Ultrathin 2D Conjugated Polymer Nanosheets for Solar Fuel Generation
Two-dimensional (2D) polymers are fascinating as they exhibit unique physical, chemical, mechanical, and electronic properties that are completely different from those of traditional linear or branched polymers. They are very promising for applications in catalysis, separation, optoelectronics, ener...
Saved in:
Published in | Chinese journal of polymer science Vol. 37; no. 2; pp. 101 - 114 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Chinese Chemical Society and Institute of Chemistry, CAS
01.02.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two-dimensional (2D) polymers are fascinating as they exhibit unique physical, chemical, mechanical, and electronic properties that are completely different from those of traditional linear or branched polymers. They are very promising for applications in catalysis, separation, optoelectronics, energy storage, and nanomedicine. Recently, ultrathin 2D conjugated polymers have emerged as advanced materials for converting solar energy into chemical energy. The inherent 2D planar structure with in-plane periodicity offers many features that are highly desirable for photon-involved catalytic energy conversion processes, including high absorption coefficients, large surface areas, abundant surface active sites, and efficient charge separation. Moreover, the possibility of finely tuning the optoelectronic and structural properties through precise molecular engineering has opened up new opportunities for design and synthesis of novel 2D polymer nanosheets with unprecedented applications. Herein, we highlight recent advances in developing ultrathin 2D conjugated polymer nanosheets for solar-to-chemical energy conversion. Specifically, we discuss emerging applications of ultrathin 2D conjugated polymer nanosheets for solar-driven water splitting and CO
2
reduction. Meanwhile, future challenges and prospects for design and synthesis of ultrathin 2D conjugated polymer nanosheets for solar fuel generation are also included. |
---|---|
AbstractList | Two-dimensional (2D) polymers are fascinating as they exhibit unique physical, chemical, mechanical, and electronic properties that are completely different from those of traditional linear or branched polymers. They are very promising for applications in catalysis, separation, optoelectronics, energy storage, and nanomedicine. Recently, ultrathin 2D conjugated polymers have emerged as advanced materials for converting solar energy into chemical energy. The inherent 2D planar structure with in-plane periodicity offers many features that are highly desirable for photon-involved catalytic energy conversion processes, including high absorption coefficients, large surface areas, abundant surface active sites, and efficient charge separation. Moreover, the possibility of finely tuning the optoelectronic and structural properties through precise molecular engineering has opened up new opportunities for design and synthesis of novel 2D polymer nanosheets with unprecedented applications. Herein, we highlight recent advances in developing ultrathin 2D conjugated polymer nanosheets for solar-to-chemical energy conversion. Specifically, we discuss emerging applications of ultrathin 2D conjugated polymer nanosheets for solar-driven water splitting and CO
2
reduction. Meanwhile, future challenges and prospects for design and synthesis of ultrathin 2D conjugated polymer nanosheets for solar fuel generation are also included. Two-dimensional (2D) polymers are fascinating as they exhibit unique physical, chemical, mechanical, and electronic properties that are completely different from those of traditional linear or branched polymers. They are very promising for applications in catalysis, separation, optoelectronics, energy storage, and nanomedicine. Recently, ultrathin 2D conjugated polymers have emerged as advanced materials for converting solar energy into chemical energy. The inherent 2D planar structure with in-plane periodicity offers many features that are highly desirable for photon-involved catalytic energy conversion processes, including high absorption coefficients, large surface areas, abundant surface active sites, and efficient charge separation. Moreover, the possibility of finely tuning the optoelectronic and structural properties through precise molecular engineering has opened up new opportunities for design and synthesis of novel 2D polymer nanosheets with unprecedented applications. Herein, we highlight recent advances in developing ultrathin 2D conjugated polymer nanosheets for solar-to-chemical energy conversion. Specifically, we discuss emerging applications of ultrathin 2D conjugated polymer nanosheets for solar-driven water splitting and CO2 reduction. Meanwhile, future challenges and prospects for design and synthesis of ultrathin 2D conjugated polymer nanosheets for solar fuel generation are also included. |
Author | Wang, Lei Zhang, Xin-Lei Ma, Xiao-Yu Chen, Liang Xu, Hang-Xun |
Author_xml | – sequence: 1 givenname: Xin-Lei surname: Zhang fullname: Zhang, Xin-Lei organization: Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China – sequence: 2 givenname: Lei surname: Wang fullname: Wang, Lei organization: Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China – sequence: 3 givenname: Liang surname: Chen fullname: Chen, Liang organization: Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China – sequence: 4 givenname: Xiao-Yu surname: Ma fullname: Ma, Xiao-Yu organization: Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China – sequence: 5 givenname: Hang-Xun surname: Xu fullname: Xu, Hang-Xun email: hxu@ustc.edu.cn organization: Chinese Academy of Sciences Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China |
BookMark | eNp9kNFKwzAUhoNMcJs-gHcBr6s5SZOsl7K5KQwVdNchbdOto0tm0sL29mZWEAS9Ojffd85__hEaWGcNQtdAboEQeReAAEwSAllCQUJyOENDSFmWCErYAA0J5SKRQmYXaBTClhCRSi6HaLZqWq_bTW0xneGps9turVtT4lfXHHfG42dtXdgY0wZcOY_fXKM9nnemwQtjTVRrZy_ReaWbYK6-5xit5g_v08dk-bJ4mt4vk4Jx3ialSUVeiqKSmkHGS1HlRDOqc8J4WeqUaAmSGs0rkaeTvDQTnmcgSASrdCKAjdFNv3fv3UdnQqu2rvM2nlQUBAMphKSRkj1VeBeCN5Uq6vYrZ_y0bhQQdapM9ZWpWJk6VaYO0YRf5t7XO-2P_zq0d0Jk7dr4n0x_S59BeYCS |
CitedBy_id | crossref_primary_10_1016_j_colsurfa_2023_132702 crossref_primary_10_1002_adma_201904433 crossref_primary_10_1007_s12274_020_2976_5 crossref_primary_10_1021_acsmacrolett_2c00035 crossref_primary_10_1007_s10118_021_2574_3 crossref_primary_10_1002_open_202000041 crossref_primary_10_1016_j_scib_2020_08_009 crossref_primary_10_1002_smll_201903643 crossref_primary_10_3390_nano12234299 crossref_primary_10_1038_s41467_021_22879_6 crossref_primary_10_1021_jacs_4c05351 crossref_primary_10_1039_D3CS00782K crossref_primary_10_1021_acs_nanolett_9b01458 |
Cites_doi | 10.1021/jacs.7b06708 10.1002/anie.201408882 10.1039/C6NR00546B 10.1016/j.apcatb.2014.10.016 10.1039/C4CS00213J 10.1016/j.apcatb.2017.08.041 10.1021/ja308249k 10.1021/jacs.6b11878 10.1002/solr.201800006 10.1021/nn403328h 10.1021/jacs.7b04829 10.1039/C7NR00534B 10.1021/acs.nanolett.7b04675 10.1021/ja511552k 10.1002/smtd.201700080 10.1002/adma.201605308 10.1038/nnano.2015.340 10.1021/ar00051a007 10.1039/C4CC02553A 10.1038/nchem.1628 10.1021/ar300227e 10.1039/B802262N 10.1039/c3cs60160a 10.1063/1.2718755 10.1039/c2cc16892h 10.1021/cm2019586 10.1002/anie.200705710 10.1002/adma.201702428 10.1002/anie.201710557 10.1002/anie.201701627 10.1021/acs.chemrev.6b00075 10.1039/C7SC01747B 10.1021/jacs.8b00571 10.1002/adma.201705208 10.1002/adma.201702415 10.1021/la00003a035 10.1002/adma.201500033 10.1002/adma.201505281 10.1021/jacs.6b01744 10.1021/jacs.8b04007 10.1021/jacs.7b11255 10.1007/s10118-017-1886-9 10.1126/science.aad1920 10.1007/s10118-018-2070-6 10.1021/nn7001536 10.1021/acs.chemrev.5b00654 10.1126/sciadv.aat6378 10.1007/s10118-017-1996-4 10.1021/ja512018j 10.1002/adfm.201200922 10.1073/pnas.0603395103 10.1021/jacs.7b05025 10.1002/anie.201205521 10.1016/j.apcatb.2013.05.051 10.1021/acs.chemrev.7b00286 10.1002/adma.201800868 10.1002/adma.201204453 10.1039/C7SE00344G 10.1002/anie.201510542 10.1038/ncomms13461 10.1039/c3ee44189j 10.1002/ppsc.201700251 10.1021/jz502646d 10.1039/C7CC02648J 10.1039/B715563H 10.1002/anie.201712949 10.1039/C6CS00727A 10.1021/cs4000624 10.1021/jacs.6b01997 10.1038/nchem.2008 10.1039/C6CY02178F 10.1038/nmat5063 10.1002/adma.201704548 10.1038/nchem.1265 10.1038/nchem.2007 10.1038/nnano.2014.207 10.1021/ja403464h 10.1021/jacs.6b12776 10.1002/ange.201411170 10.1039/C1JM14312C |
ContentType | Journal Article |
Copyright | Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018 Copyright Springer Science & Business Media 2019 |
Copyright_xml | – notice: Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018 – notice: Copyright Springer Science & Business Media 2019 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10118-019-2171-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1439-6203 |
EndPage | 114 |
ExternalDocumentID | 10_1007_s10118_019_2171_x |
GroupedDBID | -EM -SB -S~ 06D 0R~ 0VY 1N0 29B 2B. 2C. 2KG 2VQ 30V 4.4 406 408 40D 5GY 5VR 5XA 5XC 67Z 6J9 8TC 92E 92I 92Q 93N 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDBF ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BGNMA CAG CAJEB CCEZO CDRFL CHBEP COF CS3 CSCUP CW9 DDRTE DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK ESBYG EST ESX FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HF~ HMJXF HRMNR HVGLF HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y ML~ NPVJJ NQJWS NU0 O9- O9J P9N PT4 Q-- R9I RIG RLLFE ROL RSV RWJ S1Z S27 S3B SCL SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TCJ TGP TSG TUS U1G U2A U5L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z7R Z7V Z7X ZE2 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c355t-de46bd6cf7a3195d6fb0a32ab035dda40a7172ea5f6b48bde85b9160d6ff48613 |
IEDL.DBID | U2A |
ISSN | 0256-7679 |
IngestDate | Fri Jul 25 11:10:07 EDT 2025 Tue Jul 01 02:13:22 EDT 2025 Thu Apr 24 22:53:10 EDT 2025 Fri Feb 21 02:35:26 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Nanosheets Conjugated polymers 2D polymers Photocatalysis Energy conversion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c355t-de46bd6cf7a3195d6fb0a32ab035dda40a7172ea5f6b48bde85b9160d6ff48613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2163176672 |
PQPubID | 2043655 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2163176672 crossref_citationtrail_10_1007_s10118_019_2171_x crossref_primary_10_1007_s10118_019_2171_x springer_journals_10_1007_s10118_019_2171_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-01 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Chinese journal of polymer science |
PublicationTitleAbbrev | Chin J Polym Sci |
PublicationYear | 2019 |
Publisher | Chinese Chemical Society and Institute of Chemistry, CAS Springer Nature B.V |
Publisher_xml | – name: Chinese Chemical Society and Institute of Chemistry, CAS – name: Springer Nature B.V |
References | Yang, Cheng, Zhang, Ren, Li, Dong, Hu (CR38) 2018; 30 Kory, Wörle, Weber, Payamyar, Poll, Dshemuchadse, Trapp, Schlüter (CR40) 2014; 6 Xu, Jin, Xu, Nagai, Jiang (CR18) 2013; 42 Jiang, Su, Niu, Wood, Campbell, Khimyak, Cooper (CR20) 2008; 4 Kissel, Murray, Wulftange, Catalano, King (CR41) 2014; 6 Colson, Dichtel (CR37) 2013; 5 Zhang, Wang (CR13) 2014; 7 Gao, Wang, Xu, Xiong (CR64) 2017; 46 Low, Jiang, Cheng, Wageh, Ghamdi, Yu (CR68) 2017; 1 Yang, Zhang, Pagliaro, Xu (CR33) 2014; 43 Zhang, Xie, Wang, Zhang, Pan, Xie (CR44) 2013; 135 Gao, Li, Du, Zhou, Huang, Liu, Li, Xie, Wu, Liu, Zhang (CR77) 2017; 29 Zhang, Qin, Zhu, Hou (CR6) 2018; 30 Singh, Mathew, Zhuang, Hennig (CR27) 2015; 6 Crabtree, Lewis (CR4) 2007; 60 Matsuoka, Sakamoto, Hoshiko, Sasaki, Masunaga, Nagashio, Nishihara (CR56) 2017; 139 Wang, Suzuki, Xie, Tomita, Martin, Higashi, Kong, Abe, Tang (CR67) 2018; 118 Qin, Wang, Ren, Hou, Wang (CR81) 2015 Zeng, Xu, Ong, Xu, Ren, Chen, Zheng, Peng (CR69) 2018; 221 Sprick, Jiang, Bonillo, Ren, Ratvijitvech, Guiglion, Zwijnenburg, Adams, Cooper (CR23) 2015; 137 Lewis, Nocera (CR1) 2006; 103 Yang, Gong, Zhang, Zhan, Ma, Fang, Vajtai, Wang, Ajayan (CR46) 2013; 25 Low, Cao, Yu, Wageh (CR31) 2014; 50 Nuraje, Su, Yang, Matsui (CR50) 2008; 2 Wang, Zheng, Chen, Xiong, Xu (CR74) 2018; 57 Islam, Liu, Peng, Jiang, Lei, Li, Zhang, Yang, Guan, Ge (CR15) 2017; 35 Zhang, Lana, Wang (CR34) 2017; 8 Kuriki, Matsunaga, Nakashima, Wada, Yamakata, Ishitani, Maeda (CR82) 2016; 138 Pachfule, Achaijya, Roeser, Langenhahn, Schwarze, Schomäcker, Thomas, Schmidt (CR84) 2018; 140 Cometto, Kuriki, Chen, Maeda, Lau, Ishitani, Robert (CR79) 2018; 140 Niu, Zhang, Liu, Cheng (CR45) 2012; 22 Cao, Low, Yu, Jaroniec (CR65) 2015; 27 Wang, Wan, Ding, Wu, Zhang, Zhang, Zhang, Xiong, Wu, Yang, Xu (CR60) 2017; 29 Zhao, Guo, Wang, He, Sun, Yang (CR71) 2015; 165 Ding, Chen, Zhang, Chen, Dong, Jiang, Xu, Zhou (CR47) 2017; 139 Gao, Zhu, Yi, Zhou, Zhang, Yin, Ding, Zhang, Yi, Wang, Tong, Han, Liu, Zhang (CR48) 2018; 4 Li, Bi, Zhang, Tao, Chu, Zhang, Luo, Wu, Xie (CR70) 2016; 28 Lewis (CR8) 2016; 351 Kuriki, Sekizawa, Ishitani, Maeda (CR78) 2015; 127 Yang, Bu, Liu, Shakir, Xu (CR58) 2017; 53 Fiori, Bonaccorso, Iannaccone, Palacios, Neumaier, Seabaugh, Banerjee, Colombo (CR32) 2014; 9 Xu, Zhu, Jiang, Cheng, Yu (CR73) 2018; 2 Bard, Fox (CR59) 1995; 28 Li, Gao, Liu, Feng, Li, Huang, Liu, Zhang, Tung, Wu (CR76) 2016 Li, Zhan, Liu, Ren, Shi, Li, Russell, Chen (CR7) 2018; 30 Chu, Wang, Guo, Feng, Wang, Luo, Fan, Zou (CR61) 2013; 3 Liu, Guan, Ding, Wang, Yan, Wang, Wan (CR57) 2013; 135 Pan, Zheng, Guo, Niu, Wang (CR14) 2017; 10 Li, Li, Sa, Ahuja (CR30) 2017; 7 Luo, Liu, Wang (CR66) 2016; 8 Bin, Zhang, Gao, Chen, Zhong, Xue, Yang, Li (CR12) 2016; 138 Liu, Zan, Li, Yang, Bu, Xu (CR49) 2017; 139 Zeng, Ong, Chen, Tee, Chua, Peng, Han (CR72) 2018; 35 Che, Cheng, Yao, Tang, Liu, Su, Huang, Liu, Liu, Hu, Pan, Sun, Wei (CR75) 2017; 139 Wang, Ma, Sheng, Wang, Xu (CR11) 2018; 18 Deng, Novoselov, Fu, Zheng, Tian, Bao (CR29) 2016; 11 Liu, Kan, Wu, Pan, Li, Zhao (CR36) 2018; 36 Wang, Zhang, Chen, Xu, Xiong (CR25) 2018 Yang, Wang, Han, Li (CR35) 2013; 46 Guan, Wang, Wan (CR53) 2012; 48 Sahabudeen, Qi, Glatz, Tranca, Dong, Hou, Zhang, Kuttner, Lehnert, Seifert, Kaiser, Fery, Zheng, Feng (CR55) 2016; 7 Chen, Jia, Hu, Fan, Tsang, Li, Zou (CR26) 2017; 1 Ji, Wen, Shen, Lv, Chen, Liu, Ma, Zhang (CR43) 2017; 139 Xu, Zhou, Yu, Tian, Ma, Lei (CR54) 2013; 7 Lewis (CR3) 2015; 115 Ong, Tan, Ng, Yong, Chai (CR42) 2016; 116 Barber (CR2) 2009; 38 Sprick, Bonillo, Clowes, Guiglion, Brownbill, Slater, Blanc, Zwijnenburg, Adams, Cooper (CR22) 2016; 55 Zhang, Guo, Wang, Wang, Li (CR9) 2011; 23 Ge, Han, Xiao, Guo (CR62) 2013; 142 Dong, Zhang (CR80) 2012; 22 Kuhn, Antonietti, Thomas (CR19) 2008; 47 Hou, Inganäs, Friend, Gao (CR10) 2018; 17 Xiao, Xu (CR24) 2018 Murray, Patterson, Payamyar, Bhola, Song, Lackinger, Schlüter, King (CR51) 2015; 137 Di, Xiong, Li, Liu (CR28) 2018; 30 Kuriki, Yamamoto, Higuchi, Yamamoto, Akatsuka, Lu, Yagi, Yoshida, Ishitani, Maeda (CR83) 2017; 56 Wei, Qi, Wang, Ding, Yu, Liu, Wang, Wang, An, Wang (CR85) 2018; 140 Wang, Wan, Ding, Niu, Xiong, Wu, Xu (CR63) 2017; 9 Li, Fan, Fu, Xin, Chen (CR5) 2015; 54 Wang, Zhu, Du, Liu, Zhang, Dong, Hu (CR17) 2018; 57 Cao, Qian, He, Xiao, Ding (CR16) 2017; 35 Kou, Xu, Guo, Jiang (CR21) 2012; 51 Bruno, Akkara, Samuelson, Kaplan, Mandal, Marx, Kumar, Tripathy (CR52) 1995; 11 Kissel, Erni, Schweizer, Rossell, King, Bauer, Götzinger, Schlüter, Sakamoto (CR39) 2012; 4 Y. Yang (2171_CR58) 2017; 53 L. Xu (2171_CR54) 2013; 7 S. Chu (2171_CR61) 2013; 3 X. Gao (2171_CR77) 2017; 29 N. S. Lewis (2171_CR8) 2016; 351 Y. Chen (2171_CR26) 2017; 1 L. Wang (2171_CR74) 2018; 57 J. X. Jiang (2171_CR20) 2008; 4 H. Bin (2171_CR12) 2016; 138 S. Zhang (2171_CR6) 2018; 30 J. Hou (2171_CR10) 2018; 17 P. Pachfule (2171_CR84) 2018; 140 P. F. Wei (2171_CR85) 2018; 140 D. Zeng (2171_CR72) 2018; 35 J. Low (2171_CR31) 2014; 50 A. J. Bard (2171_CR59) 1995; 28 M. Zhang (2171_CR13) 2014; 7 P. Xiao (2171_CR24) 2018 B. Luo (2171_CR66) 2016; 8 J. Di (2171_CR28) 2018; 30 J. Ji (2171_CR43) 2017; 139 J. W. Colson (2171_CR37) 2013; 5 X. Gao (2171_CR48) 2018; 4 S. Yang (2171_CR46) 2013; 25 J. Liu (2171_CR49) 2017; 139 H. Sahabudeen (2171_CR55) 2016; 7 J. Qin (2171_CR81) 2015 J. Barber (2171_CR2) 2009; 38 Y. Kou (2171_CR21) 2012; 51 J. Li (2171_CR76) 2016 N. Nuraje (2171_CR50) 2008; 2 D. Deng (2171_CR29) 2016; 11 P. Kuhn (2171_CR19) 2008; 47 C. Cometto (2171_CR79) 2018; 140 R. Kuriki (2171_CR82) 2016; 138 W. J. Ong (2171_CR42) 2016; 116 F. F. Bruno (2171_CR52) 1995; 11 A. Islam (2171_CR15) 2017; 35 C. Z. Guan (2171_CR53) 2012; 48 H. Liu (2171_CR36) 2018; 36 X. Zhang (2171_CR44) 2013; 135 L. Wang (2171_CR63) 2017; 9 P. Kissel (2171_CR39) 2012; 4 X. H. Liu (2171_CR57) 2013; 135 R. S. Sprick (2171_CR22) 2016; 55 Z. Pan (2171_CR14) 2017; 10 Q. Xu (2171_CR73) 2018; 2 N. S. Lewis (2171_CR1) 2006; 103 L. Wang (2171_CR25) 2018 G. W. Crabtree (2171_CR4) 2007; 60 Y. Wang (2171_CR17) 2018; 57 G. Fiori (2171_CR32) 2014; 9 W. Che (2171_CR75) 2017; 139 N. S. Lewis (2171_CR3) 2015; 115 Y. Xu (2171_CR18) 2013; 42 L. Ge (2171_CR62) 2013; 142 R. Kuriki (2171_CR83) 2017; 56 M. Q. Yang (2171_CR33) 2014; 43 H. Li (2171_CR5) 2015; 54 R. Kuriki (2171_CR78) 2015; 127 A. K. Singh (2171_CR27) 2015; 6 F. Yang (2171_CR38) 2018; 30 P. Niu (2171_CR45) 2012; 22 Y. Ding (2171_CR47) 2017; 139 L. Wang (2171_CR60) 2017; 29 S. Li (2171_CR7) 2018; 30 J. Yang (2171_CR35) 2013; 46 M. J. Kory (2171_CR40) 2014; 6 G. Zhang (2171_CR34) 2017; 8 W. Zhao (2171_CR71) 2015; 165 C. Gao (2171_CR64) 2017; 46 J. Low (2171_CR68) 2017; 1 D. J. Murray (2171_CR51) 2015; 137 S. Cao (2171_CR65) 2015; 27 G. Dong (2171_CR80) 2012; 22 P. Kissel (2171_CR41) 2014; 6 D. Zeng (2171_CR69) 2018; 221 X. Li (2171_CR70) 2016; 28 M. Zhang (2171_CR9) 2011; 23 Y. Li (2171_CR30) 2017; 7 Y. Wang (2171_CR67) 2018; 118 X. Wang (2171_CR11) 2018; 18 J. M. Cao (2171_CR16) 2017; 35 R. S. Sprick (2171_CR23) 2015; 137 R. Matsuoka (2171_CR56) 2017; 139 |
References_xml | – volume: 139 start-page: 11698 year: 2017 end-page: 11701 ident: CR43 article-title: Simultaneous noncovalent modification and exfoliation of 2D carbon nitride for enhanced electrochemiluminescent biosensing publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06708 – volume: 54 start-page: 956 year: 2015 end-page: 960 ident: CR5 article-title: Solution-grown organic single-crystalline donor-acceptor heterojunctions for photovoltaics publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201408882 – volume: 8 start-page: 6904 year: 2016 end-page: 6920 ident: CR66 article-title: Recent advances in 2D materials for photocatalysis publication-title: Nanoscale doi: 10.1039/C6NR00546B – year: 2018 ident: CR24 article-title: Recent progress in two-dimensional polymers for energy storage and conversion: Design, synthesis, and applications publication-title: J. Mater. Chem. A – volume: 165 start-page: 335 year: 2015 end-page: 343 ident: CR71 article-title: A novel ternary plasmonic photocatalyst: Ultrathin g-C3N4 nanosheet hybrided by Ag/AgVO3 nanoribbons with enhanced visiblelight photocatalytic performance publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2014.10.016 – volume: 43 start-page: 8240 year: 2014 end-page: 8254 ident: CR33 article-title: Artificial photosynthesis over graphene-semiconductor composites. Are we getting better publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00213J – volume: 221 start-page: 47 year: 2018 end-page: 55 ident: CR69 article-title: Toward noble-metal-free visible-lightdriven photocatalytic hydrogen evolution: Monodisperse sub-15 nm Ni2P nanoparticles anchored on porous g-C3N4 nanosheets to engineer 0D-2D heterojunction interfaces publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.08.041 – volume: 135 start-page: 18 year: 2013 end-page: 21 ident: CR44 article-title: Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308249k – volume: 139 start-page: 3021 year: 2017 end-page: 3026 ident: CR75 article-title: Fast photoelectron transfer in (Cring)–C3N4 plane heterostructural nanosheets for overall water splitting publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11878 – volume: 2 start-page: 1800006 year: 2018 ident: CR73 article-title: Constructing 2D/2D Fe2O3/g-C3N4 direct Z-scheme photocatalysts with enhanced H2 generation performance publication-title: Sol. RRL doi: 10.1002/solr.201800006 – volume: 7 start-page: 8066 year: 2013 end-page: 8073 ident: CR54 article-title: Surfaceconfined crystalline two-dimensional covalent organic frameworks via on-surface schiff-base coupling publication-title: ACS Nano doi: 10.1021/nn403328h – volume: 139 start-page: 9136 year: 2017 end-page: 9139 ident: CR47 article-title: Controlled intercalation and chemical exfoliation of layered metal-organic frameworks using a chemically labile intercalating agent publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04829 – volume: 9 start-page: 4090 year: 2017 end-page: 4096 ident: CR63 article-title: Photocatalytic oxygen evolution from low-bandgap conjugated microporous polymer nanosheets: A combined first-principles calculation and experimental study publication-title: Nanoscale doi: 10.1039/C7NR00534B – volume: 18 start-page: 2217 year: 2018 end-page: 2225 ident: CR11 article-title: Ultrathin polypyrrole nanosheets via space-confined synthesis for efficient photothermal therapy in the second near-infrared window publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b04675 – volume: 137 start-page: 3265 year: 2015 end-page: 3270 ident: CR23 article-title: Tunable organic photocatalysts for visible-light-driven hydrogen evolution publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511552k – volume: 1 start-page: 1700080 year: 2017 ident: CR68 article-title: A review of direct Z-scheme photocatalysts publication-title: Small Methods doi: 10.1002/smtd.201700080 – volume: 29 start-page: 1605308 year: 2017 ident: CR77 article-title: Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell publication-title: Adv. Mater. doi: 10.1002/adma.201605308 – volume: 11 start-page: 218 year: 2016 end-page: 230 ident: CR29 article-title: Catalysis with two-dimensional materials and their heterostructures publication-title: Nat. Nanotechnol doi: 10.1038/nnano.2015.340 – volume: 28 start-page: 141 year: 1995 end-page: 145 ident: CR59 article-title: Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen publication-title: Acc. Chem. Res. doi: 10.1021/ar00051a007 – volume: 50 start-page: 10768 year: 2014 end-page: 10777 ident: CR31 article-title: Two-dimensional layered composite photocatalysts publication-title: Chem. Commun. doi: 10.1039/C4CC02553A – volume: 5 start-page: 453 year: 2013 end-page: 465 ident: CR37 article-title: Rationally synthesized two-dimensional polymers publication-title: Nat. Chem. doi: 10.1038/nchem.1628 – volume: 46 start-page: 1900 year: 2013 end-page: 1909 ident: CR35 article-title: Roles of cocatalysts in photocatalysis and photoelectrocatalysis publication-title: Acc. Chem. Res. doi: 10.1021/ar300227e – volume: 38 start-page: 185 year: 2009 ident: CR2 article-title: Photosynthetic energy conversion: Natural and artificial publication-title: Chem. Soc. Rev. doi: 10.1039/B802262N – volume: 42 start-page: 8012 year: 2013 end-page: 8031 ident: CR18 article-title: Conjugated microporous polymers: Design, synthesis and application publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60160a – volume: 60 start-page: 37 year: 2007 end-page: 42 ident: CR4 article-title: Solar energy conversion publication-title: Phys. Today doi: 10.1063/1.2718755 – volume: 48 start-page: 2943 year: 2012 end-page: 2945 ident: CR53 article-title: Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation publication-title: Chem. Commun. doi: 10.1039/c2cc16892h – volume: 23 start-page: 4264 year: 2011 end-page: 4270 ident: CR9 article-title: Synthesis and photovoltaic properties of D-A copolymers based on alkyl-substituted indacenodithiophene donor unit publication-title: Chem. Mater. doi: 10.1021/cm2019586 – volume: 47 start-page: 3450 year: 2008 end-page: 3453 ident: CR19 article-title: Porous, covalent triazinebased frameworks prepared by ionoithermal synthesis publication-title: Ange w. Chem. Int. Ed. doi: 10.1002/anie.200705710 – volume: 29 start-page: 1702428 year: 2017 ident: CR60 article-title: Conjugated microporous polymer nanosheets for overall water splitting using visible light publication-title: Ad. Mater. doi: 10.1002/adma.201702428 – volume: 57 start-page: 3454 year: 2018 end-page: 3458 ident: CR74 article-title: Van der Waals heterostructures comprised of ultrathin polymer nanosheets for efficient Z-scheme overall water splitting publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201710557 – volume: 56 start-page: 4867 year: 2017 end-page: 4871 ident: CR83 article-title: Robust binding between carbon nitride nanosheets and a binuclear ruthenium(II) complex enabling durable, selective CO2 reduction under visible light in aqueous solution publication-title: A ge w. Chem. Int. Ed. doi: 10.1002/anie.201701627 – volume: 116 start-page: 7159 year: 2016 end-page: 7329 ident: CR42 article-title: Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00075 – volume: 8 start-page: 5261 year: 2017 end-page: 5274 ident: CR34 article-title: Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting publication-title: Chem. Sci. doi: 10.1039/C7SC01747B – volume: 140 start-page: 4623 year: 2018 end-page: 4631 ident: CR85 article-title: Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00571 – volume: 30 start-page: 1705208 year: 2018 ident: CR7 article-title: An unfused-core-based nonfullerene acceptor enables high-effciency organic solar cells with excellent morphological stability at high temperatures publication-title: Adv. Mater. doi: 10.1002/adma.201705208 – volume: 30 start-page: 1702415 year: 2018 ident: CR38 article-title: 2D organic materials for optoelectronic applications publication-title: Adv. Mater. doi: 10.1002/adma.201702415 – volume: 11 start-page: 889 year: 1995 end-page: 892 ident: CR52 article-title: Enzymatic mediated synthesis of conjugated polymers at the langmuir trough air-water interface publication-title: Langmuir doi: 10.1021/la00003a035 – volume: 27 start-page: 2150 year: 2015 end-page: 2176 ident: CR65 article-title: Polymeric photocatalysts based on graphitic carbon nitride publication-title: Adv. Mater. doi: 10.1002/adma.201500033 – volume: 28 start-page: 2427 year: 2016 end-page: 2431 ident: CR70 article-title: Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution publication-title: Adv. Mater. doi: 10.1002/adma.201505281 – volume: 138 start-page: 4657 year: 2016 end-page: 4664 ident: CR12 article-title: Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5% efficiency publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b01744 – volume: 140 start-page: 7437 year: 2018 end-page: 7440 ident: CR79 article-title: A carbon nitride/Fe quaterpyridine catalytic system for photostimulated CO2-to-CO conversion with visible light publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04007 – volume: 140 start-page: 1423 year: 2018 end-page: 1427 ident: CR84 article-title: Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11255 – volume: 35 start-page: 171 year: 2017 end-page: 183 ident: CR15 article-title: Furan-containing conjugated polymers for organic solar cells publication-title: Chinese J. Polym. Sci. doi: 10.1007/s10118-017-1886-9 – volume: 351 start-page: aad1920 year: 2016 ident: CR8 article-title: Research opportunities to advance solar energy utilization publication-title: Science doi: 10.1126/science.aad1920 – volume: 36 start-page: 425 year: 2018 end-page: 444 ident: CR36 article-title: Synthetic two-dimensional organic structures publication-title: Chinese J. Polym. Sci. doi: 10.1007/s10118-018-2070-6 – volume: 2 start-page: 502 year: 2008 end-page: 506 ident: CR50 article-title: Liquid/liquid interfacial polymerization to grow single crystalline nanoneedles of various conducting polymers publication-title: ACS Nano doi: 10.1021/nn7001536 – volume: 115 start-page: 12631 year: 2015 end-page: 12632 ident: CR3 article-title: Introduction: Solar energy conversion publication-title: Chem. Rev doi: 10.1021/acs.chemrev.5b00654 – volume: 4 start-page: eaat6378 year: 2018 ident: CR48 article-title: Ultrathin graphdiyne film on graphene through solutionphase van der Waals epitaxy publication-title: Sci. Adv. doi: 10.1126/sciadv.aat6378 – volume: 35 start-page: 1457 year: 2017 end-page: 1462 ident: CR16 article-title: D-A Copolymers based on a pentacyclic acceptor unit and a 3,3'-difluoro-2,2'-bithiophene for solar cells publication-title: Chinese J. Polym. Sci. doi: 10.1007/s10118-017-1996-4 – volume: 137 start-page: 3450 year: 2015 end-page: 3453 ident: CR51 article-title: Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface publication-title: J. Am. Chem. Soc. doi: 10.1021/ja512018j – volume: 22 start-page: 4763 year: 2012 end-page: 4770 ident: CR45 article-title: Graphene-like carbon nitride nanosheets for improved photocatalytic activities publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200922 – volume: 103 start-page: 15729 year: 2006 end-page: 15735 ident: CR1 article-title: Powering the planet: Chemical challenges in solar energy utilization publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0603395103 – volume: 139 start-page: 11666 year: 2017 end-page: 11669 ident: CR49 article-title: Solution synthesis of semiconducting two-dimensional polymer via trimerization of carbonitrile publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05025 – volume: 51 start-page: 12727 year: 2012 end-page: 12731 ident: CR21 article-title: Supercapacitive energy storage and electric power supply using an aza-fused n-conjugated microporous framework publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201205521 – year: 2018 ident: CR25 article-title: 2D polymers as emerging materials for photocatalytic overall water splitting publication-title: Ad. Mater. – volume: 142 start-page: 414 year: 2013 end-page: 422 ident: CR62 article-title: In situ synthesis of cobaltphosphate (Co-Pi) modified g-C3N4 photocatalysts with enhanced photocatalytic activities publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2013.05.051 – volume: 118 start-page: 5201 year: 2018 end-page: 5241 ident: CR67 article-title: Mimicking natural photosynthesis: Solar to renewable H2 fuel synthesis by Zscheme water splitting systems publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00286 – volume: 30 start-page: 1800868 year: 2018 ident: CR6 article-title: Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor publication-title: Adv. Mater. doi: 10.1002/adma.201800868 – volume: 25 start-page: 2452 year: 2013 end-page: 2456 ident: CR46 article-title: Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light publication-title: Adv. Mater. doi: 10.1002/adma.201204453 – year: 2016 ident: CR76 article-title: Graphdiyne: A metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production publication-title: J. Am. Chem. Soc – year: 2015 ident: CR81 article-title: Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid publication-title: Appl. Catal. B Environ. – volume: 1 start-page: 1875 year: 2017 end-page: 1898 ident: CR26 article-title: Two-dimensional nanomaterials for photocatalytic CO2 reduction to solar fuels publication-title: Sustainable Energy Fuels doi: 10.1039/C7SE00344G – volume: 55 start-page: 1792 year: 2016 end-page: 1796 ident: CR22 article-title: Visible-light-driven hydrogen evolution using planarized conjugated polymer photocatalysts publication-title: Ange w. Chem. Int. Ed. doi: 10.1002/anie.201510542 – volume: 7 start-page: 13461 year: 2016 ident: CR55 article-title: Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness publication-title: Nat. Commun. doi: 10.1038/ncomms13461 – volume: 7 start-page: 1902 year: 2014 end-page: 1906 ident: CR13 article-title: Two dimensional conjugated polymers with enhanced optical absorption and charge separation for photocatalytic hydrogen evolution publication-title: Energy Environ. Sci. doi: 10.1039/c3ee44189j – volume: 35 start-page: 1700251 year: 2018 ident: CR72 article-title: Co2P nanorods as an efficient cocatalyst decorated porous g-C3N4 nanosheets for photocatalytic hydrogen production under visible light irradiation publication-title: Part. Part. Syst. Charact. doi: 10.1002/ppsc.201700251 – volume: 6 start-page: 1087 year: 2015 end-page: 1098 ident: CR27 article-title: Computational screening of 2D materials for photocatalysis publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz502646d – volume: 53 start-page: 7481 year: 2017 end-page: 7484 ident: CR58 article-title: Mechanochemical synthesis of two-dimensional aromatic polyamides publication-title: Chem. Commun. doi: 10.1039/C7CC02648J – volume: 4 start-page: 486 year: 2008 end-page: 488 ident: CR20 article-title: Conjugated microporous poly(phenylene butadiynylene)s publication-title: Chem. Commun. doi: 10.1039/B715563H – volume: 57 start-page: 3963 year: 2018 end-page: 3967 ident: CR17 article-title: Cocrystals strategy towards materials for near-infrared photothermal conversion and imaging publication-title: A ge w. Chem. Int. Ed. doi: 10.1002/anie.201712949 – volume: 46 start-page: 2799 year: 2017 end-page: 2823 ident: CR64 article-title: Coordination chemistry in the design of heterogeneous photocatalysts publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00727A – volume: 3 start-page: 912 year: 2013 end-page: 919 ident: CR61 article-title: Band structure engineering of carbon nitride: In search of a polymer photocatalyst with high photooxidation property publication-title: ACS Catal. doi: 10.1021/cs4000624 – volume: 138 start-page: 5159 year: 2016 end-page: 5170 ident: CR82 article-title: Nature-inspired, highly durable CO2 reduction system consisting of a binuclear ruthenium(II) complex and an organic semiconductor using visible light publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b01997 – volume: 6 start-page: 774 year: 2014 end-page: 778 ident: CR41 article-title: A nanoporous two-dimensional polymer by singlecrystal-to-single-crystal photopolymerization publication-title: Nat. Chem. doi: 10.1038/nchem.2008 – volume: 7 start-page: 545 year: 2017 end-page: 559 ident: CR30 article-title: Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective publication-title: Catal. Sci. Technol. doi: 10.1039/C6CY02178F – volume: 17 start-page: 119 year: 2018 end-page: 128 ident: CR10 article-title: Organic solar cells based on non-fullerene acceptors publication-title: Nat. Mater. doi: 10.1038/nmat5063 – volume: 30 start-page: 1704548 year: 2018 ident: CR28 article-title: Ultrathin 2D photocatalysts: Electronic-structure tailoring, hybridization, and applications publication-title: Ad . Mater. doi: 10.1002/adma.201704548 – volume: 4 start-page: 287 year: 2012 end-page: 291 ident: CR39 article-title: A two-dimensional polymer prepared by organic synthesis publication-title: Nat. Chem. doi: 10.1038/nchem.1265 – volume: 6 start-page: 779 year: 2014 end-page: 784 ident: CR40 article-title: Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction publication-title: Nat Chem. doi: 10.1038/nchem.2007 – volume: 9 start-page: 768 year: 2014 end-page: 779 ident: CR32 article-title: Electronics based on two-dimensional materials publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.207 – volume: 135 start-page: 10470 year: 2013 end-page: 10474 ident: CR57 article-title: On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid-vapor interface reactions publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403464h – volume: 139 start-page: 3145 year: 2017 end-page: 3152 ident: CR56 article-title: Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12776 – volume: 127 start-page: 2436 year: 2015 end-page: 2439 ident: CR78 article-title: Visible-lightdriven CO2 reduction with carbon nitride: Enhancing the activity of ruthenium catalysts publication-title: Ange w. Chem. Int. Ed. doi: 10.1002/ange.201411170 – volume: 22 start-page: 1160 year: 2012 end-page: 1166 ident: CR80 article-title: Porous structure dependent photoreactivity of graphitic carbon nitride under visible light publication-title: J. Mater. Chem. doi: 10.1039/C1JM14312C – volume: 10 start-page: 87 year: 2017 end-page: 90 ident: CR14 article-title: Decorating CoP and Pt nanoparticles on graphitic carbon nitride nanosheets to promote overall water splitting by conjugated polymers publication-title: Chem-SusChem – volume: 53 start-page: 7481 year: 2017 ident: 2171_CR58 publication-title: Chem. Commun. doi: 10.1039/C7CC02648J – volume: 57 start-page: 3454 year: 2018 ident: 2171_CR74 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201710557 – volume: 35 start-page: 1457 year: 2017 ident: 2171_CR16 publication-title: Chinese J. Polym. Sci. doi: 10.1007/s10118-017-1996-4 – volume: 28 start-page: 2427 year: 2016 ident: 2171_CR70 publication-title: Adv. Mater. doi: 10.1002/adma.201505281 – volume: 23 start-page: 4264 year: 2011 ident: 2171_CR9 publication-title: Chem. Mater. doi: 10.1021/cm2019586 – volume: 139 start-page: 9136 year: 2017 ident: 2171_CR47 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04829 – volume: 36 start-page: 425 year: 2018 ident: 2171_CR36 publication-title: Chinese J. Polym. Sci. doi: 10.1007/s10118-018-2070-6 – volume: 11 start-page: 889 year: 1995 ident: 2171_CR52 publication-title: Langmuir doi: 10.1021/la00003a035 – volume: 46 start-page: 1900 year: 2013 ident: 2171_CR35 publication-title: Acc. Chem. Res. doi: 10.1021/ar300227e – volume: 137 start-page: 3265 year: 2015 ident: 2171_CR23 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511552k – volume: 3 start-page: 912 year: 2013 ident: 2171_CR61 publication-title: ACS Catal. doi: 10.1021/cs4000624 – volume: 137 start-page: 3450 year: 2015 ident: 2171_CR51 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja512018j – volume: 18 start-page: 2217 year: 2018 ident: 2171_CR11 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b04675 – volume: 30 start-page: 1704548 year: 2018 ident: 2171_CR28 publication-title: Ad . Mater. doi: 10.1002/adma.201704548 – volume: 42 start-page: 8012 year: 2013 ident: 2171_CR18 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60160a – volume: 22 start-page: 4763 year: 2012 ident: 2171_CR45 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200922 – volume: 38 start-page: 185 year: 2009 ident: 2171_CR2 publication-title: Chem. Soc. Rev. doi: 10.1039/B802262N – volume: 10 start-page: 87 year: 2017 ident: 2171_CR14 publication-title: Chem-SusChem – volume-title: Ad. Mater. year: 2018 ident: 2171_CR25 – volume: 17 start-page: 119 year: 2018 ident: 2171_CR10 publication-title: Nat. Mater. doi: 10.1038/nmat5063 – volume: 6 start-page: 779 year: 2014 ident: 2171_CR40 publication-title: Nat Chem. doi: 10.1038/nchem.2007 – volume: 29 start-page: 1605308 year: 2017 ident: 2171_CR77 publication-title: Adv. Mater. doi: 10.1002/adma.201605308 – volume: 140 start-page: 4623 year: 2018 ident: 2171_CR85 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00571 – volume: 7 start-page: 1902 year: 2014 ident: 2171_CR13 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee44189j – volume: 35 start-page: 1700251 year: 2018 ident: 2171_CR72 publication-title: Part. Part. Syst. Charact. doi: 10.1002/ppsc.201700251 – volume: 127 start-page: 2436 year: 2015 ident: 2171_CR78 publication-title: Ange w. Chem. Int. Ed. doi: 10.1002/ange.201411170 – volume: 6 start-page: 774 year: 2014 ident: 2171_CR41 publication-title: Nat. Chem. doi: 10.1038/nchem.2008 – volume: 5 start-page: 453 year: 2013 ident: 2171_CR37 publication-title: Nat. Chem. doi: 10.1038/nchem.1628 – volume: 54 start-page: 956 year: 2015 ident: 2171_CR5 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201408882 – volume: 8 start-page: 6904 year: 2016 ident: 2171_CR66 publication-title: Nanoscale doi: 10.1039/C6NR00546B – volume: 8 start-page: 5261 year: 2017 ident: 2171_CR34 publication-title: Chem. Sci. doi: 10.1039/C7SC01747B – volume: 139 start-page: 3021 year: 2017 ident: 2171_CR75 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11878 – volume: 2 start-page: 502 year: 2008 ident: 2171_CR50 publication-title: ACS Nano doi: 10.1021/nn7001536 – volume: 165 start-page: 335 year: 2015 ident: 2171_CR71 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2014.10.016 – volume: 11 start-page: 218 year: 2016 ident: 2171_CR29 publication-title: Nat. Nanotechnol doi: 10.1038/nnano.2015.340 – volume: 27 start-page: 2150 year: 2015 ident: 2171_CR65 publication-title: Adv. Mater. doi: 10.1002/adma.201500033 – volume: 7 start-page: 13461 year: 2016 ident: 2171_CR55 publication-title: Nat. Commun. doi: 10.1038/ncomms13461 – volume: 35 start-page: 171 year: 2017 ident: 2171_CR15 publication-title: Chinese J. Polym. Sci. doi: 10.1007/s10118-017-1886-9 – volume: 221 start-page: 47 year: 2018 ident: 2171_CR69 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.08.041 – volume-title: J. Am. Chem. Soc year: 2016 ident: 2171_CR76 – volume: 135 start-page: 18 year: 2013 ident: 2171_CR44 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308249k – volume: 1 start-page: 1700080 year: 2017 ident: 2171_CR68 publication-title: Small Methods doi: 10.1002/smtd.201700080 – volume: 43 start-page: 8240 year: 2014 ident: 2171_CR33 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00213J – volume: 25 start-page: 2452 year: 2013 ident: 2171_CR46 publication-title: Adv. Mater. doi: 10.1002/adma.201204453 – volume: 4 start-page: 287 year: 2012 ident: 2171_CR39 publication-title: Nat. Chem. doi: 10.1038/nchem.1265 – volume: 4 start-page: eaat6378 year: 2018 ident: 2171_CR48 publication-title: Sci. Adv. doi: 10.1126/sciadv.aat6378 – volume: 142 start-page: 414 year: 2013 ident: 2171_CR62 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2013.05.051 – volume: 51 start-page: 12727 year: 2012 ident: 2171_CR21 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201205521 – volume: 139 start-page: 11666 year: 2017 ident: 2171_CR49 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05025 – volume: 7 start-page: 545 year: 2017 ident: 2171_CR30 publication-title: Catal. Sci. Technol. doi: 10.1039/C6CY02178F – volume: 30 start-page: 1705208 year: 2018 ident: 2171_CR7 publication-title: Adv. Mater. doi: 10.1002/adma.201705208 – volume: 28 start-page: 141 year: 1995 ident: 2171_CR59 publication-title: Acc. Chem. Res. doi: 10.1021/ar00051a007 – volume: 60 start-page: 37 year: 2007 ident: 2171_CR4 publication-title: Phys. Today doi: 10.1063/1.2718755 – volume: 103 start-page: 15729 year: 2006 ident: 2171_CR1 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0603395103 – volume: 55 start-page: 1792 year: 2016 ident: 2171_CR22 publication-title: Ange w. Chem. Int. Ed. doi: 10.1002/anie.201510542 – volume: 22 start-page: 1160 year: 2012 ident: 2171_CR80 publication-title: J. Mater. Chem. doi: 10.1039/C1JM14312C – volume: 140 start-page: 7437 year: 2018 ident: 2171_CR79 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04007 – volume: 7 start-page: 8066 year: 2013 ident: 2171_CR54 publication-title: ACS Nano doi: 10.1021/nn403328h – volume: 116 start-page: 7159 year: 2016 ident: 2171_CR42 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00075 – volume-title: J. Mater. Chem. A year: 2018 ident: 2171_CR24 – volume: 57 start-page: 3963 year: 2018 ident: 2171_CR17 publication-title: A ge w. Chem. Int. Ed. doi: 10.1002/anie.201712949 – volume: 118 start-page: 5201 year: 2018 ident: 2171_CR67 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00286 – volume: 135 start-page: 10470 year: 2013 ident: 2171_CR57 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403464h – volume: 46 start-page: 2799 year: 2017 ident: 2171_CR64 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00727A – volume: 4 start-page: 486 year: 2008 ident: 2171_CR20 publication-title: Chem. Commun. doi: 10.1039/B715563H – volume: 138 start-page: 5159 year: 2016 ident: 2171_CR82 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b01997 – volume: 140 start-page: 1423 year: 2018 ident: 2171_CR84 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11255 – volume: 139 start-page: 3145 year: 2017 ident: 2171_CR56 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12776 – volume: 2 start-page: 1800006 year: 2018 ident: 2171_CR73 publication-title: Sol. RRL doi: 10.1002/solr.201800006 – volume: 1 start-page: 1875 year: 2017 ident: 2171_CR26 publication-title: Sustainable Energy Fuels doi: 10.1039/C7SE00344G – volume: 139 start-page: 11698 year: 2017 ident: 2171_CR43 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06708 – volume: 9 start-page: 768 year: 2014 ident: 2171_CR32 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.207 – volume: 30 start-page: 1702415 year: 2018 ident: 2171_CR38 publication-title: Adv. Mater. doi: 10.1002/adma.201702415 – volume: 115 start-page: 12631 year: 2015 ident: 2171_CR3 publication-title: Chem. Rev doi: 10.1021/acs.chemrev.5b00654 – volume: 30 start-page: 1800868 year: 2018 ident: 2171_CR6 publication-title: Adv. Mater. doi: 10.1002/adma.201800868 – volume: 47 start-page: 3450 year: 2008 ident: 2171_CR19 publication-title: Ange w. Chem. Int. Ed. doi: 10.1002/anie.200705710 – volume: 138 start-page: 4657 year: 2016 ident: 2171_CR12 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b01744 – volume: 6 start-page: 1087 year: 2015 ident: 2171_CR27 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz502646d – volume: 50 start-page: 10768 year: 2014 ident: 2171_CR31 publication-title: Chem. Commun. doi: 10.1039/C4CC02553A – volume: 351 start-page: aad1920 year: 2016 ident: 2171_CR8 publication-title: Science doi: 10.1126/science.aad1920 – volume: 9 start-page: 4090 year: 2017 ident: 2171_CR63 publication-title: Nanoscale doi: 10.1039/C7NR00534B – volume: 48 start-page: 2943 year: 2012 ident: 2171_CR53 publication-title: Chem. Commun. doi: 10.1039/c2cc16892h – volume: 56 start-page: 4867 year: 2017 ident: 2171_CR83 publication-title: A ge w. Chem. Int. Ed. doi: 10.1002/anie.201701627 – volume-title: Appl. Catal. B Environ. year: 2015 ident: 2171_CR81 – volume: 29 start-page: 1702428 year: 2017 ident: 2171_CR60 publication-title: Ad. Mater. doi: 10.1002/adma.201702428 |
SSID | ssj0064757 |
Score | 2.2235694 |
SecondaryResourceType | review_article |
Snippet | Two-dimensional (2D) polymers are fascinating as they exhibit unique physical, chemical, mechanical, and electronic properties that are completely different... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 101 |
SubjectTerms | Absorptivity Catalytic converters Characterization and Evaluation of Materials Chemical energy Chemical synthesis Chemistry Chemistry and Materials Science Condensed Matter Physics Design engineering Energy storage Industrial Chemistry/Chemical Engineering Nanosheets Optoelectronics Organic chemistry Periodic variations Photovoltaic cells Planar structures Polymer Sciences Polymers Review Separation Solar energy conversion Water splitting |
Title | Ultrathin 2D Conjugated Polymer Nanosheets for Solar Fuel Generation |
URI | https://link.springer.com/article/10.1007/s10118-019-2171-x https://www.proquest.com/docview/2163176672 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-yPeiL-InTOfLgkxLI2jRtH_dVh-IQtDCfStKkTJmtrB3of--la52KCj71Idcr3CV3v2vuA6EzmricKscmMev6hAEiJUL7lCjpCo_FluvEJlC8mfBxyK6mzrSq487rbPf6SrK01J-K3QAMQ-jrE4DRXQLAselA6G7yuEKrV5tfDt8ra6TBlxOXu359lfkTi6_OaI0wv12Klr4m2EHbFUjEvZVWd9GGTvfQ5qCezbaPhuHcdJWdPabYGuJBlj4tze8whW-z-duzXmAwmlk-07rIMaBSfGcCWBws9Ryv-kwbdRygMBjdD8akmodAYkAFBVGacal4nLgCDo6jeCKpsC0hqe0oJRgVEJtZWjgJl8yTSnuOBPRHgTBhHvjtQ9RIs1QfIaxigFHK5j6EX6zrCS9mvk0TYAQeW2veQrQWTBRXzcLNzIp5tG5zbGQZgSwjI8votYXOP155WXXK-Iu4XUs7qg5NDkvcNv0qXauFLmoNrJd_ZXb8L-oTtGWZHVBmXrdRo1gs9SkAi0J2ULMX9PsT87x8uB51yo31DgO0xoM |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4HOCCeIrBgBzgAoqUpWnaHjigjWk8hQSTuJW0STVQ6dAegv0e_ihO1zJAgMSBc1yr_eLYn5vEBthliSeZdh0ai1pABTJSqkzAqI485YuYe25sE8WLS9lqi9Nb93YKXsu7MPlp93JLMvfUHy67IRnG1DegSKNr9KU4SXlmRs-Yp_UPTxo4qXucN49v6i1atBKgMQbUAdVGyEjLOPEU2pyrZRIx5XAVMcfVWgmmMK3hRrmJjIQfaeO7ERInhoKJ8DHkod5pmEXu4dul0-ZHpbuX-H35nWzkDtSTXlBunX73yp-D34TRftmEzWNbcxEWClJKjsZWtARTJluGuXrZC24FGu3UVrHt3GeEN0i9mz0M7e83Ta666ejR9Ag66W6_Y8ygT5AFk2ubMJPm0KRkXNfaTv8qtP8FtDWYybqZWQeiY4ROOzLAdE_UfOXHInBYgoqQIRgjK8BKYMK4KE5ue2Sk4aSsssUyRCxDi2X4UoH990eexpU5fhOulmiHxSLt45B0bH1Mj1fgoJyByfCPyjb-JL0Dc62bi_Pw_OTybBPmubWG_NR3FWYGvaHZQlIziLZzoyJw999W_AaGPAG9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZ4SMAF8RSDATnABRSRpWnaHjigjYm3kGASt5I2qQYaHWKdYL-Kv4jTtQwQIHHgnDRqHSf-XNufAbZY4kmmXYfGohZQgYiUKhMwqiNP-SLmnhtbR_H8Qh61xMmNezMGr2UtTJ7tXoYkhzUNlqUpzfYedbL3ofANgTG6wQFFSF2jL0VW5akZPKPP1ts_buAGb3PePLyuH9GirQCN0bhmVBshIy3jxFOof66WScSUw1XEHFdrJZhCF4cb5SYyEn6kje9GCKIYTkyEj-YP1x2HSWGLj_EAtfhBefVL_Na8PhtxBPWkF5Rh1O9e-bMhHKHbLwHZ3M4152C2AKjkYKhR8zBm0gWYrpd94Rah0epYRtv2XUp4g9S76X3f_orT5LLbGTyYJ4IXdrfXNibrEUTE5Mo6z6TZNx0y5Li2qrAErX8R2jJMpN3UrADRMUI47cgAXT9R85Ufi8BhCS6EaMEYWQFWCiaMC6Jy2y-jE44olq0sQ5RlaGUZvlRg5_2RxyFLx2-Tq6W0w-LA9nBIOpYr0-MV2C13YDT842Krf5q9CVOXjWZ4dnxxugYz3CpDngBehYnsqW_WEd9k0UauUwRu_1uJ3wC-yAXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrathin+2D+Conjugated+Polymer+Nanosheets+for+Solar+Fuel+Generation&rft.jtitle=Chinese+journal+of+polymer+science&rft.au=Xin-Lei%2C+Zhang&rft.au=Wang%2C+Lei&rft.au=Chen%2C+Liang&rft.au=Xiao-Yu%2C+Ma&rft.date=2019-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0256-7679&rft.eissn=1439-6203&rft.volume=37&rft.issue=2&rft.spage=101&rft_id=info:doi/10.1007%2Fs10118-019-2171-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-7679&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-7679&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-7679&client=summon |