Uncertainty quantification analysis of Reynolds-averaged Navier–Stokes simulation of spray swirling jets undergoing vortex breakdown
The computational fluid dynamics-based design of next-generation aeronautical combustion chambers is challenging due to many geometrical and operational parameters to be optimized and several sources of uncertainty that arise from numerical modeling. The present work highlights the potential benefit...
Saved in:
Published in | International journal of spray and combustion dynamics Vol. 15; no. 4; pp. 218 - 236 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.12.2023
Sage Publications Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1756-8277 1756-8285 |
DOI | 10.1177/17568277231183047 |
Cover
Abstract | The computational fluid dynamics-based design of next-generation aeronautical combustion chambers is challenging due to many geometrical and operational parameters to be optimized and several sources of uncertainty that arise from numerical modeling. The present work highlights the potential benefits of exploiting Bayesian uncertainty quantification at the preliminary design stage. A prototypical configuration of an acetone/air spray swirling jet is investigated through an Eulerian–Lagrangian method under non-reactive conditions. Two direct numerical simulations (DNSs) provide reference data, coping with different vortex breakdown states. Consequently, a set of Reynolds-averaged Navier–Stokes simulations is conducted. Polynomial chaos expansion (PCE) is adopted to propagate the uncertainty associated with the spray dispersion model and the turbulent Schmidt number, delivering confidence intervals and the sensitivity of the output variance to each uncertain input. Consequently, the most significant sources of modeling uncertainty may be identified and eventually removed via a calibration procedure, thus making it possible to carry out a combustion chamber optimization process that is no longer affected by numerical biases. The uncertainty quantification analysis in the current study demonstrates that the spray dispersion model slightly affects the fuel vapor spatial distribution under vortex breakdown flow conditions, compared with the output variance induced by the selection of the turbulent Schmidt number. As a result, additional high-fidelity experimental and numerical campaigns should exclusively address the development of an ad hoc model characterizing the spatial distribution of the latter in the presence of vortex breakdown phenomenology, discarding any effort to improve the spray dispersion formulation. |
---|---|
AbstractList | The computational fluid dynamics-based design of next-generation aeronautical combustion chambers is challenging due to many geometrical and operational parameters to be optimized and several sources of uncertainty that arise from numerical modeling. The present work highlights the potential benefits of exploiting Bayesian uncertainty quantification at the preliminary design stage. A prototypical configuration of an acetone/air spray swirling jet is investigated through an Eulerian–Lagrangian method under non-reactive conditions. Two direct numerical simulations (DNSs) provide reference data, coping with different vortex breakdown states. Consequently, a set of Reynolds-averaged Navier–Stokes simulations is conducted. Polynomial chaos expansion (PCE) is adopted to propagate the uncertainty associated with the spray dispersion model and the turbulent Schmidt number, delivering confidence intervals and the sensitivity of the output variance to each uncertain input. Consequently, the most significant sources of modeling uncertainty may be identified and eventually removed via a calibration procedure, thus making it possible to carry out a combustion chamber optimization process that is no longer affected by numerical biases. The uncertainty quantification analysis in the current study demonstrates that the spray dispersion model slightly affects the fuel vapor spatial distribution under vortex breakdown flow conditions, compared with the output variance induced by the selection of the turbulent Schmidt number. As a result, additional high-fidelity experimental and numerical campaigns should exclusively address the development of an ad hoc model characterizing the spatial distribution of the latter in the presence of vortex breakdown phenomenology, discarding any effort to improve the spray dispersion formulation. |
Author | Valorani, Mauro Ciottoli, Pietro P. Liberatori, Jacopo Galassi, Riccardo M. |
Author_xml | – sequence: 1 givenname: Jacopo orcidid: 0000-0002-6394-5250 surname: Liberatori fullname: Liberatori, Jacopo email: jacopo.liberatori@uniroma1.it organization: Sapienza, Università di Roma, Department of Mechanical and Aerospace Engineering, Rome, Italy – sequence: 2 givenname: Riccardo M. surname: Galassi fullname: Galassi, Riccardo M. organization: Sapienza, Università di Roma, Department of Mechanical and Aerospace Engineering, Rome, Italy – sequence: 3 givenname: Mauro surname: Valorani fullname: Valorani, Mauro organization: Sapienza, Università di Roma, Department of Mechanical and Aerospace Engineering, Rome, Italy – sequence: 4 givenname: Pietro P. surname: Ciottoli fullname: Ciottoli, Pietro P. organization: Sapienza, Università di Roma, Department of Mechanical and Aerospace Engineering, Rome, Italy |
BookMark | eNp9kM1O4zAQxy0EEt3CA3CztOewdpzEznGF9gOpAomPczR1xpUh2K3tFHLbEy-wb7hPsilFIIHg5PHo_xvN_L6QXecdEnLE2THnUn7jsqxULmUuOFeCFXKHTDa9TOWq3H2ppdwnhzHaOSuFEkIyMSGP105jSGBdGuiqB5essRqS9Y6Cg26INlJv6AUOzndtzGCNARbY0jNYWwz__vy9TP4WI432ru-24JiPywADjfc2dNYt6A2mSHvXYlj4zX_tQ8IHOg8It62_dwdkz0AX8fD5nZLrnz-uTn5ns_NfpyffZ5kWZZkyMHVVtLkuai64QaZqBbyet7JGI7AySuVYz1kFpZGyLZkWRWuqWipdaSiYElPydTt3Gfyqx5iaG9-H8c7Y5Kou8jJnXI4pvk3p4GMMaJplsHcQhoazZmO8eWd8ZOQbRtv0pCMFsN2n5PGWjKPX130-Bv4DNXyYEQ |
CitedBy_id | crossref_primary_10_2514_1_B39700 crossref_primary_10_1016_j_ijheatfluidflow_2024_109531 crossref_primary_10_1007_s10494_023_00521_3 |
Cites_doi | 10.2514/2.6171 10.1007/s10494-015-9645-x 10.1016/j.combustflame.2021.111642 10.1016/0045-7930(94)00032-T 10.1146/annurev.fluid.010908.165248 10.1016/0017-9310(95)00162-3 10.1007/s10494-020-00200-7 10.1016/j.engfailanal.2018.05.019 10.1063/1.858424 10.1016/S0360-1285(01)00017-X 10.1017/S0022112098002870 10.1016/j.combustflame.2017.02.018 10.1016/0045-7825(74)90029-2 10.2514/1.43848 10.2514/3.12980 10.2514/3.62687 10.1016/j.pecs.2009.01.002 10.1016/S0167-6105(00)00026-X 10.2514/6.1992-439 10.1063/1.862514 10.1615/ICHMT.2012.ProcSevIntSympTurbHeatTransfPal.1070 10.2514/3.12826 10.1016/0894-1777(95)00135-2 10.2514/1.26382 10.1016/j.combustflame.2017.09.011 10.1016/j.compfluid.2003.04.001 10.1007/978-3-319-99525-0 10.1016/j.jcp.2019.109079 10.1017/S0022112075001814 10.1146/annurev.fluid.010908.165243 10.1016/j.buildenv.2020.107066 10.1063/1.5089683 10.1016/j.ijthermalsci.2008.03.014 10.1017/S0022112091000101 10.1017/aer.2021.36 10.1103/PhysRevFluids.3.034304 10.1115/1.4026619 10.1080/00102202.2019.1632300 10.1115/1.2904889 10.1007/BF02008202 10.1016/0376-0421(88)90007-3 10.1007/BF01330059 10.2514/6.2023-2148 10.1115/1.4055270 10.1155/2015/657620 10.1016/j.pecs.2012.07.001 10.2514/6.2014-1497 10.2514/6.2020-3882 10.2514/6.2022-3378 10.1007/BF00209508 10.1016/j.fuel.2022.126269 10.1016/j.ijheatfluidflow.2014.08.006 10.1080/13647830.2017.1403653 10.1115/1.4007374 10.1016/j.proci.2004.08.237 10.1115/1.4031439 10.1016/S0360-1285(00)00022-8 10.1017/CBO9780511840531 10.1016/j.ijheatfluidflow.2014.10.005 10.1016/j.combustflame.2020.08.021 10.1007/s10494-019-00072-6 10.1017/S002211209700596X 10.2514/1.J057236 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content |
DBID | AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 H8D HCIFZ L6V L7M M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
DOI | 10.1177/17568277231183047 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Engineering Research Database Aerospace Database SciTech Premium Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1756-8285 |
EndPage | 236 |
ExternalDocumentID | 10_1177_17568277231183047 10.1177_17568277231183047 |
GroupedDBID | .2N 0R~ 1~K 29J 31X 31Z 4.4 54M 5VS AACTG AAGLT AAJPV AAOTM AAQXI AASGM AATAA AATBZ AATZT ABAWP ABBQA ABCJG ABDBF ABIDT ABJNI ABLUO ABPNF ABQXT ABUJY ACGFS ACJER ACLZU ACOXC ACROE ACSIQ ACUAV ACUHS ACUIR ACXKE ADBBV ADDLC ADEBD ADNON ADRRZ ADVBO AEDFJ AENEX AEPTA AESZF AEWDL AEWHI AFKRA AFKRG AFMOU AFQAA AGKLV AGWFA AHDMH AIDUJ AJUZI ALMA_UNASSIGNED_HOLDINGS ANDLU ARTOV AUTPY AUVAJ AYAKG B8Z B94 BBRGL BCNDV BDDNI BENPR BPACV CCPQU CKLRP DH. DO- DV7 EBS EJD FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 IL9 IPNFZ J8X K.F KQ8 MET MV1 O9- OK1 PHGZM PHGZT PIMPY Q83 RIG ROL SASJQ SAUOL SC5 SCNPE SFC SFK SFT SGV SGZ SPP SPV STM AAYXX AJGYC CITATION 7TB 8FD 8FE 8FG AAPII ABJCF ABUWG AJHME AJVBE ARAPS AZQEC BGLVJ DWQXO FR3 H8D HCIFZ L6V L7M M7S P62 PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PUEGO |
ID | FETCH-LOGICAL-c355t-af964d2c49131fe0898a19bd79ef3e6f882e9b06a5f77d50c34df6978c6ca4083 |
IEDL.DBID | 8FG |
ISSN | 1756-8277 |
IngestDate | Sat Sep 06 07:32:45 EDT 2025 Tue Jul 01 05:20:09 EDT 2025 Thu Apr 24 23:03:32 EDT 2025 Tue Jun 17 22:30:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Aerospace propulsion uncertainty quantification computational fluid dynamics multiphase flows vortex breakdown |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c355t-af964d2c49131fe0898a19bd79ef3e6f882e9b06a5f77d50c34df6978c6ca4083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6394-5250 |
OpenAccessLink | https://www.proquest.com/docview/2894252017?pq-origsite=%requestingapplication% |
PQID | 2894252017 |
PQPubID | 4450834 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2894252017 crossref_primary_10_1177_17568277231183047 crossref_citationtrail_10_1177_17568277231183047 sage_journals_10_1177_17568277231183047 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231200 2023-12-00 20231201 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 20231200 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: Brentwood |
PublicationTitle | International journal of spray and combustion dynamics |
PublicationTitleAlternate | International Journal of Spray and Combustion Dynamics |
PublicationYear | 2023 |
Publisher | SAGE Publications Sage Publications Ltd |
Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd |
References | Brucker, Althaus 1992; 13 Kurzawska 2021; 59 Choi, Do 2018; 56 Chen, Pereira 1996; 39 Goldberg, Palaniswamy, Batten 2010; 4 Launder, Spalding 1974; 3 Veynante, Vervisch 2002; 28 Jenny, Roekaerts, Beishuizen 2012; 38 Foroutan, Yavuzkurt 2014; 50 Shih, Liou, Shabbir 1995; 24 Palies 2022; 144 Erhard, Moussiopoulos 2000; 88 Huang, Yang 2009; 35 Longo, Bellemans, Derudi 2020; 185 Keller 1995; 33 Mueller, Raman 2018; 187 Elghobashi 1991; 48 Armengol, Le Maître, Vicquelin 2021; 234 Lucca-Negro, O’Doherty 2001; 27 Jalalatian, Tabejamaat, Kashir 2019; 31 Cortesi, Constantine, Magin 2020; 407 Ciottoli, Battista, Malpica Galassi 2021; 106 Rotta 1951; 129 Huete, Nalianda, Pilidis 2021; 125 Yakhot, Orszag, Thangam 1992; 4 Yang, Gui, Xie 2015; 2015 Escudier 1988; 25 Ruith, Chen, Meiburg 2004; 33 Dalla Barba, Picano 2018; 3 Speziale, Gatski 1997; 344 Gosman, Ioannides 1983; 7 Lieuwen, McManus 2003; 19 Giusti, Mastorakos 2019; 103 Balachandar, Eaton 2010; 42 Launder, Reece, Rodi 1975; 68 Samarasinghe, Peluso, Quay 2016; 138 Ciottoli, Lee, Lapenna 2020; 192 Xiao, Hassan, Baurle 2007; 45 Sheen, Chen, Jeng 1996; 12 Liberatori, Battista, Dalla Barba 2023 Hakim, Lacaze, Khalil 2018; 22 Jiang, Campbell 2009; 48 Garg, Leibovich 1979; 22 Keistler, Hassan, Xiao 2009; 25 Battista, Troiani, Picano 2015; 51 Malpica Galassi, Valorani, Najm 2017; 179 Najm 2009; 41 Quante, Bullerdiek, Bube 2023; 333 Marrero-Santiago, Collin-Bastiani, Riber 2020; 222 Billant, Chomaz, Huerre 1998; 376 Lee, Karkkainen 2018; 92 Gokulakrishnan, Ramotowski, Gaines 2008; 130 Trisjono, Pitsch 2015; 95 Ivanova, Noll, Aigner 2013; 135 Huang, Yang 2005; 30 Speziale, Sarkar, Gatski 1991; 227 Dacles-Mariani, Zilliac, Chow 1995; 33 Donzis, Aditya, Sreenivasan 2014; 136 bibr8-17568277231183047 bibr20-17568277231183047 bibr66-17568277231183047 bibr2-17568277231183047 bibr12-17568277231183047 bibr25-17568277231183047 bibr38-17568277231183047 bibr54-17568277231183047 bibr45-17568277231183047 bibr61-17568277231183047 bibr58-17568277231183047 bibr41-17568277231183047 bibr21-17568277231183047 bibr27-17568277231183047 bibr37-17568277231183047 bibr11-17568277231183047 bibr17-17568277231183047 Goldberg UC (bibr68-17568277231183047) 2010; 4 bibr65-17568277231183047 bibr7-17568277231183047 bibr57-17568277231183047 bibr47-17568277231183047 bibr67-17568277231183047 MacKay DJC (bibr19-17568277231183047) 2005 bibr50-17568277231183047 bibr16-17568277231183047 bibr40-17568277231183047 bibr46-17568277231183047 bibr6-17568277231183047 bibr60-17568277231183047 bibr26-17568277231183047 bibr36-17568277231183047 bibr70-17568277231183047 bibr43-17568277231183047 bibr56-17568277231183047 bibr69-17568277231183047 Liberatori J (bibr18-17568277231183047) 2023 bibr30-17568277231183047 bibr10-17568277231183047 bibr28-17568277231183047 bibr15-17568277231183047 bibr5-17568277231183047 bibr35-17568277231183047 bibr51-17568277231183047 bibr22-17568277231183047 bibr64-17568277231183047 bibr55-17568277231183047 bibr31-17568277231183047 bibr48-17568277231183047 bibr24-17568277231183047 bibr62-17568277231183047 bibr4-17568277231183047 bibr14-17568277231183047 bibr34-17568277231183047 bibr44-17568277231183047 bibr52-17568277231183047 bibr42-17568277231183047 bibr32-17568277231183047 Kurzawska P (bibr1-17568277231183047) 2021; 59 bibr3-17568277231183047 bibr13-17568277231183047 bibr49-17568277231183047 bibr39-17568277231183047 bibr59-17568277231183047 bibr23-17568277231183047 bibr29-17568277231183047 bibr33-17568277231183047 bibr63-17568277231183047 bibr9-17568277231183047 bibr53-17568277231183047 |
References_xml | – volume: 179 start-page: 242 year: 2017 end-page: 252 article-title: Chemical model reduction under uncertainty publication-title: Combust Flame – volume: 59 start-page: 38 year: 2021 end-page: 45 article-title: Overview of sustainable aviation fuels including emission of particulate matter and harmful gaseous exhaust gas compounds publication-title: Transp Res Proc – volume: 125 start-page: 1654 year: 2021 end-page: 1665 article-title: Propulsion system integration for a first-generation hydrogen civil airliner? publication-title: Aeronaut J – volume: 344 start-page: 155 year: 1997 end-page: 180 article-title: Analysis and modelling of anisotropies in the dissipation rate of turbulence publication-title: J Fluid Mech – volume: 12 start-page: 444 year: 1996 end-page: 451 article-title: Correlation of swirl number for a radial-type swirl generator publication-title: Exp Therm Fluid Sci – volume: 95 start-page: 231 year: 2015 end-page: 259 article-title: Systematic analysis strategies for the development of combustion models from DNS: A review publication-title: Flow Turbul Combust – volume: 227 start-page: 245 year: 1991 end-page: 272 article-title: Modelling the pressure-strain correlation of turbulence. An invariant dynamical systems approach publication-title: J Fluid Mech – volume: 144 start-page: 101007 year: 2022 article-title: Hydrogen thermal-powered aircraft combustion and propulsion system publication-title: J Eng Gas Turbines Power – volume: 185 start-page: 107066 year: 2020 article-title: A multi-fidelity framework for the estimation of the turbulent schmidt number in the simulation of atmospheric dispersion publication-title: Build Environ – volume: 130 start-page: 051501 year: 2008 article-title: A novel low NOx lean, premixed, and prevaporized combustion system for liquid fuels publication-title: J Eng Gas Turbines Power – volume: 7 start-page: 482 year: 1983 end-page: 490 article-title: Aspects of computer simulation of liquid-fueled combustors publication-title: J Energy – volume: 19 start-page: 721 year: 2003 article-title: Combustion dynamics in lean-premixed pre-vaporized gas turbine publication-title: J Propuls Power – volume: 48 start-page: 322 year: 2009 end-page: 330 article-title: Prandtl/Schmidt number effect on temperature distribution in a generic combustor publication-title: Int J Therm Sci – volume: 39 start-page: 441 year: 1996 end-page: 454 article-title: Computation of turbulent evaporating sprays with well-specified measurements - A sensitivity study on droplet properties publication-title: Int J Heat Mass Transf – volume: 103 start-page: 847 year: 2019 end-page: 869 article-title: Turbulent combustion modelling and experiments: Recent trends and developments publication-title: Flow Turbul Combust – volume: 68 start-page: 537 year: 1975 end-page: 566 article-title: Progress in the development of a reynolds-stress turbulence closure publication-title: J Fluid Mech – volume: 92 start-page: 182 year: 2018 end-page: 194 article-title: Failure investigation of hydrogen induced cracking of stabilator skin in jet aircraft publication-title: Eng Fail Anal – volume: 138 start-page: 031502 year: 2016 article-title: The three-dimensional structure of swirl-stabilized flames in a lean premixed multinozzle can combustor publication-title: J Eng Gas Turbines Power – volume: 41 start-page: 35 year: 2009 end-page: 52 article-title: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics publication-title: Annu Rev Fluid Mech – volume: 2015 start-page: 657620 year: 2015 article-title: Anisotropic characteristics of turbulence dissipation in swirling flow: A direct numerical simulation study publication-title: Adv Math Phys – volume: 33 start-page: 1561 year: 1995 end-page: 1568 article-title: Numerical/Experimental study of a wingtip vortex in the near field publication-title: AIAA J – volume: 222 start-page: 70 year: 2020 end-page: 84 article-title: On the mechanisms of flame kernel extinction or survival during aeronautical ignition sequences: experimental and numerical analysis publication-title: Comb Flame – volume: 27 start-page: 431 year: 2001 end-page: 481 article-title: Vortex breakdown: a review publication-title: Prog Energy Combust Sci – volume: 129 start-page: 547 year: 1951 end-page: 572 article-title: Statistische theorie nichthomogener turbulenz publication-title: Zeitschrift für Physik – volume: 135 start-page: 011505 year: 2013 article-title: A numerical study on the turbulent Schmidt numbers in a jet in crossflow publication-title: J Eng Gas Turbines Power – volume: 24 start-page: 227 year: 1995 end-page: 238 article-title: A new k- eddy viscosity model for high Reynolds number turbulent flows publication-title: Comput Fluids – volume: 13 start-page: 339 year: 1992 end-page: 349 article-title: Study of vortex breakdown by particle tracking velocimetry part 1: Bubble-type vortex breakdown publication-title: Exp Fluids – volume: 407 start-page: 109079 year: 2020 article-title: Forward and backward uncertainty quantification with active subspaces: application to hypersonic flows around a cylinder publication-title: J Comput Phys – volume: 376 start-page: 183 year: 1998 end-page: 219 article-title: Experimental study of vortex breakdown in swirling jets publication-title: J Fluid Mech – volume: 25 start-page: 1233 year: 2009 end-page: 1239 article-title: Simulation of supersonic combustion in three-dimensional configurations publication-title: J Propuls Power – volume: 38 start-page: 846 year: 2012 end-page: 887 article-title: Modeling of turbulent dilute spray combustion publication-title: Prog Energy Combust Sci – volume: 234 start-page: 111642 year: 2021 article-title: Bayesian calibration of a methane-air global scheme and uncertainty propagation to flame-vortex interactions publication-title: Combust Flame – year: 2023 article-title: Direct numerical simulation of vortex breakdown in evaporating dilute sprays publication-title: Flow Turbul Combust – volume: 106 start-page: 993 year: 2021 end-page: 1015 article-title: Direct numerical simulations of the evaporation of dilute sprays in turbulent swirling jets publication-title: Flow Turbul Combust – volume: 192 start-page: 1963 year: 2020 end-page: 1996 article-title: Large eddy simulation on the effects of pressure on syngas/Air turbulent nonpremixed jet flames publication-title: Combust Sci Technol – volume: 136 start-page: 061210 year: 2014 article-title: The turbulent Schmidt number publication-title: J Fluids Eng – volume: 22 start-page: 446 year: 2018 end-page: 466 article-title: Probabilistic parameter estimation in a 2-step chemical kinetics model for n-dodecane jet autoignition publication-title: Combust Theory Model – volume: 33 start-page: 2280 year: 1995 end-page: 2287 article-title: Thermoacoustic oscillations in combustion chambers of gas turbines publication-title: AIAA J – volume: 56 start-page: 4910 year: 2018 end-page: 4926 article-title: Modeling swirl decay rate of turbulent flows in annular swirl injectors publication-title: AIAA J – volume: 22 start-page: 2053 year: 1979 end-page: 2064 article-title: Spectral characteristics of vortex breakdown flowfields publication-title: Phys Fluids – volume: 4 start-page: 1510 year: 1992 article-title: Development of turbulence models for shear flows by a double expansion technique publication-title: Phys Fluids A: Fluid Dynamics – volume: 33 start-page: 1225 year: 2004 end-page: 1250 article-title: Development of boundary conditions for direct numerical simulations of three-dimensional vortex breakdown phenomena in semi-infinite domains publication-title: Comput Fluids – volume: 3 start-page: 269 year: 1974 end-page: 289 article-title: The numerical computation of turbulent flows publication-title: Comput Methods Appl Mech Eng – volume: 88 start-page: 91 year: 2000 end-page: 99 article-title: On a new nonlinear turbulence model for simulating flows around building-shaped structures publication-title: J Wind Eng Ind – volume: 51 start-page: 78 year: 2015 end-page: 87 article-title: Fractal scaling of turbulent premixed flame fronts: Aaplication to LES publication-title: Int J Heat Fluid Flow – volume: 45 start-page: 1415 year: 2007 end-page: 1423 article-title: Modeling Scramjet flows with variable turbulent Prandtl and Schmidt numbers publication-title: AIAA J – volume: 28 start-page: 193 year: 2002 end-page: 266 article-title: Turbulent combustion modeling publication-title: Prog Energy Combust Sci – volume: 35 start-page: 293 year: 2009 end-page: 364 article-title: Dynamics and stability of lean-premixed swirl-stabilized combustion publication-title: Prog Energy Combust Sci – volume: 3 start-page: 034304 year: 2018 article-title: Clustering and entrainment effects on the evaporation of dilute droplets in a turbulent jet publication-title: Phys Rev Fluids – volume: 4 start-page: 511 year: 2010 end-page: 520 article-title: Variable turbulent schmidt and prandtl number modeling publication-title: Eng Appl Comput Fluid Mech – volume: 333 start-page: 126269 year: 2023 article-title: Renewable fuel options for aviation – A system-wide comparison of drop-in and non drop-in fuel options publication-title: Fuel – volume: 187 start-page: 137 year: 2018 end-page: 146 article-title: Model form uncertainty quantification in turbulent combustion simulations: Peer models publication-title: Comb Flame – volume: 50 start-page: 402 year: 2014 end-page: 416 article-title: A partially-averaged navier–stokes model for the simulation of turbulent swirling flow with vortex breakdown publication-title: Int J Heat Fluid Flow – volume: 31 start-page: 055105 year: 2019 article-title: An experimental study on the effect of swirl number on pollutant formation in propane bluff-body stabilized swirl diffusion flames publication-title: Phys Fluids – volume: 42 start-page: 111 year: 2010 end-page: 133 article-title: Turbulent dispersed multiphase flow publication-title: Annu Rev Fluid Mech – volume: 25 start-page: 189 year: 1988 end-page: 229 article-title: Vortex breakdown: observations and explanations publication-title: Prog Aerosp Sci – volume: 48 start-page: 301 year: 1991 end-page: 314 article-title: Particle-laden turbulent flows: direct simulation and closure models publication-title: Appl Sci Res – volume: 30 start-page: 1775 year: 2005 end-page: 1782 article-title: Effect of swirl on combustion dynamics in a lean-premixed swirl-stabilized combustor publication-title: Proc Combust Inst – ident: bibr42-17568277231183047 doi: 10.2514/2.6171 – ident: bibr10-17568277231183047 doi: 10.1007/s10494-015-9645-x – ident: bibr23-17568277231183047 doi: 10.1016/j.combustflame.2021.111642 – ident: bibr53-17568277231183047 doi: 10.1016/0045-7930(94)00032-T – ident: bibr24-17568277231183047 doi: 10.1146/annurev.fluid.010908.165248 – ident: bibr13-17568277231183047 doi: 10.1016/0017-9310(95)00162-3 – ident: bibr17-17568277231183047 doi: 10.1007/s10494-020-00200-7 – ident: bibr5-17568277231183047 doi: 10.1016/j.engfailanal.2018.05.019 – ident: bibr54-17568277231183047 doi: 10.1063/1.858424 – ident: bibr9-17568277231183047 doi: 10.1016/S0360-1285(01)00017-X – ident: bibr34-17568277231183047 doi: 10.1017/S0022112098002870 – ident: bibr25-17568277231183047 doi: 10.1016/j.combustflame.2017.02.018 – ident: bibr52-17568277231183047 doi: 10.1016/0045-7825(74)90029-2 – ident: bibr67-17568277231183047 doi: 10.2514/1.43848 – ident: bibr41-17568277231183047 doi: 10.2514/3.12980 – ident: bibr63-17568277231183047 doi: 10.2514/3.62687 – volume: 59 start-page: 38 year: 2021 ident: bibr1-17568277231183047 publication-title: Transp Res Proc – ident: bibr32-17568277231183047 doi: 10.1016/j.pecs.2009.01.002 – ident: bibr55-17568277231183047 doi: 10.1016/S0167-6105(00)00026-X – ident: bibr50-17568277231183047 doi: 10.2514/6.1992-439 – ident: bibr38-17568277231183047 doi: 10.1063/1.862514 – ident: bibr48-17568277231183047 doi: 10.1615/ICHMT.2012.ProcSevIntSympTurbHeatTransfPal.1070 – ident: bibr51-17568277231183047 doi: 10.2514/3.12826 – ident: bibr45-17568277231183047 doi: 10.1016/0894-1777(95)00135-2 – ident: bibr66-17568277231183047 doi: 10.2514/1.26382 – ident: bibr43-17568277231183047 doi: 10.1016/j.combustflame.2017.09.011 – year: 2023 ident: bibr18-17568277231183047 publication-title: Flow Turbul Combust – ident: bibr44-17568277231183047 doi: 10.1016/j.compfluid.2003.04.001 – ident: bibr70-17568277231183047 doi: 10.1007/978-3-319-99525-0 – volume-title: Information Theory, Inference, and Learning Algorithms year: 2005 ident: bibr19-17568277231183047 – ident: bibr22-17568277231183047 doi: 10.1016/j.jcp.2019.109079 – ident: bibr57-17568277231183047 doi: 10.1017/S0022112075001814 – ident: bibr14-17568277231183047 doi: 10.1146/annurev.fluid.010908.165243 – ident: bibr69-17568277231183047 doi: 10.1016/j.buildenv.2020.107066 – ident: bibr47-17568277231183047 doi: 10.1063/1.5089683 – ident: bibr62-17568277231183047 doi: 10.1016/j.ijthermalsci.2008.03.014 – ident: bibr59-17568277231183047 doi: 10.1017/S0022112091000101 – ident: bibr4-17568277231183047 doi: 10.1017/aer.2021.36 – ident: bibr16-17568277231183047 doi: 10.1103/PhysRevFluids.3.034304 – ident: bibr65-17568277231183047 doi: 10.1115/1.4026619 – ident: bibr30-17568277231183047 doi: 10.1080/00102202.2019.1632300 – ident: bibr39-17568277231183047 doi: 10.1115/1.2904889 – ident: bibr12-17568277231183047 doi: 10.1007/BF02008202 – ident: bibr36-17568277231183047 doi: 10.1016/0376-0421(88)90007-3 – ident: bibr58-17568277231183047 doi: 10.1007/BF01330059 – ident: bibr28-17568277231183047 doi: 10.2514/6.2023-2148 – ident: bibr7-17568277231183047 doi: 10.1115/1.4055270 – ident: bibr8-17568277231183047 – ident: bibr61-17568277231183047 doi: 10.1155/2015/657620 – ident: bibr15-17568277231183047 doi: 10.1016/j.pecs.2012.07.001 – ident: bibr20-17568277231183047 doi: 10.2514/6.2014-1497 – ident: bibr26-17568277231183047 doi: 10.2514/6.2020-3882 – ident: bibr40-17568277231183047 – ident: bibr3-17568277231183047 doi: 10.2514/6.2022-3378 – volume: 4 start-page: 511 year: 2010 ident: bibr68-17568277231183047 publication-title: Eng Appl Comput Fluid Mech – ident: bibr37-17568277231183047 doi: 10.1007/BF00209508 – ident: bibr2-17568277231183047 doi: 10.1016/j.fuel.2022.126269 – ident: bibr29-17568277231183047 doi: 10.1016/j.ijheatfluidflow.2014.08.006 – ident: bibr21-17568277231183047 doi: 10.1080/13647830.2017.1403653 – ident: bibr64-17568277231183047 doi: 10.1115/1.4007374 – ident: bibr31-17568277231183047 doi: 10.1016/j.proci.2004.08.237 – ident: bibr33-17568277231183047 doi: 10.1115/1.4031439 – ident: bibr35-17568277231183047 doi: 10.1016/S0360-1285(00)00022-8 – ident: bibr56-17568277231183047 doi: 10.1017/CBO9780511840531 – ident: bibr49-17568277231183047 doi: 10.1016/j.ijheatfluidflow.2014.10.005 – ident: bibr6-17568277231183047 doi: 10.1016/j.combustflame.2020.08.021 – ident: bibr27-17568277231183047 – ident: bibr11-17568277231183047 doi: 10.1007/s10494-019-00072-6 – ident: bibr60-17568277231183047 doi: 10.1017/S002211209700596X – ident: bibr46-17568277231183047 doi: 10.2514/1.J057236 |
SSID | ssib053833703 ssj0000783604 |
Score | 2.3067956 |
Snippet | The computational fluid dynamics-based design of next-generation aeronautical combustion chambers is challenging due to many geometrical and operational... |
SourceID | proquest crossref sage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 218 |
SubjectTerms | Combustion chambers Computational fluid dynamics Confidence intervals Configuration management Direct numerical simulation Dispersion Fluid flow Mathematical models Navier-Stokes equations Numerical models Phenomenology Polynomials Preliminary designs Reynolds averaged Navier-Stokes method Schmidt number Spatial distribution Swirling Uncertainty Vortex breakdown Vortices |
Title | Uncertainty quantification analysis of Reynolds-averaged Navier–Stokes simulation of spray swirling jets undergoing vortex breakdown |
URI | https://journals.sagepub.com/doi/full/10.1177/17568277231183047 https://www.proquest.com/docview/2894252017 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF7R5NJLKZSqgRDtAQmpkoUd2_s4IagaKioiGoiUW7TeR9U22EnsIHLriT_Qf8gvYcbZNJGq9mTtem1Lnpmdb3ZehLxTToQZ7I1BV3ITJBownGIoVzJywsZdxwUmCn_rs7Nh8nWUjvyBW-nDKtd7Yr1Rm0LjGfkHMAyAvUBd8Y_TWYBdo9C76lto7JBmBJoG-Vz0vqz5CWQ5jrn3MtY7c52yUDuaecoC0eXcOzqxBhPO4RQgHuDzEBuubKuqDf7cCvmqtVBvn-x5-Eg_rej9gjyz-Uvy3ENJ6gW1PCB_h3Ctnf3Vks4WahUSVFOBKl-HhBaODuwyLyamDBSwNHzP0L5CTfnv9u5HVdzYkpZXv3yHL1xfTudqSbHnE6ax02tblRTT0OaXBY5_Y-juHwpmtroxYN-_IsPe6c-Ts8C3XAg0AI8qUE6yxHR1IqM4cjYUUqhIZoZL62LLHOBxK7OQqdRxbtJQx4lxDCxRzbRKAM4dkkZe5PaIUBOZKLWpZYKLRHItHZgyXGXcpoonTrRIuP67Y-3rkWNbjMk48iXIHxCkRY7vH5muinE8tbi9JtnYy2U53nBRi7xHMm5uPfqi10-_6A3ZxRb0qxCXNmlU84V9C0Clyjo1N3ZI8_Np__sARucX4j9OV-UI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEutLzUpQV8ACEhReThxPEBIR6ttrRdodKVegtObCNoSbablLK3nvgD_A9-FL-EmcRhKyF66ylK4jhS5vVN5gXwWNnUz1E3eqEU2uMFYjiVkFzJwKYmCq1IqVB4b5yMJvzdYXy4BL_6WhhKq-x1YquodVXQP_Ln6Bgge6G5Ei-nJx5NjaLoaj9Co2OLHTM_Q5etfrH9Fun7JAy3Ng_ejDw3VcAr0LY2nrIy4TosuAyiwBo_lakKZK6FNDYyiUXIaWTuJyq2QujYLyKubYLOVpEUiiNiwX2vwTKnitYBLL_eHL_f7zkYtUcUCRfXbG1BWyTRhrZFnHhpKIQLrVLXJ7pGlxBjoWT5NOLlonFcIN4LSWat3dtahZsOsLJXHYfdgiVT3oYVB16ZUw31HfgxwWObXtDM2cmp6pKQWroz5TqfsMqyfTMvq2NdewqFCN-n2ViRbf59_vNDUx2ZmtWfv7qZYrS-ns7UnNGUKSqcZ19MUzMqfJt9quj8GyULf2fo2KsjXZ2Vd2FyJeS4B4OyKs0aMB3oIDaxSVKRcikKadF5EioXJlaC23QIfv91s8J1QKdBHMdZ4Jqe_0OQITz7-8i0a_9x2eKNnmSZ0wR1tuDbITwlMi5u_Xej-5dv9Aiujw72drPd7fHOOtwIEXZ1CTYbMGhmp-YBwqQmf-h4k8HHqxaHP95MIPc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+quantification+analysis+of+Reynolds-averaged+Navier%E2%80%93Stokes+simulation+of+spray+swirling+jets+undergoing+vortex+breakdown&rft.jtitle=International+journal+of+spray+and+combustion+dynamics&rft.au=Liberatori%2C+Jacopo&rft.au=Galassi%2C+Riccardo+M.&rft.au=Valorani%2C+Mauro&rft.au=Ciottoli%2C+Pietro+P.&rft.date=2023-12-01&rft.pub=SAGE+Publications&rft.issn=1756-8277&rft.eissn=1756-8285&rft.volume=15&rft.issue=4&rft.spage=218&rft.epage=236&rft_id=info:doi/10.1177%2F17568277231183047&rft.externalDocID=10.1177_17568277231183047 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-8277&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-8277&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-8277&client=summon |