Coaxial printing method for directly writing stretchable cable as strain sensor
Through applying the liquid metal and elastomer as the core and shell materials, respectively, a coaxial printing method is being developed in this work for preparing a stretchable and conductive cable. When liquid metal alloy eutectic Gallium-Indium is embedded into the elastomer matrix under optim...
Saved in:
Published in | Applied physics letters Vol. 109; no. 8 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
22.08.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0003-6951 1077-3118 |
DOI | 10.1063/1.4961493 |
Cover
Loading…
Abstract | Through applying the liquid metal and elastomer as the core and shell materials, respectively, a coaxial printing method is being developed in this work for preparing a stretchable and conductive cable. When liquid metal alloy eutectic Gallium-Indium is embedded into the elastomer matrix under optimized control, the cable demonstrates well–posed extreme mechanic performance, under stretching for more than 350%. Under developed compression test, the fabricated cable also demonstrates the ability for recovering original properties due to the high flowability of the liquid metal and super elasticity of the elastomeric shell. The written cable presents high cycling reliability regarding its stretchability and conductivity, two properties which can be clearly predicted in theoretical calculation. This work can be further investigated as a strain sensor for monitoring motion status including frequency and amplitude of a curved object, with extensive applications in wearable devices, soft robots, electronic skins, and wireless communication. |
---|---|
AbstractList | Through applying the liquid metal and elastomer as the core and shell materials, respectively, a coaxial printing method is being developed in this work for preparing a stretchable and conductive cable. When liquid metal alloy eutectic Gallium-Indium is embedded into the elastomer matrix under optimized control, the cable demonstrates well–posed extreme mechanic performance, under stretching for more than 350%. Under developed compression test, the fabricated cable also demonstrates the ability for recovering original properties due to the high flowability of the liquid metal and super elasticity of the elastomeric shell. The written cable presents high cycling reliability regarding its stretchability and conductivity, two properties which can be clearly predicted in theoretical calculation. This work can be further investigated as a strain sensor for monitoring motion status including frequency and amplitude of a curved object, with extensive applications in wearable devices, soft robots, electronic skins, and wireless communication. |
Author | Lau, Woon-ming Liu, Yu Mei, Jun Hui, David Yan, Hui Chen, Yan-qiu Yan, Hai-liang Hong, Xiao Deng, Yong-qiang Zhang, Li-long |
Author_xml | – sequence: 1 givenname: Hai-liang surname: Yan fullname: Yan, Hai-liang organization: 4Department of Mechanical Engineering, University of New Orleans, New Orleans, Louisiana 70148, USA – sequence: 2 givenname: Yan-qiu surname: Chen fullname: Chen, Yan-qiu organization: Chengdu Green Energy and Green Manufacturing Technology R&D Center – sequence: 3 givenname: Yong-qiang surname: Deng fullname: Deng, Yong-qiang organization: Chengdu Green Energy and Green Manufacturing Technology R&D Center – sequence: 4 givenname: Li-long surname: Zhang fullname: Zhang, Li-long organization: Chengdu Green Energy and Green Manufacturing Technology R&D Center – sequence: 5 givenname: Xiao surname: Hong fullname: Hong, Xiao organization: 4Department of Mechanical Engineering, University of New Orleans, New Orleans, Louisiana 70148, USA – sequence: 6 givenname: Woon-ming surname: Lau fullname: Lau, Woon-ming organization: Chengdu Green Energy and Green Manufacturing Technology R&D Center – sequence: 7 givenname: Jun surname: Mei fullname: Mei, Jun organization: Chengdu Green Energy and Green Manufacturing Technology R&D Center – sequence: 8 givenname: David surname: Hui fullname: Hui, David organization: University of New Orleans – sequence: 9 givenname: Hui surname: Yan fullname: Yan, Hui email: yu.liu@vip.163.com, cyqleaf@qq.com, hyan@but.ac.cn organization: Beijing University of Technology – sequence: 10 givenname: Yu surname: Liu fullname: Liu, Yu email: yu.liu@vip.163.com, cyqleaf@qq.com, hyan@but.ac.cn organization: Chengdu Green Energy and Green Manufacturing Technology R&D Center |
BackLink | https://www.osti.gov/biblio/22590535$$D View this record in Osti.gov |
BookMark | eNp9kEtLAzEQx4NUsD4OfoMFTwrbZpJmszlK8QWFXvQcstmsTdkmNUl9fHu3Dy2oeJlhZn7zZ-Z_jHrOO4PQOeAB4IIOYTASBYwEPUB9wJznFKDsoT7GmOaFYHCEjmOcdyUjlPbRdOzVu1VttgzWJeues4VJM19njQ9ZbYPRqf3I3oLdzGIKJumZqlqT6U1Ucd1U1mXRuOjDKTpsVBvN2S6foKfbm8fxfT6Z3j2Mrye5poylXPOyxE2JK4zrShPBKgGsJlxTTQ2UpuC40QxzMJw0quKM8orpArPCcKDa0BN0sdX1MVkZtU1Gz7R3rjtYEsIEZpTtqWXwLysTk5z7VXDdYZIAgUJQUZYdNdxSOvgYg2lkJ6eS9W79WSsBy7W3EuTO227j8sdGZ99ChY8_2astG79Uv-FXH_agXNbNf_Bv5U9w4pYe |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1039_D2NH00089J crossref_primary_10_1002_admi_201800996 crossref_primary_10_1021_acsami_9b12493 crossref_primary_10_1002_aelm_201800137 crossref_primary_10_1002_adfm_202400363 crossref_primary_10_3390_electronics11182903 crossref_primary_10_1016_j_matdes_2020_108567 crossref_primary_10_1002_admt_202201453 crossref_primary_10_1016_j_sna_2021_112924 crossref_primary_10_1021_acsami_1c01319 crossref_primary_10_1002_adem_202300524 crossref_primary_10_1002_pol_20210867 crossref_primary_10_1016_j_jics_2022_100345 crossref_primary_10_1109_JPROC_2019_2908433 crossref_primary_10_1007_s40843_021_2023_x crossref_primary_10_1021_acsami_2c09041 crossref_primary_10_1038_s41598_022_05596_y crossref_primary_10_1007_s10853_024_10244_z crossref_primary_10_1021_acsaenm_3c00573 crossref_primary_10_1088_1361_6528_ab2440 crossref_primary_10_1109_JSEN_2024_3460033 crossref_primary_10_1002_admt_202100356 crossref_primary_10_1002_adfm_202213312 crossref_primary_10_1021_acsami_2c02247 crossref_primary_10_1063_5_0235816 crossref_primary_10_1039_D0SM00803F crossref_primary_10_3390_s18082673 crossref_primary_10_1021_acsnano_2c08166 crossref_primary_10_1109_ACCESS_2022_3157833 crossref_primary_10_1016_j_cjmeam_2023_100073 crossref_primary_10_1039_C8NR02196A crossref_primary_10_1002_adem_201900060 crossref_primary_10_1021_acsami_0c04709 crossref_primary_10_1002_adma_201706589 crossref_primary_10_1089_3dp_2017_0147 crossref_primary_10_1039_C7NR05486F crossref_primary_10_1007_s00339_019_2532_x crossref_primary_10_1002_adma_201702625 crossref_primary_10_1088_1361_6439_ab2839 crossref_primary_10_1021_acssensors_1c02606 crossref_primary_10_3390_app8030345 crossref_primary_10_1021_acs_chemrev_7b00291 crossref_primary_10_3389_fbioe_2023_1264563 crossref_primary_10_1002_adma_201606425 crossref_primary_10_1016_j_addma_2020_101487 crossref_primary_10_1039_C7NR01945A crossref_primary_10_1002_adfm_202421571 crossref_primary_10_3390_polym10030330 crossref_primary_10_1002_aisy_201900170 crossref_primary_10_3390_s23084039 crossref_primary_10_1021_acsaelm_2c01728 crossref_primary_10_4218_etrij_2021_0188 crossref_primary_10_1021_acsami_9b10937 crossref_primary_10_1007_s00339_018_2217_x crossref_primary_10_1021_acssensors_2c00942 crossref_primary_10_1002_adfm_202413965 |
Cites_doi | 10.1063/1.3114381 10.1038/nnano.2014.38 10.1002/adma.201400334 10.1016/j.mee.2011.01.004 10.1117/12.2176581 10.1002/adfm.201002508 10.1039/C5RA01519G 10.1021/jz502431r 10.1016/j.carbon.2014.05.022 10.1002/adma.201302240 10.1002/adfm.201504755 10.1063/1.2829595 10.1002/adfm.201203589 10.1063/1.3578398 10.1109/LED.2007.897887 10.1039/C4MH00147H 10.1016/j.eml.2015.03.001 10.1002/adma.201500072 10.1021/acsnano.5b01613 10.1021/nn501204t 10.1039/c3nr33560g 10.1038/nature07719 10.1088/1758-5082/5/2/025004 10.1038/nnano.2015.324 10.1002/adma.201501729 10.1002/adfm.201303220 10.1088/0960-1317/20/12/125029 10.1126/science.1182383 |
ContentType | Journal Article |
Copyright | Author(s) 2016 Author(s). Published by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2016 Author(s). Published by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M OTOTI |
DOI | 10.1063/1.4961493 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 22590535 10_1063_1_4961493 apl |
GrantInformation_xml | – fundername: Natural Science Foundation of Beijing Municipality (Beijing Natural Science Foundation) grantid: 4162016 funderid: http://dx.doi.org/10.13039/501100004826 – fundername: National Natural Science Foundation of China (NSFC) grantid: 51475484; 61574009 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: China Academy of Engineering Physics (CAEP) grantid: 2014B0203032 funderid: http://dx.doi.org/10.13039/501100002851 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS EJD ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M 0ZJ ABPTK AGIHO OTOTI UE8 |
ID | FETCH-LOGICAL-c355t-c7880f80b00dbc295b915d27c3c3e18e670fc5071e72fab7537b5c6056e713ce3 |
ISSN | 0003-6951 |
IngestDate | Thu May 18 18:33:11 EDT 2023 Mon Jun 30 05:27:03 EDT 2025 Thu Apr 24 23:02:29 EDT 2025 Tue Jul 01 01:15:37 EDT 2025 Sun Jul 14 10:11:53 EDT 2019 Fri Jun 21 00:14:50 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | 0003-6951/2016/109(8)/083502/4/$30.00 Published by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c355t-c7880f80b00dbc295b915d27c3c3e18e670fc5071e72fab7537b5c6056e713ce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2121693988 |
PQPubID | 2050678 |
PageCount | 4 |
ParticipantIDs | scitation_primary_10_1063_1_4961493 proquest_journals_2121693988 crossref_primary_10_1063_1_4961493 crossref_citationtrail_10_1063_1_4961493 osti_scitechconnect_22590535 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160822 2016-08-22 |
PublicationDateYYYYMMDD | 2016-08-22 |
PublicationDate_xml | – month: 08 year: 2016 text: 20160822 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville – name: United States |
PublicationTitle | Applied physics letters |
PublicationYear | 2016 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Park, Majidi, Kramer, Bérard, Wood (c22) 2010 Kramer (c3) 2015 Park, Vosguerichian, Bao (c10) 2013 Lee, Reuveny, Reeder, Lee, Jin, Liu, Yokota, Sekitani, Isoyama, Abe, Suo, Someya (c8) 2016 Kim, Son, Ziaie (c20) 2008 Frutiger, Muth, Vogt, Menguc, Campo, Valentine, Walsh, Lewis (c24) 2015 Zhang, Yu, Chen, Ozbolat (c25) 2013 Zang, Zhang, Di, Zhu (c1) 2015 Chung, Lee, Song, Kim, Jeong, Hong (c12) 2011 Cheng, Wu (c16) 2011 Grolman, Zhang, Smith, Moore, Kilian (c26) 2015 Kong, Jang, Kim, Kim (c29) 2014 Roh, Hwang, Kim, Kim, Lee (c14) 2015 Son, Lee, Qiao, Ghaffari, Kim, Ji, Song, Kim, Dong, Jun (c9) 2014 Boley, White, Chiu, Kramer (c17) 2014 Cheng, Rydberg, Hjort, Wu (c4) 2009 Kim, Zhao, Jang, Lee, Kim, Kim, Ahn, Kim, Choi, Hong (c11) 2009 Secor, Hersam (c15) 2015 Brosteaux, Axisa, Gonzalez, Vanfleteren (c21) 2007 Lee, Seong, Moon, Byun (c23) 2015 Kramer, Majidi, Wood (c18) 2013 Hammock, Chortos, Tee, Tok, Bao (c2) 2013 Yang, Chen, Lu, Yang, Zhou, Chen, Suo (c7) 2015 Amjadi, Pichitpajongkit, Lee, Ryu, Park (c28) 2014 Rogers, Someya, Huang (c5) 2010 Barink, van den Berg, Yakimets, Giesen, van Dommelen, Meinders (c6) 2011 Amjadi, Kyung, Park, Sitti (c27) 2016 Muth, Vogt, Truby, Menguc, Kolesky, Wood, Lewis (c13) 2014 (2023061802151841100_c11) 2009; 457 (2023061802151841100_c15) 2015; 6 (2023061802151841100_c6) 2011; 88 (2023061802151841100_c28) 2014; 8 (2023061802151841100_c21) 2007; 28 (2023061802151841100_c17) 2014; 24 (2023061802151841100_c14) 2015; 9 (2023061802151841100_c5) 2010; 327 (2023061802151841100_c29) 2014; 77 (2023061802151841100_c4) 2009; 94 (2023061802151841100_c26) 2015; 27 (2023061802151841100_c1) 2015; 2 (2023061802151841100_c12) 2011; 98 (2023061802151841100_c25) 2013; 5 (2023061802151841100_c13) 2014; 26 (2023061802151841100_c22) 2010; 20 (2023061802151841100_c24) 2015; 27 (2023061802151841100_c27) 2016; 26 (2023061802151841100_c19) 2015 (2023061802151841100_c8) 2016; 11 (2023061802151841100_c16) 2011; 21 (2023061802151841100_c7) 2015; 3 (2023061802151841100_c10) 2013; 5 (2023061802151841100_c3) 2015; 9467 (2023061802151841100_c9) 2014; 9 (2023061802151841100_c20) 2008; 92 (2023061802151841100_c23) 2015; 5 (2023061802151841100_c2) 2013; 25 (2023061802151841100_c18) 2013; 23 |
References_xml | – start-page: 1727 year: 2013 ident: c10 publication-title: Nanoscale – start-page: 5292 year: 2013 ident: c18 publication-title: Adv. Funct. Mater. – start-page: 472 year: 2016 ident: c8 publication-title: Nat. Nanotechnol. – start-page: 6307 year: 2014 ident: c13 publication-title: Adv. Mater. – start-page: 620 year: 2015 ident: c15 publication-title: J. Phys. Chem. Lett. – start-page: 2282 year: 2011 ident: c16 publication-title: Adv. Funct. Mater. – start-page: 125029 year: 2010 ident: c22 publication-title: J. Micromech. Microeng. – start-page: 144103 year: 2009 ident: c4 publication-title: Appl. Phys. Lett. – start-page: 153110 year: 2011 ident: c12 publication-title: Appl. Phys. Lett. – start-page: 025004 year: 2013 ident: c25 publication-title: Biofabrication – start-page: 946707 year: 2015 ident: c3 publication-title: Proc. SPIE – start-page: 999 year: 2011 ident: c6 publication-title: Microelectron. Eng. – start-page: 5512 year: 2015 ident: c26 publication-title: Adv. Mater. – start-page: 552 year: 2007 ident: c21 publication-title: IEEE Electron Device Lett. – start-page: 5997 year: 2013 ident: c2 publication-title: Adv. Mater – start-page: 3501 year: 2014 ident: c17 publication-title: Adv. Funct. Mater. – start-page: 1603 year: 2010 ident: c5 publication-title: Science – start-page: 28379 year: 2015 ident: c23 publication-title: RSC Adv. – start-page: 5154 year: 2014 ident: c28 publication-title: ACS Nano – start-page: 397 year: 2014 ident: c9 publication-title: Nat. Nanotechnol. – start-page: 706 year: 2009 ident: c11 publication-title: Nature – start-page: 199 year: 2014 ident: c29 publication-title: Carbon – start-page: 6252 year: 2015 ident: c14 publication-title: ACS Nano – start-page: 59 year: 2015 ident: c7 publication-title: Extreme Mech. Lett. – start-page: 2440 year: 2015 ident: c24 publication-title: Adv. Mater. – start-page: 140 year: 2015 ident: c1 publication-title: Mater. Horiz. – start-page: 1678 year: 2016 ident: c27 publication-title: Adv. Funct. Mater. – start-page: 011904 year: 2008 ident: c20 publication-title: Appl. Phys. Lett. – volume: 94 start-page: 144103 issue: 14 year: 2009 ident: 2023061802151841100_c4 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3114381 – volume: 9 start-page: 397 issue: 5 year: 2014 ident: 2023061802151841100_c9 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.38 – volume: 26 start-page: 6307 issue: 36 year: 2014 ident: 2023061802151841100_c13 publication-title: Adv. Mater. doi: 10.1002/adma.201400334 – volume: 88 start-page: 999 issue: 6 year: 2011 ident: 2023061802151841100_c6 publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2011.01.004 – volume: 9467 start-page: 946707 year: 2015 ident: 2023061802151841100_c3 publication-title: Proc. SPIE doi: 10.1117/12.2176581 – volume: 21 start-page: 2282 issue: 12 year: 2011 ident: 2023061802151841100_c16 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201002508 – volume: 5 start-page: 28379 issue: 36 year: 2015 ident: 2023061802151841100_c23 publication-title: RSC Adv. doi: 10.1039/C5RA01519G – volume: 6 start-page: 620 issue: 4 year: 2015 ident: 2023061802151841100_c15 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz502431r – volume: 77 start-page: 199 year: 2014 ident: 2023061802151841100_c29 publication-title: Carbon doi: 10.1016/j.carbon.2014.05.022 – volume: 25 start-page: 5997 issue: 42 year: 2013 ident: 2023061802151841100_c2 publication-title: Adv. Mater doi: 10.1002/adma.201302240 – volume: 26 start-page: 1678 year: 2016 ident: 2023061802151841100_c27 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504755 – start-page: 2568 year: 2015 ident: 2023061802151841100_c19 – volume: 92 start-page: 011904 issue: 1 year: 2008 ident: 2023061802151841100_c20 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2829595 – volume: 23 start-page: 5292 issue: 42 year: 2013 ident: 2023061802151841100_c18 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201203589 – volume: 98 start-page: 153110 issue: 15 year: 2011 ident: 2023061802151841100_c12 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3578398 – volume: 28 start-page: 552 issue: 7 year: 2007 ident: 2023061802151841100_c21 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2007.897887 – volume: 2 start-page: 140 issue: 2 year: 2015 ident: 2023061802151841100_c1 publication-title: Mater. Horiz. doi: 10.1039/C4MH00147H – volume: 3 start-page: 59 year: 2015 ident: 2023061802151841100_c7 publication-title: Extreme Mech. Lett. doi: 10.1016/j.eml.2015.03.001 – volume: 27 start-page: 2440 issue: 15 year: 2015 ident: 2023061802151841100_c24 publication-title: Adv. Mater. doi: 10.1002/adma.201500072 – volume: 9 start-page: 6252 issue: 6 year: 2015 ident: 2023061802151841100_c14 publication-title: ACS Nano doi: 10.1021/acsnano.5b01613 – volume: 8 start-page: 5154 issue: 5 year: 2014 ident: 2023061802151841100_c28 publication-title: ACS Nano doi: 10.1021/nn501204t – volume: 5 start-page: 1727 issue: 5 year: 2013 ident: 2023061802151841100_c10 publication-title: Nanoscale doi: 10.1039/c3nr33560g – volume: 457 start-page: 706 issue: 7230 year: 2009 ident: 2023061802151841100_c11 publication-title: Nature doi: 10.1038/nature07719 – volume: 5 start-page: 025004 issue: 2 year: 2013 ident: 2023061802151841100_c25 publication-title: Biofabrication doi: 10.1088/1758-5082/5/2/025004 – volume: 11 start-page: 472 year: 2016 ident: 2023061802151841100_c8 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.324 – volume: 27 start-page: 5512 issue: 37 year: 2015 ident: 2023061802151841100_c26 publication-title: Adv. Mater. doi: 10.1002/adma.201501729 – volume: 24 start-page: 3501 issue: 23 year: 2014 ident: 2023061802151841100_c17 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303220 – volume: 20 start-page: 125029 issue: 12 year: 2010 ident: 2023061802151841100_c22 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/20/12/125029 – volume: 327 start-page: 1603 issue: 5973 year: 2010 ident: 2023061802151841100_c5 publication-title: Science doi: 10.1126/science.1182383 |
SSID | ssj0005233 |
Score | 2.448717 |
Snippet | Through applying the liquid metal and elastomer as the core and shell materials, respectively, a coaxial printing method is being developed in this work for... |
SourceID | osti proquest crossref scitation |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | ALLOYS AMPLITUDES Applied physics CABLES Casting CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS COMMUNICATIONS COMPRESSION Compression tests CONTROL DIAGRAMS ELASTICITY ELASTOMERS Electronic devices Eutectic alloys EUTECTICS GALLIUM INDIUM LIQUID METALS MATERIALS ROBOTS SENSORS Strain analysis STRAINS Stretchability Wearable technology Wireless communications |
Title | Coaxial printing method for directly writing stretchable cable as strain sensor |
URI | http://dx.doi.org/10.1063/1.4961493 https://www.proquest.com/docview/2121693988 https://www.osti.gov/biblio/22590535 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJ8R4QDBAKwxkAQ9IVUYS58uP0z40oW5DopW6J5M4DlQqyWhSvv567mInTaRqAl6syrUS5-6X8-8u5zMhb2Toh3bEbQtcBR8clFRaMZa7i-yUu4nHgrTOqry4DM5n3vu5Px8MPnWyltZVcih_b91X8j9ahT7QK-6S_QfNtheFDvgN-oUWNAztX-n4uIh_YsQbg3N1-rI-D7pOHdRr1fLX-AeWLaqDBitUUb1VStZtXGJnvMjHJTizxapLVBt2qiMf5XhZb_tpCfh1nFvfFmv9wX6zm-y6yD9Dv4lBnyizLGLCz8JamuzfOkbdLgZFkVtfzcEqk3jdjUI4AYZV3Y3P2n5e6qU4fNBT7NlfZgXclJhV2uTaIUZKjRVubLLNO-CLttp6IFcYdjj0OFAMfcxiv5725ZU4m00mYno6n94hOy44Eu6Q7BydXEw-dtKAGGtOVcSZNdWnAvauvXSPswwLeMKeP3IPyIrOm-hQk-lD8sD4FPRIA-QRGah8j9zvVJrcI3eNkB6TKwMa2oCGatBQAA1tQEMNaGgHNLQGDY1LqkFDNWiekNnZ6fT43DKnalgSuGVlyRBMdhbZYG_TRLrcT7jjp24omWTKiVQQ2plEL0GFbhYn4M6GiS_B6w1U6DCp2FMyzItc7RPqO4Efc1f6XgJiwrpIQWarzPPhxcdSgiPytpGbaESEM1yKOvUhYMIRRsQj8qodeqPrrGwbdIDCFyhvJb9ITAWTlYAliWOZIvi7UYowb2kpgJphvSEeRSPyulXUbffYMup7sdqMEDdp9uz2Wz0nu5uX5IAMq9VavQDyWiUvDf7-ADtnmkY |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coaxial+printing+method+for+directly+writing+stretchable+cable+as+strain+sensor&rft.jtitle=Applied+physics+letters&rft.au=Yan-qiu%2C+Chen&rft.au=Yong-qiang%2C+Deng&rft.au=Li-long%2C+Zhang&rft.au=Woon-ming%2C+Lau&rft.date=2016-08-22&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=109&rft.issue=8&rft_id=info:doi/10.1063%2F1.4961493&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |