On a (No Longer) New Segal Algebra: A Review of the Feichtinger Algebra
Since its invention in 1979 the Feichtinger algebra has become a useful Banach space of functions with applications in time-frequency analysis, the theory of pseudo-differential operators and several other topics. It is easily defined on locally compact Abelian groups and, in comparison with the Sch...
Saved in:
Published in | The Journal of fourier analysis and applications Vol. 24; no. 6; pp. 1579 - 1660 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
15.12.2018
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Since its invention in 1979 the Feichtinger algebra has become a useful Banach space of functions with applications in time-frequency analysis, the theory of pseudo-differential operators and several other topics. It is easily defined on locally compact Abelian groups and, in comparison with the Schwartz(-Bruhat) space, the Feichtinger algebra allows for more general results with easier proofs. This review paper develops the theory of Feichtinger’s algebra in a linear and comprehensive way. The material gives an entry point into the subject and it will also bring new insight to the expert. A further goal of this paper is to show the equivalence of the many different characterizations of the Feichtinger algebra known in the literature. This task naturally guides the paper through basic properties of functions that belong to this space, over operators on it, and to aspects of its dual space. Additional results include a seemingly forgotten theorem by Reiter on Banach space isomorphisms of the Feichtinger algebra, a new identification of Feichtinger’s algebra as the unique Banach space in
L
1
with certain properties, and the kernel theorem for the Feichtinger algebra. A historical description of the development of the theory, its applications, and a list of related function space constructions is included. |
---|---|
AbstractList | Since its invention in 1979 the Feichtinger algebra has become a useful Banach space of functions with applications in time-frequency analysis, the theory of pseudo-differential operators and several other topics. It is easily defined on locally compact Abelian groups and, in comparison with the Schwartz(-Bruhat) space, the Feichtinger algebra allows for more general results with easier proofs. This review paper develops the theory of Feichtinger’s algebra in a linear and comprehensive way. The material gives an entry point into the subject and it will also bring new insight to the expert. A further goal of this paper is to show the equivalence of the many different characterizations of the Feichtinger algebra known in the literature. This task naturally guides the paper through basic properties of functions that belong to this space, over operators on it, and to aspects of its dual space. Additional results include a seemingly forgotten theorem by Reiter on Banach space isomorphisms of the Feichtinger algebra, a new identification of Feichtinger’s algebra as the unique Banach space in L1 with certain properties, and the kernel theorem for the Feichtinger algebra. A historical description of the development of the theory, its applications, and a list of related function space constructions is included. Since its invention in 1979 the Feichtinger algebra has become a useful Banach space of functions with applications in time-frequency analysis, the theory of pseudo-differential operators and several other topics. It is easily defined on locally compact Abelian groups and, in comparison with the Schwartz(-Bruhat) space, the Feichtinger algebra allows for more general results with easier proofs. This review paper develops the theory of Feichtinger's algebra in a linear and comprehensive way. The material gives an entry point into the subject and it will also bring new insight to the expert. A further goal of this paper is to show the equivalence of the many different characterizations of the Feichtinger algebra known in the literature. This task naturally guides the paper through basic properties of functions that belong to this space, over operators on it, and to aspects of its dual space. Additional results include a seemingly forgotten theorem by Reiter on Banach space isomorphisms of the Feichtinger algebra, a new identification of Feichtinger's algebra as the unique Banach space in [Formula omitted] with certain properties, and the kernel theorem for the Feichtinger algebra. A historical description of the development of the theory, its applications, and a list of related function space constructions is included. Since its invention in 1979 the Feichtinger algebra has become a useful Banach space of functions with applications in time-frequency analysis, the theory of pseudo-differential operators and several other topics. It is easily defined on locally compact Abelian groups and, in comparison with the Schwartz(-Bruhat) space, the Feichtinger algebra allows for more general results with easier proofs. This review paper develops the theory of Feichtinger’s algebra in a linear and comprehensive way. The material gives an entry point into the subject and it will also bring new insight to the expert. A further goal of this paper is to show the equivalence of the many different characterizations of the Feichtinger algebra known in the literature. This task naturally guides the paper through basic properties of functions that belong to this space, over operators on it, and to aspects of its dual space. Additional results include a seemingly forgotten theorem by Reiter on Banach space isomorphisms of the Feichtinger algebra, a new identification of Feichtinger’s algebra as the unique Banach space in L 1 with certain properties, and the kernel theorem for the Feichtinger algebra. A historical description of the development of the theory, its applications, and a list of related function space constructions is included. |
Audience | Academic |
Author | Jakobsen, Mads S. |
Author_xml | – sequence: 1 givenname: Mads S. surname: Jakobsen fullname: Jakobsen, Mads S. email: mads.jakobsen@ntnu.no organization: NTNU, Department of Mathematical Sciences |
BookMark | eNp9kF1LwzAUhoMoOKc_wLuAN3rRmbM0TeNdETeF4cCP69BkpzPSNZp2iv_elCqCoOQih8P7JLzPAdltfIOEHAObAGPyvGWMpZAwyBMlVJakO2QEgkMicgG7cWaZinOm9slB2z4zNgUu-YjMlw0t6emtpwvfrDGc0Vt8p_e4Lmta1Gs0obygBb3DNxf3vqLdE9IZOvvUuT7_HToke1VZt3j0dY_J4-zq4fI6WSznN5fFIrFciC4xyMWUTY2xhoFiuTKcc4mwyoADt8JIk4sMSosmtShzKSWvBAirpBAiV3xMToZ3X4J_3WLb6We_DU38UsdGKhOQqj41GVKxBmrXVL4LpY1nhRtno7nKxX0hIU-5UimPgBwAG3zbBqy0dV3ZOd9E0NUamO4160Gzjpp1r1mnkYRf5EtwmzJ8_MtMB6aN2d7iT4m_oU9UCIzy |
CitedBy_id | crossref_primary_10_1016_j_acha_2023_101574 crossref_primary_10_1007_s00209_022_03182_6 crossref_primary_10_3390_axioms9010025 crossref_primary_10_1007_s11868_023_00551_5 crossref_primary_10_1007_s43037_022_00205_6 crossref_primary_10_1016_j_acha_2023_04_001 crossref_primary_10_1007_s00041_022_09977_9 crossref_primary_10_1016_j_jmaa_2023_127579 crossref_primary_10_1007_s00023_023_01298_x crossref_primary_10_1007_s00041_024_10135_6 crossref_primary_10_1007_s00605_022_01702_4 crossref_primary_10_1007_s43036_024_00419_5 crossref_primary_10_1007_s00041_021_09860_z crossref_primary_10_1063_5_0192334 crossref_primary_10_3390_axioms12050482 crossref_primary_10_1007_s00041_020_09729_7 crossref_primary_10_1007_s11868_024_00634_x crossref_primary_10_2139_ssrn_4109420 crossref_primary_10_3934_mfc_2021019 crossref_primary_10_1007_s00041_020_09742_w crossref_primary_10_1142_S0129167X19500514 crossref_primary_10_1007_s00025_019_1134_4 crossref_primary_10_3390_quantum3030031 crossref_primary_10_1515_ms_2021_0049 crossref_primary_10_1093_imrn_rnac179 crossref_primary_10_1016_j_aim_2022_108771 crossref_primary_10_1007_s00041_023_10053_z crossref_primary_10_1007_s00041_023_10014_6 crossref_primary_10_1007_s11868_021_00436_5 crossref_primary_10_1007_s43037_020_00081_y crossref_primary_10_1016_j_bulsci_2022_103171 crossref_primary_10_1007_s40509_022_00292_y crossref_primary_10_1016_j_acha_2023_101622 crossref_primary_10_1016_j_matpur_2019_12_005 crossref_primary_10_1016_j_jmaa_2023_128058 crossref_primary_10_1007_s43670_021_00011_5 crossref_primary_10_1016_j_acha_2021_06_007 crossref_primary_10_1007_s00020_024_02771_w crossref_primary_10_1007_s00041_021_09892_5 crossref_primary_10_1007_s43037_020_00117_3 crossref_primary_10_1016_j_crma_2018_12_004 crossref_primary_10_1007_s00041_022_09980_0 crossref_primary_10_1142_S0129167X20500731 crossref_primary_10_1007_s00041_020_09759_1 crossref_primary_10_1142_S0219530523500252 |
Cites_doi | 10.1007/BFb0078863 10.1090/S0002-9947-08-04448-6 10.1007/978-1-4612-2016-9_8 10.1063/1.528894 10.1007/s00041-004-3055-0 10.1007/s00041-005-4077-y 10.5802/aif.795 10.1016/j.jfa.2015.03.019 10.1090/S0002-9939-04-07401-5 10.1007/BFb0093683 10.1007/BF02790270 10.1016/j.jfa.2009.06.001 10.1007/978-1-4471-3903-4 10.1155/2005/252415 10.1016/0022-1236(89)90055-4 10.1002/mana.19941680116 10.1007/978-3-0348-9369-5_16 10.1007/0-8176-4504-7_8 10.1109/TIT.2006.883553 10.1007/s00041-001-4017-4 10.1007/s00041-017-9573-3 10.2140/pjm.1974.55.507 10.1007/s00041-006-6073-2 10.1142/9789814434201_0011 10.1016/B978-0-12-174590-5.50018-6 10.1215/kjm/1250777359 10.2140/pjm.1981.93.415 10.1007/BF02829782 10.1017/CBO9781139165372 10.1007/978-1-4612-0603-3 10.1007/978-3-7643-9992-4 10.1007/BF01117117 10.4153/CJM-1979-106-4 10.1090/S0002-9947-03-03377-4 10.1112/plms/pdm051 10.1023/B:AGAG.0000023261.94488.f4 10.1007/BF03549447 10.1063/1.3183542 10.1007/978-1-4612-0133-5_2 10.1007/978-1-4612-2016-9_4 10.1007/978-3-540-68268-4_1 10.4153/CJM-1988-012-9 10.1112/jlms/jdt020 10.1007/BF01351432 10.1002/mana.19851230110 10.1007/BF01321715 10.1016/B978-1-4832-2974-4.50007-X 10.1216/rmjm/1181071989 10.1090/S0894-0347-03-00444-2 10.4064/sm-109-3-303-316 10.1007/s00041-013-9269-2 10.1093/imrn/rnm111 10.1016/0022-1236(75)90005-1 10.1007/s00041-005-5035-4 10.1007/s00605-005-0358-4 10.1090/S0002-9947-2014-06376-9 10.1017/S0305004106009273 10.1007/978-3-319-55550-8_4 10.1007/s00041-004-3070-1 10.1142/S0129167X15500548 10.1007/BF01222784 10.7146/math.scand.a-14985 10.1007/978-3-319-08801-3_18 10.1093/qmath/42.1.9 10.1007/BF01301536 10.1016/j.jfa.2007.03.028 10.1007/s00041-004-0977-5 10.1515/9781400882427 10.1093/qmath/37.2.129 10.1216/RMJ-1989-19-1-113 10.4064/sm-121-1-87-104 10.1007/978-1-4612-0143-4_4 10.1090/fic/052/16 10.1007/BF01272884 10.1007/s00041-006-6022-0 10.1002/mana.19921550102 10.1007/BF02648881 10.1002/mana.19871320116 10.1016/S0022-247X(03)00364-0 10.1007/978-0-8176-4687-5 10.1007/978-3-642-58946-1 10.1006/jmaa.2001.7566 10.1007/978-1-4612-2016-9_7 10.1142/9789814551281_0002 10.1007/BF01300054 10.1016/j.jfa.2003.10.003 10.1007/s00041-014-9336-3 10.1007/978-3-319-20188-7_12 10.1007/BF01308667 10.1140/epja/i2004-10307-2 10.1080/01630563.2012.682134 10.1142/9789812776679_0006 10.4064/sm179-3-5 10.1090/S0002-9939-1981-0589135-9 10.1016/j.jat.2006.05.001 10.1016/S0022-1236(03)00166-6 10.1007/BF01320058 10.1007/BF02391012 10.1142/q0089 10.1007/BF03549448 10.1007/978-3-0348-7840-1_9 10.1007/BF01220386 10.1007/978-1-4939-1945-1 10.1006/jfan.1996.3078 10.24033/bsmf.1559 10.1007/978-3-0346-0198-6_13 10.1007/978-3-322-96661-2 10.5802/aif.689 10.1016/j.aim.2015.01.019 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 COPYRIGHT 2018 Springer Copyright Springer Nature B.V. 2018 |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: COPYRIGHT 2018 Springer – notice: Copyright Springer Nature B.V. 2018 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00041-018-9596-4 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1531-5851 |
EndPage | 1660 |
ExternalDocumentID | A718439943 10_1007_s00041_018_9596_4 |
GroupedDBID | -52 -5D -5G -BR -EM -~C .86 06D 0R~ 0VY 199 1N0 203 29K 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF IAO IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- MQGED NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XSW YLTOR Z45 Z7U ZMTXR ~EX -Y2 1SB 2P1 2VQ 2WC 5QI 692 6TJ AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACSTC ADHKG AEBTG AEFIE AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AI. AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF HZ~ IHE KOW N2Q NDZJH O9- OK1 R4E REI RNI RZK S1Z S26 S28 SCLPG T16 VH1 VOH ZWQNP ZY4 AEIIB ABRTQ |
ID | FETCH-LOGICAL-c355t-be35202bbcb019089b3337e1d61313c5b7b8561aceb4ce787773f515c97555893 |
IEDL.DBID | U2A |
ISSN | 1069-5869 |
IngestDate | Fri Jul 25 11:19:01 EDT 2025 Tue Jun 10 20:37:46 EDT 2025 Thu Jul 03 08:27:15 EDT 2025 Thu Apr 24 23:02:59 EDT 2025 Fri Feb 21 02:35:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Schwartz–Bruhat space Secondary 43-02 Feichtinger algebra Generalized functions Test functions Primary 43A15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c355t-be35202bbcb019089b3337e1d61313c5b7b8561aceb4ce787773f515c97555893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2139651499 |
PQPubID | 2044008 |
PageCount | 82 |
ParticipantIDs | proquest_journals_2139651499 gale_infotracacademiconefile_A718439943 crossref_citationtrail_10_1007_s00041_018_9596_4 crossref_primary_10_1007_s00041_018_9596_4 springer_journals_10_1007_s00041_018_9596_4 |
PublicationCentury | 2000 |
PublicationDate | 20181215 |
PublicationDateYYYYMMDD | 2018-12-15 |
PublicationDate_xml | – month: 12 year: 2018 text: 20181215 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Heidelberg |
PublicationTitle | The Journal of fourier analysis and applications |
PublicationTitleAbbrev | J Fourier Anal Appl |
PublicationYear | 2018 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Feichtinger, H.G.: An elementary approach to the generalized Fourier transform. In: T. Rassias, (ed.) Topics in Mathematical Analysis. Series in Pure Mathematics, vol. 11, pp. 246–272. World Scientific Publishing (1989) BalazsPGröchenigKPesensonIMhaskarHMayeliALe GiaQZhouD-XA guide to localized frames and applications to Galerkin-like representations of operatorsFrames and other Bases in Abstract and Function Spaces2017ChamBirkhauser47791392.42028 KatznelsonYAn introduction to harmonic analysis20043CambridgeCambridge University Press1055.43001 TachizawaKThe boundedness of pseudodifferential operators on modulation spacesMath. Nachr.199416826327712826430837.35154 Antoine, J.-P.: Quantum mechanics beyond hilbert space. In: A. Bohm, H.-D. Doebner, P. Kileanowski (eds.) Irreversibility and Causality, Semigroups and Rigged Hilbert Spaces. Lecture Notes in Physics, vol 504, Berlin, Springer (1998) Voigtlaender, F.: Embedding Theorems for Decomposition Spaces with Applications to Wavelet Coorbit Spaces. PhD thesis, RWTH Aachen University (2015) CorderoEGröchenigKTime-frequency analysis of localization operatorsJ. Funct. Anal.2003205110713120202101047.47038 Feichtinger, H.G.: Banach convolution algebras of Wiener type. In: Functions, Series, Operators, Vol. I, II (Budapest, 1980). Colloquia Mathematica Societatis Janos Bolyai, vol. 35, pp. 509–524. North-Holland, Amsterdam (1983) LuefFranzGABOR ANALYSIS, NONCOMMUTATIVE TORI AND FEICHTINGER'S ALGEBRALecture Notes Series, Institute for Mathematical Sciences, National University of Singapore200777106 FeichtingerHGGröchenigKGabor frames and time-frequency analysis of distributionsJ. Funct. Anal.1997146246449514520000887.46017 KahaneJ-PLemarieP-GRieusset. Remarks on the Poisson summation formula. (Remarques sur la formule sommatoire de Poisson.)Studia Math.199410930331612740150820.42004 JanssenAJEMHermite function description of Feichtinger’s space S0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S}_0$$\end{document}J. Fourier Anal. Appl.200511557758821826361102.42011 FeichtingerHGGewichtsfunktionen auf lokalkompakten GruppenSitzungsber. d. österr. Akad. Wiss.19791884514715998840447.43004 FeichtingerHGLuefFWiener amalgam spaces for the fundamental identity of Gabor analysisCollect. Math.20065723325322642111135.39303 ReiterHL1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-Algebras and Segal Algebras1971BerlinSpringer0219.43003 FeichtingerHGGröbnerPBanach spaces of distributions defined by decomposition methods I.Math. Nachr.1985123971208093370586.46030 KaiblingerNApproximation of the Fourier transform and the dual Gabor windowJ. Fourier Anal. Appl.2005111254221289431064.42022 KluvánekISampling theorem in abstract harmonic analysisMat. v Casopis Sloven. Akad. Vied19651543481887170154.44403 FeichtingerHGUn espace de Banach de distributions tempérées sur les groupes localement compacts abéliensC. R. Acad. Sci. Paris Ser. A-B1980290177917945805670433.43002 Boggiatto, P.: Localization operators with Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}^p$$\end{document} symbols on modulation spaces. In: Advances in Pseudo-Differential Operators. Operator Theory: Advances and Applications, vol. 155, pp. 149–163. Birkhäuser, Basel (2004) LosertVA characterization of the minimal strongly character invariant Segal algebraAnn. Inst. Fourier (Grenoble)1980301291395970200425.43003 ReiterHOn the Siegel-Weil formulaMonatsh. Math.199311629933012536900814.43002 Feichtinger, H.G.: Wiener amalgams over Euclidean spaces and some of their applications. In: K. Jarosz (ed.) Proceedings of the Conference on Function Spaces, Edwardsville/IL (USA) 1990. Lecture Notes in Pure and Applied Mathematics, vol. 136, pp. 123–137. Marcel Dekker (1992) BalanRThe noncommutative Wiener lemma, linear independence, and spectral properties of the algebra of time-frequency shift operatorsTrans. Am. Math. Soc.200836073921394123862521145.43002 de la MadridRThe role of the rigged Hilbert space in quantum mechanicsEur. J. Phys.200526227731221247601079.81022 JanssenAJEMDuality and biorthogonality for Weyl-Heisenberg framesJ. Fourier Anal. Appl.19951440343613507000887.42028 FollandGBHarmonic Analysis in Phase Space1989Princeton, NJPrinceton University Press0682.43001 LiebEHIntegral bounds for radar ambiguity functions and Wigner distributionsJ. Math. Phys.199031359459910392100704.46050 BenedettoJJSpectral Synthesis1975San FranciscoAcademic Press0314.43011 GröchenigKFeichtingerHGStrohmerTAspects of Gabor analysis on locally compact Abelian groupsGabor Analysis and Algorithms: Theory and Applications1998Boston, MABirkhäuser2112310890.42011 de GossonMSymplectic Methods in Harmonic Analysis and in Mathematical Physics2011BaselBirkhäuser1247.81510 ForrestBESpronkNWoodPOperator Segal algebras in Fourier algebrasStudia Math.2007179327729522917351112.43003 FeichtingerHGWeiszFWiener amalgams and pointwise summability of Fourier transforms and Fourier seriesMath. Proc. Camb. Philos. Soc.2006140350953622256451117.43001 Havin, V.P., Nikol’skij, N.K.: Commutative Harmonic Analysis II. Group Methods in Commutative Harmonic Analysis. Springer, (1998) ReiterHMetaplectic Groups and Segal Algebras1989BerlinSpringer0688.43001 FeichtingerH. G.HörmannW.A Distributional Approach to Generalized Stochastic Processes on Locally Compact Abelian GroupsNew Perspectives on Approximation and Sampling Theory2014ChamSpringer International Publishing4234461332.60056 GröchenigKOrtega CerdàJRomeroJLDeformation of Gabor systemsAdv. Math.2015277438842533360911320.42024 ToftJContinuity properties for modulation spaces, with applications to pseudo-differential calculus. IJ. Funct. Anal.2004207239942920329951083.35148 DahlkeSFornasierMRauhutHSteidlGTeschkeGGeneralized coorbit theory, Banach frames, and the relation to α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-modulation spacesProc. Lond. Math. Soc.200896246450623968471215.42035 FeichtingerHGMinimal Banach spaces and atomic representationsPubl. Math. Debrecen1987343–42312409349040562.43003 Feichtinger, H.G.: Spline-type spaces in Gabor analysis. In: D.X. Zhou (ed.) Wavelet Analysis: Twenty Years Developments Proceedings of the International Conference of Computational Harmonic Analysis, Hong Kong, China, June 4–8, 2001. Series Analysis, vol. 1, pp. 100–122. World Scientific Publishing, River Edge, NJ (2002) FollandGBThe abstruse meets the applicable: some aspects of time-frequency analysisProc. Indian Acad. Sci. Math. Sci.200611612113622261261128.42014 BertrandiasJ-PDatryCDupuisCUnions et intersections d’espaces Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}^p$$\end{document} invariantes par translation ou convolutionAnn. Inst. Fourier197828253844995860365.46029 CzajaWBoundedness of pseudodifferential operators on modulation spacesJ. Math. Anal. Appl.2003284138939619961391044.47036 Mayer, M.: Eine Einführung in die verallgemeinerte Fouriertransformation. Diplomarbeit, University of Vienna (1987) Schwartz, L.: Théorie des noyaux. In: Proceedings of the International Congress of Mathematicians, Cambridge, MA, 1950, vol. 1, pp. 220–230. American Mathematical Society, Providence, RI (1952) Quehenberger, F.: Spektralsynthese und die Segalalgebra S0(Rm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_0({\mathbb{R}}^m)$$\end{document}. Master’s thesis, University of Vienna (1989) Feichtinger, H.G.: Modulation spaces of locally compact Abelian groups. In: R. Radha, M. Krishna, S. Thangavelu, (eds.) Proceedings of the International Conference on Wavelets and Applications, pp. 1–56, Chennai, January 2002, 2003. New Delhi Allied Publishers Gröchenig, K., Heil, C.: Modulation spaces as symbol classes for pseudodifferential operators. In: R.R.M. Krishna (ed.) Proceedings of International conference on wavelets and applications 2002, pp. 151–170, Chennai, India, 2003. Allied Publishers, Chennai Trèves, F.: Topological Vector Spaces, Distributions and Kernels. Pure and Applied Mathematics, vol. 25. Academic Press, New York (1967) CartierPÜber einige Integralformeln in der Theorie der quadratischen FormenMath. Z.196484931001964180135.08701 Reiter, H., Stegeman, J.D.: Classical Harmonic Analysis and Locally Compact Groups. London Mathematical Society Monographs. 2nd edn., New Series, vol. 22. The Clarendon Press, Oxford University Press, New York (2000) Dobler, T.: Wiener Amalgam Spaces on Locally Compact Groups. Master thesis, University of Vienna (1989) BényiÁGröchenigKHeilCOkoudjouKAModulation spaces and a class of bounded multilinear pseudodifferential operatorsJ. Oper. Theory200554238739921863611106.47041 PfanderGEWalnutDFMeasurement of time-variant channelsIEEE Trans. Inform. Theory200652114808482023003571323.94087 BonsallFA general atomic decomposition theorem and Banach’s closed range theoremQ. J. Math. Oxford Ser. (2)19914216591410943370747.46007 Bertrandias, J.-P.: Espaces lp(a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage HG Feichtinger (9596_CR64) 1992; 155 HG Feichtinger (9596_CR67) 2004; 356 D Labate (9596_CR119) 2001; 262 HG Feichtinger (9596_CR70) 2006; 57 E Cordero (9596_CR28) 2013; 88 HG Feichtinger (9596_CR45) 1981; 92 9596_CR57 9596_CR54 JA Hogan (9596_CR107) 2005 9596_CR55 GE Pfander (9596_CR131) 2006; 52 9596_CR53 I.M. GEL'FAND (9596_CR82) 1964 JG Christensen (9596_CR20) 2012; 33 9596_CR51 Adam Bowers (9596_CR17) 2014 9596_CR153 9596_CR152 KA Okoudjou (9596_CR127) 2004; 132 9596_CR155 Á Bényi (9596_CR8) 2005; 54 David Walnut (9596_CR157) 2015 Edwin Hewitt (9596_CR104) 1970 Hans G. Feichtinger (9596_CR74) 1998 P Balazs (9596_CR5) 2017 EH Lieb (9596_CR120) 1990; 31 MS Osborne (9596_CR128) 1975; 19 E Cordero (9596_CR25) 2003; 205 Robert E. Megginson (9596_CR126) 1998 K Gröchenig (9596_CR96) 2004; 17 J Toft (9596_CR149) 2004; 207 MG Cowling (9596_CR29) 1978; 232 9596_CR65 9596_CR138 Hans G. Feichtinger (9596_CR52) 1989; 19 Karlheinz Gröchenig (9596_CR88) 2003 Joachim Toft (9596_CR151) 2009 Y Katznelson (9596_CR116) 2004 Á Bényi (9596_CR9) 2004; 10 K Gröchenig (9596_CR84) 1991; 112 9596_CR142 HG Feichtinger (9596_CR43) 1981; 81 9596_CR145 9596_CR144 H Reiter (9596_CR135) 1978; 86 HG Feichtinger (9596_CR38) 1977; 29 T Ullrich (9596_CR154) 2011; 11 K Gröchenig (9596_CR87) 2001 H Reiter (9596_CR134) 1971 9596_CR76 N Kaiblinger (9596_CR115) 2005; 11 MA Rieffel (9596_CR139) 1981; 93 W Czaja (9596_CR30) 2003; 284 HG Feichtinger (9596_CR72) 2006; 148 K Gröchenig (9596_CR86) 1998 AJEM Janssen (9596_CR112) 2005; 11 HG Feichtinger (9596_CR42) 1980; 290 K Ito (9596_CR110) 1954; 28 K Parthasarathy (9596_CR129) 2015; 26 AJEM Janssen (9596_CR111) 1995; 1 C Heil (9596_CR100) 2003 J-P Bertrandias (9596_CR10) 1978; 28 S Dahlke (9596_CR31) 2008; 96 HG Feichtinger (9596_CR63) 1997; 146 H Führ (9596_CR81) 2015; 1 R Balan (9596_CR4) 2006; 12 Christopher Heil (9596_CR102) 2011 A Grothendieck (9596_CR83) 1955; 1955 H. G. Feichtinger (9596_CR66) 2014 9596_CR89 H Führ (9596_CR80) 2015; 367 JJ Benedetto (9596_CR6) 1975 I Kluvánek (9596_CR118) 1965; 15 W Rudin (9596_CR141) 1962 K Tachizawa (9596_CR148) 1994; 168 P Wahlberg (9596_CR156) 2005; 3 R Madrid de la (9596_CR35) 2005; 26 K Gröchenig (9596_CR97) 2015; 277 Hans G. Feichtinger (9596_CR44) 1981 J. A. Hogan (9596_CR106) 2001 HG Feichtinger (9596_CR61) 1989; 108 Ole Christensen (9596_CR22) 2016 H Reiter (9596_CR137) 1993; 116 9596_CR16 K Gröchenig (9596_CR98) 2007; 613 JJ Benedetto (9596_CR7) 1997; 3 A Weil (9596_CR158) 1964; 111 9596_CR12 GB Folland (9596_CR77) 2006; 116 9596_CR13 Hans G. Feichtinger (9596_CR71) 2007 9596_CR11 9596_CR99 FG Friedlander (9596_CR79) 1998 9596_CR109 9596_CR95 9596_CR108 9596_CR92 9596_CR91 HG Feichtinger (9596_CR73) 2006; 140 N Spronk (9596_CR146) 2007; 248 HG Feichtinger (9596_CR40) 1979; 188 HG Feichtinger (9596_CR50) 1987; 34 HG Feichtinger (9596_CR49) 1987; 132 H Heyer (9596_CR105) 2014 9596_CR27 T-S Liu (9596_CR121) 1974; 55 9596_CR23 HG Feichtinger (9596_CR56) 2006; 5 9596_CR24 9596_CR1 F Luef (9596_CR124) 2009; 257 V Losert (9596_CR122) 1980; 30 Hans G. Feichtinger (9596_CR62) 1992 K Gröchenig (9596_CR93) 2014; 20 R Balan (9596_CR2) 2008; 360 9596_CR103 FF Bonsall (9596_CR14) 1986; 2 M Dörfler (9596_CR37) 2006; 98 HG Feichtinger (9596_CR58) 1985; 123 M Gosson de (9596_CR33) 2011 9596_CR39 S Dahlke (9596_CR32) 2004; 10 9596_CR36 9596_CR34 HG Feichtinger (9596_CR68) 2007; 144 BE Forrest (9596_CR78) 2007; 179 Hans G. Feichtinger (9596_CR69) 1998 9596_CR133 P Cartier (9596_CR19) 1964; 84 MA Rieffel (9596_CR140) 1988; 40 F Bonsall (9596_CR15) 1991; 42 GE Pfander (9596_CR130) 2013; 19 O Christensen (9596_CR21) 1996; 26 Franz Luef (9596_CR123) 2007 GB Folland (9596_CR75) 1989 J-P Kahane (9596_CR114) 1994; 109 Raymond A. Ryan (9596_CR143) 2002 9596_CR47 9596_CR48 K Gröchenig (9596_CR90) 2006; 98 9596_CR46 9596_CR117 9596_CR41 E Cordero (9596_CR26) 2010; 2010 C Heil (9596_CR101) 2007; 13 HG Feichtinger (9596_CR60) 1989; 86 J Toft (9596_CR150) 2004; 26 K Gröchenig (9596_CR94) 1999; 34 9596_CR125 D Poguntke (9596_CR132) 1980; 33 Hans G. Feichtinger (9596_CR59) 1988 AJEM Janssen (9596_CR113) 2006; 5 R Balan (9596_CR3) 2006; 12 H Reiter (9596_CR136) 1989 J Stewart (9596_CR147) 1979; 31 K Gröchenig (9596_CR85) 1996; 121 F Bruhat (9596_CR18) 1961; 89 |
References_xml | – reference: FeichtingerHGOn a new Segal algebraMonatshefte für Mathematik1981922692896432060461.43003 – reference: FührHCoorbit spaces and wavelet coefficient decay over general dilation groupsTrans. Am. Math. Soc.2015367107373740133788331335.42039 – reference: Cordero, E., Feichtinger, H.G., Luef, F.: Banach Gelfand triples for Gabor analysis. Pseudo-differential Operators. Lecture Notes in Mathematics, vol. 1949, pp. 1–33. Springer, Berlin (2008) – reference: FeichtingerHGA characterization of minimal homogeneous Banach spacesProc. Am. Math. Soc.198181155615891350465.43002 – reference: FeichtingerHans G.GröchenigKarlheinzA unified approach to atomic decompositions via integrable group representationsFunction Spaces and Applications1988Berlin, HeidelbergSpringer Berlin Heidelberg5273 – reference: ReiterHMetaplectic Groups and Segal Algebras1989BerlinSpringer0688.43001 – reference: Feichtinger, H.G.: Banach Gelfand triples for applications in physics and engineering. AIP Conference Proceeding, vol. 1146, pp. 189–228. American Institute of Physics (2009) – reference: Gröchenig, K.: A pedestrian’s approach to pseudodifferential operators. In: C. Heil (ed.) Harmonic Analysis and Applications. Applied and Numerical Harmonic Analysis, Volume in Honor of John J. Benedetto’s 65th Birthday, pp. 139–169. Birkhäuser, Boston, MA (2006) – reference: BalanRCasazzaPGHeilCLandauZDensity, overcompleteness, and localization of frames. II: Gabor systemsJ. Fourier Anal. Appl.200612330734422351701097.42022 – reference: Gröchenig, K., Heil, C.: Modulation spaces as symbol classes for pseudodifferential operators. In: R.R.M. Krishna (ed.) Proceedings of International conference on wavelets and applications 2002, pp. 151–170, Chennai, India, 2003. Allied Publishers, Chennai – reference: Hörmann, W.: Generalized Stochastic Processes and Wigner Distribution. PhD thesis, University of Vienna (1989) – reference: JanssenAJEMDuality and biorthogonality for Weyl-Heisenberg framesJ. Fourier Anal. Appl.19951440343613507000887.42028 – reference: LiuT-Svan RooijAWangJ-KOn some group algebra modules related to Wiener’s algebra m1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_1$$\end{document}Pac. J. Math.1974555075200303.43011 – reference: Havin, V.P., Nikol’skij, N.K.: Commutative Harmonic Analysis II. Group Methods in Commutative Harmonic Analysis. Springer, (1998) – reference: Keville, B.: Multidimensional Second Order Generalised Stochastic Processes on Locally Compact Abelian Groups. PhD thesis, Trinity College Dublin (2003) – reference: CorderoETabaccoAWahlbergPSchrödinger-type propagators, pseudodifferential operators and modulation spacesJ. Lond. Math. Soc. (2)201388237539531067271301.35230 – reference: Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Classics in Mathematics. Springer, Berlin (2003). Distribution theory and Fourier analysis, Reprint of the second (1990) edition – reference: FeichtingerHGA characterization of Wiener’s algebra on locally compact groupsArch. Math.1977291361404671700363.43003 – reference: FeichtingerHans G.GröchenigKarlheinzGabor Wavelets and the Heisenberg Group: Gabor Expansions and Short Time Fourier Transform from the Group Theoretical Point of ViewWavelets19923593970849.43003 – reference: ForrestBESpronkNWoodPOperator Segal algebras in Fourier algebrasStudia Math.2007179327729522917351112.43003 – reference: Trèves, F.: Topological Vector Spaces, Distributions and Kernels. Pure and Applied Mathematics, vol. 25. Academic Press, New York (1967) – reference: Folland, G.B.: A Course in Abstract Harmonic Analysis. Studies in Advanced Mathematics, vol. viii. CRC Press, Boca Raton, FL (1995) – reference: Rudin, W.: Functional Analysis, 2nd edn. International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1991) – reference: JanssenAJEMHermite function description of Feichtinger’s space S0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S}_0$$\end{document}J. Fourier Anal. Appl.200511557758821826361102.42011 – reference: CorderoENicolaFPseudodifferential operators on lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^p$$\end{document}, Wiener amalgam and modulation spacesInt. Math. Res. Not.2010201010186018931194.35525 – reference: FeichtingerHans G.LuefFranzWertherTobiasA GUIDED TOUR FROM LINEAR ALGEBRA TO THE FOUNDATIONS OF GABOR ANALYSISLecture Notes Series, Institute for Mathematical Sciences, National University of Singapore20071491134.42338 – reference: LiebEHIntegral bounds for radar ambiguity functions and Wigner distributionsJ. Math. Phys.199031359459910392100704.46050 – reference: GröchenigKFoundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis.2001Boston, MABirkhäuser0966.42020 – reference: FührHVoigtlaenderFWavelet coorbit spaces viewed as decomposition spacesJ. Funct. Anal.2015180154334560506436319 – reference: KahaneJ-PLemarieP-GRieusset. Remarks on the Poisson summation formula. (Remarques sur la formule sommatoire de Poisson.)Studia Math.199410930331612740150820.42004 – reference: FeichtingerHGUn espace de Banach de distributions tempérées sur les groupes localement compacts abéliensC. R. Acad. Sci. Paris Ser. A-B1980290177917945805670433.43002 – reference: FeichtingerHans G.KozekWernerQuantization of TF lattice-invariant operators on elementary LCA groupsGabor Analysis and Algorithms1998Boston, MABirkhäuser Boston233266 – reference: CowlingMGSome applications of Grothendieck’s theory of topological tensor products in harmonic analysisMath. Ann.19782322732854931650343.43012 – reference: Feichtinger, H.G.: Spline-type spaces in Gabor analysis. In: D.X. Zhou (ed.) Wavelet Analysis: Twenty Years Developments Proceedings of the International Conference of Computational Harmonic Analysis, Hong Kong, China, June 4–8, 2001. Series Analysis, vol. 1, pp. 100–122. World Scientific Publishing, River Edge, NJ (2002) – reference: BertrandiasJ-PDatryCDupuisCUnions et intersections d’espaces Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}^p$$\end{document} invariantes par translation ou convolutionAnn. Inst. Fourier197828253844995860365.46029 – reference: Schwartz, L.: Théorie des Distributions. Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. IX-X. Nouvelle édition, entiérement corrigée, refondue et augmentée. Hermann, Paris (1966) – reference: De Gosson, M.: The Wigner Transform. Advanced Textbooks in Mathematics. World Scientific Publishing Co. Pte. Ltd., Hackensack (2017) – reference: Feichtinger, H.G.: An elementary approach to the generalized Fourier transform. In: T. Rassias, (ed.) Topics in Mathematical Analysis. Series in Pure Mathematics, vol. 11, pp. 246–272. World Scientific Publishing (1989) – reference: ToftJContinuity properties for modulation spaces, with applications to pseudo-differential calculus. IJ. Funct. Anal.2004207239942920329951083.35148 – reference: FeichtingerHGKaiblingerNQuasi-interpolation in the Fourier algebraJ. Approx. Theory2007144110311822873791108.41006 – reference: RieffelMAC*-algebras associated with irrational rotationsPac. J. Math.1981934154296235720499.46039 – reference: FeichtingerHGGewichtsfunktionen auf lokalkompakten GruppenSitzungsber. d. österr. Akad. Wiss.19791884514715998840447.43004 – reference: BonsallFFDecompositions of functions as sums of elementary functionsQ. J. Math. Oxford Ser.19862371291368414220594.46019 – reference: WahlbergPThe random Wigner distribution of Gaussian stochastic processes with covariance in S0(R2d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S}_0 ({R}^{2d})$$\end{document}J. Funct. Spaces Appl.20053216318121356491082.60031 – reference: OkoudjouKAEmbedding of some classical Banach spaces into modulation spacesProc. Am. Math. Soc.200413261639164720511241044.46030 – reference: HoganJ. A.LakeyJ. D.Embeddings and Uncertainty Principles for Generalized Modulation SpacesModern Sampling Theory2001Boston, MABirkhäuser Boston73105 – reference: Feichtinger, H.G.: Eine neue Segalalgebra mit Anwendungen in der Harmonischen Analyse. In: Winterschule 1979, Internationale Arbeitstagung über Topologische Gruppen und Gruppenalgebren, pp. 23–25. University of Vienna (1979) – reference: GröchenigKAn uncertainty principle related to the Poisson summation formulaStudia Math.199612118710414148960866.42005 – reference: GröchenigKStrohmerTPseudodifferential operators on locally compact Abelian groups and Sjöstrand’s symbol classJ. Reine Angew. Math.200761312114623771321145.47034 – reference: Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis. Vol. I. Grundlehren der mathematischen Wissenschaften, vol. 115. Springer, Berlin (1963) – reference: DahlkeSFornasierMRauhutHSteidlGTeschkeGGeneralized coorbit theory, Banach frames, and the relation to α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-modulation spacesProc. Lond. Math. Soc.200896246450623968471215.42035 – reference: Feichtinger, H.G.: Modulation spaces on locally compact Abelian groups. University of Vienna (1983) (preprint) – reference: Schwartz, L.: Théorie des noyaux. In: Proceedings of the International Congress of Mathematicians, Cambridge, MA, 1950, vol. 1, pp. 220–230. American Mathematical Society, Providence, RI (1952) – reference: FeichtingerHGKaiblingerNVarying the time-frequency lattice of Gabor framesTrans. Am. Math. Soc.200435652001202320310501033.42033 – reference: GröchenigKFeichtingerHGStrohmerTAspects of Gabor analysis on locally compact Abelian groupsGabor Analysis and Algorithms: Theory and Applications1998Boston, MABirkhäuser2112310890.42011 – reference: GröchenigKThe mystery of Gabor framesJ. Fourier Anal. Appl.201420486589532325891309.42045 – reference: FeichtingerHans G.ZimmermannGeorgA Banach space of test functions for Gabor analysisGabor Analysis and Algorithms1998Boston, MABirkhäuser Boston1231700890.42008 – reference: FeichtingerHGWeiszFThe Segal algebra S0(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S}_0({R}^d)$$\end{document} and norm summability of Fourier series and Fourier transformsMonatsh. Math.200614833334922340841130.42012 – reference: BalanRCasazzaPGHeilCLandauZDensity, overcompleteness, and localization of frames I: theoryJ. Fourier Anal. Appl.200612210514322243921096.42014 – reference: ReiterHL1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-Algebras and Segal Algebras1971BerlinSpringer0219.43003 – reference: FeichtingerHans G.Banach Spaces of Distributions of Wiener’s Type and InterpolationFunctional Analysis and Approximation1981BaselBirkhäuser Basel153165 – reference: HoganJALakeyJDTime-Frequency and Time-Scale Methods2005BostonBirkhäuser1079.42027 – reference: Cordero, E., Nicola, F.: Kernel theorems for modulation spaces. J. Fourier Anal. Appl. (2017) – reference: FollandGBThe abstruse meets the applicable: some aspects of time-frequency analysisProc. Indian Acad. Sci. Math. Sci.200611612113622261261128.42014 – reference: Bourbaki, N.: Éléments de mathématique. XXXII: Théories spectrales. Chap. I-II. Algèbres normées. Groupes localement compacts commutatifs. Actualités Sci. et Ind. 1332. Hermann & Cie, Paris (1967) – reference: Reiter, H., Stegeman, J.D.: Classical Harmonic Analysis and Locally Compact Groups. London Mathematical Society Monographs. 2nd edn., New Series, vol. 22. The Clarendon Press, Oxford University Press, New York (2000) – reference: KluvánekISampling theorem in abstract harmonic analysisMat. v Casopis Sloven. Akad. Vied19651543481887170154.44403 – reference: StewartJFourier transforms of unbounded measuresCan. J. Math.197931128112925531610465.43004 – reference: ChristensenOleFrames Versus Riesz BasesApplied and Numerical Harmonic Analysis2016ChamSpringer International Publishing165181 – reference: GröchenigKDescribing functions: atomic decompositions versus framesMonatsh. Math.1991112314111221030736.42022 – reference: GröchenigKOrtega CerdàJRomeroJLDeformation of Gabor systemsAdv. Math.2015277438842533360911320.42024 – reference: LuefFranzGABOR ANALYSIS, NONCOMMUTATIVE TORI AND FEICHTINGER'S ALGEBRALecture Notes Series, Institute for Mathematical Sciences, National University of Singapore200777106 – reference: Gröchenig, K.: Gabor frames without inequalities. Int. Math. Res. Not. (23): Art. ID rnm111, 21, (2007) – reference: UllrichTRauhutHGeneralized coorbit space theory and inhomogeneous function spaces of Besov-Lizorkin-Triebel typeJ. Funct. Anal.2011113299336227765711219.46035 – reference: Antoine, J.-P.: Quantum mechanics beyond hilbert space. In: A. Bohm, H.-D. Doebner, P. Kileanowski (eds.) Irreversibility and Causality, Semigroups and Rigged Hilbert Spaces. Lecture Notes in Physics, vol 504, Berlin, Springer (1998) – reference: WeilASur certains groupes d’opérateurs unitairesActa Math.19641111432111650330203.03305 – reference: PfanderGESampling of operatorsJ. Fourier Anal. Appl.201319361265030485921347.42046 – reference: FollandGBHarmonic Analysis in Phase Space1989Princeton, NJPrinceton University Press0682.43001 – reference: KatznelsonYAn introduction to harmonic analysis20043CambridgeCambridge University Press1055.43001 – reference: FeichtingerHGMinimal Banach spaces and atomic representationsPubl. Math. Debrecen1987343–42312409349040562.43003 – reference: FeichtingerHGModulation spaces: looking back and aheadSampl. Theory Signal Image Process.20065210914022339681156.43300 – reference: LabateDPseudodifferential operators on modulation spacesJ. Math. Anal. Appl.2001262124225518572270997.47039 – reference: WalnutDavidPfanderGötz E.KailathThomasCornerstones of Sampling of Operator TheoryExcursions in Harmonic Analysis, Volume 42015ChamSpringer International Publishing291332 – reference: Boggiatto, P.: Localization operators with Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L}^p$$\end{document} symbols on modulation spaces. In: Advances in Pseudo-Differential Operators. Operator Theory: Advances and Applications, vol. 155, pp. 149–163. Birkhäuser, Basel (2004) – reference: GröchenigKarlheinzUncertainty Principles for Time-Frequency RepresentationsAdvances in Gabor Analysis2003Boston, MABirkhäuser Boston1130 – reference: Dobler, T.: Wiener Amalgam Spaces on Locally Compact Groups. Master thesis, University of Vienna (1989) – reference: SpronkNOperator space structure on Feichtinger’s Segal algebraJ. Funct. Anal.200724815217423296861131.43004 – reference: FeichtingerHGLuefFWiener amalgam spaces for the fundamental identity of Gabor analysisCollect. Math.20065723325322642111135.39303 – reference: PfanderGEWalnutDFMeasurement of time-variant channelsIEEE Trans. Inform. Theory200652114808482023003571323.94087 – reference: FriedlanderFGIntroduction to the Theory of Distributions19982CambridgeCambridge University PressWith additional material by M. Joshi – reference: PoguntkeDGewisse Segalsche Algebren auf lokalkompakten GruppenArch. Math.1980334544605673660411.46040 – reference: Quehenberger, F.: Spektralsynthese und die Segalalgebra S0(Rm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_0({\mathbb{R}}^m)$$\end{document}. Master’s thesis, University of Vienna (1989) – reference: BényiÁOkoudjouKBilinear pseudodifferential operators on modulation spacesJ. Fourier Anal. Appl.200410330131320664251061.47044 – reference: Feichtinger, H.G.: The minimal strongly character invariant Segal algebra II, preprint (1980) – reference: GEL'FANDI.M.VILENKINN.Ya.Positive and Positive-Definite Generalized FunctionsApplications of Harmonic Analysis1964135236 – reference: CorderoEGröchenigKTime-frequency analysis of localization operatorsJ. Funct. Anal.2003205110713120202101047.47038 – reference: GröchenigKComposition and spectral invariance of pseudodifferential operators on modulation spacesJ. Anal. Math.200698658222544801148.47036 – reference: CzajaWBoundedness of pseudodifferential operators on modulation spacesJ. Math. Anal. Appl.2003284138939619961391044.47036 – reference: FeichtingerH. G.HörmannW.A Distributional Approach to Generalized Stochastic Processes on Locally Compact Abelian GroupsNew Perspectives on Approximation and Sampling Theory2014ChamSpringer International Publishing4234461332.60056 – reference: HeilCHistory and evolution of the density theorem for Gabor framesJ. Fourier Anal. Appl.200713211316623134311133.42043 – reference: BalazsPGröchenigKPesensonIMhaskarHMayeliALe GiaQZhouD-XA guide to localized frames and applications to Galerkin-like representations of operatorsFrames and other Bases in Abstract and Function Spaces2017ChamBirkhauser47791392.42028 – reference: BenedettoJJSpectral Synthesis1975San FranciscoAcademic Press0314.43011 – reference: Bertrandias, J.-P.: Espaces lp(a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^p(a)$$\end{document} et lp(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^p(q)$$\end{document}. Groupe de travail d’analyse harmonique, vol. I, pp. 1–13. Université scientifique et medicale de Grenoble, laboratoire de mathématique pures associé au c.n.r.s. (1982) – reference: TachizawaKThe boundedness of pseudodifferential operators on modulation spacesMath. Nachr.199416826327712826430837.35154 – reference: ReiterHÜber den Satz von Weil-CartierMonatsh. Math.19788613625106320396.43015 – reference: RieffelMAProjective modules over higher-dimensional noncommutative toriCan. J. Math.19884022573389416520663.46073 – reference: BowersAdamKaltonNigel J.An Introductory Course in Functional Analysis2014New York, NYSpringer New York1328.46001 – reference: FeichtingerHans G.Atomic characterizations of modulation spaces through Gabor-type representationsRocky Mountain Journal of Mathematics198919111312610161650780.46023 – reference: GröchenigKLeinertMWiener’s lemma for twisted convolution and Gabor framesJ. Am. Math. Soc.20041711820153281037.22012 – reference: Mayer, M.: Eine Einführung in die verallgemeinerte Fouriertransformation. Diplomarbeit, University of Vienna (1987) – reference: BalanRThe noncommutative Wiener lemma, linear independence, and spectral properties of the algebra of time-frequency shift operatorsTrans. Am. Math. Soc.200836073921394123862521145.43002 – reference: de GossonMSymplectic Methods in Harmonic Analysis and in Mathematical Physics2011BaselBirkhäuser1247.81510 – reference: ItoKStationary random distributionsMem. Coll. Sci. Univ. Kyoto Ser. A195428209223650600059.11505 – reference: MegginsonRobert E.An Introduction to Banach Space Theory1998New York, NYSpringer New York0910.46008 – reference: FeichtingerHGGröchenigKBanach spaces related to integrable group representations and their atomic decompositions. II.Monatsh. Math.19891082–312914810266140713.43004 – reference: DahlkeSSteidlGTeschkeGWeighted coorbit spaces and Banach frames on homogeneous spacesJ. Fourier Anal. Appl.200410550753920939151098.42025 – reference: HewittEdwinRossKenneth A.Abstract Harmonic Analysis1970Berlin, HeidelbergSpringer Berlin Heidelberg0213.40103 – reference: DörflerMFeichtingerHGGröchenigKTime-frequency partitions for the Gelfand triple (S0,L2,S0′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({S}_0, {L}^2,{{S}_0}^{\prime })$$\end{document}Math. Scand.2006981819622215461215.42013 – reference: de la MadridRThe role of the rigged Hilbert space in quantum mechanicsEur. J. Phys.200526227731221247601079.81022 – reference: FeichtingerHGGröchenigKGabor frames and time-frequency analysis of distributionsJ. Funct. Anal.1997146246449514520000887.46017 – reference: FeichtingerHGGröchenigKBanach spaces related to integrable group representations and their atomic decompositions. I.J. Funct. Anal.198986230734010211390691.46011 – reference: GröchenigKHeilCModulation spaces and pseudodifferential operatorsIntegr. Equ. Oper. Theory199934443945717022320936.35209 – reference: LuefFProjective modules over non-commutative tori are multi-window Gabor frames for modulation spacesJ. Funct. Anal.200925761921194625409941335.46064 – reference: CartierPÜber einige Integralformeln in der Theorie der quadratischen FormenMath. Z.196484931001964180135.08701 – reference: ChristensenOAtomic decomposition via projective group representationsRocky Mountain J. Math.19962641289131214475880891.22006 – reference: BényiÁGröchenigKHeilCOkoudjouKAModulation spaces and a class of bounded multilinear pseudodifferential operatorsJ. Oper. Theory200554238739921863611106.47041 – reference: FeichtingerHGGröbnerPBanach spaces of distributions defined by decomposition methods I.Math. Nachr.1985123971208093370586.46030 – reference: Gröchenig, K.: Weight functions in time-frequency analysis. In: L. Rodino, et al. (eds.) Pseudodifferential Operators: Partial Differential Equations and Time-Frequency Analysis. Fields Institute Communications, vol. 52, pp. 343–366. American Mathematical Society, Providence, RI (2007) – reference: OsborneMSOn the Schwartz-Bruhat space and the Paley-Wiener theorem for locally compact Abelian groupsJ. Funct. Anal.19751940494075340295.43008 – reference: JanssenAJEMZak transform characterization of S0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_0$$\end{document}Sampl. Theory Signal Image Process.20065214116222339691156.42309 – reference: Feichtinger, H.G., Helffer, B., Lamoureux, M.P., Lerner, N., Toft, J.: Pseudo-Differential Operators. Lecture Notes in Mathematics, vol. 1949. Springer, Berlin (2006) – reference: Feichtinger, H.G.: A new family of functional spaces on the Euclidean n-space. In: Proceedings of the Conference on Theory of Approximation of Functions. Teor. Priblizh (1983) – reference: ReiterHOn the Siegel-Weil formulaMonatsh. Math.199311629933012536900814.43002 – reference: RyanRaymond A.Introduction to Tensor Products of Banach Spaces2002LondonSpringer London1090.46001 – reference: FeichtingerHGBanach spaces of distributions defined by decomposition methods. II.Math. Nachr.19871322072379100540586.46031 – reference: BruhatFDistributions sur un groupe localement compact et applications à l etude des représentations des groupes p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-adiquesBull. Soc. Math. France19618943751409410128.35701 – reference: HeyerHRaoMMRandom fields and hypergroupsReal and Stochastic Analysis, Current Trends2014HackensackWorld Scientific Publishing851821334.60087 – reference: RudinWFourier Analysis on Groups1962New YorkInterscience Publishers0107.09603 – reference: ParthasarathyKShravan KumarNFeichtinger’s Segal algebra on homogeneous spacesInt. J. Math.2015268933721811334.43005 – reference: ToftJoachimPseudo-Differential Operators with Symbols in Modulation SpacesPseudo-Differential Operators: Complex Analysis and Partial Differential Equations2009BaselBirkhäuser Basel223234 – reference: Feichtinger, H.G.: Modulation spaces of locally compact Abelian groups. In: R. Radha, M. Krishna, S. Thangavelu, (eds.) Proceedings of the International Conference on Wavelets and Applications, pp. 1–56, Chennai, January 2002, 2003. New Delhi Allied Publishers – reference: FeichtingerHGGröchenigKWalnutDFWilson bases and modulation spacesMath. Nachr.199215571712312520794.46009 – reference: LosertVA characterization of the minimal strongly character invariant Segal algebraAnn. Inst. Fourier (Grenoble)1980301291395970200425.43003 – reference: ChristensenJGMayeliAÓlafssonGCoorbit description and atomic decomposition of Besov spacesNumer. Funct. Anal. Optim.2012337–984787129661351251.30062 – reference: Feichtinger, H.G.: Wiener amalgams over Euclidean spaces and some of their applications. In: K. Jarosz (ed.) Proceedings of the Conference on Function Spaces, Edwardsville/IL (USA) 1990. Lecture Notes in Pure and Applied Mathematics, vol. 136, pp. 123–137. Marcel Dekker (1992) – reference: HeilChristopherA Basis Theory Primer2011BostonBirkhäuser Boston1227.46001 – reference: KaiblingerNApproximation of the Fourier transform and the dual Gabor windowJ. Fourier Anal. Appl.2005111254221289431064.42022 – reference: Voigtlaender, F.: Embedding Theorems for Decomposition Spaces with Applications to Wavelet Coorbit Spaces. PhD thesis, RWTH Aachen University (2015) – reference: ToftJContinuity properties for modulation spaces, with applications to pseudo-differential calculus. IIAnn. Glob. Anal. Geom.20042617310620545761098.47045 – reference: FeichtingerHGWeiszFWiener amalgams and pointwise summability of Fourier transforms and Fourier seriesMath. Proc. Camb. Philos. Soc.2006140350953622256451117.43001 – reference: BonsallFA general atomic decomposition theorem and Banach’s closed range theoremQ. J. Math. Oxford Ser. (2)19914216591410943370747.46007 – reference: GrothendieckAProduits tensoriels topologiques et espaces nucléairesMem. Am. Math. Soc.19551955161400123.30301 – reference: Toft, J., Wong, M., Zhu, H. (eds.): Modern Trends in Pseudo-Differential Operators, vol. 172 (2007) – reference: HeilCKrishnaMRadhaRThangaveluSAn introduction to weighted Wiener amalgamsWavelets and their Applications (Chennai, January 2002)2003New DelhiAllied Publishers183216 – reference: BenedettoJJZimmermannGSampling multipliers and the Poisson summation formulaJ. Fourier Anal. Appl.19973550552314919310888.42002 – reference: Civan, G.: Identification of Operators on Elementary Locally Compact Abelian Groups. PhD thesis (2015) – reference: Feichtinger, H.G.: Banach convolution algebras of Wiener type. In: Functions, Series, Operators, Vol. I, II (Budapest, 1980). Colloquia Mathematica Societatis Janos Bolyai, vol. 35, pp. 509–524. North-Holland, Amsterdam (1983) – reference: Bertrandias, J.-P.: Espaces lp(lα)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^p({l^\alpha })$$\end{document}. Groupe de travail d’analyse harmonique, vol. II, pp. IV.1–IV.12. Université scientifique et medicale de Grenoble, laboratoire de mathématique pures associé au c.n.r.s. (1984) – start-page: 52 volume-title: Function Spaces and Applications year: 1988 ident: 9596_CR59 doi: 10.1007/BFb0078863 – volume: 360 start-page: 3921 issue: 7 year: 2008 ident: 9596_CR2 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-08-04448-6 – start-page: 183 volume-title: Wavelets and their Applications (Chennai, January 2002) year: 2003 ident: 9596_CR100 – start-page: 233 volume-title: Gabor Analysis and Algorithms year: 1998 ident: 9596_CR69 doi: 10.1007/978-1-4612-2016-9_8 – volume: 31 start-page: 594 issue: 3 year: 1990 ident: 9596_CR120 publication-title: J. Math. Phys. doi: 10.1063/1.528894 – volume: 10 start-page: 507 issue: 5 year: 2004 ident: 9596_CR32 publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-004-3055-0 – volume: 11 start-page: 577 issue: 5 year: 2005 ident: 9596_CR112 publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-005-4077-y – volume: 30 start-page: 129 year: 1980 ident: 9596_CR122 publication-title: Ann. Inst. Fourier (Grenoble) doi: 10.5802/aif.795 – volume: 1 start-page: 80 year: 2015 ident: 9596_CR81 publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2015.03.019 – volume-title: Fourier Analysis on Groups year: 1962 ident: 9596_CR141 – volume: 132 start-page: 1639 issue: 6 year: 2004 ident: 9596_CR127 publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-04-07401-5 – volume-title: Metaplectic Groups and Segal Algebras year: 1989 ident: 9596_CR136 doi: 10.1007/BFb0093683 – volume: 98 start-page: 65 year: 2006 ident: 9596_CR90 publication-title: J. Anal. Math. doi: 10.1007/BF02790270 – ident: 9596_CR1 – volume: 257 start-page: 1921 issue: 6 year: 2009 ident: 9596_CR124 publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2009.06.001 – volume-title: Introduction to Tensor Products of Banach Spaces year: 2002 ident: 9596_CR143 doi: 10.1007/978-1-4471-3903-4 – volume: 3 start-page: 163 issue: 2 year: 2005 ident: 9596_CR156 publication-title: J. Funct. Spaces Appl. doi: 10.1155/2005/252415 – volume: 86 start-page: 307 issue: 2 year: 1989 ident: 9596_CR60 publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(89)90055-4 – ident: 9596_CR47 – volume: 168 start-page: 263 year: 1994 ident: 9596_CR148 publication-title: Math. Nachr. doi: 10.1002/mana.19941680116 – start-page: 153 volume-title: Functional Analysis and Approximation year: 1981 ident: 9596_CR44 doi: 10.1007/978-3-0348-9369-5_16 – ident: 9596_CR89 doi: 10.1007/0-8176-4504-7_8 – volume: 52 start-page: 4808 issue: 11 year: 2006 ident: 9596_CR131 publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2006.883553 – ident: 9596_CR12 – volume: 1 start-page: 403 issue: 4 year: 1995 ident: 9596_CR111 publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-001-4017-4 – ident: 9596_CR41 – ident: 9596_CR27 doi: 10.1007/s00041-017-9573-3 – volume: 55 start-page: 507 year: 1974 ident: 9596_CR121 publication-title: Pac. J. Math. doi: 10.2140/pjm.1974.55.507 – volume: 13 start-page: 113 issue: 2 year: 2007 ident: 9596_CR101 publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-006-6073-2 – ident: 9596_CR51 doi: 10.1142/9789814434201_0011 – start-page: 359 volume-title: Wavelets year: 1992 ident: 9596_CR62 doi: 10.1016/B978-0-12-174590-5.50018-6 – volume: 28 start-page: 209 year: 1954 ident: 9596_CR110 publication-title: Mem. Coll. Sci. Univ. Kyoto Ser. A doi: 10.1215/kjm/1250777359 – volume: 93 start-page: 415 year: 1981 ident: 9596_CR139 publication-title: Pac. J. Math. doi: 10.2140/pjm.1981.93.415 – ident: 9596_CR76 – volume: 116 start-page: 121 year: 2006 ident: 9596_CR77 publication-title: Proc. Indian Acad. Sci. Math. Sci. doi: 10.1007/BF02829782 – volume-title: Foundations of Time-Frequency Analysis. Applied and Numerical Harmonic Analysis. year: 2001 ident: 9596_CR87 – volume-title: An introduction to harmonic analysis year: 2004 ident: 9596_CR116 doi: 10.1017/CBO9781139165372 – volume-title: An Introduction to Banach Space Theory year: 1998 ident: 9596_CR126 doi: 10.1007/978-1-4612-0603-3 – volume-title: Symplectic Methods in Harmonic Analysis and in Mathematical Physics year: 2011 ident: 9596_CR33 doi: 10.1007/978-3-7643-9992-4 – ident: 9596_CR55 – volume: 84 start-page: 93 year: 1964 ident: 9596_CR19 publication-title: Math. Z. doi: 10.1007/BF01117117 – volume: 31 start-page: 1281 year: 1979 ident: 9596_CR147 publication-title: Can. J. Math. doi: 10.4153/CJM-1979-106-4 – volume: 356 start-page: 2001 issue: 5 year: 2004 ident: 9596_CR67 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-03-03377-4 – volume: 96 start-page: 464 issue: 2 year: 2008 ident: 9596_CR31 publication-title: Proc. Lond. Math. Soc. doi: 10.1112/plms/pdm051 – ident: 9596_CR65 – volume: 26 start-page: 73 issue: 1 year: 2004 ident: 9596_CR150 publication-title: Ann. Glob. Anal. Geom. doi: 10.1023/B:AGAG.0000023261.94488.f4 – volume-title: Introduction to the Theory of Distributions year: 1998 ident: 9596_CR79 – volume: 5 start-page: 109 issue: 2 year: 2006 ident: 9596_CR56 publication-title: Sampl. Theory Signal Image Process. doi: 10.1007/BF03549447 – ident: 9596_CR57 doi: 10.1063/1.3183542 – start-page: 11 volume-title: Advances in Gabor Analysis year: 2003 ident: 9596_CR88 doi: 10.1007/978-1-4612-0133-5_2 – start-page: 123 volume-title: Gabor Analysis and Algorithms year: 1998 ident: 9596_CR74 doi: 10.1007/978-1-4612-2016-9_4 – ident: 9596_CR24 doi: 10.1007/978-3-540-68268-4_1 – volume: 40 start-page: 257 issue: 2 year: 1988 ident: 9596_CR140 publication-title: Can. J. Math. doi: 10.4153/CJM-1988-012-9 – volume: 88 start-page: 375 issue: 2 year: 2013 ident: 9596_CR28 publication-title: J. Lond. Math. Soc. (2) doi: 10.1112/jlms/jdt020 – volume: 2010 start-page: 1860 issue: 10 year: 2010 ident: 9596_CR26 publication-title: Int. Math. Res. Not. – ident: 9596_CR155 – volume: 232 start-page: 273 year: 1978 ident: 9596_CR29 publication-title: Math. Ann. doi: 10.1007/BF01351432 – volume: 123 start-page: 97 year: 1985 ident: 9596_CR58 publication-title: Math. Nachr. doi: 10.1002/mana.19851230110 – volume: 112 start-page: 1 issue: 3 year: 1991 ident: 9596_CR84 publication-title: Monatsh. Math. doi: 10.1007/BF01321715 – start-page: 135 volume-title: Applications of Harmonic Analysis year: 1964 ident: 9596_CR82 doi: 10.1016/B978-1-4832-2974-4.50007-X – volume: 188 start-page: 451 year: 1979 ident: 9596_CR40 publication-title: Sitzungsber. d. österr. Akad. Wiss. – volume: 26 start-page: 1289 issue: 4 year: 1996 ident: 9596_CR21 publication-title: Rocky Mountain J. Math. doi: 10.1216/rmjm/1181071989 – volume: 17 start-page: 1 year: 2004 ident: 9596_CR96 publication-title: J. Am. Math. Soc. doi: 10.1090/S0894-0347-03-00444-2 – volume: 109 start-page: 303 year: 1994 ident: 9596_CR114 publication-title: Studia Math. doi: 10.4064/sm-109-3-303-316 – volume: 19 start-page: 612 issue: 3 year: 2013 ident: 9596_CR130 publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-013-9269-2 – ident: 9596_CR46 – ident: 9596_CR152 – ident: 9596_CR91 doi: 10.1093/imrn/rnm111 – ident: 9596_CR109 – volume: 19 start-page: 40 year: 1975 ident: 9596_CR128 publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(75)90005-1 – volume: 12 start-page: 307 issue: 3 year: 2006 ident: 9596_CR4 publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-005-5035-4 – volume: 148 start-page: 333 year: 2006 ident: 9596_CR72 publication-title: Monatsh. Math. doi: 10.1007/s00605-005-0358-4 – volume-title: $$L^1$$ L year: 1971 ident: 9596_CR134 – volume: 367 start-page: 7373 issue: 10 year: 2015 ident: 9596_CR80 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-2014-06376-9 – volume: 1955 start-page: 140 issue: 16 year: 1955 ident: 9596_CR83 publication-title: Mem. Am. Math. Soc. – volume: 140 start-page: 509 issue: 3 year: 2006 ident: 9596_CR73 publication-title: Math. Proc. Camb. Philos. Soc. doi: 10.1017/S0305004106009273 – volume: 11 start-page: 3299 year: 2011 ident: 9596_CR154 publication-title: J. Funct. Anal. – volume: 613 start-page: 121 year: 2007 ident: 9596_CR98 publication-title: J. Reine Angew. Math. – start-page: 47 volume-title: Frames and other Bases in Abstract and Function Spaces year: 2017 ident: 9596_CR5 doi: 10.1007/978-3-319-55550-8_4 – volume: 11 start-page: 25 issue: 1 year: 2005 ident: 9596_CR115 publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-004-3070-1 – volume: 26 start-page: 9 issue: 8 year: 2015 ident: 9596_CR129 publication-title: Int. J. Math. doi: 10.1142/S0129167X15500548 – volume: 33 start-page: 454 year: 1980 ident: 9596_CR132 publication-title: Arch. Math. doi: 10.1007/BF01222784 – volume-title: Time-Frequency and Time-Scale Methods year: 2005 ident: 9596_CR107 – volume: 98 start-page: 81 issue: 1 year: 2006 ident: 9596_CR37 publication-title: Math. Scand. doi: 10.7146/math.scand.a-14985 – start-page: 423 volume-title: New Perspectives on Approximation and Sampling Theory year: 2014 ident: 9596_CR66 doi: 10.1007/978-3-319-08801-3_18 – ident: 9596_CR138 – volume: 42 start-page: 9 issue: 165 year: 1991 ident: 9596_CR15 publication-title: Q. J. Math. Oxford Ser. (2) doi: 10.1093/qmath/42.1.9 – volume: 116 start-page: 299 year: 1993 ident: 9596_CR137 publication-title: Monatsh. Math. doi: 10.1007/BF01301536 – volume: 248 start-page: 152 year: 2007 ident: 9596_CR146 publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2007.03.028 – ident: 9596_CR153 – volume: 10 start-page: 301 issue: 3 year: 2004 ident: 9596_CR9 publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-004-0977-5 – volume-title: Harmonic Analysis in Phase Space year: 1989 ident: 9596_CR75 doi: 10.1515/9781400882427 – volume: 2 start-page: 129 issue: 37 year: 1986 ident: 9596_CR14 publication-title: Q. J. Math. Oxford Ser. doi: 10.1093/qmath/37.2.129 – ident: 9596_CR133 – volume: 19 start-page: 113 issue: 1 year: 1989 ident: 9596_CR52 publication-title: Rocky Mountain Journal of Mathematics doi: 10.1216/RMJ-1989-19-1-113 – volume: 34 start-page: 231 issue: 3–4 year: 1987 ident: 9596_CR50 publication-title: Publ. Math. Debrecen – ident: 9596_CR16 – volume: 121 start-page: 87 issue: 1 year: 1996 ident: 9596_CR85 publication-title: Studia Math. doi: 10.4064/sm-121-1-87-104 – start-page: 73 volume-title: Modern Sampling Theory year: 2001 ident: 9596_CR106 doi: 10.1007/978-1-4612-0143-4_4 – volume-title: Abstract Harmonic Analysis year: 1970 ident: 9596_CR104 – ident: 9596_CR92 doi: 10.1090/fic/052/16 – ident: 9596_CR144 – volume: 34 start-page: 439 issue: 4 year: 1999 ident: 9596_CR94 publication-title: Integr. Equ. Oper. Theory doi: 10.1007/BF01272884 – start-page: 77 volume-title: Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore year: 2007 ident: 9596_CR123 – ident: 9596_CR23 – ident: 9596_CR48 – volume: 12 start-page: 105 issue: 2 year: 2006 ident: 9596_CR3 publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-006-6022-0 – volume: 155 start-page: 7 year: 1992 ident: 9596_CR64 publication-title: Math. Nachr. doi: 10.1002/mana.19921550102 – volume: 3 start-page: 505 issue: 5 year: 1997 ident: 9596_CR7 publication-title: J. Fourier Anal. Appl. doi: 10.1007/BF02648881 – volume: 132 start-page: 207 year: 1987 ident: 9596_CR49 publication-title: Math. Nachr. doi: 10.1002/mana.19871320116 – volume: 284 start-page: 389 issue: 1 year: 2003 ident: 9596_CR30 publication-title: J. Math. Anal. Appl. doi: 10.1016/S0022-247X(03)00364-0 – start-page: 1 volume-title: Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore year: 2007 ident: 9596_CR71 – volume-title: A Basis Theory Primer year: 2011 ident: 9596_CR102 doi: 10.1007/978-0-8176-4687-5 – ident: 9596_CR36 – ident: 9596_CR99 doi: 10.1007/978-3-642-58946-1 – volume: 15 start-page: 43 year: 1965 ident: 9596_CR118 publication-title: Mat. v Casopis Sloven. Akad. Vied – volume: 262 start-page: 242 issue: 1 year: 2001 ident: 9596_CR119 publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.2001.7566 – ident: 9596_CR103 – start-page: 211 volume-title: Gabor Analysis and Algorithms: Theory and Applications year: 1998 ident: 9596_CR86 doi: 10.1007/978-1-4612-2016-9_7 – start-page: 85 volume-title: Real and Stochastic Analysis, Current Trends year: 2014 ident: 9596_CR105 doi: 10.1142/9789814551281_0002 – volume: 86 start-page: 13 year: 1978 ident: 9596_CR135 publication-title: Monatsh. Math. doi: 10.1007/BF01300054 – ident: 9596_CR142 – ident: 9596_CR145 – volume: 207 start-page: 399 issue: 2 year: 2004 ident: 9596_CR149 publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2003.10.003 – start-page: 165 volume-title: Applied and Numerical Harmonic Analysis year: 2016 ident: 9596_CR22 – volume: 20 start-page: 865 issue: 4 year: 2014 ident: 9596_CR93 publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-014-9336-3 – start-page: 291 volume-title: Excursions in Harmonic Analysis, Volume 4 year: 2015 ident: 9596_CR157 doi: 10.1007/978-3-319-20188-7_12 – volume: 108 start-page: 129 issue: 2–3 year: 1989 ident: 9596_CR61 publication-title: Monatsh. Math. doi: 10.1007/BF01308667 – ident: 9596_CR117 – volume: 26 start-page: 277 issue: 2 year: 2005 ident: 9596_CR35 publication-title: Eur. J. Phys. doi: 10.1140/epja/i2004-10307-2 – volume: 33 start-page: 847 issue: 7–9 year: 2012 ident: 9596_CR20 publication-title: Numer. Funct. Anal. Optim. doi: 10.1080/01630563.2012.682134 – ident: 9596_CR54 doi: 10.1142/9789812776679_0006 – volume: 179 start-page: 277 issue: 3 year: 2007 ident: 9596_CR78 publication-title: Studia Math. doi: 10.4064/sm179-3-5 – ident: 9596_CR108 – volume: 81 start-page: 55 issue: 1 year: 1981 ident: 9596_CR43 publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1981-0589135-9 – volume: 144 start-page: 103 issue: 1 year: 2007 ident: 9596_CR68 publication-title: J. Approx. Theory doi: 10.1016/j.jat.2006.05.001 – volume: 205 start-page: 107 issue: 1 year: 2003 ident: 9596_CR25 publication-title: J. Funct. Anal. doi: 10.1016/S0022-1236(03)00166-6 – volume: 92 start-page: 269 year: 1981 ident: 9596_CR45 publication-title: Monatshefte für Mathematik doi: 10.1007/BF01320058 – volume: 57 start-page: 233 year: 2006 ident: 9596_CR70 publication-title: Collect. Math. – ident: 9596_CR39 – volume: 111 start-page: 143 year: 1964 ident: 9596_CR158 publication-title: Acta Math. doi: 10.1007/BF02391012 – ident: 9596_CR34 doi: 10.1142/q0089 – volume: 5 start-page: 141 issue: 2 year: 2006 ident: 9596_CR113 publication-title: Sampl. Theory Signal Image Process. doi: 10.1007/BF03549448 – ident: 9596_CR13 doi: 10.1007/978-3-0348-7840-1_9 – volume: 29 start-page: 136 year: 1977 ident: 9596_CR38 publication-title: Arch. Math. doi: 10.1007/BF01220386 – ident: 9596_CR125 – volume: 54 start-page: 387 issue: 2 year: 2005 ident: 9596_CR8 publication-title: J. Oper. Theory – ident: 9596_CR95 – volume-title: An Introductory Course in Functional Analysis year: 2014 ident: 9596_CR17 doi: 10.1007/978-1-4939-1945-1 – volume: 146 start-page: 464 issue: 2 year: 1997 ident: 9596_CR63 publication-title: J. Funct. Anal. doi: 10.1006/jfan.1996.3078 – volume: 290 start-page: 791 issue: 17 year: 1980 ident: 9596_CR42 publication-title: C. R. Acad. Sci. Paris Ser. A-B – volume: 89 start-page: 43 year: 1961 ident: 9596_CR18 publication-title: Bull. Soc. Math. France doi: 10.24033/bsmf.1559 – ident: 9596_CR53 – start-page: 223 volume-title: Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations year: 2009 ident: 9596_CR151 doi: 10.1007/978-3-0346-0198-6_13 – volume-title: Spectral Synthesis year: 1975 ident: 9596_CR6 doi: 10.1007/978-3-322-96661-2 – volume: 28 start-page: 53 issue: 2 year: 1978 ident: 9596_CR10 publication-title: Ann. Inst. Fourier doi: 10.5802/aif.689 – ident: 9596_CR11 – volume: 277 start-page: 388 issue: 4 year: 2015 ident: 9596_CR97 publication-title: Adv. Math. doi: 10.1016/j.aim.2015.01.019 |
SSID | ssj0021373 |
Score | 2.4963956 |
Snippet | Since its invention in 1979 the Feichtinger algebra has become a useful Banach space of functions with applications in time-frequency analysis, the theory of... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1579 |
SubjectTerms | Abstract Harmonic Analysis Algebra Analysis Approximations and Expansions Banach spaces Differential equations Fourier Analysis Function space Isomorphism Mathematical Methods in Physics Mathematics Mathematics and Statistics Operators (mathematics) Partial Differential Equations Signal,Image and Speech Processing Theorems Time-frequency analysis |
Title | On a (No Longer) New Segal Algebra: A Review of the Feichtinger Algebra |
URI | https://link.springer.com/article/10.1007/s00041-018-9596-4 https://www.proquest.com/docview/2139651499 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLaAXeCAeIrBQDkg8VIk2qSPcOsQA_EYB5g0TlGTpQNp2hAb_x-7a8sbiVNVNXEjO4_Psv0FYNeJTKVRQMUxfsplLzYcUbjPXWqkZzPieMqzfNvhRUdedoNuUcc9LrPdy5BkvlNXxW4EP8j1xQUaqJDLWagF6LpTHlfHTyovyxPRNKs-VDyIQ1WGMn8S8ekw-rolf4uN5kdOawkWC6zIkqlxl2HGDVdg4QODIL7dVLSr41U4vx2ylO23R-x6RAIPGO5h7M71ScqgTzHiE5awaTyAjTKGfVnLPdnHST6AstEadFpn96cXvLgpgVvECxNunCBVGGMN1YbHygghIuf18LD2hA1MZGIESql1RloXEQegyBDJWBUR35cS6zA3HA3dBjAjPIOGFWmGJ3_sydRQqLIXOSF7Bt2rOhyXKtO2oBGn2ywGuiJAzrWsUcuatKxlHQ6rLs9TDo2_Gu-RHTStL5Rr06JMAEdHTFU6ieiGGqWkqEOjNJUuFt5Yo_lViCBQqTocleZ7__zrbzf_1XoL5n2aRZ7PvaABc5OXV7eN4GRidqCWtJrNNj3PH67OdvLJ-QZSatie |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5FcAAOFa-KQGh9ALVQWWLX3oeReogoIYGQHkik3Ny144VKUYJIUNXfwx9lZrO7PAqVOHBcrddrzXg832hmPgPsOJGqJAqoOcZPuBzEhiMK97lLjPRsShxPWZVvJ2z25Gk_6FfgruiFyardi5RkdlKXzW4EPyj0RQMNVMhlXkl55v7-wTht8r31A5W66_uN4-5Rk-dXCXCLDnXKjUOgceAbYw01T8fKCCEi5w3Qm3nCBiYyMSKJxDojrYuIJE-k6OqtiogQixiX8JyfR-wRk-n0_HoZ1XkimlXxh4oHcaiK1OlLS37i_J67gH9ysZmLayzDhxybsvpsM61AxY1WYekRYyE-nZc0r5M1OPk5Ygn72hmz9pgm3GN4ZrILd0mzDC8pJ33I6myWf2DjlOG3rOF-26tptoBi0Dr03kWcH2FuNB65DWBGeAY3kkhSRBqxJxNDqdFB5IQcGAznqnBQiEzbnLacbs8Y6pJwOZOyRilrkrKWVdgvP7mecXb8b_AX0oMme8Z5bZK3JeDqiBlL1yO6EUcpKapQK1Slc0OfaFS_ChF0KlWFb4X6Hl6_-tvNN43-DAvN7nlbt1udsy1Y9GlHeT73ghrMTW9u3TYCo6n5lG1MBr_e2xLuAWVaEPQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bSx0xEB5EoehD0WrxVGvzoKgtQXeTvUTw4VB7vB8L7QHf4iabVUH2iGdF-qv8i87srVXbgg8-Lptkw1x2vjAzXwCWnchUEgXUHOMnXKax4YjCfe4SIz2bEcdTWeXbD_cG8uA0OB2D-6YXpqx2b1KSVU8DsTTlxcZ1mm20jW8ERegYjM4aqJDLuqry0P26wzPbaHt_BxW84vu9bz-_7vH6WgFuMbgW3DgEHZu-MdZQI3WsjBAicl6Kkc0TNjCRiRFVJNYZaV1EhHkiw7BvVUTkWMS-hP_8CUnNx-hAA7_bnvA8EVUV_aHiQRyqJo36ty0_CoRPw8GzvGwZ7nrT8LbGqaxbGdYMjLn8HUz9wV6IT8ct5etoFnZPcpawtf6QHQ1pwXWG_0_2w53TKlfnlJ_eYl1W5SLYMGM4l_Xcpb0oyg00g-Zg8CrifA_j-TB388CM8AwalUgyRB2xJxNDadI0ckKmBo92HdhsRKZtTWFON2lc6ZZ8uZSyRilrkrKWHfjcTrmu-Dv-N3iV9KDJt3Fdm9QtCrg7YsnS3Yhux1FKig4sNqrStdOPNKpfhQhAlerAl0Z9v1__87MfXjT6E7z5vtPTR_v9wwWY9MmgPJ97wSKMFze37iNipMIslXbJ4Oy1HeEBxVEVJw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+a+%28No+Longer%29+New+Segal+Algebra%3A+A+Review+of+the+Feichtinger+Algebra&rft.jtitle=The+Journal+of+fourier+analysis+and+applications&rft.au=Jakobsen%2C+Mads+S&rft.date=2018-12-15&rft.pub=Springer+Nature+B.V&rft.issn=1069-5869&rft.eissn=1531-5851&rft.volume=24&rft.issue=6&rft.spage=1579&rft.epage=1660&rft_id=info:doi/10.1007%2Fs00041-018-9596-4&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1069-5869&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1069-5869&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1069-5869&client=summon |