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Chinese journal of polymer science
PublicationTitleAbbrev Chin J Polym Sci
PublicationYear 2019
Publisher Chinese Chemical Society and Institute of Chemistry, CAS
Springer Nature B.V
Publisher_xml – name: Chinese Chemical Society and Institute of Chemistry, CAS
– name: Springer Nature B.V
References Yang, Cheng, Zhang, Ren, Li, Dong, Hu (CR38) 2018; 30
Kory, Wörle, Weber, Payamyar, Poll, Dshemuchadse, Trapp, Schlüter (CR40) 2014; 6
Xu, Jin, Xu, Nagai, Jiang (CR18) 2013; 42
Jiang, Su, Niu, Wood, Campbell, Khimyak, Cooper (CR20) 2008; 4
Kissel, Murray, Wulftange, Catalano, King (CR41) 2014; 6
Colson, Dichtel (CR37) 2013; 5
Zhang, Wang (CR13) 2014; 7
Gao, Wang, Xu, Xiong (CR64) 2017; 46
Low, Jiang, Cheng, Wageh, Ghamdi, Yu (CR68) 2017; 1
Yang, Zhang, Pagliaro, Xu (CR33) 2014; 43
Zhang, Xie, Wang, Zhang, Pan, Xie (CR44) 2013; 135
Gao, Li, Du, Zhou, Huang, Liu, Li, Xie, Wu, Liu, Zhang (CR77) 2017; 29
Zhang, Qin, Zhu, Hou (CR6) 2018; 30
Singh, Mathew, Zhuang, Hennig (CR27) 2015; 6
Crabtree, Lewis (CR4) 2007; 60
Matsuoka, Sakamoto, Hoshiko, Sasaki, Masunaga, Nagashio, Nishihara (CR56) 2017; 139
Wang, Suzuki, Xie, Tomita, Martin, Higashi, Kong, Abe, Tang (CR67) 2018; 118
Qin, Wang, Ren, Hou, Wang (CR81) 2015
Zeng, Xu, Ong, Xu, Ren, Chen, Zheng, Peng (CR69) 2018; 221
Sprick, Jiang, Bonillo, Ren, Ratvijitvech, Guiglion, Zwijnenburg, Adams, Cooper (CR23) 2015; 137
Lewis, Nocera (CR1) 2006; 103
Yang, Gong, Zhang, Zhan, Ma, Fang, Vajtai, Wang, Ajayan (CR46) 2013; 25
Low, Cao, Yu, Wageh (CR31) 2014; 50
Nuraje, Su, Yang, Matsui (CR50) 2008; 2
Wang, Zheng, Chen, Xiong, Xu (CR74) 2018; 57
Islam, Liu, Peng, Jiang, Lei, Li, Zhang, Yang, Guan, Ge (CR15) 2017; 35
Zhang, Lana, Wang (CR34) 2017; 8
Kuriki, Matsunaga, Nakashima, Wada, Yamakata, Ishitani, Maeda (CR82) 2016; 138
Pachfule, Achaijya, Roeser, Langenhahn, Schwarze, Schomäcker, Thomas, Schmidt (CR84) 2018; 140
Cometto, Kuriki, Chen, Maeda, Lau, Ishitani, Robert (CR79) 2018; 140
Niu, Zhang, Liu, Cheng (CR45) 2012; 22
Cao, Low, Yu, Jaroniec (CR65) 2015; 27
Wang, Wan, Ding, Wu, Zhang, Zhang, Zhang, Xiong, Wu, Yang, Xu (CR60) 2017; 29
Zhao, Guo, Wang, He, Sun, Yang (CR71) 2015; 165
Ding, Chen, Zhang, Chen, Dong, Jiang, Xu, Zhou (CR47) 2017; 139
Gao, Zhu, Yi, Zhou, Zhang, Yin, Ding, Zhang, Yi, Wang, Tong, Han, Liu, Zhang (CR48) 2018; 4
Li, Bi, Zhang, Tao, Chu, Zhang, Luo, Wu, Xie (CR70) 2016; 28
Lewis (CR8) 2016; 351
Kuriki, Sekizawa, Ishitani, Maeda (CR78) 2015; 127
Yang, Bu, Liu, Shakir, Xu (CR58) 2017; 53
Fiori, Bonaccorso, Iannaccone, Palacios, Neumaier, Seabaugh, Banerjee, Colombo (CR32) 2014; 9
Xu, Zhu, Jiang, Cheng, Yu (CR73) 2018; 2
Bard, Fox (CR59) 1995; 28
Li, Gao, Liu, Feng, Li, Huang, Liu, Zhang, Tung, Wu (CR76) 2016
Li, Zhan, Liu, Ren, Shi, Li, Russell, Chen (CR7) 2018; 30
Chu, Wang, Guo, Feng, Wang, Luo, Fan, Zou (CR61) 2013; 3
Liu, Guan, Ding, Wang, Yan, Wang, Wan (CR57) 2013; 135
Pan, Zheng, Guo, Niu, Wang (CR14) 2017; 10
Li, Li, Sa, Ahuja (CR30) 2017; 7
Luo, Liu, Wang (CR66) 2016; 8
Bin, Zhang, Gao, Chen, Zhong, Xue, Yang, Li (CR12) 2016; 138
Liu, Zan, Li, Yang, Bu, Xu (CR49) 2017; 139
Zeng, Ong, Chen, Tee, Chua, Peng, Han (CR72) 2018; 35
Che, Cheng, Yao, Tang, Liu, Su, Huang, Liu, Liu, Hu, Pan, Sun, Wei (CR75) 2017; 139
Wang, Ma, Sheng, Wang, Xu (CR11) 2018; 18
Deng, Novoselov, Fu, Zheng, Tian, Bao (CR29) 2016; 11
Liu, Kan, Wu, Pan, Li, Zhao (CR36) 2018; 36
Wang, Zhang, Chen, Xu, Xiong (CR25) 2018
Yang, Wang, Han, Li (CR35) 2013; 46
Guan, Wang, Wan (CR53) 2012; 48
Sahabudeen, Qi, Glatz, Tranca, Dong, Hou, Zhang, Kuttner, Lehnert, Seifert, Kaiser, Fery, Zheng, Feng (CR55) 2016; 7
Chen, Jia, Hu, Fan, Tsang, Li, Zou (CR26) 2017; 1
Ji, Wen, Shen, Lv, Chen, Liu, Ma, Zhang (CR43) 2017; 139
Xu, Zhou, Yu, Tian, Ma, Lei (CR54) 2013; 7
Lewis (CR3) 2015; 115
Ong, Tan, Ng, Yong, Chai (CR42) 2016; 116
Barber (CR2) 2009; 38
Sprick, Bonillo, Clowes, Guiglion, Brownbill, Slater, Blanc, Zwijnenburg, Adams, Cooper (CR22) 2016; 55
Zhang, Guo, Wang, Wang, Li (CR9) 2011; 23
Ge, Han, Xiao, Guo (CR62) 2013; 142
Dong, Zhang (CR80) 2012; 22
Kuhn, Antonietti, Thomas (CR19) 2008; 47
Hou, Inganäs, Friend, Gao (CR10) 2018; 17
Xiao, Xu (CR24) 2018
Murray, Patterson, Payamyar, Bhola, Song, Lackinger, Schlüter, King (CR51) 2015; 137
Di, Xiong, Li, Liu (CR28) 2018; 30
Kuriki, Yamamoto, Higuchi, Yamamoto, Akatsuka, Lu, Yagi, Yoshida, Ishitani, Maeda (CR83) 2017; 56
Wei, Qi, Wang, Ding, Yu, Liu, Wang, Wang, An, Wang (CR85) 2018; 140
Wang, Wan, Ding, Niu, Xiong, Wu, Xu (CR63) 2017; 9
Li, Fan, Fu, Xin, Chen (CR5) 2015; 54
Wang, Zhu, Du, Liu, Zhang, Dong, Hu (CR17) 2018; 57
Cao, Qian, He, Xiao, Ding (CR16) 2017; 35
Kou, Xu, Guo, Jiang (CR21) 2012; 51
Bruno, Akkara, Samuelson, Kaplan, Mandal, Marx, Kumar, Tripathy (CR52) 1995; 11
Kissel, Erni, Schweizer, Rossell, King, Bauer, Götzinger, Schlüter, Sakamoto (CR39) 2012; 4
Y. Yang (2171_CR58) 2017; 53
L. Xu (2171_CR54) 2013; 7
S. Chu (2171_CR61) 2013; 3
X. Gao (2171_CR77) 2017; 29
N. S. Lewis (2171_CR8) 2016; 351
Y. Chen (2171_CR26) 2017; 1
L. Wang (2171_CR74) 2018; 57
J. X. Jiang (2171_CR20) 2008; 4
H. Bin (2171_CR12) 2016; 138
S. Zhang (2171_CR6) 2018; 30
J. Hou (2171_CR10) 2018; 17
P. Pachfule (2171_CR84) 2018; 140
P. F. Wei (2171_CR85) 2018; 140
D. Zeng (2171_CR72) 2018; 35
J. Low (2171_CR31) 2014; 50
A. J. Bard (2171_CR59) 1995; 28
M. Zhang (2171_CR13) 2014; 7
P. Xiao (2171_CR24) 2018
B. Luo (2171_CR66) 2016; 8
J. Di (2171_CR28) 2018; 30
J. Ji (2171_CR43) 2017; 139
J. W. Colson (2171_CR37) 2013; 5
X. Gao (2171_CR48) 2018; 4
S. Yang (2171_CR46) 2013; 25
J. Liu (2171_CR49) 2017; 139
H. Sahabudeen (2171_CR55) 2016; 7
J. Qin (2171_CR81) 2015
J. Barber (2171_CR2) 2009; 38
Y. Kou (2171_CR21) 2012; 51
J. Li (2171_CR76) 2016
N. Nuraje (2171_CR50) 2008; 2
D. Deng (2171_CR29) 2016; 11
P. Kuhn (2171_CR19) 2008; 47
C. Cometto (2171_CR79) 2018; 140
R. Kuriki (2171_CR82) 2016; 138
W. J. Ong (2171_CR42) 2016; 116
F. F. Bruno (2171_CR52) 1995; 11
A. Islam (2171_CR15) 2017; 35
C. Z. Guan (2171_CR53) 2012; 48
H. Liu (2171_CR36) 2018; 36
X. Zhang (2171_CR44) 2013; 135
L. Wang (2171_CR63) 2017; 9
P. Kissel (2171_CR39) 2012; 4
X. H. Liu (2171_CR57) 2013; 135
R. S. Sprick (2171_CR22) 2016; 55
Z. Pan (2171_CR14) 2017; 10
Q. Xu (2171_CR73) 2018; 2
N. S. Lewis (2171_CR1) 2006; 103
L. Wang (2171_CR25) 2018
G. W. Crabtree (2171_CR4) 2007; 60
Y. Wang (2171_CR17) 2018; 57
G. Fiori (2171_CR32) 2014; 9
W. Che (2171_CR75) 2017; 139
N. S. Lewis (2171_CR3) 2015; 115
Y. Xu (2171_CR18) 2013; 42
L. Ge (2171_CR62) 2013; 142
R. Kuriki (2171_CR83) 2017; 56
M. Q. Yang (2171_CR33) 2014; 43
H. Li (2171_CR5) 2015; 54
R. Kuriki (2171_CR78) 2015; 127
A. K. Singh (2171_CR27) 2015; 6
F. Yang (2171_CR38) 2018; 30
P. Niu (2171_CR45) 2012; 22
Y. Ding (2171_CR47) 2017; 139
L. Wang (2171_CR60) 2017; 29
S. Li (2171_CR7) 2018; 30
J. Yang (2171_CR35) 2013; 46
M. J. Kory (2171_CR40) 2014; 6
G. Zhang (2171_CR34) 2017; 8
W. Zhao (2171_CR71) 2015; 165
C. Gao (2171_CR64) 2017; 46
J. Low (2171_CR68) 2017; 1
D. J. Murray (2171_CR51) 2015; 137
S. Cao (2171_CR65) 2015; 27
G. Dong (2171_CR80) 2012; 22
P. Kissel (2171_CR41) 2014; 6
D. Zeng (2171_CR69) 2018; 221
X. Li (2171_CR70) 2016; 28
M. Zhang (2171_CR9) 2011; 23
Y. Li (2171_CR30) 2017; 7
Y. Wang (2171_CR67) 2018; 118
X. Wang (2171_CR11) 2018; 18
J. M. Cao (2171_CR16) 2017; 35
R. S. Sprick (2171_CR23) 2015; 137
R. Matsuoka (2171_CR56) 2017; 139
References_xml – volume: 139
  start-page: 11698
  year: 2017
  end-page: 11701
  ident: CR43
  article-title: Simultaneous noncovalent modification and exfoliation of 2D carbon nitride for enhanced electrochemiluminescent biosensing
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06708
– volume: 54
  start-page: 956
  year: 2015
  end-page: 960
  ident: CR5
  article-title: Solution-grown organic single-crystalline donor-acceptor heterojunctions for photovoltaics
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201408882
– volume: 8
  start-page: 6904
  year: 2016
  end-page: 6920
  ident: CR66
  article-title: Recent advances in 2D materials for photocatalysis
  publication-title: Nanoscale
  doi: 10.1039/C6NR00546B
– year: 2018
  ident: CR24
  article-title: Recent progress in two-dimensional polymers for energy storage and conversion: Design, synthesis, and applications
  publication-title: J. Mater. Chem. A
– volume: 165
  start-page: 335
  year: 2015
  end-page: 343
  ident: CR71
  article-title: A novel ternary plasmonic photocatalyst: Ultrathin g-C3N4 nanosheet hybrided by Ag/AgVO3 nanoribbons with enhanced visiblelight photocatalytic performance
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2014.10.016
– volume: 43
  start-page: 8240
  year: 2014
  end-page: 8254
  ident: CR33
  article-title: Artificial photosynthesis over graphene-semiconductor composites. Are we getting better
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00213J
– volume: 221
  start-page: 47
  year: 2018
  end-page: 55
  ident: CR69
  article-title: Toward noble-metal-free visible-lightdriven photocatalytic hydrogen evolution: Monodisperse sub-15 nm Ni2P nanoparticles anchored on porous g-C3N4 nanosheets to engineer 0D-2D heterojunction interfaces
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.08.041
– volume: 135
  start-page: 18
  year: 2013
  end-page: 21
  ident: CR44
  article-title: Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308249k
– volume: 139
  start-page: 3021
  year: 2017
  end-page: 3026
  ident: CR75
  article-title: Fast photoelectron transfer in (Cring)–C3N4 plane heterostructural nanosheets for overall water splitting
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11878
– volume: 2
  start-page: 1800006
  year: 2018
  ident: CR73
  article-title: Constructing 2D/2D Fe2O3/g-C3N4 direct Z-scheme photocatalysts with enhanced H2 generation performance
  publication-title: Sol. RRL
  doi: 10.1002/solr.201800006
– volume: 7
  start-page: 8066
  year: 2013
  end-page: 8073
  ident: CR54
  article-title: Surfaceconfined crystalline two-dimensional covalent organic frameworks via on-surface schiff-base coupling
  publication-title: ACS Nano
  doi: 10.1021/nn403328h
– volume: 139
  start-page: 9136
  year: 2017
  end-page: 9139
  ident: CR47
  article-title: Controlled intercalation and chemical exfoliation of layered metal-organic frameworks using a chemically labile intercalating agent
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04829
– volume: 9
  start-page: 4090
  year: 2017
  end-page: 4096
  ident: CR63
  article-title: Photocatalytic oxygen evolution from low-bandgap conjugated microporous polymer nanosheets: A combined first-principles calculation and experimental study
  publication-title: Nanoscale
  doi: 10.1039/C7NR00534B
– volume: 18
  start-page: 2217
  year: 2018
  end-page: 2225
  ident: CR11
  article-title: Ultrathin polypyrrole nanosheets via space-confined synthesis for efficient photothermal therapy in the second near-infrared window
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b04675
– volume: 137
  start-page: 3265
  year: 2015
  end-page: 3270
  ident: CR23
  article-title: Tunable organic photocatalysts for visible-light-driven hydrogen evolution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511552k
– volume: 1
  start-page: 1700080
  year: 2017
  ident: CR68
  article-title: A review of direct Z-scheme photocatalysts
  publication-title: Small Methods
  doi: 10.1002/smtd.201700080
– volume: 29
  start-page: 1605308
  year: 2017
  ident: CR77
  article-title: Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605308
– volume: 11
  start-page: 218
  year: 2016
  end-page: 230
  ident: CR29
  article-title: Catalysis with two-dimensional materials and their heterostructures
  publication-title: Nat. Nanotechnol
  doi: 10.1038/nnano.2015.340
– volume: 28
  start-page: 141
  year: 1995
  end-page: 145
  ident: CR59
  article-title: Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00051a007
– volume: 50
  start-page: 10768
  year: 2014
  end-page: 10777
  ident: CR31
  article-title: Two-dimensional layered composite photocatalysts
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC02553A
– volume: 5
  start-page: 453
  year: 2013
  end-page: 465
  ident: CR37
  article-title: Rationally synthesized two-dimensional polymers
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1628
– volume: 46
  start-page: 1900
  year: 2013
  end-page: 1909
  ident: CR35
  article-title: Roles of cocatalysts in photocatalysis and photoelectrocatalysis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300227e
– volume: 38
  start-page: 185
  year: 2009
  ident: CR2
  article-title: Photosynthetic energy conversion: Natural and artificial
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B802262N
– volume: 42
  start-page: 8012
  year: 2013
  end-page: 8031
  ident: CR18
  article-title: Conjugated microporous polymers: Design, synthesis and application
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60160a
– volume: 60
  start-page: 37
  year: 2007
  end-page: 42
  ident: CR4
  article-title: Solar energy conversion
  publication-title: Phys. Today
  doi: 10.1063/1.2718755
– volume: 48
  start-page: 2943
  year: 2012
  end-page: 2945
  ident: CR53
  article-title: Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc16892h
– volume: 23
  start-page: 4264
  year: 2011
  end-page: 4270
  ident: CR9
  article-title: Synthesis and photovoltaic properties of D-A copolymers based on alkyl-substituted indacenodithiophene donor unit
  publication-title: Chem. Mater.
  doi: 10.1021/cm2019586
– volume: 47
  start-page: 3450
  year: 2008
  end-page: 3453
  ident: CR19
  article-title: Porous, covalent triazinebased frameworks prepared by ionoithermal synthesis
  publication-title: Ange w. Chem. Int. Ed.
  doi: 10.1002/anie.200705710
– volume: 29
  start-page: 1702428
  year: 2017
  ident: CR60
  article-title: Conjugated microporous polymer nanosheets for overall water splitting using visible light
  publication-title: Ad. Mater.
  doi: 10.1002/adma.201702428
– volume: 57
  start-page: 3454
  year: 2018
  end-page: 3458
  ident: CR74
  article-title: Van der Waals heterostructures comprised of ultrathin polymer nanosheets for efficient Z-scheme overall water splitting
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201710557
– volume: 56
  start-page: 4867
  year: 2017
  end-page: 4871
  ident: CR83
  article-title: Robust binding between carbon nitride nanosheets and a binuclear ruthenium(II) complex enabling durable, selective CO2 reduction under visible light in aqueous solution
  publication-title: A ge w. Chem. Int. Ed.
  doi: 10.1002/anie.201701627
– volume: 116
  start-page: 7159
  year: 2016
  end-page: 7329
  ident: CR42
  article-title: Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00075
– volume: 8
  start-page: 5261
  year: 2017
  end-page: 5274
  ident: CR34
  article-title: Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC01747B
– volume: 140
  start-page: 4623
  year: 2018
  end-page: 4631
  ident: CR85
  article-title: Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00571
– volume: 30
  start-page: 1705208
  year: 2018
  ident: CR7
  article-title: An unfused-core-based nonfullerene acceptor enables high-effciency organic solar cells with excellent morphological stability at high temperatures
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705208
– volume: 30
  start-page: 1702415
  year: 2018
  ident: CR38
  article-title: 2D organic materials for optoelectronic applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702415
– volume: 11
  start-page: 889
  year: 1995
  end-page: 892
  ident: CR52
  article-title: Enzymatic mediated synthesis of conjugated polymers at the langmuir trough air-water interface
  publication-title: Langmuir
  doi: 10.1021/la00003a035
– volume: 27
  start-page: 2150
  year: 2015
  end-page: 2176
  ident: CR65
  article-title: Polymeric photocatalysts based on graphitic carbon nitride
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500033
– volume: 28
  start-page: 2427
  year: 2016
  end-page: 2431
  ident: CR70
  article-title: Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505281
– volume: 138
  start-page: 4657
  year: 2016
  end-page: 4664
  ident: CR12
  article-title: Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5% efficiency
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b01744
– volume: 140
  start-page: 7437
  year: 2018
  end-page: 7440
  ident: CR79
  article-title: A carbon nitride/Fe quaterpyridine catalytic system for photostimulated CO2-to-CO conversion with visible light
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04007
– volume: 140
  start-page: 1423
  year: 2018
  end-page: 1427
  ident: CR84
  article-title: Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11255
– volume: 35
  start-page: 171
  year: 2017
  end-page: 183
  ident: CR15
  article-title: Furan-containing conjugated polymers for organic solar cells
  publication-title: Chinese J. Polym. Sci.
  doi: 10.1007/s10118-017-1886-9
– volume: 351
  start-page: aad1920
  year: 2016
  ident: CR8
  article-title: Research opportunities to advance solar energy utilization
  publication-title: Science
  doi: 10.1126/science.aad1920
– volume: 36
  start-page: 425
  year: 2018
  end-page: 444
  ident: CR36
  article-title: Synthetic two-dimensional organic structures
  publication-title: Chinese J. Polym. Sci.
  doi: 10.1007/s10118-018-2070-6
– volume: 2
  start-page: 502
  year: 2008
  end-page: 506
  ident: CR50
  article-title: Liquid/liquid interfacial polymerization to grow single crystalline nanoneedles of various conducting polymers
  publication-title: ACS Nano
  doi: 10.1021/nn7001536
– volume: 115
  start-page: 12631
  year: 2015
  end-page: 12632
  ident: CR3
  article-title: Introduction: Solar energy conversion
  publication-title: Chem. Rev
  doi: 10.1021/acs.chemrev.5b00654
– volume: 4
  start-page: eaat6378
  year: 2018
  ident: CR48
  article-title: Ultrathin graphdiyne film on graphene through solutionphase van der Waals epitaxy
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat6378
– volume: 35
  start-page: 1457
  year: 2017
  end-page: 1462
  ident: CR16
  article-title: D-A Copolymers based on a pentacyclic acceptor unit and a 3,3'-difluoro-2,2'-bithiophene for solar cells
  publication-title: Chinese J. Polym. Sci.
  doi: 10.1007/s10118-017-1996-4
– volume: 137
  start-page: 3450
  year: 2015
  end-page: 3453
  ident: CR51
  article-title: Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja512018j
– volume: 22
  start-page: 4763
  year: 2012
  end-page: 4770
  ident: CR45
  article-title: Graphene-like carbon nitride nanosheets for improved photocatalytic activities
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200922
– volume: 103
  start-page: 15729
  year: 2006
  end-page: 15735
  ident: CR1
  article-title: Powering the planet: Chemical challenges in solar energy utilization
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0603395103
– volume: 139
  start-page: 11666
  year: 2017
  end-page: 11669
  ident: CR49
  article-title: Solution synthesis of semiconducting two-dimensional polymer via trimerization of carbonitrile
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05025
– volume: 51
  start-page: 12727
  year: 2012
  end-page: 12731
  ident: CR21
  article-title: Supercapacitive energy storage and electric power supply using an aza-fused n-conjugated microporous framework
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201205521
– year: 2018
  ident: CR25
  article-title: 2D polymers as emerging materials for photocatalytic overall water splitting
  publication-title: Ad. Mater.
– volume: 142
  start-page: 414
  year: 2013
  end-page: 422
  ident: CR62
  article-title: In situ synthesis of cobaltphosphate (Co-Pi) modified g-C3N4 photocatalysts with enhanced photocatalytic activities
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2013.05.051
– volume: 118
  start-page: 5201
  year: 2018
  end-page: 5241
  ident: CR67
  article-title: Mimicking natural photosynthesis: Solar to renewable H2 fuel synthesis by Zscheme water splitting systems
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00286
– volume: 30
  start-page: 1800868
  year: 2018
  ident: CR6
  article-title: Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800868
– volume: 25
  start-page: 2452
  year: 2013
  end-page: 2456
  ident: CR46
  article-title: Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201204453
– year: 2016
  ident: CR76
  article-title: Graphdiyne: A metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production
  publication-title: J. Am. Chem. Soc
– year: 2015
  ident: CR81
  article-title: Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid
  publication-title: Appl. Catal. B Environ.
– volume: 1
  start-page: 1875
  year: 2017
  end-page: 1898
  ident: CR26
  article-title: Two-dimensional nanomaterials for photocatalytic CO2 reduction to solar fuels
  publication-title: Sustainable Energy Fuels
  doi: 10.1039/C7SE00344G
– volume: 55
  start-page: 1792
  year: 2016
  end-page: 1796
  ident: CR22
  article-title: Visible-light-driven hydrogen evolution using planarized conjugated polymer photocatalysts
  publication-title: Ange w. Chem. Int. Ed.
  doi: 10.1002/anie.201510542
– volume: 7
  start-page: 13461
  year: 2016
  ident: CR55
  article-title: Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13461
– volume: 7
  start-page: 1902
  year: 2014
  end-page: 1906
  ident: CR13
  article-title: Two dimensional conjugated polymers with enhanced optical absorption and charge separation for photocatalytic hydrogen evolution
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee44189j
– volume: 35
  start-page: 1700251
  year: 2018
  ident: CR72
  article-title: Co2P nanorods as an efficient cocatalyst decorated porous g-C3N4 nanosheets for photocatalytic hydrogen production under visible light irradiation
  publication-title: Part. Part. Syst. Charact.
  doi: 10.1002/ppsc.201700251
– volume: 6
  start-page: 1087
  year: 2015
  end-page: 1098
  ident: CR27
  article-title: Computational screening of 2D materials for photocatalysis
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz502646d
– volume: 53
  start-page: 7481
  year: 2017
  end-page: 7484
  ident: CR58
  article-title: Mechanochemical synthesis of two-dimensional aromatic polyamides
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC02648J
– volume: 4
  start-page: 486
  year: 2008
  end-page: 488
  ident: CR20
  article-title: Conjugated microporous poly(phenylene butadiynylene)s
  publication-title: Chem. Commun.
  doi: 10.1039/B715563H
– volume: 57
  start-page: 3963
  year: 2018
  end-page: 3967
  ident: CR17
  article-title: Cocrystals strategy towards materials for near-infrared photothermal conversion and imaging
  publication-title: A ge w. Chem. Int. Ed.
  doi: 10.1002/anie.201712949
– volume: 46
  start-page: 2799
  year: 2017
  end-page: 2823
  ident: CR64
  article-title: Coordination chemistry in the design of heterogeneous photocatalysts
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00727A
– volume: 3
  start-page: 912
  year: 2013
  end-page: 919
  ident: CR61
  article-title: Band structure engineering of carbon nitride: In search of a polymer photocatalyst with high photooxidation property
  publication-title: ACS Catal.
  doi: 10.1021/cs4000624
– volume: 138
  start-page: 5159
  year: 2016
  end-page: 5170
  ident: CR82
  article-title: Nature-inspired, highly durable CO2 reduction system consisting of a binuclear ruthenium(II) complex and an organic semiconductor using visible light
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b01997
– volume: 6
  start-page: 774
  year: 2014
  end-page: 778
  ident: CR41
  article-title: A nanoporous two-dimensional polymer by singlecrystal-to-single-crystal photopolymerization
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2008
– volume: 7
  start-page: 545
  year: 2017
  end-page: 559
  ident: CR30
  article-title: Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C6CY02178F
– volume: 17
  start-page: 119
  year: 2018
  end-page: 128
  ident: CR10
  article-title: Organic solar cells based on non-fullerene acceptors
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5063
– volume: 30
  start-page: 1704548
  year: 2018
  ident: CR28
  article-title: Ultrathin 2D photocatalysts: Electronic-structure tailoring, hybridization, and applications
  publication-title: Ad . Mater.
  doi: 10.1002/adma.201704548
– volume: 4
  start-page: 287
  year: 2012
  end-page: 291
  ident: CR39
  article-title: A two-dimensional polymer prepared by organic synthesis
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1265
– volume: 6
  start-page: 779
  year: 2014
  end-page: 784
  ident: CR40
  article-title: Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction
  publication-title: Nat Chem.
  doi: 10.1038/nchem.2007
– volume: 9
  start-page: 768
  year: 2014
  end-page: 779
  ident: CR32
  article-title: Electronics based on two-dimensional materials
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.207
– volume: 135
  start-page: 10470
  year: 2013
  end-page: 10474
  ident: CR57
  article-title: On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid-vapor interface reactions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403464h
– volume: 139
  start-page: 3145
  year: 2017
  end-page: 3152
  ident: CR56
  article-title: Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12776
– volume: 127
  start-page: 2436
  year: 2015
  end-page: 2439
  ident: CR78
  article-title: Visible-lightdriven CO2 reduction with carbon nitride: Enhancing the activity of ruthenium catalysts
  publication-title: Ange w. Chem. Int. Ed.
  doi: 10.1002/ange.201411170
– volume: 22
  start-page: 1160
  year: 2012
  end-page: 1166
  ident: CR80
  article-title: Porous structure dependent photoreactivity of graphitic carbon nitride under visible light
  publication-title: J. Mater. Chem.
  doi: 10.1039/C1JM14312C
– volume: 10
  start-page: 87
  year: 2017
  end-page: 90
  ident: CR14
  article-title: Decorating CoP and Pt nanoparticles on graphitic carbon nitride nanosheets to promote overall water splitting by conjugated polymers
  publication-title: Chem-SusChem
– volume: 53
  start-page: 7481
  year: 2017
  ident: 2171_CR58
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC02648J
– volume: 57
  start-page: 3454
  year: 2018
  ident: 2171_CR74
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201710557
– volume: 35
  start-page: 1457
  year: 2017
  ident: 2171_CR16
  publication-title: Chinese J. Polym. Sci.
  doi: 10.1007/s10118-017-1996-4
– volume: 28
  start-page: 2427
  year: 2016
  ident: 2171_CR70
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505281
– volume: 23
  start-page: 4264
  year: 2011
  ident: 2171_CR9
  publication-title: Chem. Mater.
  doi: 10.1021/cm2019586
– volume: 139
  start-page: 9136
  year: 2017
  ident: 2171_CR47
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04829
– volume: 36
  start-page: 425
  year: 2018
  ident: 2171_CR36
  publication-title: Chinese J. Polym. Sci.
  doi: 10.1007/s10118-018-2070-6
– volume: 11
  start-page: 889
  year: 1995
  ident: 2171_CR52
  publication-title: Langmuir
  doi: 10.1021/la00003a035
– volume: 46
  start-page: 1900
  year: 2013
  ident: 2171_CR35
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300227e
– volume: 137
  start-page: 3265
  year: 2015
  ident: 2171_CR23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511552k
– volume: 3
  start-page: 912
  year: 2013
  ident: 2171_CR61
  publication-title: ACS Catal.
  doi: 10.1021/cs4000624
– volume: 137
  start-page: 3450
  year: 2015
  ident: 2171_CR51
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja512018j
– volume: 18
  start-page: 2217
  year: 2018
  ident: 2171_CR11
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b04675
– volume: 30
  start-page: 1704548
  year: 2018
  ident: 2171_CR28
  publication-title: Ad . Mater.
  doi: 10.1002/adma.201704548
– volume: 42
  start-page: 8012
  year: 2013
  ident: 2171_CR18
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60160a
– volume: 22
  start-page: 4763
  year: 2012
  ident: 2171_CR45
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200922
– volume: 38
  start-page: 185
  year: 2009
  ident: 2171_CR2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B802262N
– volume: 10
  start-page: 87
  year: 2017
  ident: 2171_CR14
  publication-title: Chem-SusChem
– volume-title: Ad. Mater.
  year: 2018
  ident: 2171_CR25
– volume: 17
  start-page: 119
  year: 2018
  ident: 2171_CR10
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5063
– volume: 6
  start-page: 779
  year: 2014
  ident: 2171_CR40
  publication-title: Nat Chem.
  doi: 10.1038/nchem.2007
– volume: 29
  start-page: 1605308
  year: 2017
  ident: 2171_CR77
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605308
– volume: 140
  start-page: 4623
  year: 2018
  ident: 2171_CR85
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00571
– volume: 7
  start-page: 1902
  year: 2014
  ident: 2171_CR13
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee44189j
– volume: 35
  start-page: 1700251
  year: 2018
  ident: 2171_CR72
  publication-title: Part. Part. Syst. Charact.
  doi: 10.1002/ppsc.201700251
– volume: 127
  start-page: 2436
  year: 2015
  ident: 2171_CR78
  publication-title: Ange w. Chem. Int. Ed.
  doi: 10.1002/ange.201411170
– volume: 6
  start-page: 774
  year: 2014
  ident: 2171_CR41
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2008
– volume: 5
  start-page: 453
  year: 2013
  ident: 2171_CR37
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1628
– volume: 54
  start-page: 956
  year: 2015
  ident: 2171_CR5
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201408882
– volume: 8
  start-page: 6904
  year: 2016
  ident: 2171_CR66
  publication-title: Nanoscale
  doi: 10.1039/C6NR00546B
– volume: 8
  start-page: 5261
  year: 2017
  ident: 2171_CR34
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC01747B
– volume: 139
  start-page: 3021
  year: 2017
  ident: 2171_CR75
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11878
– volume: 2
  start-page: 502
  year: 2008
  ident: 2171_CR50
  publication-title: ACS Nano
  doi: 10.1021/nn7001536
– volume: 165
  start-page: 335
  year: 2015
  ident: 2171_CR71
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2014.10.016
– volume: 11
  start-page: 218
  year: 2016
  ident: 2171_CR29
  publication-title: Nat. Nanotechnol
  doi: 10.1038/nnano.2015.340
– volume: 27
  start-page: 2150
  year: 2015
  ident: 2171_CR65
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500033
– volume: 7
  start-page: 13461
  year: 2016
  ident: 2171_CR55
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13461
– volume: 35
  start-page: 171
  year: 2017
  ident: 2171_CR15
  publication-title: Chinese J. Polym. Sci.
  doi: 10.1007/s10118-017-1886-9
– volume: 221
  start-page: 47
  year: 2018
  ident: 2171_CR69
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.08.041
– volume-title: J. Am. Chem. Soc
  year: 2016
  ident: 2171_CR76
– volume: 135
  start-page: 18
  year: 2013
  ident: 2171_CR44
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308249k
– volume: 1
  start-page: 1700080
  year: 2017
  ident: 2171_CR68
  publication-title: Small Methods
  doi: 10.1002/smtd.201700080
– volume: 43
  start-page: 8240
  year: 2014
  ident: 2171_CR33
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00213J
– volume: 25
  start-page: 2452
  year: 2013
  ident: 2171_CR46
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201204453
– volume: 4
  start-page: 287
  year: 2012
  ident: 2171_CR39
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1265
– volume: 4
  start-page: eaat6378
  year: 2018
  ident: 2171_CR48
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat6378
– volume: 142
  start-page: 414
  year: 2013
  ident: 2171_CR62
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2013.05.051
– volume: 51
  start-page: 12727
  year: 2012
  ident: 2171_CR21
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201205521
– volume: 139
  start-page: 11666
  year: 2017
  ident: 2171_CR49
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05025
– volume: 7
  start-page: 545
  year: 2017
  ident: 2171_CR30
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C6CY02178F
– volume: 30
  start-page: 1705208
  year: 2018
  ident: 2171_CR7
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705208
– volume: 28
  start-page: 141
  year: 1995
  ident: 2171_CR59
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00051a007
– volume: 60
  start-page: 37
  year: 2007
  ident: 2171_CR4
  publication-title: Phys. Today
  doi: 10.1063/1.2718755
– volume: 103
  start-page: 15729
  year: 2006
  ident: 2171_CR1
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0603395103
– volume: 55
  start-page: 1792
  year: 2016
  ident: 2171_CR22
  publication-title: Ange w. Chem. Int. Ed.
  doi: 10.1002/anie.201510542
– volume: 22
  start-page: 1160
  year: 2012
  ident: 2171_CR80
  publication-title: J. Mater. Chem.
  doi: 10.1039/C1JM14312C
– volume: 140
  start-page: 7437
  year: 2018
  ident: 2171_CR79
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04007
– volume: 7
  start-page: 8066
  year: 2013
  ident: 2171_CR54
  publication-title: ACS Nano
  doi: 10.1021/nn403328h
– volume: 116
  start-page: 7159
  year: 2016
  ident: 2171_CR42
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00075
– volume-title: J. Mater. Chem. A
  year: 2018
  ident: 2171_CR24
– volume: 57
  start-page: 3963
  year: 2018
  ident: 2171_CR17
  publication-title: A ge w. Chem. Int. Ed.
  doi: 10.1002/anie.201712949
– volume: 118
  start-page: 5201
  year: 2018
  ident: 2171_CR67
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00286
– volume: 135
  start-page: 10470
  year: 2013
  ident: 2171_CR57
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403464h
– volume: 46
  start-page: 2799
  year: 2017
  ident: 2171_CR64
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00727A
– volume: 4
  start-page: 486
  year: 2008
  ident: 2171_CR20
  publication-title: Chem. Commun.
  doi: 10.1039/B715563H
– volume: 138
  start-page: 5159
  year: 2016
  ident: 2171_CR82
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b01997
– volume: 140
  start-page: 1423
  year: 2018
  ident: 2171_CR84
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11255
– volume: 139
  start-page: 3145
  year: 2017
  ident: 2171_CR56
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12776
– volume: 2
  start-page: 1800006
  year: 2018
  ident: 2171_CR73
  publication-title: Sol. RRL
  doi: 10.1002/solr.201800006
– volume: 1
  start-page: 1875
  year: 2017
  ident: 2171_CR26
  publication-title: Sustainable Energy Fuels
  doi: 10.1039/C7SE00344G
– volume: 139
  start-page: 11698
  year: 2017
  ident: 2171_CR43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06708
– volume: 9
  start-page: 768
  year: 2014
  ident: 2171_CR32
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.207
– volume: 30
  start-page: 1702415
  year: 2018
  ident: 2171_CR38
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702415
– volume: 115
  start-page: 12631
  year: 2015
  ident: 2171_CR3
  publication-title: Chem. Rev
  doi: 10.1021/acs.chemrev.5b00654
– volume: 30
  start-page: 1800868
  year: 2018
  ident: 2171_CR6
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800868
– volume: 47
  start-page: 3450
  year: 2008
  ident: 2171_CR19
  publication-title: Ange w. Chem. Int. Ed.
  doi: 10.1002/anie.200705710
– volume: 138
  start-page: 4657
  year: 2016
  ident: 2171_CR12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b01744
– volume: 6
  start-page: 1087
  year: 2015
  ident: 2171_CR27
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz502646d
– volume: 50
  start-page: 10768
  year: 2014
  ident: 2171_CR31
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC02553A
– volume: 351
  start-page: aad1920
  year: 2016
  ident: 2171_CR8
  publication-title: Science
  doi: 10.1126/science.aad1920
– volume: 9
  start-page: 4090
  year: 2017
  ident: 2171_CR63
  publication-title: Nanoscale
  doi: 10.1039/C7NR00534B
– volume: 48
  start-page: 2943
  year: 2012
  ident: 2171_CR53
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc16892h
– volume: 56
  start-page: 4867
  year: 2017
  ident: 2171_CR83
  publication-title: A ge w. Chem. Int. Ed.
  doi: 10.1002/anie.201701627
– volume-title: Appl. Catal. B Environ.
  year: 2015
  ident: 2171_CR81
– volume: 29
  start-page: 1702428
  year: 2017
  ident: 2171_CR60
  publication-title: Ad. Mater.
  doi: 10.1002/adma.201702428
SSID ssj0064757
Score 2.2235694
SecondaryResourceType review_article
Snippet Two-dimensional (2D) polymers are fascinating as they exhibit unique physical, chemical, mechanical, and electronic properties that are completely different...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101
SubjectTerms Absorptivity
Catalytic converters
Characterization and Evaluation of Materials
Chemical energy
Chemical synthesis
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Design engineering
Energy storage
Industrial Chemistry/Chemical Engineering
Nanosheets
Optoelectronics
Organic chemistry
Periodic variations
Photovoltaic cells
Planar structures
Polymer Sciences
Polymers
Review
Separation
Solar energy conversion
Water splitting
Title Ultrathin 2D Conjugated Polymer Nanosheets for Solar Fuel Generation
URI https://link.springer.com/article/10.1007/s10118-019-2171-x
https://www.proquest.com/docview/2163176672
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-yPeiL-InTOfLgkxLI2jRtH_dVh-IQtDCfStKkTJmtrB3of--la52KCj71Idcr3CV3v2vuA6EzmricKscmMev6hAEiJUL7lCjpCo_FluvEJlC8mfBxyK6mzrSq487rbPf6SrK01J-K3QAMQ-jrE4DRXQLAselA6G7yuEKrV5tfDt8ra6TBlxOXu359lfkTi6_OaI0wv12Klr4m2EHbFUjEvZVWd9GGTvfQ5qCezbaPhuHcdJWdPabYGuJBlj4tze8whW-z-duzXmAwmlk-07rIMaBSfGcCWBws9Ryv-kwbdRygMBjdD8akmodAYkAFBVGacal4nLgCDo6jeCKpsC0hqe0oJRgVEJtZWjgJl8yTSnuOBPRHgTBhHvjtQ9RIs1QfIaxigFHK5j6EX6zrCS9mvk0TYAQeW2veQrQWTBRXzcLNzIp5tG5zbGQZgSwjI8votYXOP155WXXK-Iu4XUs7qg5NDkvcNv0qXauFLmoNrJd_ZXb8L-oTtGWZHVBmXrdRo1gs9SkAi0J2ULMX9PsT87x8uB51yo31DgO0xoM
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HOCCeIrBgBzgAoqUpWnaHjigjWk8hQSTuJW0STVQ6dAegv0e_ihO1zJAgMSBc1yr_eLYn5vEBthliSeZdh0ai1pABTJSqkzAqI485YuYe25sE8WLS9lqi9Nb93YKXsu7MPlp93JLMvfUHy67IRnG1DegSKNr9KU4SXlmRs-Yp_UPTxo4qXucN49v6i1atBKgMQbUAdVGyEjLOPEU2pyrZRIx5XAVMcfVWgmmMK3hRrmJjIQfaeO7ERInhoKJ8DHkod5pmEXu4dul0-ZHpbuX-H35nWzkDtSTXlBunX73yp-D34TRftmEzWNbcxEWClJKjsZWtARTJluGuXrZC24FGu3UVrHt3GeEN0i9mz0M7e83Ta666ejR9Ag66W6_Y8ygT5AFk2ubMJPm0KRkXNfaTv8qtP8FtDWYybqZWQeiY4ROOzLAdE_UfOXHInBYgoqQIRgjK8BKYMK4KE5ue2Sk4aSsssUyRCxDi2X4UoH990eexpU5fhOulmiHxSLt45B0bH1Mj1fgoJyByfCPyjb-JL0Dc62bi_Pw_OTybBPmubWG_NR3FWYGvaHZQlIziLZzoyJw999W_AaGPAG9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4SMAF8RSDATnABRSRpWnaHjigjYm3kGASt5I2qQYaHWKdYL-Kv4jTtQwQIHHgnDRqHSf-XNufAbZY4kmmXYfGohZQgYiUKhMwqiNP-SLmnhtbR_H8Qh61xMmNezMGr2UtTJ7tXoYkhzUNlqUpzfYedbL3ofANgTG6wQFFSF2jL0VW5akZPKPP1ts_buAGb3PePLyuH9GirQCN0bhmVBshIy3jxFOof66WScSUw1XEHFdrJZhCF4cb5SYyEn6kje9GCKIYTkyEj-YP1x2HSWGLj_EAtfhBefVL_Na8PhtxBPWkF5Rh1O9e-bMhHKHbLwHZ3M4152C2AKjkYKhR8zBm0gWYrpd94Rah0epYRtv2XUp4g9S76X3f_orT5LLbGTyYJ4IXdrfXNibrEUTE5Mo6z6TZNx0y5Li2qrAErX8R2jJMpN3UrADRMUI47cgAXT9R85Ufi8BhCS6EaMEYWQFWCiaMC6Jy2y-jE44olq0sQ5RlaGUZvlRg5_2RxyFLx2-Tq6W0w-LA9nBIOpYr0-MV2C13YDT842Krf5q9CVOXjWZ4dnxxugYz3CpDngBehYnsqW_WEd9k0UauUwRu_1uJ3wC-yAXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrathin+2D+Conjugated+Polymer+Nanosheets+for+Solar+Fuel+Generation&rft.jtitle=Chinese+journal+of+polymer+science&rft.au=Xin-Lei%2C+Zhang&rft.au=Wang%2C+Lei&rft.au=Chen%2C+Liang&rft.au=Xiao-Yu%2C+Ma&rft.date=2019-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0256-7679&rft.eissn=1439-6203&rft.volume=37&rft.issue=2&rft.spage=101&rft_id=info:doi/10.1007%2Fs10118-019-2171-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-7679&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-7679&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-7679&client=summon