On a (No Longer) New Segal Algebra: A Review of the Feichtinger Algebra

Since its invention in 1979 the Feichtinger algebra has become a useful Banach space of functions with applications in time-frequency analysis, the theory of pseudo-differential operators and several other topics. It is easily defined on locally compact Abelian groups and, in comparison with the Sch...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of fourier analysis and applications Vol. 24; no. 6; pp. 1579 - 1660
Main Author Jakobsen, Mads S.
Format Journal Article
LanguageEnglish
Published New York Springer US 15.12.2018
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Since its invention in 1979 the Feichtinger algebra has become a useful Banach space of functions with applications in time-frequency analysis, the theory of pseudo-differential operators and several other topics. It is easily defined on locally compact Abelian groups and, in comparison with the Schwartz(-Bruhat) space, the Feichtinger algebra allows for more general results with easier proofs. This review paper develops the theory of Feichtinger’s algebra in a linear and comprehensive way. The material gives an entry point into the subject and it will also bring new insight to the expert. A further goal of this paper is to show the equivalence of the many different characterizations of the Feichtinger algebra known in the literature. This task naturally guides the paper through basic properties of functions that belong to this space, over operators on it, and to aspects of its dual space. Additional results include a seemingly forgotten theorem by Reiter on Banach space isomorphisms of the Feichtinger algebra, a new identification of Feichtinger’s algebra as the unique Banach space in L 1 with certain properties, and the kernel theorem for the Feichtinger algebra. A historical description of the development of the theory, its applications, and a list of related function space constructions is included.
AbstractList Since its invention in 1979 the Feichtinger algebra has become a useful Banach space of functions with applications in time-frequency analysis, the theory of pseudo-differential operators and several other topics. It is easily defined on locally compact Abelian groups and, in comparison with the Schwartz(-Bruhat) space, the Feichtinger algebra allows for more general results with easier proofs. This review paper develops the theory of Feichtinger’s algebra in a linear and comprehensive way. The material gives an entry point into the subject and it will also bring new insight to the expert. A further goal of this paper is to show the equivalence of the many different characterizations of the Feichtinger algebra known in the literature. This task naturally guides the paper through basic properties of functions that belong to this space, over operators on it, and to aspects of its dual space. Additional results include a seemingly forgotten theorem by Reiter on Banach space isomorphisms of the Feichtinger algebra, a new identification of Feichtinger’s algebra as the unique Banach space in L1 with certain properties, and the kernel theorem for the Feichtinger algebra. A historical description of the development of the theory, its applications, and a list of related function space constructions is included.
Since its invention in 1979 the Feichtinger algebra has become a useful Banach space of functions with applications in time-frequency analysis, the theory of pseudo-differential operators and several other topics. It is easily defined on locally compact Abelian groups and, in comparison with the Schwartz(-Bruhat) space, the Feichtinger algebra allows for more general results with easier proofs. This review paper develops the theory of Feichtinger's algebra in a linear and comprehensive way. The material gives an entry point into the subject and it will also bring new insight to the expert. A further goal of this paper is to show the equivalence of the many different characterizations of the Feichtinger algebra known in the literature. This task naturally guides the paper through basic properties of functions that belong to this space, over operators on it, and to aspects of its dual space. Additional results include a seemingly forgotten theorem by Reiter on Banach space isomorphisms of the Feichtinger algebra, a new identification of Feichtinger's algebra as the unique Banach space in [Formula omitted] with certain properties, and the kernel theorem for the Feichtinger algebra. A historical description of the development of the theory, its applications, and a list of related function space constructions is included.
Since its invention in 1979 the Feichtinger algebra has become a useful Banach space of functions with applications in time-frequency analysis, the theory of pseudo-differential operators and several other topics. It is easily defined on locally compact Abelian groups and, in comparison with the Schwartz(-Bruhat) space, the Feichtinger algebra allows for more general results with easier proofs. This review paper develops the theory of Feichtinger’s algebra in a linear and comprehensive way. The material gives an entry point into the subject and it will also bring new insight to the expert. A further goal of this paper is to show the equivalence of the many different characterizations of the Feichtinger algebra known in the literature. This task naturally guides the paper through basic properties of functions that belong to this space, over operators on it, and to aspects of its dual space. Additional results include a seemingly forgotten theorem by Reiter on Banach space isomorphisms of the Feichtinger algebra, a new identification of Feichtinger’s algebra as the unique Banach space in L 1 with certain properties, and the kernel theorem for the Feichtinger algebra. A historical description of the development of the theory, its applications, and a list of related function space constructions is included.
Audience Academic
Author Jakobsen, Mads S.
Author_xml – sequence: 1
  givenname: Mads S.
  surname: Jakobsen
  fullname: Jakobsen, Mads S.
  email: mads.jakobsen@ntnu.no
  organization: NTNU, Department of Mathematical Sciences
BookMark eNp9kF1LwzAUhoMoOKc_wLuAN3rRmbM0TeNdETeF4cCP69BkpzPSNZp2iv_elCqCoOQih8P7JLzPAdltfIOEHAObAGPyvGWMpZAwyBMlVJakO2QEgkMicgG7cWaZinOm9slB2z4zNgUu-YjMlw0t6emtpwvfrDGc0Vt8p_e4Lmta1Gs0obygBb3DNxf3vqLdE9IZOvvUuT7_HToke1VZt3j0dY_J4-zq4fI6WSznN5fFIrFciC4xyMWUTY2xhoFiuTKcc4mwyoADt8JIk4sMSosmtShzKSWvBAirpBAiV3xMToZ3X4J_3WLb6We_DU38UsdGKhOQqj41GVKxBmrXVL4LpY1nhRtno7nKxX0hIU-5UimPgBwAG3zbBqy0dV3ZOd9E0NUamO4160Gzjpp1r1mnkYRf5EtwmzJ8_MtMB6aN2d7iT4m_oU9UCIzy
CitedBy_id crossref_primary_10_1016_j_acha_2023_101574
crossref_primary_10_1007_s00209_022_03182_6
crossref_primary_10_3390_axioms9010025
crossref_primary_10_1007_s11868_023_00551_5
crossref_primary_10_1007_s43037_022_00205_6
crossref_primary_10_1016_j_acha_2023_04_001
crossref_primary_10_1007_s00041_022_09977_9
crossref_primary_10_1016_j_jmaa_2023_127579
crossref_primary_10_1007_s00023_023_01298_x
crossref_primary_10_1007_s00041_024_10135_6
crossref_primary_10_1007_s00605_022_01702_4
crossref_primary_10_1007_s43036_024_00419_5
crossref_primary_10_1007_s00041_021_09860_z
crossref_primary_10_1063_5_0192334
crossref_primary_10_3390_axioms12050482
crossref_primary_10_1007_s00041_020_09729_7
crossref_primary_10_1007_s11868_024_00634_x
crossref_primary_10_2139_ssrn_4109420
crossref_primary_10_3934_mfc_2021019
crossref_primary_10_1007_s00041_020_09742_w
crossref_primary_10_1142_S0129167X19500514
crossref_primary_10_1007_s00025_019_1134_4
crossref_primary_10_3390_quantum3030031
crossref_primary_10_1515_ms_2021_0049
crossref_primary_10_1093_imrn_rnac179
crossref_primary_10_1016_j_aim_2022_108771
crossref_primary_10_1007_s00041_023_10053_z
crossref_primary_10_1007_s00041_023_10014_6
crossref_primary_10_1007_s11868_021_00436_5
crossref_primary_10_1007_s43037_020_00081_y
crossref_primary_10_1016_j_bulsci_2022_103171
crossref_primary_10_1007_s40509_022_00292_y
crossref_primary_10_1016_j_acha_2023_101622
crossref_primary_10_1016_j_matpur_2019_12_005
crossref_primary_10_1016_j_jmaa_2023_128058
crossref_primary_10_1007_s43670_021_00011_5
crossref_primary_10_1016_j_acha_2021_06_007
crossref_primary_10_1007_s00020_024_02771_w
crossref_primary_10_1007_s00041_021_09892_5
crossref_primary_10_1007_s43037_020_00117_3
crossref_primary_10_1016_j_crma_2018_12_004
crossref_primary_10_1007_s00041_022_09980_0
crossref_primary_10_1142_S0129167X20500731
crossref_primary_10_1007_s00041_020_09759_1
crossref_primary_10_1142_S0219530523500252
Cites_doi 10.1007/BFb0078863
10.1090/S0002-9947-08-04448-6
10.1007/978-1-4612-2016-9_8
10.1063/1.528894
10.1007/s00041-004-3055-0
10.1007/s00041-005-4077-y
10.5802/aif.795
10.1016/j.jfa.2015.03.019
10.1090/S0002-9939-04-07401-5
10.1007/BFb0093683
10.1007/BF02790270
10.1016/j.jfa.2009.06.001
10.1007/978-1-4471-3903-4
10.1155/2005/252415
10.1016/0022-1236(89)90055-4
10.1002/mana.19941680116
10.1007/978-3-0348-9369-5_16
10.1007/0-8176-4504-7_8
10.1109/TIT.2006.883553
10.1007/s00041-001-4017-4
10.1007/s00041-017-9573-3
10.2140/pjm.1974.55.507
10.1007/s00041-006-6073-2
10.1142/9789814434201_0011
10.1016/B978-0-12-174590-5.50018-6
10.1215/kjm/1250777359
10.2140/pjm.1981.93.415
10.1007/BF02829782
10.1017/CBO9781139165372
10.1007/978-1-4612-0603-3
10.1007/978-3-7643-9992-4
10.1007/BF01117117
10.4153/CJM-1979-106-4
10.1090/S0002-9947-03-03377-4
10.1112/plms/pdm051
10.1023/B:AGAG.0000023261.94488.f4
10.1007/BF03549447
10.1063/1.3183542
10.1007/978-1-4612-0133-5_2
10.1007/978-1-4612-2016-9_4
10.1007/978-3-540-68268-4_1
10.4153/CJM-1988-012-9
10.1112/jlms/jdt020
10.1007/BF01351432
10.1002/mana.19851230110
10.1007/BF01321715
10.1016/B978-1-4832-2974-4.50007-X
10.1216/rmjm/1181071989
10.1090/S0894-0347-03-00444-2
10.4064/sm-109-3-303-316
10.1007/s00041-013-9269-2
10.1093/imrn/rnm111
10.1016/0022-1236(75)90005-1
10.1007/s00041-005-5035-4
10.1007/s00605-005-0358-4
10.1090/S0002-9947-2014-06376-9
10.1017/S0305004106009273
10.1007/978-3-319-55550-8_4
10.1007/s00041-004-3070-1
10.1142/S0129167X15500548
10.1007/BF01222784
10.7146/math.scand.a-14985
10.1007/978-3-319-08801-3_18
10.1093/qmath/42.1.9
10.1007/BF01301536
10.1016/j.jfa.2007.03.028
10.1007/s00041-004-0977-5
10.1515/9781400882427
10.1093/qmath/37.2.129
10.1216/RMJ-1989-19-1-113
10.4064/sm-121-1-87-104
10.1007/978-1-4612-0143-4_4
10.1090/fic/052/16
10.1007/BF01272884
10.1007/s00041-006-6022-0
10.1002/mana.19921550102
10.1007/BF02648881
10.1002/mana.19871320116
10.1016/S0022-247X(03)00364-0
10.1007/978-0-8176-4687-5
10.1007/978-3-642-58946-1
10.1006/jmaa.2001.7566
10.1007/978-1-4612-2016-9_7
10.1142/9789814551281_0002
10.1007/BF01300054
10.1016/j.jfa.2003.10.003
10.1007/s00041-014-9336-3
10.1007/978-3-319-20188-7_12
10.1007/BF01308667
10.1140/epja/i2004-10307-2
10.1080/01630563.2012.682134
10.1142/9789812776679_0006
10.4064/sm179-3-5
10.1090/S0002-9939-1981-0589135-9
10.1016/j.jat.2006.05.001
10.1016/S0022-1236(03)00166-6
10.1007/BF01320058
10.1007/BF02391012
10.1142/q0089
10.1007/BF03549448
10.1007/978-3-0348-7840-1_9
10.1007/BF01220386
10.1007/978-1-4939-1945-1
10.1006/jfan.1996.3078
10.24033/bsmf.1559
10.1007/978-3-0346-0198-6_13
10.1007/978-3-322-96661-2
10.5802/aif.689
10.1016/j.aim.2015.01.019
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
COPYRIGHT 2018 Springer
Copyright Springer Nature B.V. 2018
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: COPYRIGHT 2018 Springer
– notice: Copyright Springer Nature B.V. 2018
DBID AAYXX
CITATION
DOI 10.1007/s00041-018-9596-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1531-5851
EndPage 1660
ExternalDocumentID A718439943
10_1007_s00041_018_9596_4
GroupedDBID -52
-5D
-5G
-BR
-EM
-~C
.86
06D
0R~
0VY
199
1N0
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
IAO
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MQGED
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XSW
YLTOR
Z45
Z7U
ZMTXR
~EX
-Y2
1SB
2P1
2VQ
2WC
5QI
692
6TJ
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AI.
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
HZ~
IHE
KOW
N2Q
NDZJH
O9-
OK1
R4E
REI
RNI
RZK
S1Z
S26
S28
SCLPG
T16
VH1
VOH
ZWQNP
ZY4
AEIIB
ABRTQ
ID FETCH-LOGICAL-c355t-be35202bbcb019089b3337e1d61313c5b7b8561aceb4ce787773f515c97555893
IEDL.DBID U2A
ISSN 1069-5869
IngestDate Fri Jul 25 11:19:01 EDT 2025
Tue Jun 10 20:37:46 EDT 2025
Thu Jul 03 08:27:15 EDT 2025
Thu Apr 24 23:02:59 EDT 2025
Fri Feb 21 02:35:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Schwartz–Bruhat space
Secondary 43-02
Feichtinger algebra
Generalized functions
Test functions
Primary 43A15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-be35202bbcb019089b3337e1d61313c5b7b8561aceb4ce787773f515c97555893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2139651499
PQPubID 2044008
PageCount 82
ParticipantIDs proquest_journals_2139651499
gale_infotracacademiconefile_A718439943
crossref_citationtrail_10_1007_s00041_018_9596_4
crossref_primary_10_1007_s00041_018_9596_4
springer_journals_10_1007_s00041_018_9596_4
PublicationCentury 2000
PublicationDate 20181215
PublicationDateYYYYMMDD 2018-12-15
PublicationDate_xml – month: 12
  year: 2018
  text: 20181215
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Heidelberg
PublicationTitle The Journal of fourier analysis and applications
PublicationTitleAbbrev J Fourier Anal Appl
PublicationYear 2018
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Feichtinger, H.G.: An elementary approach to the generalized Fourier transform. In: T. Rassias, (ed.) Topics in Mathematical Analysis. Series in Pure Mathematics, vol. 11, pp. 246–272. World Scientific Publishing (1989)
BalazsPGröchenigKPesensonIMhaskarHMayeliALe GiaQZhouD-XA guide to localized frames and applications to Galerkin-like representations of operatorsFrames and other Bases in Abstract and Function Spaces2017ChamBirkhauser47791392.42028
KatznelsonYAn introduction to harmonic analysis20043CambridgeCambridge University Press1055.43001
TachizawaKThe boundedness of pseudodifferential operators on modulation spacesMath. Nachr.199416826327712826430837.35154
Antoine, J.-P.: Quantum mechanics beyond hilbert space. In: A. Bohm, H.-D. Doebner, P. Kileanowski (eds.) Irreversibility and Causality, Semigroups and Rigged Hilbert Spaces. Lecture Notes in Physics, vol 504, Berlin, Springer (1998)
Voigtlaender, F.: Embedding Theorems for Decomposition Spaces with Applications to Wavelet Coorbit Spaces. PhD thesis, RWTH Aachen University (2015)
CorderoEGröchenigKTime-frequency analysis of localization operatorsJ. Funct. Anal.2003205110713120202101047.47038
Feichtinger, H.G.: Banach convolution algebras of Wiener type. In: Functions, Series, Operators, Vol. I, II (Budapest, 1980). Colloquia Mathematica Societatis Janos Bolyai, vol. 35, pp. 509–524. North-Holland, Amsterdam (1983)
LuefFranzGABOR ANALYSIS, NONCOMMUTATIVE TORI AND FEICHTINGER'S ALGEBRALecture Notes Series, Institute for Mathematical Sciences, National University of Singapore200777106
FeichtingerHGGröchenigKGabor frames and time-frequency analysis of distributionsJ. Funct. Anal.1997146246449514520000887.46017
KahaneJ-PLemarieP-GRieusset. Remarks on the Poisson summation formula. (Remarques sur la formule sommatoire de Poisson.)Studia Math.199410930331612740150820.42004
JanssenAJEMHermite function description of Feichtinger’s space S0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S}_0$$\end{document}J. Fourier Anal. Appl.200511557758821826361102.42011
FeichtingerHGGewichtsfunktionen auf lokalkompakten GruppenSitzungsber. d. österr. Akad. Wiss.19791884514715998840447.43004
FeichtingerHGLuefFWiener amalgam spaces for the fundamental identity of Gabor analysisCollect. Math.20065723325322642111135.39303
ReiterHL1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-Algebras and Segal Algebras1971BerlinSpringer0219.43003
FeichtingerHGGröbnerPBanach spaces of distributions defined by decomposition methods I.Math. Nachr.1985123971208093370586.46030
KaiblingerNApproximation of the Fourier transform and the dual Gabor windowJ. Fourier Anal. Appl.2005111254221289431064.42022
KluvánekISampling theorem in abstract harmonic analysisMat. v Casopis Sloven. Akad. Vied19651543481887170154.44403
FeichtingerHGUn espace de Banach de distributions tempérées sur les groupes localement compacts abéliensC. R. Acad. Sci. Paris Ser. A-B1980290177917945805670433.43002
Boggiatto, P.: Localization operators with Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}^p$$\end{document} symbols on modulation spaces. In: Advances in Pseudo-Differential Operators. Operator Theory: Advances and Applications, vol. 155, pp. 149–163. Birkhäuser, Basel (2004)
LosertVA characterization of the minimal strongly character invariant Segal algebraAnn. Inst. Fourier (Grenoble)1980301291395970200425.43003
ReiterHOn the Siegel-Weil formulaMonatsh. Math.199311629933012536900814.43002
Feichtinger, H.G.: Wiener amalgams over Euclidean spaces and some of their applications. In: K. Jarosz (ed.) Proceedings of the Conference on Function Spaces, Edwardsville/IL (USA) 1990. Lecture Notes in Pure and Applied Mathematics, vol. 136, pp. 123–137. Marcel Dekker (1992)
BalanRThe noncommutative Wiener lemma, linear independence, and spectral properties of the algebra of time-frequency shift operatorsTrans. Am. Math. Soc.200836073921394123862521145.43002
de la MadridRThe role of the rigged Hilbert space in quantum mechanicsEur. J. Phys.200526227731221247601079.81022
JanssenAJEMDuality and biorthogonality for Weyl-Heisenberg framesJ. Fourier Anal. Appl.19951440343613507000887.42028
FollandGBHarmonic Analysis in Phase Space1989Princeton, NJPrinceton University Press0682.43001
LiebEHIntegral bounds for radar ambiguity functions and Wigner distributionsJ. Math. Phys.199031359459910392100704.46050
BenedettoJJSpectral Synthesis1975San FranciscoAcademic Press0314.43011
GröchenigKFeichtingerHGStrohmerTAspects of Gabor analysis on locally compact Abelian groupsGabor Analysis and Algorithms: Theory and Applications1998Boston, MABirkhäuser2112310890.42011
de GossonMSymplectic Methods in Harmonic Analysis and in Mathematical Physics2011BaselBirkhäuser1247.81510
ForrestBESpronkNWoodPOperator Segal algebras in Fourier algebrasStudia Math.2007179327729522917351112.43003
FeichtingerHGWeiszFWiener amalgams and pointwise summability of Fourier transforms and Fourier seriesMath. Proc. Camb. Philos. Soc.2006140350953622256451117.43001
Havin, V.P., Nikol’skij, N.K.: Commutative Harmonic Analysis II. Group Methods in Commutative Harmonic Analysis. Springer, (1998)
ReiterHMetaplectic Groups and Segal Algebras1989BerlinSpringer0688.43001
FeichtingerH. G.HörmannW.A Distributional Approach to Generalized Stochastic Processes on Locally Compact Abelian GroupsNew Perspectives on Approximation and Sampling Theory2014ChamSpringer International Publishing4234461332.60056
GröchenigKOrtega CerdàJRomeroJLDeformation of Gabor systemsAdv. Math.2015277438842533360911320.42024
ToftJContinuity properties for modulation spaces, with applications to pseudo-differential calculus. IJ. Funct. Anal.2004207239942920329951083.35148
DahlkeSFornasierMRauhutHSteidlGTeschkeGGeneralized coorbit theory, Banach frames, and the relation to α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-modulation spacesProc. Lond. Math. Soc.200896246450623968471215.42035
FeichtingerHGMinimal Banach spaces and atomic representationsPubl. Math. Debrecen1987343–42312409349040562.43003
Feichtinger, H.G.: Spline-type spaces in Gabor analysis. In: D.X. Zhou (ed.) Wavelet Analysis: Twenty Years Developments Proceedings of the International Conference of Computational Harmonic Analysis, Hong Kong, China, June 4–8, 2001. Series Analysis, vol. 1, pp. 100–122. World Scientific Publishing, River Edge, NJ (2002)
FollandGBThe abstruse meets the applicable: some aspects of time-frequency analysisProc. Indian Acad. Sci. Math. Sci.200611612113622261261128.42014
BertrandiasJ-PDatryCDupuisCUnions et intersections d’espaces Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}^p$$\end{document} invariantes par translation ou convolutionAnn. Inst. Fourier197828253844995860365.46029
CzajaWBoundedness of pseudodifferential operators on modulation spacesJ. Math. Anal. Appl.2003284138939619961391044.47036
Mayer, M.: Eine Einführung in die verallgemeinerte Fouriertransformation. Diplomarbeit, University of Vienna (1987)
Schwartz, L.: Théorie des noyaux. In: Proceedings of the International Congress of Mathematicians, Cambridge, MA, 1950, vol. 1, pp. 220–230. American Mathematical Society, Providence, RI (1952)
Quehenberger, F.: Spektralsynthese und die Segalalgebra S0(Rm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_0({\mathbb{R}}^m)$$\end{document}. Master’s thesis, University of Vienna (1989)
Feichtinger, H.G.: Modulation spaces of locally compact Abelian groups. In: R. Radha, M. Krishna, S. Thangavelu, (eds.) Proceedings of the International Conference on Wavelets and Applications, pp. 1–56, Chennai, January 2002, 2003. New Delhi Allied Publishers
Gröchenig, K., Heil, C.: Modulation spaces as symbol classes for pseudodifferential operators. In: R.R.M. Krishna (ed.) Proceedings of International conference on wavelets and applications 2002, pp. 151–170, Chennai, India, 2003. Allied Publishers, Chennai
Trèves, F.: Topological Vector Spaces, Distributions and Kernels. Pure and Applied Mathematics, vol. 25. Academic Press, New York (1967)
CartierPÜber einige Integralformeln in der Theorie der quadratischen FormenMath. Z.196484931001964180135.08701
Reiter, H., Stegeman, J.D.: Classical Harmonic Analysis and Locally Compact Groups. London Mathematical Society Monographs. 2nd edn., New Series, vol. 22. The Clarendon Press, Oxford University Press, New York (2000)
Dobler, T.: Wiener Amalgam Spaces on Locally Compact Groups. Master thesis, University of Vienna (1989)
BényiÁGröchenigKHeilCOkoudjouKAModulation spaces and a class of bounded multilinear pseudodifferential operatorsJ. Oper. Theory200554238739921863611106.47041
PfanderGEWalnutDFMeasurement of time-variant channelsIEEE Trans. Inform. Theory200652114808482023003571323.94087
BonsallFA general atomic decomposition theorem and Banach’s closed range theoremQ. J. Math. Oxford Ser. (2)19914216591410943370747.46007
Bertrandias, J.-P.: Espaces lp(a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage
HG Feichtinger (9596_CR64) 1992; 155
HG Feichtinger (9596_CR67) 2004; 356
D Labate (9596_CR119) 2001; 262
HG Feichtinger (9596_CR70) 2006; 57
E Cordero (9596_CR28) 2013; 88
HG Feichtinger (9596_CR45) 1981; 92
9596_CR57
9596_CR54
JA Hogan (9596_CR107) 2005
9596_CR55
GE Pfander (9596_CR131) 2006; 52
9596_CR53
I.M. GEL'FAND (9596_CR82) 1964
JG Christensen (9596_CR20) 2012; 33
9596_CR51
Adam Bowers (9596_CR17) 2014
9596_CR153
9596_CR152
KA Okoudjou (9596_CR127) 2004; 132
9596_CR155
Á Bényi (9596_CR8) 2005; 54
David Walnut (9596_CR157) 2015
Edwin Hewitt (9596_CR104) 1970
Hans G. Feichtinger (9596_CR74) 1998
P Balazs (9596_CR5) 2017
EH Lieb (9596_CR120) 1990; 31
MS Osborne (9596_CR128) 1975; 19
E Cordero (9596_CR25) 2003; 205
Robert E. Megginson (9596_CR126) 1998
K Gröchenig (9596_CR96) 2004; 17
J Toft (9596_CR149) 2004; 207
MG Cowling (9596_CR29) 1978; 232
9596_CR65
9596_CR138
Hans G. Feichtinger (9596_CR52) 1989; 19
Karlheinz Gröchenig (9596_CR88) 2003
Joachim Toft (9596_CR151) 2009
Y Katznelson (9596_CR116) 2004
Á Bényi (9596_CR9) 2004; 10
K Gröchenig (9596_CR84) 1991; 112
9596_CR142
HG Feichtinger (9596_CR43) 1981; 81
9596_CR145
9596_CR144
H Reiter (9596_CR135) 1978; 86
HG Feichtinger (9596_CR38) 1977; 29
T Ullrich (9596_CR154) 2011; 11
K Gröchenig (9596_CR87) 2001
H Reiter (9596_CR134) 1971
9596_CR76
N Kaiblinger (9596_CR115) 2005; 11
MA Rieffel (9596_CR139) 1981; 93
W Czaja (9596_CR30) 2003; 284
HG Feichtinger (9596_CR72) 2006; 148
K Gröchenig (9596_CR86) 1998
AJEM Janssen (9596_CR112) 2005; 11
HG Feichtinger (9596_CR42) 1980; 290
K Ito (9596_CR110) 1954; 28
K Parthasarathy (9596_CR129) 2015; 26
AJEM Janssen (9596_CR111) 1995; 1
C Heil (9596_CR100) 2003
J-P Bertrandias (9596_CR10) 1978; 28
S Dahlke (9596_CR31) 2008; 96
HG Feichtinger (9596_CR63) 1997; 146
H Führ (9596_CR81) 2015; 1
R Balan (9596_CR4) 2006; 12
Christopher Heil (9596_CR102) 2011
A Grothendieck (9596_CR83) 1955; 1955
H. G. Feichtinger (9596_CR66) 2014
9596_CR89
H Führ (9596_CR80) 2015; 367
JJ Benedetto (9596_CR6) 1975
I Kluvánek (9596_CR118) 1965; 15
W Rudin (9596_CR141) 1962
K Tachizawa (9596_CR148) 1994; 168
P Wahlberg (9596_CR156) 2005; 3
R Madrid de la (9596_CR35) 2005; 26
K Gröchenig (9596_CR97) 2015; 277
Hans G. Feichtinger (9596_CR44) 1981
J. A. Hogan (9596_CR106) 2001
HG Feichtinger (9596_CR61) 1989; 108
Ole Christensen (9596_CR22) 2016
H Reiter (9596_CR137) 1993; 116
9596_CR16
K Gröchenig (9596_CR98) 2007; 613
JJ Benedetto (9596_CR7) 1997; 3
A Weil (9596_CR158) 1964; 111
9596_CR12
GB Folland (9596_CR77) 2006; 116
9596_CR13
Hans G. Feichtinger (9596_CR71) 2007
9596_CR11
9596_CR99
FG Friedlander (9596_CR79) 1998
9596_CR109
9596_CR95
9596_CR108
9596_CR92
9596_CR91
HG Feichtinger (9596_CR73) 2006; 140
N Spronk (9596_CR146) 2007; 248
HG Feichtinger (9596_CR40) 1979; 188
HG Feichtinger (9596_CR50) 1987; 34
HG Feichtinger (9596_CR49) 1987; 132
H Heyer (9596_CR105) 2014
9596_CR27
T-S Liu (9596_CR121) 1974; 55
9596_CR23
HG Feichtinger (9596_CR56) 2006; 5
9596_CR24
9596_CR1
F Luef (9596_CR124) 2009; 257
V Losert (9596_CR122) 1980; 30
Hans G. Feichtinger (9596_CR62) 1992
K Gröchenig (9596_CR93) 2014; 20
R Balan (9596_CR2) 2008; 360
9596_CR103
FF Bonsall (9596_CR14) 1986; 2
M Dörfler (9596_CR37) 2006; 98
HG Feichtinger (9596_CR58) 1985; 123
M Gosson de (9596_CR33) 2011
9596_CR39
S Dahlke (9596_CR32) 2004; 10
9596_CR36
9596_CR34
HG Feichtinger (9596_CR68) 2007; 144
BE Forrest (9596_CR78) 2007; 179
Hans G. Feichtinger (9596_CR69) 1998
9596_CR133
P Cartier (9596_CR19) 1964; 84
MA Rieffel (9596_CR140) 1988; 40
F Bonsall (9596_CR15) 1991; 42
GE Pfander (9596_CR130) 2013; 19
O Christensen (9596_CR21) 1996; 26
Franz Luef (9596_CR123) 2007
GB Folland (9596_CR75) 1989
J-P Kahane (9596_CR114) 1994; 109
Raymond A. Ryan (9596_CR143) 2002
9596_CR47
9596_CR48
K Gröchenig (9596_CR90) 2006; 98
9596_CR46
9596_CR117
9596_CR41
E Cordero (9596_CR26) 2010; 2010
C Heil (9596_CR101) 2007; 13
HG Feichtinger (9596_CR60) 1989; 86
J Toft (9596_CR150) 2004; 26
K Gröchenig (9596_CR94) 1999; 34
9596_CR125
D Poguntke (9596_CR132) 1980; 33
Hans G. Feichtinger (9596_CR59) 1988
AJEM Janssen (9596_CR113) 2006; 5
R Balan (9596_CR3) 2006; 12
H Reiter (9596_CR136) 1989
J Stewart (9596_CR147) 1979; 31
K Gröchenig (9596_CR85) 1996; 121
F Bruhat (9596_CR18) 1961; 89
References_xml – reference: FeichtingerHGOn a new Segal algebraMonatshefte für Mathematik1981922692896432060461.43003
– reference: FührHCoorbit spaces and wavelet coefficient decay over general dilation groupsTrans. Am. Math. Soc.2015367107373740133788331335.42039
– reference: Cordero, E., Feichtinger, H.G., Luef, F.: Banach Gelfand triples for Gabor analysis. Pseudo-differential Operators. Lecture Notes in Mathematics, vol. 1949, pp. 1–33. Springer, Berlin (2008)
– reference: FeichtingerHGA characterization of minimal homogeneous Banach spacesProc. Am. Math. Soc.198181155615891350465.43002
– reference: FeichtingerHans G.GröchenigKarlheinzA unified approach to atomic decompositions via integrable group representationsFunction Spaces and Applications1988Berlin, HeidelbergSpringer Berlin Heidelberg5273
– reference: ReiterHMetaplectic Groups and Segal Algebras1989BerlinSpringer0688.43001
– reference: Feichtinger, H.G.: Banach Gelfand triples for applications in physics and engineering. AIP Conference Proceeding, vol. 1146, pp. 189–228. American Institute of Physics (2009)
– reference: Gröchenig, K.: A pedestrian’s approach to pseudodifferential operators. In: C. Heil (ed.) Harmonic Analysis and Applications. Applied and Numerical Harmonic Analysis, Volume in Honor of John J. Benedetto’s 65th Birthday, pp. 139–169. Birkhäuser, Boston, MA (2006)
– reference: BalanRCasazzaPGHeilCLandauZDensity, overcompleteness, and localization of frames. II: Gabor systemsJ. Fourier Anal. Appl.200612330734422351701097.42022
– reference: Gröchenig, K., Heil, C.: Modulation spaces as symbol classes for pseudodifferential operators. In: R.R.M. Krishna (ed.) Proceedings of International conference on wavelets and applications 2002, pp. 151–170, Chennai, India, 2003. Allied Publishers, Chennai
– reference: Hörmann, W.: Generalized Stochastic Processes and Wigner Distribution. PhD thesis, University of Vienna (1989)
– reference: JanssenAJEMDuality and biorthogonality for Weyl-Heisenberg framesJ. Fourier Anal. Appl.19951440343613507000887.42028
– reference: LiuT-Svan RooijAWangJ-KOn some group algebra modules related to Wiener’s algebra m1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_1$$\end{document}Pac. J. Math.1974555075200303.43011
– reference: Havin, V.P., Nikol’skij, N.K.: Commutative Harmonic Analysis II. Group Methods in Commutative Harmonic Analysis. Springer, (1998)
– reference: Keville, B.: Multidimensional Second Order Generalised Stochastic Processes on Locally Compact Abelian Groups. PhD thesis, Trinity College Dublin (2003)
– reference: CorderoETabaccoAWahlbergPSchrödinger-type propagators, pseudodifferential operators and modulation spacesJ. Lond. Math. Soc. (2)201388237539531067271301.35230
– reference: Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Classics in Mathematics. Springer, Berlin (2003). Distribution theory and Fourier analysis, Reprint of the second (1990) edition
– reference: FeichtingerHGA characterization of Wiener’s algebra on locally compact groupsArch. Math.1977291361404671700363.43003
– reference: FeichtingerHans G.GröchenigKarlheinzGabor Wavelets and the Heisenberg Group: Gabor Expansions and Short Time Fourier Transform from the Group Theoretical Point of ViewWavelets19923593970849.43003
– reference: ForrestBESpronkNWoodPOperator Segal algebras in Fourier algebrasStudia Math.2007179327729522917351112.43003
– reference: Trèves, F.: Topological Vector Spaces, Distributions and Kernels. Pure and Applied Mathematics, vol. 25. Academic Press, New York (1967)
– reference: Folland, G.B.: A Course in Abstract Harmonic Analysis. Studies in Advanced Mathematics, vol. viii. CRC Press, Boca Raton, FL (1995)
– reference: Rudin, W.: Functional Analysis, 2nd edn. International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1991)
– reference: JanssenAJEMHermite function description of Feichtinger’s space S0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S}_0$$\end{document}J. Fourier Anal. Appl.200511557758821826361102.42011
– reference: CorderoENicolaFPseudodifferential operators on lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^p$$\end{document}, Wiener amalgam and modulation spacesInt. Math. Res. Not.2010201010186018931194.35525
– reference: FeichtingerHans G.LuefFranzWertherTobiasA GUIDED TOUR FROM LINEAR ALGEBRA TO THE FOUNDATIONS OF GABOR ANALYSISLecture Notes Series, Institute for Mathematical Sciences, National University of Singapore20071491134.42338
– reference: LiebEHIntegral bounds for radar ambiguity functions and Wigner distributionsJ. Math. Phys.199031359459910392100704.46050
– reference: GröchenigKFoundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis.2001Boston, MABirkhäuser0966.42020
– reference: FührHVoigtlaenderFWavelet coorbit spaces viewed as decomposition spacesJ. Funct. Anal.2015180154334560506436319
– reference: KahaneJ-PLemarieP-GRieusset. Remarks on the Poisson summation formula. (Remarques sur la formule sommatoire de Poisson.)Studia Math.199410930331612740150820.42004
– reference: FeichtingerHGUn espace de Banach de distributions tempérées sur les groupes localement compacts abéliensC. R. Acad. Sci. Paris Ser. A-B1980290177917945805670433.43002
– reference: FeichtingerHans G.KozekWernerQuantization of TF lattice-invariant operators on elementary LCA groupsGabor Analysis and Algorithms1998Boston, MABirkhäuser Boston233266
– reference: CowlingMGSome applications of Grothendieck’s theory of topological tensor products in harmonic analysisMath. Ann.19782322732854931650343.43012
– reference: Feichtinger, H.G.: Spline-type spaces in Gabor analysis. In: D.X. Zhou (ed.) Wavelet Analysis: Twenty Years Developments Proceedings of the International Conference of Computational Harmonic Analysis, Hong Kong, China, June 4–8, 2001. Series Analysis, vol. 1, pp. 100–122. World Scientific Publishing, River Edge, NJ (2002)
– reference: BertrandiasJ-PDatryCDupuisCUnions et intersections d’espaces Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}^p$$\end{document} invariantes par translation ou convolutionAnn. Inst. Fourier197828253844995860365.46029
– reference: Schwartz, L.: Théorie des Distributions. Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. IX-X. Nouvelle édition, entiérement corrigée, refondue et augmentée. Hermann, Paris (1966)
– reference: De Gosson, M.: The Wigner Transform. Advanced Textbooks in Mathematics. World Scientific Publishing Co. Pte. Ltd., Hackensack (2017)
– reference: Feichtinger, H.G.: An elementary approach to the generalized Fourier transform. In: T. Rassias, (ed.) Topics in Mathematical Analysis. Series in Pure Mathematics, vol. 11, pp. 246–272. World Scientific Publishing (1989)
– reference: ToftJContinuity properties for modulation spaces, with applications to pseudo-differential calculus. IJ. Funct. Anal.2004207239942920329951083.35148
– reference: FeichtingerHGKaiblingerNQuasi-interpolation in the Fourier algebraJ. Approx. Theory2007144110311822873791108.41006
– reference: RieffelMAC*-algebras associated with irrational rotationsPac. J. Math.1981934154296235720499.46039
– reference: FeichtingerHGGewichtsfunktionen auf lokalkompakten GruppenSitzungsber. d. österr. Akad. Wiss.19791884514715998840447.43004
– reference: BonsallFFDecompositions of functions as sums of elementary functionsQ. J. Math. Oxford Ser.19862371291368414220594.46019
– reference: WahlbergPThe random Wigner distribution of Gaussian stochastic processes with covariance in S0(R2d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S}_0 ({R}^{2d})$$\end{document}J. Funct. Spaces Appl.20053216318121356491082.60031
– reference: OkoudjouKAEmbedding of some classical Banach spaces into modulation spacesProc. Am. Math. Soc.200413261639164720511241044.46030
– reference: HoganJ. A.LakeyJ. D.Embeddings and Uncertainty Principles for Generalized Modulation SpacesModern Sampling Theory2001Boston, MABirkhäuser Boston73105
– reference: Feichtinger, H.G.: Eine neue Segalalgebra mit Anwendungen in der Harmonischen Analyse. In: Winterschule 1979, Internationale Arbeitstagung über Topologische Gruppen und Gruppenalgebren, pp. 23–25. University of Vienna (1979)
– reference: GröchenigKAn uncertainty principle related to the Poisson summation formulaStudia Math.199612118710414148960866.42005
– reference: GröchenigKStrohmerTPseudodifferential operators on locally compact Abelian groups and Sjöstrand’s symbol classJ. Reine Angew. Math.200761312114623771321145.47034
– reference: Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis. Vol. I. Grundlehren der mathematischen Wissenschaften, vol. 115. Springer, Berlin (1963)
– reference: DahlkeSFornasierMRauhutHSteidlGTeschkeGGeneralized coorbit theory, Banach frames, and the relation to α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-modulation spacesProc. Lond. Math. Soc.200896246450623968471215.42035
– reference: Feichtinger, H.G.: Modulation spaces on locally compact Abelian groups. University of Vienna (1983) (preprint)
– reference: Schwartz, L.: Théorie des noyaux. In: Proceedings of the International Congress of Mathematicians, Cambridge, MA, 1950, vol. 1, pp. 220–230. American Mathematical Society, Providence, RI (1952)
– reference: FeichtingerHGKaiblingerNVarying the time-frequency lattice of Gabor framesTrans. Am. Math. Soc.200435652001202320310501033.42033
– reference: GröchenigKFeichtingerHGStrohmerTAspects of Gabor analysis on locally compact Abelian groupsGabor Analysis and Algorithms: Theory and Applications1998Boston, MABirkhäuser2112310890.42011
– reference: GröchenigKThe mystery of Gabor framesJ. Fourier Anal. Appl.201420486589532325891309.42045
– reference: FeichtingerHans G.ZimmermannGeorgA Banach space of test functions for Gabor analysisGabor Analysis and Algorithms1998Boston, MABirkhäuser Boston1231700890.42008
– reference: FeichtingerHGWeiszFThe Segal algebra S0(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S}_0({R}^d)$$\end{document} and norm summability of Fourier series and Fourier transformsMonatsh. Math.200614833334922340841130.42012
– reference: BalanRCasazzaPGHeilCLandauZDensity, overcompleteness, and localization of frames I: theoryJ. Fourier Anal. Appl.200612210514322243921096.42014
– reference: ReiterHL1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-Algebras and Segal Algebras1971BerlinSpringer0219.43003
– reference: FeichtingerHans G.Banach Spaces of Distributions of Wiener’s Type and InterpolationFunctional Analysis and Approximation1981BaselBirkhäuser Basel153165
– reference: HoganJALakeyJDTime-Frequency and Time-Scale Methods2005BostonBirkhäuser1079.42027
– reference: Cordero, E., Nicola, F.: Kernel theorems for modulation spaces. J. Fourier Anal. Appl. (2017)
– reference: FollandGBThe abstruse meets the applicable: some aspects of time-frequency analysisProc. Indian Acad. Sci. Math. Sci.200611612113622261261128.42014
– reference: Bourbaki, N.: Éléments de mathématique. XXXII: Théories spectrales. Chap. I-II. Algèbres normées. Groupes localement compacts commutatifs. Actualités Sci. et Ind. 1332. Hermann & Cie, Paris (1967)
– reference: Reiter, H., Stegeman, J.D.: Classical Harmonic Analysis and Locally Compact Groups. London Mathematical Society Monographs. 2nd edn., New Series, vol. 22. The Clarendon Press, Oxford University Press, New York (2000)
– reference: KluvánekISampling theorem in abstract harmonic analysisMat. v Casopis Sloven. Akad. Vied19651543481887170154.44403
– reference: StewartJFourier transforms of unbounded measuresCan. J. Math.197931128112925531610465.43004
– reference: ChristensenOleFrames Versus Riesz BasesApplied and Numerical Harmonic Analysis2016ChamSpringer International Publishing165181
– reference: GröchenigKDescribing functions: atomic decompositions versus framesMonatsh. Math.1991112314111221030736.42022
– reference: GröchenigKOrtega CerdàJRomeroJLDeformation of Gabor systemsAdv. Math.2015277438842533360911320.42024
– reference: LuefFranzGABOR ANALYSIS, NONCOMMUTATIVE TORI AND FEICHTINGER'S ALGEBRALecture Notes Series, Institute for Mathematical Sciences, National University of Singapore200777106
– reference: Gröchenig, K.: Gabor frames without inequalities. Int. Math. Res. Not. (23): Art. ID rnm111, 21, (2007)
– reference: UllrichTRauhutHGeneralized coorbit space theory and inhomogeneous function spaces of Besov-Lizorkin-Triebel typeJ. Funct. Anal.2011113299336227765711219.46035
– reference: Antoine, J.-P.: Quantum mechanics beyond hilbert space. In: A. Bohm, H.-D. Doebner, P. Kileanowski (eds.) Irreversibility and Causality, Semigroups and Rigged Hilbert Spaces. Lecture Notes in Physics, vol 504, Berlin, Springer (1998)
– reference: WeilASur certains groupes d’opérateurs unitairesActa Math.19641111432111650330203.03305
– reference: PfanderGESampling of operatorsJ. Fourier Anal. Appl.201319361265030485921347.42046
– reference: FollandGBHarmonic Analysis in Phase Space1989Princeton, NJPrinceton University Press0682.43001
– reference: KatznelsonYAn introduction to harmonic analysis20043CambridgeCambridge University Press1055.43001
– reference: FeichtingerHGMinimal Banach spaces and atomic representationsPubl. Math. Debrecen1987343–42312409349040562.43003
– reference: FeichtingerHGModulation spaces: looking back and aheadSampl. Theory Signal Image Process.20065210914022339681156.43300
– reference: LabateDPseudodifferential operators on modulation spacesJ. Math. Anal. Appl.2001262124225518572270997.47039
– reference: WalnutDavidPfanderGötz E.KailathThomasCornerstones of Sampling of Operator TheoryExcursions in Harmonic Analysis, Volume 42015ChamSpringer International Publishing291332
– reference: Boggiatto, P.: Localization operators with Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}^p$$\end{document} symbols on modulation spaces. In: Advances in Pseudo-Differential Operators. Operator Theory: Advances and Applications, vol. 155, pp. 149–163. Birkhäuser, Basel (2004)
– reference: GröchenigKarlheinzUncertainty Principles for Time-Frequency RepresentationsAdvances in Gabor Analysis2003Boston, MABirkhäuser Boston1130
– reference: Dobler, T.: Wiener Amalgam Spaces on Locally Compact Groups. Master thesis, University of Vienna (1989)
– reference: SpronkNOperator space structure on Feichtinger’s Segal algebraJ. Funct. Anal.200724815217423296861131.43004
– reference: FeichtingerHGLuefFWiener amalgam spaces for the fundamental identity of Gabor analysisCollect. Math.20065723325322642111135.39303
– reference: PfanderGEWalnutDFMeasurement of time-variant channelsIEEE Trans. Inform. Theory200652114808482023003571323.94087
– reference: FriedlanderFGIntroduction to the Theory of Distributions19982CambridgeCambridge University PressWith additional material by M. Joshi
– reference: PoguntkeDGewisse Segalsche Algebren auf lokalkompakten GruppenArch. Math.1980334544605673660411.46040
– reference: Quehenberger, F.: Spektralsynthese und die Segalalgebra S0(Rm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_0({\mathbb{R}}^m)$$\end{document}. Master’s thesis, University of Vienna (1989)
– reference: BényiÁOkoudjouKBilinear pseudodifferential operators on modulation spacesJ. Fourier Anal. Appl.200410330131320664251061.47044
– reference: Feichtinger, H.G.: The minimal strongly character invariant Segal algebra II, preprint (1980)
– reference: GEL'FANDI.M.VILENKINN.Ya.Positive and Positive-Definite Generalized FunctionsApplications of Harmonic Analysis1964135236
– reference: CorderoEGröchenigKTime-frequency analysis of localization operatorsJ. Funct. Anal.2003205110713120202101047.47038
– reference: GröchenigKComposition and spectral invariance of pseudodifferential operators on modulation spacesJ. Anal. Math.200698658222544801148.47036
– reference: CzajaWBoundedness of pseudodifferential operators on modulation spacesJ. Math. Anal. Appl.2003284138939619961391044.47036
– reference: FeichtingerH. G.HörmannW.A Distributional Approach to Generalized Stochastic Processes on Locally Compact Abelian GroupsNew Perspectives on Approximation and Sampling Theory2014ChamSpringer International Publishing4234461332.60056
– reference: HeilCHistory and evolution of the density theorem for Gabor framesJ. Fourier Anal. Appl.200713211316623134311133.42043
– reference: BalazsPGröchenigKPesensonIMhaskarHMayeliALe GiaQZhouD-XA guide to localized frames and applications to Galerkin-like representations of operatorsFrames and other Bases in Abstract and Function Spaces2017ChamBirkhauser47791392.42028
– reference: BenedettoJJSpectral Synthesis1975San FranciscoAcademic Press0314.43011
– reference: Bertrandias, J.-P.: Espaces lp(a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^p(a)$$\end{document} et lp(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^p(q)$$\end{document}. Groupe de travail d’analyse harmonique, vol. I, pp. 1–13. Université scientifique et medicale de Grenoble, laboratoire de mathématique pures associé au c.n.r.s. (1982)
– reference: TachizawaKThe boundedness of pseudodifferential operators on modulation spacesMath. Nachr.199416826327712826430837.35154
– reference: ReiterHÜber den Satz von Weil-CartierMonatsh. Math.19788613625106320396.43015
– reference: RieffelMAProjective modules over higher-dimensional noncommutative toriCan. J. Math.19884022573389416520663.46073
– reference: BowersAdamKaltonNigel J.An Introductory Course in Functional Analysis2014New York, NYSpringer New York1328.46001
– reference: FeichtingerHans G.Atomic characterizations of modulation spaces through Gabor-type representationsRocky Mountain Journal of Mathematics198919111312610161650780.46023
– reference: GröchenigKLeinertMWiener’s lemma for twisted convolution and Gabor framesJ. Am. Math. Soc.20041711820153281037.22012
– reference: Mayer, M.: Eine Einführung in die verallgemeinerte Fouriertransformation. Diplomarbeit, University of Vienna (1987)
– reference: BalanRThe noncommutative Wiener lemma, linear independence, and spectral properties of the algebra of time-frequency shift operatorsTrans. Am. Math. Soc.200836073921394123862521145.43002
– reference: de GossonMSymplectic Methods in Harmonic Analysis and in Mathematical Physics2011BaselBirkhäuser1247.81510
– reference: ItoKStationary random distributionsMem. Coll. Sci. Univ. Kyoto Ser. A195428209223650600059.11505
– reference: MegginsonRobert E.An Introduction to Banach Space Theory1998New York, NYSpringer New York0910.46008
– reference: FeichtingerHGGröchenigKBanach spaces related to integrable group representations and their atomic decompositions. II.Monatsh. Math.19891082–312914810266140713.43004
– reference: DahlkeSSteidlGTeschkeGWeighted coorbit spaces and Banach frames on homogeneous spacesJ. Fourier Anal. Appl.200410550753920939151098.42025
– reference: HewittEdwinRossKenneth A.Abstract Harmonic Analysis1970Berlin, HeidelbergSpringer Berlin Heidelberg0213.40103
– reference: DörflerMFeichtingerHGGröchenigKTime-frequency partitions for the Gelfand triple (S0,L2,S0′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({S}_0, {L}^2,{{S}_0}^{\prime })$$\end{document}Math. Scand.2006981819622215461215.42013
– reference: de la MadridRThe role of the rigged Hilbert space in quantum mechanicsEur. J. Phys.200526227731221247601079.81022
– reference: FeichtingerHGGröchenigKGabor frames and time-frequency analysis of distributionsJ. Funct. Anal.1997146246449514520000887.46017
– reference: FeichtingerHGGröchenigKBanach spaces related to integrable group representations and their atomic decompositions. I.J. Funct. Anal.198986230734010211390691.46011
– reference: GröchenigKHeilCModulation spaces and pseudodifferential operatorsIntegr. Equ. Oper. Theory199934443945717022320936.35209
– reference: LuefFProjective modules over non-commutative tori are multi-window Gabor frames for modulation spacesJ. Funct. Anal.200925761921194625409941335.46064
– reference: CartierPÜber einige Integralformeln in der Theorie der quadratischen FormenMath. Z.196484931001964180135.08701
– reference: ChristensenOAtomic decomposition via projective group representationsRocky Mountain J. Math.19962641289131214475880891.22006
– reference: BényiÁGröchenigKHeilCOkoudjouKAModulation spaces and a class of bounded multilinear pseudodifferential operatorsJ. Oper. Theory200554238739921863611106.47041
– reference: FeichtingerHGGröbnerPBanach spaces of distributions defined by decomposition methods I.Math. Nachr.1985123971208093370586.46030
– reference: Gröchenig, K.: Weight functions in time-frequency analysis. In: L. Rodino, et al. (eds.) Pseudodifferential Operators: Partial Differential Equations and Time-Frequency Analysis. Fields Institute Communications, vol. 52, pp. 343–366. American Mathematical Society, Providence, RI (2007)
– reference: OsborneMSOn the Schwartz-Bruhat space and the Paley-Wiener theorem for locally compact Abelian groupsJ. Funct. Anal.19751940494075340295.43008
– reference: JanssenAJEMZak transform characterization of S0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_0$$\end{document}Sampl. Theory Signal Image Process.20065214116222339691156.42309
– reference: Feichtinger, H.G., Helffer, B., Lamoureux, M.P., Lerner, N., Toft, J.: Pseudo-Differential Operators. Lecture Notes in Mathematics, vol. 1949. Springer, Berlin (2006)
– reference: Feichtinger, H.G.: A new family of functional spaces on the Euclidean n-space. In: Proceedings of the Conference on Theory of Approximation of Functions. Teor. Priblizh (1983)
– reference: ReiterHOn the Siegel-Weil formulaMonatsh. Math.199311629933012536900814.43002
– reference: RyanRaymond A.Introduction to Tensor Products of Banach Spaces2002LondonSpringer London1090.46001
– reference: FeichtingerHGBanach spaces of distributions defined by decomposition methods. II.Math. Nachr.19871322072379100540586.46031
– reference: BruhatFDistributions sur un groupe localement compact et applications à l etude des représentations des groupes p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-adiquesBull. Soc. Math. France19618943751409410128.35701
– reference: HeyerHRaoMMRandom fields and hypergroupsReal and Stochastic Analysis, Current Trends2014HackensackWorld Scientific Publishing851821334.60087
– reference: RudinWFourier Analysis on Groups1962New YorkInterscience Publishers0107.09603
– reference: ParthasarathyKShravan KumarNFeichtinger’s Segal algebra on homogeneous spacesInt. J. Math.2015268933721811334.43005
– reference: ToftJoachimPseudo-Differential Operators with Symbols in Modulation SpacesPseudo-Differential Operators: Complex Analysis and Partial Differential Equations2009BaselBirkhäuser Basel223234
– reference: Feichtinger, H.G.: Modulation spaces of locally compact Abelian groups. In: R. Radha, M. Krishna, S. Thangavelu, (eds.) Proceedings of the International Conference on Wavelets and Applications, pp. 1–56, Chennai, January 2002, 2003. New Delhi Allied Publishers
– reference: FeichtingerHGGröchenigKWalnutDFWilson bases and modulation spacesMath. Nachr.199215571712312520794.46009
– reference: LosertVA characterization of the minimal strongly character invariant Segal algebraAnn. Inst. Fourier (Grenoble)1980301291395970200425.43003
– reference: ChristensenJGMayeliAÓlafssonGCoorbit description and atomic decomposition of Besov spacesNumer. Funct. Anal. Optim.2012337–984787129661351251.30062
– reference: Feichtinger, H.G.: Wiener amalgams over Euclidean spaces and some of their applications. In: K. Jarosz (ed.) Proceedings of the Conference on Function Spaces, Edwardsville/IL (USA) 1990. Lecture Notes in Pure and Applied Mathematics, vol. 136, pp. 123–137. Marcel Dekker (1992)
– reference: HeilChristopherA Basis Theory Primer2011BostonBirkhäuser Boston1227.46001
– reference: KaiblingerNApproximation of the Fourier transform and the dual Gabor windowJ. Fourier Anal. Appl.2005111254221289431064.42022
– reference: Voigtlaender, F.: Embedding Theorems for Decomposition Spaces with Applications to Wavelet Coorbit Spaces. PhD thesis, RWTH Aachen University (2015)
– reference: ToftJContinuity properties for modulation spaces, with applications to pseudo-differential calculus. IIAnn. Glob. Anal. Geom.20042617310620545761098.47045
– reference: FeichtingerHGWeiszFWiener amalgams and pointwise summability of Fourier transforms and Fourier seriesMath. Proc. Camb. Philos. Soc.2006140350953622256451117.43001
– reference: BonsallFA general atomic decomposition theorem and Banach’s closed range theoremQ. J. Math. Oxford Ser. (2)19914216591410943370747.46007
– reference: GrothendieckAProduits tensoriels topologiques et espaces nucléairesMem. Am. Math. Soc.19551955161400123.30301
– reference: Toft, J., Wong, M., Zhu, H. (eds.): Modern Trends in Pseudo-Differential Operators, vol. 172 (2007)
– reference: HeilCKrishnaMRadhaRThangaveluSAn introduction to weighted Wiener amalgamsWavelets and their Applications (Chennai, January 2002)2003New DelhiAllied Publishers183216
– reference: BenedettoJJZimmermannGSampling multipliers and the Poisson summation formulaJ. Fourier Anal. Appl.19973550552314919310888.42002
– reference: Civan, G.: Identification of Operators on Elementary Locally Compact Abelian Groups. PhD thesis (2015)
– reference: Feichtinger, H.G.: Banach convolution algebras of Wiener type. In: Functions, Series, Operators, Vol. I, II (Budapest, 1980). Colloquia Mathematica Societatis Janos Bolyai, vol. 35, pp. 509–524. North-Holland, Amsterdam (1983)
– reference: Bertrandias, J.-P.: Espaces lp(lα)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^p({l^\alpha })$$\end{document}. Groupe de travail d’analyse harmonique, vol. II, pp. IV.1–IV.12. Université scientifique et medicale de Grenoble, laboratoire de mathématique pures associé au c.n.r.s. (1984)
– start-page: 52
  volume-title: Function Spaces and Applications
  year: 1988
  ident: 9596_CR59
  doi: 10.1007/BFb0078863
– volume: 360
  start-page: 3921
  issue: 7
  year: 2008
  ident: 9596_CR2
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-08-04448-6
– start-page: 183
  volume-title: Wavelets and their Applications (Chennai, January 2002)
  year: 2003
  ident: 9596_CR100
– start-page: 233
  volume-title: Gabor Analysis and Algorithms
  year: 1998
  ident: 9596_CR69
  doi: 10.1007/978-1-4612-2016-9_8
– volume: 31
  start-page: 594
  issue: 3
  year: 1990
  ident: 9596_CR120
  publication-title: J. Math. Phys.
  doi: 10.1063/1.528894
– volume: 10
  start-page: 507
  issue: 5
  year: 2004
  ident: 9596_CR32
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-004-3055-0
– volume: 11
  start-page: 577
  issue: 5
  year: 2005
  ident: 9596_CR112
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-005-4077-y
– volume: 30
  start-page: 129
  year: 1980
  ident: 9596_CR122
  publication-title: Ann. Inst. Fourier (Grenoble)
  doi: 10.5802/aif.795
– volume: 1
  start-page: 80
  year: 2015
  ident: 9596_CR81
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2015.03.019
– volume-title: Fourier Analysis on Groups
  year: 1962
  ident: 9596_CR141
– volume: 132
  start-page: 1639
  issue: 6
  year: 2004
  ident: 9596_CR127
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-04-07401-5
– volume-title: Metaplectic Groups and Segal Algebras
  year: 1989
  ident: 9596_CR136
  doi: 10.1007/BFb0093683
– volume: 98
  start-page: 65
  year: 2006
  ident: 9596_CR90
  publication-title: J. Anal. Math.
  doi: 10.1007/BF02790270
– ident: 9596_CR1
– volume: 257
  start-page: 1921
  issue: 6
  year: 2009
  ident: 9596_CR124
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2009.06.001
– volume-title: Introduction to Tensor Products of Banach Spaces
  year: 2002
  ident: 9596_CR143
  doi: 10.1007/978-1-4471-3903-4
– volume: 3
  start-page: 163
  issue: 2
  year: 2005
  ident: 9596_CR156
  publication-title: J. Funct. Spaces Appl.
  doi: 10.1155/2005/252415
– volume: 86
  start-page: 307
  issue: 2
  year: 1989
  ident: 9596_CR60
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(89)90055-4
– ident: 9596_CR47
– volume: 168
  start-page: 263
  year: 1994
  ident: 9596_CR148
  publication-title: Math. Nachr.
  doi: 10.1002/mana.19941680116
– start-page: 153
  volume-title: Functional Analysis and Approximation
  year: 1981
  ident: 9596_CR44
  doi: 10.1007/978-3-0348-9369-5_16
– ident: 9596_CR89
  doi: 10.1007/0-8176-4504-7_8
– volume: 52
  start-page: 4808
  issue: 11
  year: 2006
  ident: 9596_CR131
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2006.883553
– ident: 9596_CR12
– volume: 1
  start-page: 403
  issue: 4
  year: 1995
  ident: 9596_CR111
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-001-4017-4
– ident: 9596_CR41
– ident: 9596_CR27
  doi: 10.1007/s00041-017-9573-3
– volume: 55
  start-page: 507
  year: 1974
  ident: 9596_CR121
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1974.55.507
– volume: 13
  start-page: 113
  issue: 2
  year: 2007
  ident: 9596_CR101
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-006-6073-2
– ident: 9596_CR51
  doi: 10.1142/9789814434201_0011
– start-page: 359
  volume-title: Wavelets
  year: 1992
  ident: 9596_CR62
  doi: 10.1016/B978-0-12-174590-5.50018-6
– volume: 28
  start-page: 209
  year: 1954
  ident: 9596_CR110
  publication-title: Mem. Coll. Sci. Univ. Kyoto Ser. A
  doi: 10.1215/kjm/1250777359
– volume: 93
  start-page: 415
  year: 1981
  ident: 9596_CR139
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1981.93.415
– ident: 9596_CR76
– volume: 116
  start-page: 121
  year: 2006
  ident: 9596_CR77
  publication-title: Proc. Indian Acad. Sci. Math. Sci.
  doi: 10.1007/BF02829782
– volume-title: Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis.
  year: 2001
  ident: 9596_CR87
– volume-title: An introduction to harmonic analysis
  year: 2004
  ident: 9596_CR116
  doi: 10.1017/CBO9781139165372
– volume-title: An Introduction to Banach Space Theory
  year: 1998
  ident: 9596_CR126
  doi: 10.1007/978-1-4612-0603-3
– volume-title: Symplectic Methods in Harmonic Analysis and in Mathematical Physics
  year: 2011
  ident: 9596_CR33
  doi: 10.1007/978-3-7643-9992-4
– ident: 9596_CR55
– volume: 84
  start-page: 93
  year: 1964
  ident: 9596_CR19
  publication-title: Math. Z.
  doi: 10.1007/BF01117117
– volume: 31
  start-page: 1281
  year: 1979
  ident: 9596_CR147
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1979-106-4
– volume: 356
  start-page: 2001
  issue: 5
  year: 2004
  ident: 9596_CR67
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-03-03377-4
– volume: 96
  start-page: 464
  issue: 2
  year: 2008
  ident: 9596_CR31
  publication-title: Proc. Lond. Math. Soc.
  doi: 10.1112/plms/pdm051
– ident: 9596_CR65
– volume: 26
  start-page: 73
  issue: 1
  year: 2004
  ident: 9596_CR150
  publication-title: Ann. Glob. Anal. Geom.
  doi: 10.1023/B:AGAG.0000023261.94488.f4
– volume-title: Introduction to the Theory of Distributions
  year: 1998
  ident: 9596_CR79
– volume: 5
  start-page: 109
  issue: 2
  year: 2006
  ident: 9596_CR56
  publication-title: Sampl. Theory Signal Image Process.
  doi: 10.1007/BF03549447
– ident: 9596_CR57
  doi: 10.1063/1.3183542
– start-page: 11
  volume-title: Advances in Gabor Analysis
  year: 2003
  ident: 9596_CR88
  doi: 10.1007/978-1-4612-0133-5_2
– start-page: 123
  volume-title: Gabor Analysis and Algorithms
  year: 1998
  ident: 9596_CR74
  doi: 10.1007/978-1-4612-2016-9_4
– ident: 9596_CR24
  doi: 10.1007/978-3-540-68268-4_1
– volume: 40
  start-page: 257
  issue: 2
  year: 1988
  ident: 9596_CR140
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1988-012-9
– volume: 88
  start-page: 375
  issue: 2
  year: 2013
  ident: 9596_CR28
  publication-title: J. Lond. Math. Soc. (2)
  doi: 10.1112/jlms/jdt020
– volume: 2010
  start-page: 1860
  issue: 10
  year: 2010
  ident: 9596_CR26
  publication-title: Int. Math. Res. Not.
– ident: 9596_CR155
– volume: 232
  start-page: 273
  year: 1978
  ident: 9596_CR29
  publication-title: Math. Ann.
  doi: 10.1007/BF01351432
– volume: 123
  start-page: 97
  year: 1985
  ident: 9596_CR58
  publication-title: Math. Nachr.
  doi: 10.1002/mana.19851230110
– volume: 112
  start-page: 1
  issue: 3
  year: 1991
  ident: 9596_CR84
  publication-title: Monatsh. Math.
  doi: 10.1007/BF01321715
– start-page: 135
  volume-title: Applications of Harmonic Analysis
  year: 1964
  ident: 9596_CR82
  doi: 10.1016/B978-1-4832-2974-4.50007-X
– volume: 188
  start-page: 451
  year: 1979
  ident: 9596_CR40
  publication-title: Sitzungsber. d. österr. Akad. Wiss.
– volume: 26
  start-page: 1289
  issue: 4
  year: 1996
  ident: 9596_CR21
  publication-title: Rocky Mountain J. Math.
  doi: 10.1216/rmjm/1181071989
– volume: 17
  start-page: 1
  year: 2004
  ident: 9596_CR96
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/S0894-0347-03-00444-2
– volume: 109
  start-page: 303
  year: 1994
  ident: 9596_CR114
  publication-title: Studia Math.
  doi: 10.4064/sm-109-3-303-316
– volume: 19
  start-page: 612
  issue: 3
  year: 2013
  ident: 9596_CR130
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-013-9269-2
– ident: 9596_CR46
– ident: 9596_CR152
– ident: 9596_CR91
  doi: 10.1093/imrn/rnm111
– ident: 9596_CR109
– volume: 19
  start-page: 40
  year: 1975
  ident: 9596_CR128
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(75)90005-1
– volume: 12
  start-page: 307
  issue: 3
  year: 2006
  ident: 9596_CR4
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-005-5035-4
– volume: 148
  start-page: 333
  year: 2006
  ident: 9596_CR72
  publication-title: Monatsh. Math.
  doi: 10.1007/s00605-005-0358-4
– volume-title: $$L^1$$ L
  year: 1971
  ident: 9596_CR134
– volume: 367
  start-page: 7373
  issue: 10
  year: 2015
  ident: 9596_CR80
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-2014-06376-9
– volume: 1955
  start-page: 140
  issue: 16
  year: 1955
  ident: 9596_CR83
  publication-title: Mem. Am. Math. Soc.
– volume: 140
  start-page: 509
  issue: 3
  year: 2006
  ident: 9596_CR73
  publication-title: Math. Proc. Camb. Philos. Soc.
  doi: 10.1017/S0305004106009273
– volume: 11
  start-page: 3299
  year: 2011
  ident: 9596_CR154
  publication-title: J. Funct. Anal.
– volume: 613
  start-page: 121
  year: 2007
  ident: 9596_CR98
  publication-title: J. Reine Angew. Math.
– start-page: 47
  volume-title: Frames and other Bases in Abstract and Function Spaces
  year: 2017
  ident: 9596_CR5
  doi: 10.1007/978-3-319-55550-8_4
– volume: 11
  start-page: 25
  issue: 1
  year: 2005
  ident: 9596_CR115
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-004-3070-1
– volume: 26
  start-page: 9
  issue: 8
  year: 2015
  ident: 9596_CR129
  publication-title: Int. J. Math.
  doi: 10.1142/S0129167X15500548
– volume: 33
  start-page: 454
  year: 1980
  ident: 9596_CR132
  publication-title: Arch. Math.
  doi: 10.1007/BF01222784
– volume-title: Time-Frequency and Time-Scale Methods
  year: 2005
  ident: 9596_CR107
– volume: 98
  start-page: 81
  issue: 1
  year: 2006
  ident: 9596_CR37
  publication-title: Math. Scand.
  doi: 10.7146/math.scand.a-14985
– start-page: 423
  volume-title: New Perspectives on Approximation and Sampling Theory
  year: 2014
  ident: 9596_CR66
  doi: 10.1007/978-3-319-08801-3_18
– ident: 9596_CR138
– volume: 42
  start-page: 9
  issue: 165
  year: 1991
  ident: 9596_CR15
  publication-title: Q. J. Math. Oxford Ser. (2)
  doi: 10.1093/qmath/42.1.9
– volume: 116
  start-page: 299
  year: 1993
  ident: 9596_CR137
  publication-title: Monatsh. Math.
  doi: 10.1007/BF01301536
– volume: 248
  start-page: 152
  year: 2007
  ident: 9596_CR146
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2007.03.028
– ident: 9596_CR153
– volume: 10
  start-page: 301
  issue: 3
  year: 2004
  ident: 9596_CR9
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-004-0977-5
– volume-title: Harmonic Analysis in Phase Space
  year: 1989
  ident: 9596_CR75
  doi: 10.1515/9781400882427
– volume: 2
  start-page: 129
  issue: 37
  year: 1986
  ident: 9596_CR14
  publication-title: Q. J. Math. Oxford Ser.
  doi: 10.1093/qmath/37.2.129
– ident: 9596_CR133
– volume: 19
  start-page: 113
  issue: 1
  year: 1989
  ident: 9596_CR52
  publication-title: Rocky Mountain Journal of Mathematics
  doi: 10.1216/RMJ-1989-19-1-113
– volume: 34
  start-page: 231
  issue: 3–4
  year: 1987
  ident: 9596_CR50
  publication-title: Publ. Math. Debrecen
– ident: 9596_CR16
– volume: 121
  start-page: 87
  issue: 1
  year: 1996
  ident: 9596_CR85
  publication-title: Studia Math.
  doi: 10.4064/sm-121-1-87-104
– start-page: 73
  volume-title: Modern Sampling Theory
  year: 2001
  ident: 9596_CR106
  doi: 10.1007/978-1-4612-0143-4_4
– volume-title: Abstract Harmonic Analysis
  year: 1970
  ident: 9596_CR104
– ident: 9596_CR92
  doi: 10.1090/fic/052/16
– ident: 9596_CR144
– volume: 34
  start-page: 439
  issue: 4
  year: 1999
  ident: 9596_CR94
  publication-title: Integr. Equ. Oper. Theory
  doi: 10.1007/BF01272884
– start-page: 77
  volume-title: Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore
  year: 2007
  ident: 9596_CR123
– ident: 9596_CR23
– ident: 9596_CR48
– volume: 12
  start-page: 105
  issue: 2
  year: 2006
  ident: 9596_CR3
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-006-6022-0
– volume: 155
  start-page: 7
  year: 1992
  ident: 9596_CR64
  publication-title: Math. Nachr.
  doi: 10.1002/mana.19921550102
– volume: 3
  start-page: 505
  issue: 5
  year: 1997
  ident: 9596_CR7
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/BF02648881
– volume: 132
  start-page: 207
  year: 1987
  ident: 9596_CR49
  publication-title: Math. Nachr.
  doi: 10.1002/mana.19871320116
– volume: 284
  start-page: 389
  issue: 1
  year: 2003
  ident: 9596_CR30
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/S0022-247X(03)00364-0
– start-page: 1
  volume-title: Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore
  year: 2007
  ident: 9596_CR71
– volume-title: A Basis Theory Primer
  year: 2011
  ident: 9596_CR102
  doi: 10.1007/978-0-8176-4687-5
– ident: 9596_CR36
– ident: 9596_CR99
  doi: 10.1007/978-3-642-58946-1
– volume: 15
  start-page: 43
  year: 1965
  ident: 9596_CR118
  publication-title: Mat. v Casopis Sloven. Akad. Vied
– volume: 262
  start-page: 242
  issue: 1
  year: 2001
  ident: 9596_CR119
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.2001.7566
– ident: 9596_CR103
– start-page: 211
  volume-title: Gabor Analysis and Algorithms: Theory and Applications
  year: 1998
  ident: 9596_CR86
  doi: 10.1007/978-1-4612-2016-9_7
– start-page: 85
  volume-title: Real and Stochastic Analysis, Current Trends
  year: 2014
  ident: 9596_CR105
  doi: 10.1142/9789814551281_0002
– volume: 86
  start-page: 13
  year: 1978
  ident: 9596_CR135
  publication-title: Monatsh. Math.
  doi: 10.1007/BF01300054
– ident: 9596_CR142
– ident: 9596_CR145
– volume: 207
  start-page: 399
  issue: 2
  year: 2004
  ident: 9596_CR149
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2003.10.003
– start-page: 165
  volume-title: Applied and Numerical Harmonic Analysis
  year: 2016
  ident: 9596_CR22
– volume: 20
  start-page: 865
  issue: 4
  year: 2014
  ident: 9596_CR93
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-014-9336-3
– start-page: 291
  volume-title: Excursions in Harmonic Analysis, Volume 4
  year: 2015
  ident: 9596_CR157
  doi: 10.1007/978-3-319-20188-7_12
– volume: 108
  start-page: 129
  issue: 2–3
  year: 1989
  ident: 9596_CR61
  publication-title: Monatsh. Math.
  doi: 10.1007/BF01308667
– ident: 9596_CR117
– volume: 26
  start-page: 277
  issue: 2
  year: 2005
  ident: 9596_CR35
  publication-title: Eur. J. Phys.
  doi: 10.1140/epja/i2004-10307-2
– volume: 33
  start-page: 847
  issue: 7–9
  year: 2012
  ident: 9596_CR20
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630563.2012.682134
– ident: 9596_CR54
  doi: 10.1142/9789812776679_0006
– volume: 179
  start-page: 277
  issue: 3
  year: 2007
  ident: 9596_CR78
  publication-title: Studia Math.
  doi: 10.4064/sm179-3-5
– ident: 9596_CR108
– volume: 81
  start-page: 55
  issue: 1
  year: 1981
  ident: 9596_CR43
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1981-0589135-9
– volume: 144
  start-page: 103
  issue: 1
  year: 2007
  ident: 9596_CR68
  publication-title: J. Approx. Theory
  doi: 10.1016/j.jat.2006.05.001
– volume: 205
  start-page: 107
  issue: 1
  year: 2003
  ident: 9596_CR25
  publication-title: J. Funct. Anal.
  doi: 10.1016/S0022-1236(03)00166-6
– volume: 92
  start-page: 269
  year: 1981
  ident: 9596_CR45
  publication-title: Monatshefte für Mathematik
  doi: 10.1007/BF01320058
– volume: 57
  start-page: 233
  year: 2006
  ident: 9596_CR70
  publication-title: Collect. Math.
– ident: 9596_CR39
– volume: 111
  start-page: 143
  year: 1964
  ident: 9596_CR158
  publication-title: Acta Math.
  doi: 10.1007/BF02391012
– ident: 9596_CR34
  doi: 10.1142/q0089
– volume: 5
  start-page: 141
  issue: 2
  year: 2006
  ident: 9596_CR113
  publication-title: Sampl. Theory Signal Image Process.
  doi: 10.1007/BF03549448
– ident: 9596_CR13
  doi: 10.1007/978-3-0348-7840-1_9
– volume: 29
  start-page: 136
  year: 1977
  ident: 9596_CR38
  publication-title: Arch. Math.
  doi: 10.1007/BF01220386
– ident: 9596_CR125
– volume: 54
  start-page: 387
  issue: 2
  year: 2005
  ident: 9596_CR8
  publication-title: J. Oper. Theory
– ident: 9596_CR95
– volume-title: An Introductory Course in Functional Analysis
  year: 2014
  ident: 9596_CR17
  doi: 10.1007/978-1-4939-1945-1
– volume: 146
  start-page: 464
  issue: 2
  year: 1997
  ident: 9596_CR63
  publication-title: J. Funct. Anal.
  doi: 10.1006/jfan.1996.3078
– volume: 290
  start-page: 791
  issue: 17
  year: 1980
  ident: 9596_CR42
  publication-title: C. R. Acad. Sci. Paris Ser. A-B
– volume: 89
  start-page: 43
  year: 1961
  ident: 9596_CR18
  publication-title: Bull. Soc. Math. France
  doi: 10.24033/bsmf.1559
– ident: 9596_CR53
– start-page: 223
  volume-title: Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations
  year: 2009
  ident: 9596_CR151
  doi: 10.1007/978-3-0346-0198-6_13
– volume-title: Spectral Synthesis
  year: 1975
  ident: 9596_CR6
  doi: 10.1007/978-3-322-96661-2
– volume: 28
  start-page: 53
  issue: 2
  year: 1978
  ident: 9596_CR10
  publication-title: Ann. Inst. Fourier
  doi: 10.5802/aif.689
– ident: 9596_CR11
– volume: 277
  start-page: 388
  issue: 4
  year: 2015
  ident: 9596_CR97
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2015.01.019
SSID ssj0021373
Score 2.4963956
Snippet Since its invention in 1979 the Feichtinger algebra has become a useful Banach space of functions with applications in time-frequency analysis, the theory of...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1579
SubjectTerms Abstract Harmonic Analysis
Algebra
Analysis
Approximations and Expansions
Banach spaces
Differential equations
Fourier Analysis
Function space
Isomorphism
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Operators (mathematics)
Partial Differential Equations
Signal,Image and Speech Processing
Theorems
Time-frequency analysis
Title On a (No Longer) New Segal Algebra: A Review of the Feichtinger Algebra
URI https://link.springer.com/article/10.1007/s00041-018-9596-4
https://www.proquest.com/docview/2139651499
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLaAXeCAeIrBQDkg8VIk2qSPcOsQA_EYB5g0TlGTpQNp2hAb_x-7a8sbiVNVNXEjO4_Psv0FYNeJTKVRQMUxfsplLzYcUbjPXWqkZzPieMqzfNvhRUdedoNuUcc9LrPdy5BkvlNXxW4EP8j1xQUaqJDLWagF6LpTHlfHTyovyxPRNKs-VDyIQ1WGMn8S8ekw-rolf4uN5kdOawkWC6zIkqlxl2HGDVdg4QODIL7dVLSr41U4vx2ylO23R-x6RAIPGO5h7M71ScqgTzHiE5awaTyAjTKGfVnLPdnHST6AstEadFpn96cXvLgpgVvECxNunCBVGGMN1YbHygghIuf18LD2hA1MZGIESql1RloXEQegyBDJWBUR35cS6zA3HA3dBjAjPIOGFWmGJ3_sydRQqLIXOSF7Bt2rOhyXKtO2oBGn2ywGuiJAzrWsUcuatKxlHQ6rLs9TDo2_Gu-RHTStL5Rr06JMAEdHTFU6ieiGGqWkqEOjNJUuFt5Yo_lViCBQqTocleZ7__zrbzf_1XoL5n2aRZ7PvaABc5OXV7eN4GRidqCWtJrNNj3PH67OdvLJ-QZSatie
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5FcAAOFa-KQGh9ALVQWWLX3oeReogoIYGQHkik3Ny144VKUYJIUNXfwx9lZrO7PAqVOHBcrddrzXg832hmPgPsOJGqJAqoOcZPuBzEhiMK97lLjPRsShxPWZVvJ2z25Gk_6FfgruiFyardi5RkdlKXzW4EPyj0RQMNVMhlXkl55v7-wTht8r31A5W66_uN4-5Rk-dXCXCLDnXKjUOgceAbYw01T8fKCCEi5w3Qm3nCBiYyMSKJxDojrYuIJE-k6OqtiogQixiX8JyfR-wRk-n0_HoZ1XkimlXxh4oHcaiK1OlLS37i_J67gH9ysZmLayzDhxybsvpsM61AxY1WYekRYyE-nZc0r5M1OPk5Ygn72hmz9pgm3GN4ZrILd0mzDC8pJ33I6myWf2DjlOG3rOF-26tptoBi0Dr03kWcH2FuNB65DWBGeAY3kkhSRBqxJxNDqdFB5IQcGAznqnBQiEzbnLacbs8Y6pJwOZOyRilrkrKWVdgvP7mecXb8b_AX0oMme8Z5bZK3JeDqiBlL1yO6EUcpKapQK1Slc0OfaFS_ChF0KlWFb4X6Hl6_-tvNN43-DAvN7nlbt1udsy1Y9GlHeT73ghrMTW9u3TYCo6n5lG1MBr_e2xLuAWVaEPQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bSx0xEB5EoehD0WrxVGvzoKgtQXeTvUTw4VB7vB8L7QHf4iabVUH2iGdF-qv8i87srVXbgg8-Lptkw1x2vjAzXwCWnchUEgXUHOMnXKax4YjCfe4SIz2bEcdTWeXbD_cG8uA0OB2D-6YXpqx2b1KSVU8DsTTlxcZ1mm20jW8ERegYjM4aqJDLuqry0P26wzPbaHt_BxW84vu9bz-_7vH6WgFuMbgW3DgEHZu-MdZQI3WsjBAicl6Kkc0TNjCRiRFVJNYZaV1EhHkiw7BvVUTkWMS-hP_8CUnNx-hAA7_bnvA8EVUV_aHiQRyqJo36ty0_CoRPw8GzvGwZ7nrT8LbGqaxbGdYMjLn8HUz9wV6IT8ct5etoFnZPcpawtf6QHQ1pwXWG_0_2w53TKlfnlJ_eYl1W5SLYMGM4l_Xcpb0oyg00g-Zg8CrifA_j-TB388CM8AwalUgyRB2xJxNDadI0ckKmBo92HdhsRKZtTWFON2lc6ZZ8uZSyRilrkrKWHfjcTrmu-Dv-N3iV9KDJt3Fdm9QtCrg7YsnS3Yhux1FKig4sNqrStdOPNKpfhQhAlerAl0Z9v1__87MfXjT6E7z5vtPTR_v9wwWY9MmgPJ97wSKMFze37iNipMIslXbJ4Oy1HeEBxVEVJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+a+%28No+Longer%29+New+Segal+Algebra%3A+A+Review+of+the+Feichtinger+Algebra&rft.jtitle=The+Journal+of+fourier+analysis+and+applications&rft.au=Jakobsen%2C+Mads+S&rft.date=2018-12-15&rft.pub=Springer+Nature+B.V&rft.issn=1069-5869&rft.eissn=1531-5851&rft.volume=24&rft.issue=6&rft.spage=1579&rft.epage=1660&rft_id=info:doi/10.1007%2Fs00041-018-9596-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1069-5869&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1069-5869&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1069-5869&client=summon