Uncertainty quantification analysis of Reynolds-averaged Navier–Stokes simulation of spray swirling jets undergoing vortex breakdown

The computational fluid dynamics-based design of next-generation aeronautical combustion chambers is challenging due to many geometrical and operational parameters to be optimized and several sources of uncertainty that arise from numerical modeling. The present work highlights the potential benefit...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of spray and combustion dynamics Vol. 15; no. 4; pp. 218 - 236
Main Authors Liberatori, Jacopo, Galassi, Riccardo M., Valorani, Mauro, Ciottoli, Pietro P.
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.12.2023
Sage Publications Ltd
Subjects
Online AccessGet full text
ISSN1756-8277
1756-8285
DOI10.1177/17568277231183047

Cover

Abstract The computational fluid dynamics-based design of next-generation aeronautical combustion chambers is challenging due to many geometrical and operational parameters to be optimized and several sources of uncertainty that arise from numerical modeling. The present work highlights the potential benefits of exploiting Bayesian uncertainty quantification at the preliminary design stage. A prototypical configuration of an acetone/air spray swirling jet is investigated through an Eulerian–Lagrangian method under non-reactive conditions. Two direct numerical simulations (DNSs) provide reference data, coping with different vortex breakdown states. Consequently, a set of Reynolds-averaged Navier–Stokes simulations is conducted. Polynomial chaos expansion (PCE) is adopted to propagate the uncertainty associated with the spray dispersion model and the turbulent Schmidt number, delivering confidence intervals and the sensitivity of the output variance to each uncertain input. Consequently, the most significant sources of modeling uncertainty may be identified and eventually removed via a calibration procedure, thus making it possible to carry out a combustion chamber optimization process that is no longer affected by numerical biases. The uncertainty quantification analysis in the current study demonstrates that the spray dispersion model slightly affects the fuel vapor spatial distribution under vortex breakdown flow conditions, compared with the output variance induced by the selection of the turbulent Schmidt number. As a result, additional high-fidelity experimental and numerical campaigns should exclusively address the development of an ad hoc model characterizing the spatial distribution of the latter in the presence of vortex breakdown phenomenology, discarding any effort to improve the spray dispersion formulation.
AbstractList The computational fluid dynamics-based design of next-generation aeronautical combustion chambers is challenging due to many geometrical and operational parameters to be optimized and several sources of uncertainty that arise from numerical modeling. The present work highlights the potential benefits of exploiting Bayesian uncertainty quantification at the preliminary design stage. A prototypical configuration of an acetone/air spray swirling jet is investigated through an Eulerian–Lagrangian method under non-reactive conditions. Two direct numerical simulations (DNSs) provide reference data, coping with different vortex breakdown states. Consequently, a set of Reynolds-averaged Navier–Stokes simulations is conducted. Polynomial chaos expansion (PCE) is adopted to propagate the uncertainty associated with the spray dispersion model and the turbulent Schmidt number, delivering confidence intervals and the sensitivity of the output variance to each uncertain input. Consequently, the most significant sources of modeling uncertainty may be identified and eventually removed via a calibration procedure, thus making it possible to carry out a combustion chamber optimization process that is no longer affected by numerical biases. The uncertainty quantification analysis in the current study demonstrates that the spray dispersion model slightly affects the fuel vapor spatial distribution under vortex breakdown flow conditions, compared with the output variance induced by the selection of the turbulent Schmidt number. As a result, additional high-fidelity experimental and numerical campaigns should exclusively address the development of an ad hoc model characterizing the spatial distribution of the latter in the presence of vortex breakdown phenomenology, discarding any effort to improve the spray dispersion formulation.
Author Valorani, Mauro
Ciottoli, Pietro P.
Liberatori, Jacopo
Galassi, Riccardo M.
Author_xml – sequence: 1
  givenname: Jacopo
  orcidid: 0000-0002-6394-5250
  surname: Liberatori
  fullname: Liberatori, Jacopo
  email: jacopo.liberatori@uniroma1.it
  organization: Sapienza, Università di Roma, Department of Mechanical and Aerospace Engineering, Rome, Italy
– sequence: 2
  givenname: Riccardo M.
  surname: Galassi
  fullname: Galassi, Riccardo M.
  organization: Sapienza, Università di Roma, Department of Mechanical and Aerospace Engineering, Rome, Italy
– sequence: 3
  givenname: Mauro
  surname: Valorani
  fullname: Valorani, Mauro
  organization: Sapienza, Università di Roma, Department of Mechanical and Aerospace Engineering, Rome, Italy
– sequence: 4
  givenname: Pietro P.
  surname: Ciottoli
  fullname: Ciottoli, Pietro P.
  organization: Sapienza, Università di Roma, Department of Mechanical and Aerospace Engineering, Rome, Italy
BookMark eNp9kM1O4zAQxy0EEt3CA3CztOewdpzEznGF9gOpAomPczR1xpUh2K3tFHLbEy-wb7hPsilFIIHg5PHo_xvN_L6QXecdEnLE2THnUn7jsqxULmUuOFeCFXKHTDa9TOWq3H2ppdwnhzHaOSuFEkIyMSGP105jSGBdGuiqB5essRqS9Y6Cg26INlJv6AUOzndtzGCNARbY0jNYWwz__vy9TP4WI432ru-24JiPywADjfc2dNYt6A2mSHvXYlj4zX_tQ8IHOg8It62_dwdkz0AX8fD5nZLrnz-uTn5ns_NfpyffZ5kWZZkyMHVVtLkuai64QaZqBbyet7JGI7AySuVYz1kFpZGyLZkWRWuqWipdaSiYElPydTt3Gfyqx5iaG9-H8c7Y5Kou8jJnXI4pvk3p4GMMaJplsHcQhoazZmO8eWd8ZOQbRtv0pCMFsN2n5PGWjKPX130-Bv4DNXyYEQ
CitedBy_id crossref_primary_10_2514_1_B39700
crossref_primary_10_1016_j_ijheatfluidflow_2024_109531
crossref_primary_10_1007_s10494_023_00521_3
Cites_doi 10.2514/2.6171
10.1007/s10494-015-9645-x
10.1016/j.combustflame.2021.111642
10.1016/0045-7930(94)00032-T
10.1146/annurev.fluid.010908.165248
10.1016/0017-9310(95)00162-3
10.1007/s10494-020-00200-7
10.1016/j.engfailanal.2018.05.019
10.1063/1.858424
10.1016/S0360-1285(01)00017-X
10.1017/S0022112098002870
10.1016/j.combustflame.2017.02.018
10.1016/0045-7825(74)90029-2
10.2514/1.43848
10.2514/3.12980
10.2514/3.62687
10.1016/j.pecs.2009.01.002
10.1016/S0167-6105(00)00026-X
10.2514/6.1992-439
10.1063/1.862514
10.1615/ICHMT.2012.ProcSevIntSympTurbHeatTransfPal.1070
10.2514/3.12826
10.1016/0894-1777(95)00135-2
10.2514/1.26382
10.1016/j.combustflame.2017.09.011
10.1016/j.compfluid.2003.04.001
10.1007/978-3-319-99525-0
10.1016/j.jcp.2019.109079
10.1017/S0022112075001814
10.1146/annurev.fluid.010908.165243
10.1016/j.buildenv.2020.107066
10.1063/1.5089683
10.1016/j.ijthermalsci.2008.03.014
10.1017/S0022112091000101
10.1017/aer.2021.36
10.1103/PhysRevFluids.3.034304
10.1115/1.4026619
10.1080/00102202.2019.1632300
10.1115/1.2904889
10.1007/BF02008202
10.1016/0376-0421(88)90007-3
10.1007/BF01330059
10.2514/6.2023-2148
10.1115/1.4055270
10.1155/2015/657620
10.1016/j.pecs.2012.07.001
10.2514/6.2014-1497
10.2514/6.2020-3882
10.2514/6.2022-3378
10.1007/BF00209508
10.1016/j.fuel.2022.126269
10.1016/j.ijheatfluidflow.2014.08.006
10.1080/13647830.2017.1403653
10.1115/1.4007374
10.1016/j.proci.2004.08.237
10.1115/1.4031439
10.1016/S0360-1285(00)00022-8
10.1017/CBO9780511840531
10.1016/j.ijheatfluidflow.2014.10.005
10.1016/j.combustflame.2020.08.021
10.1007/s10494-019-00072-6
10.1017/S002211209700596X
10.2514/1.J057236
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content
DBID AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
H8D
HCIFZ
L6V
L7M
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1177/17568277231183047
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
Aerospace Database
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1756-8285
EndPage 236
ExternalDocumentID 10_1177_17568277231183047
10.1177_17568277231183047
GroupedDBID .2N
0R~
1~K
29J
31X
31Z
4.4
54M
5VS
AACTG
AAGLT
AAJPV
AAOTM
AAQXI
AASGM
AATAA
AATBZ
AATZT
ABAWP
ABBQA
ABCJG
ABDBF
ABIDT
ABJNI
ABLUO
ABPNF
ABQXT
ABUJY
ACGFS
ACJER
ACLZU
ACOXC
ACROE
ACSIQ
ACUAV
ACUHS
ACUIR
ACXKE
ADBBV
ADDLC
ADEBD
ADNON
ADRRZ
ADVBO
AEDFJ
AENEX
AEPTA
AESZF
AEWDL
AEWHI
AFKRA
AFKRG
AFMOU
AFQAA
AGKLV
AGWFA
AHDMH
AIDUJ
AJUZI
ALMA_UNASSIGNED_HOLDINGS
ANDLU
ARTOV
AUTPY
AUVAJ
AYAKG
B8Z
B94
BBRGL
BCNDV
BDDNI
BENPR
BPACV
CCPQU
CKLRP
DH.
DO-
DV7
EBS
EJD
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
IL9
IPNFZ
J8X
K.F
KQ8
MET
MV1
O9-
OK1
PHGZM
PHGZT
PIMPY
Q83
RIG
ROL
SASJQ
SAUOL
SC5
SCNPE
SFC
SFK
SFT
SGV
SGZ
SPP
SPV
STM
AAYXX
AJGYC
CITATION
7TB
8FD
8FE
8FG
AAPII
ABJCF
ABUWG
AJHME
AJVBE
ARAPS
AZQEC
BGLVJ
DWQXO
FR3
H8D
HCIFZ
L6V
L7M
M7S
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PUEGO
ID FETCH-LOGICAL-c355t-af964d2c49131fe0898a19bd79ef3e6f882e9b06a5f77d50c34df6978c6ca4083
IEDL.DBID 8FG
ISSN 1756-8277
IngestDate Sat Sep 06 07:32:45 EDT 2025
Tue Jul 01 05:20:09 EDT 2025
Thu Apr 24 23:03:32 EDT 2025
Tue Jun 17 22:30:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Aerospace propulsion
uncertainty quantification
computational fluid dynamics
multiphase flows
vortex breakdown
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c355t-af964d2c49131fe0898a19bd79ef3e6f882e9b06a5f77d50c34df6978c6ca4083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6394-5250
OpenAccessLink https://www.proquest.com/docview/2894252017?pq-origsite=%requestingapplication%
PQID 2894252017
PQPubID 4450834
PageCount 19
ParticipantIDs proquest_journals_2894252017
crossref_primary_10_1177_17568277231183047
crossref_citationtrail_10_1177_17568277231183047
sage_journals_10_1177_17568277231183047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231200
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: Brentwood
PublicationTitle International journal of spray and combustion dynamics
PublicationTitleAlternate International Journal of Spray and Combustion Dynamics
PublicationYear 2023
Publisher SAGE Publications
Sage Publications Ltd
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
References Brucker, Althaus 1992; 13
Kurzawska 2021; 59
Choi, Do 2018; 56
Chen, Pereira 1996; 39
Goldberg, Palaniswamy, Batten 2010; 4
Launder, Spalding 1974; 3
Veynante, Vervisch 2002; 28
Jenny, Roekaerts, Beishuizen 2012; 38
Foroutan, Yavuzkurt 2014; 50
Shih, Liou, Shabbir 1995; 24
Palies 2022; 144
Erhard, Moussiopoulos 2000; 88
Huang, Yang 2009; 35
Longo, Bellemans, Derudi 2020; 185
Keller 1995; 33
Mueller, Raman 2018; 187
Elghobashi 1991; 48
Armengol, Le Maître, Vicquelin 2021; 234
Lucca-Negro, O’Doherty 2001; 27
Jalalatian, Tabejamaat, Kashir 2019; 31
Cortesi, Constantine, Magin 2020; 407
Ciottoli, Battista, Malpica Galassi 2021; 106
Rotta 1951; 129
Huete, Nalianda, Pilidis 2021; 125
Yakhot, Orszag, Thangam 1992; 4
Yang, Gui, Xie 2015; 2015
Escudier 1988; 25
Ruith, Chen, Meiburg 2004; 33
Dalla Barba, Picano 2018; 3
Speziale, Gatski 1997; 344
Gosman, Ioannides 1983; 7
Lieuwen, McManus 2003; 19
Giusti, Mastorakos 2019; 103
Balachandar, Eaton 2010; 42
Launder, Reece, Rodi 1975; 68
Samarasinghe, Peluso, Quay 2016; 138
Ciottoli, Lee, Lapenna 2020; 192
Xiao, Hassan, Baurle 2007; 45
Sheen, Chen, Jeng 1996; 12
Liberatori, Battista, Dalla Barba 2023
Hakim, Lacaze, Khalil 2018; 22
Jiang, Campbell 2009; 48
Garg, Leibovich 1979; 22
Keistler, Hassan, Xiao 2009; 25
Battista, Troiani, Picano 2015; 51
Malpica Galassi, Valorani, Najm 2017; 179
Najm 2009; 41
Quante, Bullerdiek, Bube 2023; 333
Marrero-Santiago, Collin-Bastiani, Riber 2020; 222
Billant, Chomaz, Huerre 1998; 376
Lee, Karkkainen 2018; 92
Gokulakrishnan, Ramotowski, Gaines 2008; 130
Trisjono, Pitsch 2015; 95
Ivanova, Noll, Aigner 2013; 135
Huang, Yang 2005; 30
Speziale, Sarkar, Gatski 1991; 227
Dacles-Mariani, Zilliac, Chow 1995; 33
Donzis, Aditya, Sreenivasan 2014; 136
bibr8-17568277231183047
bibr20-17568277231183047
bibr66-17568277231183047
bibr2-17568277231183047
bibr12-17568277231183047
bibr25-17568277231183047
bibr38-17568277231183047
bibr54-17568277231183047
bibr45-17568277231183047
bibr61-17568277231183047
bibr58-17568277231183047
bibr41-17568277231183047
bibr21-17568277231183047
bibr27-17568277231183047
bibr37-17568277231183047
bibr11-17568277231183047
bibr17-17568277231183047
Goldberg UC (bibr68-17568277231183047) 2010; 4
bibr65-17568277231183047
bibr7-17568277231183047
bibr57-17568277231183047
bibr47-17568277231183047
bibr67-17568277231183047
MacKay DJC (bibr19-17568277231183047) 2005
bibr50-17568277231183047
bibr16-17568277231183047
bibr40-17568277231183047
bibr46-17568277231183047
bibr6-17568277231183047
bibr60-17568277231183047
bibr26-17568277231183047
bibr36-17568277231183047
bibr70-17568277231183047
bibr43-17568277231183047
bibr56-17568277231183047
bibr69-17568277231183047
Liberatori J (bibr18-17568277231183047) 2023
bibr30-17568277231183047
bibr10-17568277231183047
bibr28-17568277231183047
bibr15-17568277231183047
bibr5-17568277231183047
bibr35-17568277231183047
bibr51-17568277231183047
bibr22-17568277231183047
bibr64-17568277231183047
bibr55-17568277231183047
bibr31-17568277231183047
bibr48-17568277231183047
bibr24-17568277231183047
bibr62-17568277231183047
bibr4-17568277231183047
bibr14-17568277231183047
bibr34-17568277231183047
bibr44-17568277231183047
bibr52-17568277231183047
bibr42-17568277231183047
bibr32-17568277231183047
Kurzawska P (bibr1-17568277231183047) 2021; 59
bibr3-17568277231183047
bibr13-17568277231183047
bibr49-17568277231183047
bibr39-17568277231183047
bibr59-17568277231183047
bibr23-17568277231183047
bibr29-17568277231183047
bibr33-17568277231183047
bibr63-17568277231183047
bibr9-17568277231183047
bibr53-17568277231183047
References_xml – volume: 179
  start-page: 242
  year: 2017
  end-page: 252
  article-title: Chemical model reduction under uncertainty
  publication-title: Combust Flame
– volume: 59
  start-page: 38
  year: 2021
  end-page: 45
  article-title: Overview of sustainable aviation fuels including emission of particulate matter and harmful gaseous exhaust gas compounds
  publication-title: Transp Res Proc
– volume: 125
  start-page: 1654
  year: 2021
  end-page: 1665
  article-title: Propulsion system integration for a first-generation hydrogen civil airliner?
  publication-title: Aeronaut J
– volume: 344
  start-page: 155
  year: 1997
  end-page: 180
  article-title: Analysis and modelling of anisotropies in the dissipation rate of turbulence
  publication-title: J Fluid Mech
– volume: 12
  start-page: 444
  year: 1996
  end-page: 451
  article-title: Correlation of swirl number for a radial-type swirl generator
  publication-title: Exp Therm Fluid Sci
– volume: 95
  start-page: 231
  year: 2015
  end-page: 259
  article-title: Systematic analysis strategies for the development of combustion models from DNS: A review
  publication-title: Flow Turbul Combust
– volume: 227
  start-page: 245
  year: 1991
  end-page: 272
  article-title: Modelling the pressure-strain correlation of turbulence. An invariant dynamical systems approach
  publication-title: J Fluid Mech
– volume: 144
  start-page: 101007
  year: 2022
  article-title: Hydrogen thermal-powered aircraft combustion and propulsion system
  publication-title: J Eng Gas Turbines Power
– volume: 185
  start-page: 107066
  year: 2020
  article-title: A multi-fidelity framework for the estimation of the turbulent schmidt number in the simulation of atmospheric dispersion
  publication-title: Build Environ
– volume: 130
  start-page: 051501
  year: 2008
  article-title: A novel low NOx lean, premixed, and prevaporized combustion system for liquid fuels
  publication-title: J Eng Gas Turbines Power
– volume: 7
  start-page: 482
  year: 1983
  end-page: 490
  article-title: Aspects of computer simulation of liquid-fueled combustors
  publication-title: J Energy
– volume: 19
  start-page: 721
  year: 2003
  article-title: Combustion dynamics in lean-premixed pre-vaporized gas turbine
  publication-title: J Propuls Power
– volume: 48
  start-page: 322
  year: 2009
  end-page: 330
  article-title: Prandtl/Schmidt number effect on temperature distribution in a generic combustor
  publication-title: Int J Therm Sci
– volume: 39
  start-page: 441
  year: 1996
  end-page: 454
  article-title: Computation of turbulent evaporating sprays with well-specified measurements - A sensitivity study on droplet properties
  publication-title: Int J Heat Mass Transf
– volume: 103
  start-page: 847
  year: 2019
  end-page: 869
  article-title: Turbulent combustion modelling and experiments: Recent trends and developments
  publication-title: Flow Turbul Combust
– volume: 68
  start-page: 537
  year: 1975
  end-page: 566
  article-title: Progress in the development of a reynolds-stress turbulence closure
  publication-title: J Fluid Mech
– volume: 92
  start-page: 182
  year: 2018
  end-page: 194
  article-title: Failure investigation of hydrogen induced cracking of stabilator skin in jet aircraft
  publication-title: Eng Fail Anal
– volume: 138
  start-page: 031502
  year: 2016
  article-title: The three-dimensional structure of swirl-stabilized flames in a lean premixed multinozzle can combustor
  publication-title: J Eng Gas Turbines Power
– volume: 41
  start-page: 35
  year: 2009
  end-page: 52
  article-title: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics
  publication-title: Annu Rev Fluid Mech
– volume: 2015
  start-page: 657620
  year: 2015
  article-title: Anisotropic characteristics of turbulence dissipation in swirling flow: A direct numerical simulation study
  publication-title: Adv Math Phys
– volume: 33
  start-page: 1561
  year: 1995
  end-page: 1568
  article-title: Numerical/Experimental study of a wingtip vortex in the near field
  publication-title: AIAA J
– volume: 222
  start-page: 70
  year: 2020
  end-page: 84
  article-title: On the mechanisms of flame kernel extinction or survival during aeronautical ignition sequences: experimental and numerical analysis
  publication-title: Comb Flame
– volume: 27
  start-page: 431
  year: 2001
  end-page: 481
  article-title: Vortex breakdown: a review
  publication-title: Prog Energy Combust Sci
– volume: 129
  start-page: 547
  year: 1951
  end-page: 572
  article-title: Statistische theorie nichthomogener turbulenz
  publication-title: Zeitschrift für Physik
– volume: 135
  start-page: 011505
  year: 2013
  article-title: A numerical study on the turbulent Schmidt numbers in a jet in crossflow
  publication-title: J Eng Gas Turbines Power
– volume: 24
  start-page: 227
  year: 1995
  end-page: 238
  article-title: A new k- eddy viscosity model for high Reynolds number turbulent flows
  publication-title: Comput Fluids
– volume: 13
  start-page: 339
  year: 1992
  end-page: 349
  article-title: Study of vortex breakdown by particle tracking velocimetry part 1: Bubble-type vortex breakdown
  publication-title: Exp Fluids
– volume: 407
  start-page: 109079
  year: 2020
  article-title: Forward and backward uncertainty quantification with active subspaces: application to hypersonic flows around a cylinder
  publication-title: J Comput Phys
– volume: 376
  start-page: 183
  year: 1998
  end-page: 219
  article-title: Experimental study of vortex breakdown in swirling jets
  publication-title: J Fluid Mech
– volume: 25
  start-page: 1233
  year: 2009
  end-page: 1239
  article-title: Simulation of supersonic combustion in three-dimensional configurations
  publication-title: J Propuls Power
– volume: 38
  start-page: 846
  year: 2012
  end-page: 887
  article-title: Modeling of turbulent dilute spray combustion
  publication-title: Prog Energy Combust Sci
– volume: 234
  start-page: 111642
  year: 2021
  article-title: Bayesian calibration of a methane-air global scheme and uncertainty propagation to flame-vortex interactions
  publication-title: Combust Flame
– year: 2023
  article-title: Direct numerical simulation of vortex breakdown in evaporating dilute sprays
  publication-title: Flow Turbul Combust
– volume: 106
  start-page: 993
  year: 2021
  end-page: 1015
  article-title: Direct numerical simulations of the evaporation of dilute sprays in turbulent swirling jets
  publication-title: Flow Turbul Combust
– volume: 192
  start-page: 1963
  year: 2020
  end-page: 1996
  article-title: Large eddy simulation on the effects of pressure on syngas/Air turbulent nonpremixed jet flames
  publication-title: Combust Sci Technol
– volume: 136
  start-page: 061210
  year: 2014
  article-title: The turbulent Schmidt number
  publication-title: J Fluids Eng
– volume: 22
  start-page: 446
  year: 2018
  end-page: 466
  article-title: Probabilistic parameter estimation in a 2-step chemical kinetics model for n-dodecane jet autoignition
  publication-title: Combust Theory Model
– volume: 33
  start-page: 2280
  year: 1995
  end-page: 2287
  article-title: Thermoacoustic oscillations in combustion chambers of gas turbines
  publication-title: AIAA J
– volume: 56
  start-page: 4910
  year: 2018
  end-page: 4926
  article-title: Modeling swirl decay rate of turbulent flows in annular swirl injectors
  publication-title: AIAA J
– volume: 22
  start-page: 2053
  year: 1979
  end-page: 2064
  article-title: Spectral characteristics of vortex breakdown flowfields
  publication-title: Phys Fluids
– volume: 4
  start-page: 1510
  year: 1992
  article-title: Development of turbulence models for shear flows by a double expansion technique
  publication-title: Phys Fluids A: Fluid Dynamics
– volume: 33
  start-page: 1225
  year: 2004
  end-page: 1250
  article-title: Development of boundary conditions for direct numerical simulations of three-dimensional vortex breakdown phenomena in semi-infinite domains
  publication-title: Comput Fluids
– volume: 3
  start-page: 269
  year: 1974
  end-page: 289
  article-title: The numerical computation of turbulent flows
  publication-title: Comput Methods Appl Mech Eng
– volume: 88
  start-page: 91
  year: 2000
  end-page: 99
  article-title: On a new nonlinear turbulence model for simulating flows around building-shaped structures
  publication-title: J Wind Eng Ind
– volume: 51
  start-page: 78
  year: 2015
  end-page: 87
  article-title: Fractal scaling of turbulent premixed flame fronts: Aaplication to LES
  publication-title: Int J Heat Fluid Flow
– volume: 45
  start-page: 1415
  year: 2007
  end-page: 1423
  article-title: Modeling Scramjet flows with variable turbulent Prandtl and Schmidt numbers
  publication-title: AIAA J
– volume: 28
  start-page: 193
  year: 2002
  end-page: 266
  article-title: Turbulent combustion modeling
  publication-title: Prog Energy Combust Sci
– volume: 35
  start-page: 293
  year: 2009
  end-page: 364
  article-title: Dynamics and stability of lean-premixed swirl-stabilized combustion
  publication-title: Prog Energy Combust Sci
– volume: 3
  start-page: 034304
  year: 2018
  article-title: Clustering and entrainment effects on the evaporation of dilute droplets in a turbulent jet
  publication-title: Phys Rev Fluids
– volume: 4
  start-page: 511
  year: 2010
  end-page: 520
  article-title: Variable turbulent schmidt and prandtl number modeling
  publication-title: Eng Appl Comput Fluid Mech
– volume: 333
  start-page: 126269
  year: 2023
  article-title: Renewable fuel options for aviation – A system-wide comparison of drop-in and non drop-in fuel options
  publication-title: Fuel
– volume: 187
  start-page: 137
  year: 2018
  end-page: 146
  article-title: Model form uncertainty quantification in turbulent combustion simulations: Peer models
  publication-title: Comb Flame
– volume: 50
  start-page: 402
  year: 2014
  end-page: 416
  article-title: A partially-averaged navier–stokes model for the simulation of turbulent swirling flow with vortex breakdown
  publication-title: Int J Heat Fluid Flow
– volume: 31
  start-page: 055105
  year: 2019
  article-title: An experimental study on the effect of swirl number on pollutant formation in propane bluff-body stabilized swirl diffusion flames
  publication-title: Phys Fluids
– volume: 42
  start-page: 111
  year: 2010
  end-page: 133
  article-title: Turbulent dispersed multiphase flow
  publication-title: Annu Rev Fluid Mech
– volume: 25
  start-page: 189
  year: 1988
  end-page: 229
  article-title: Vortex breakdown: observations and explanations
  publication-title: Prog Aerosp Sci
– volume: 48
  start-page: 301
  year: 1991
  end-page: 314
  article-title: Particle-laden turbulent flows: direct simulation and closure models
  publication-title: Appl Sci Res
– volume: 30
  start-page: 1775
  year: 2005
  end-page: 1782
  article-title: Effect of swirl on combustion dynamics in a lean-premixed swirl-stabilized combustor
  publication-title: Proc Combust Inst
– ident: bibr42-17568277231183047
  doi: 10.2514/2.6171
– ident: bibr10-17568277231183047
  doi: 10.1007/s10494-015-9645-x
– ident: bibr23-17568277231183047
  doi: 10.1016/j.combustflame.2021.111642
– ident: bibr53-17568277231183047
  doi: 10.1016/0045-7930(94)00032-T
– ident: bibr24-17568277231183047
  doi: 10.1146/annurev.fluid.010908.165248
– ident: bibr13-17568277231183047
  doi: 10.1016/0017-9310(95)00162-3
– ident: bibr17-17568277231183047
  doi: 10.1007/s10494-020-00200-7
– ident: bibr5-17568277231183047
  doi: 10.1016/j.engfailanal.2018.05.019
– ident: bibr54-17568277231183047
  doi: 10.1063/1.858424
– ident: bibr9-17568277231183047
  doi: 10.1016/S0360-1285(01)00017-X
– ident: bibr34-17568277231183047
  doi: 10.1017/S0022112098002870
– ident: bibr25-17568277231183047
  doi: 10.1016/j.combustflame.2017.02.018
– ident: bibr52-17568277231183047
  doi: 10.1016/0045-7825(74)90029-2
– ident: bibr67-17568277231183047
  doi: 10.2514/1.43848
– ident: bibr41-17568277231183047
  doi: 10.2514/3.12980
– ident: bibr63-17568277231183047
  doi: 10.2514/3.62687
– volume: 59
  start-page: 38
  year: 2021
  ident: bibr1-17568277231183047
  publication-title: Transp Res Proc
– ident: bibr32-17568277231183047
  doi: 10.1016/j.pecs.2009.01.002
– ident: bibr55-17568277231183047
  doi: 10.1016/S0167-6105(00)00026-X
– ident: bibr50-17568277231183047
  doi: 10.2514/6.1992-439
– ident: bibr38-17568277231183047
  doi: 10.1063/1.862514
– ident: bibr48-17568277231183047
  doi: 10.1615/ICHMT.2012.ProcSevIntSympTurbHeatTransfPal.1070
– ident: bibr51-17568277231183047
  doi: 10.2514/3.12826
– ident: bibr45-17568277231183047
  doi: 10.1016/0894-1777(95)00135-2
– ident: bibr66-17568277231183047
  doi: 10.2514/1.26382
– ident: bibr43-17568277231183047
  doi: 10.1016/j.combustflame.2017.09.011
– year: 2023
  ident: bibr18-17568277231183047
  publication-title: Flow Turbul Combust
– ident: bibr44-17568277231183047
  doi: 10.1016/j.compfluid.2003.04.001
– ident: bibr70-17568277231183047
  doi: 10.1007/978-3-319-99525-0
– volume-title: Information Theory, Inference, and Learning Algorithms
  year: 2005
  ident: bibr19-17568277231183047
– ident: bibr22-17568277231183047
  doi: 10.1016/j.jcp.2019.109079
– ident: bibr57-17568277231183047
  doi: 10.1017/S0022112075001814
– ident: bibr14-17568277231183047
  doi: 10.1146/annurev.fluid.010908.165243
– ident: bibr69-17568277231183047
  doi: 10.1016/j.buildenv.2020.107066
– ident: bibr47-17568277231183047
  doi: 10.1063/1.5089683
– ident: bibr62-17568277231183047
  doi: 10.1016/j.ijthermalsci.2008.03.014
– ident: bibr59-17568277231183047
  doi: 10.1017/S0022112091000101
– ident: bibr4-17568277231183047
  doi: 10.1017/aer.2021.36
– ident: bibr16-17568277231183047
  doi: 10.1103/PhysRevFluids.3.034304
– ident: bibr65-17568277231183047
  doi: 10.1115/1.4026619
– ident: bibr30-17568277231183047
  doi: 10.1080/00102202.2019.1632300
– ident: bibr39-17568277231183047
  doi: 10.1115/1.2904889
– ident: bibr12-17568277231183047
  doi: 10.1007/BF02008202
– ident: bibr36-17568277231183047
  doi: 10.1016/0376-0421(88)90007-3
– ident: bibr58-17568277231183047
  doi: 10.1007/BF01330059
– ident: bibr28-17568277231183047
  doi: 10.2514/6.2023-2148
– ident: bibr7-17568277231183047
  doi: 10.1115/1.4055270
– ident: bibr8-17568277231183047
– ident: bibr61-17568277231183047
  doi: 10.1155/2015/657620
– ident: bibr15-17568277231183047
  doi: 10.1016/j.pecs.2012.07.001
– ident: bibr20-17568277231183047
  doi: 10.2514/6.2014-1497
– ident: bibr26-17568277231183047
  doi: 10.2514/6.2020-3882
– ident: bibr40-17568277231183047
– ident: bibr3-17568277231183047
  doi: 10.2514/6.2022-3378
– volume: 4
  start-page: 511
  year: 2010
  ident: bibr68-17568277231183047
  publication-title: Eng Appl Comput Fluid Mech
– ident: bibr37-17568277231183047
  doi: 10.1007/BF00209508
– ident: bibr2-17568277231183047
  doi: 10.1016/j.fuel.2022.126269
– ident: bibr29-17568277231183047
  doi: 10.1016/j.ijheatfluidflow.2014.08.006
– ident: bibr21-17568277231183047
  doi: 10.1080/13647830.2017.1403653
– ident: bibr64-17568277231183047
  doi: 10.1115/1.4007374
– ident: bibr31-17568277231183047
  doi: 10.1016/j.proci.2004.08.237
– ident: bibr33-17568277231183047
  doi: 10.1115/1.4031439
– ident: bibr35-17568277231183047
  doi: 10.1016/S0360-1285(00)00022-8
– ident: bibr56-17568277231183047
  doi: 10.1017/CBO9780511840531
– ident: bibr49-17568277231183047
  doi: 10.1016/j.ijheatfluidflow.2014.10.005
– ident: bibr6-17568277231183047
  doi: 10.1016/j.combustflame.2020.08.021
– ident: bibr27-17568277231183047
– ident: bibr11-17568277231183047
  doi: 10.1007/s10494-019-00072-6
– ident: bibr60-17568277231183047
  doi: 10.1017/S002211209700596X
– ident: bibr46-17568277231183047
  doi: 10.2514/1.J057236
SSID ssib053833703
ssj0000783604
Score 2.3067956
Snippet The computational fluid dynamics-based design of next-generation aeronautical combustion chambers is challenging due to many geometrical and operational...
SourceID proquest
crossref
sage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 218
SubjectTerms Combustion chambers
Computational fluid dynamics
Confidence intervals
Configuration management
Direct numerical simulation
Dispersion
Fluid flow
Mathematical models
Navier-Stokes equations
Numerical models
Phenomenology
Polynomials
Preliminary designs
Reynolds averaged Navier-Stokes method
Schmidt number
Spatial distribution
Swirling
Uncertainty
Vortex breakdown
Vortices
Title Uncertainty quantification analysis of Reynolds-averaged Navier–Stokes simulation of spray swirling jets undergoing vortex breakdown
URI https://journals.sagepub.com/doi/full/10.1177/17568277231183047
https://www.proquest.com/docview/2894252017
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF7R5NJLKZSqgRDtAQmpkoUd2_s4IagaKioiGoiUW7TeR9U22EnsIHLriT_Qf8gvYcbZNJGq9mTtem1Lnpmdb3ZehLxTToQZ7I1BV3ITJBownGIoVzJywsZdxwUmCn_rs7Nh8nWUjvyBW-nDKtd7Yr1Rm0LjGfkHMAyAvUBd8Y_TWYBdo9C76lto7JBmBJoG-Vz0vqz5CWQ5jrn3MtY7c52yUDuaecoC0eXcOzqxBhPO4RQgHuDzEBuubKuqDf7cCvmqtVBvn-x5-Eg_rej9gjyz-Uvy3ENJ6gW1PCB_h3Ctnf3Vks4WahUSVFOBKl-HhBaODuwyLyamDBSwNHzP0L5CTfnv9u5HVdzYkpZXv3yHL1xfTudqSbHnE6ax02tblRTT0OaXBY5_Y-juHwpmtroxYN-_IsPe6c-Ts8C3XAg0AI8qUE6yxHR1IqM4cjYUUqhIZoZL62LLHOBxK7OQqdRxbtJQx4lxDCxRzbRKAM4dkkZe5PaIUBOZKLWpZYKLRHItHZgyXGXcpoonTrRIuP67Y-3rkWNbjMk48iXIHxCkRY7vH5muinE8tbi9JtnYy2U53nBRi7xHMm5uPfqi10-_6A3ZxRb0qxCXNmlU84V9C0Clyjo1N3ZI8_Np__sARucX4j9OV-UI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEutLzUpQV8ACEhReThxPEBIR6ttrRdodKVegtObCNoSbablLK3nvgD_A9-FL-EmcRhKyF66ylK4jhS5vVN5gXwWNnUz1E3eqEU2uMFYjiVkFzJwKYmCq1IqVB4b5yMJvzdYXy4BL_6WhhKq-x1YquodVXQP_Ln6Bgge6G5Ei-nJx5NjaLoaj9Co2OLHTM_Q5etfrH9Fun7JAy3Ng_ejDw3VcAr0LY2nrIy4TosuAyiwBo_lakKZK6FNDYyiUXIaWTuJyq2QujYLyKubYLOVpEUiiNiwX2vwTKnitYBLL_eHL_f7zkYtUcUCRfXbG1BWyTRhrZFnHhpKIQLrVLXJ7pGlxBjoWT5NOLlonFcIN4LSWat3dtahZsOsLJXHYfdgiVT3oYVB16ZUw31HfgxwWObXtDM2cmp6pKQWroz5TqfsMqyfTMvq2NdewqFCN-n2ViRbf59_vNDUx2ZmtWfv7qZYrS-ns7UnNGUKSqcZ19MUzMqfJt9quj8GyULf2fo2KsjXZ2Vd2FyJeS4B4OyKs0aMB3oIDaxSVKRcikKadF5EioXJlaC23QIfv91s8J1QKdBHMdZ4Jqe_0OQITz7-8i0a_9x2eKNnmSZ0wR1tuDbITwlMi5u_Xej-5dv9Aiujw72drPd7fHOOtwIEXZ1CTYbMGhmp-YBwqQmf-h4k8HHqxaHP95MIPc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+quantification+analysis+of+Reynolds-averaged+Navier%E2%80%93Stokes+simulation+of+spray+swirling+jets+undergoing+vortex+breakdown&rft.jtitle=International+journal+of+spray+and+combustion+dynamics&rft.au=Liberatori%2C+Jacopo&rft.au=Galassi%2C+Riccardo+M.&rft.au=Valorani%2C+Mauro&rft.au=Ciottoli%2C+Pietro+P.&rft.date=2023-12-01&rft.pub=SAGE+Publications&rft.issn=1756-8277&rft.eissn=1756-8285&rft.volume=15&rft.issue=4&rft.spage=218&rft.epage=236&rft_id=info:doi/10.1177%2F17568277231183047&rft.externalDocID=10.1177_17568277231183047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-8277&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-8277&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-8277&client=summon