Pathological brain detection based on wavelet entropy and Hu moment invariants
Abstract With the aim of developing an accurate pathological brain detection system, we proposed a novel automatic computer-aided diagnosis (CAD) to detect pathological brains from normal brains obtained by magnetic resonance imaging (MRI) scanning. The problem still remained a challenge for technic...
Saved in:
Published in | Bio-medical materials and engineering Vol. 26; no. 1_suppl; pp. S1283 - S1290 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
With the aim of developing an accurate pathological brain detection system, we proposed a novel automatic computer-aided diagnosis (CAD) to detect pathological brains from normal brains obtained by magnetic resonance imaging (MRI) scanning. The problem still remained a challenge for technicians and clinicians, since MR imaging generated an exceptionally large information dataset. A new two-step approach was proposed in this study. We used wavelet entropy (WE) and Hu moment invariants (HMI) for feature extraction, and the generalized eigenvalue proximal support vector machine (GEPSVM) for classification. To further enhance classification accuracy, the popular radial basis function (RBF) kernel was employed. The 10 runs of k-fold stratified cross validation result showed that the proposed “WE + HMI + GEPSVM + RBF” method was superior to existing methods w.r.t. classification accuracy. It obtained the average classification accuracies of 100%, 100%, and 99.45% over Dataset-66, Dataset-160, and Dataset-255, respectively. The proposed method is effective and can be applied to realistic use. |
---|---|
AbstractList | With the aim of developing an accurate pathological brain detection system, we proposed a novel automatic computer-aided diagnosis (CAD) to detect pathological brains from normal brains obtained by magnetic resonance imaging (MRI) scanning. The problem still remained a challenge for technicians and clinicians, since MR imaging generated an exceptionally large information dataset. A new two-step approach was proposed in this study. We used wavelet entropy (WE) and Hu moment invariants (HMI) for feature extraction, and the generalized eigenvalue proximal support vector machine (GEPSVM) for classification. To further enhance classification accuracy, the popular radial basis function (RBF) kernel was employed. The 10 runs of k-fold stratified cross validation result showed that the proposed "WE + HMI + GEPSVM + RBF" method was superior to existing methods w.r.t. classification accuracy. It obtained the average classification accuracies of 100%, 100%, and 99.45% over Dataset-66, Dataset-160, and Dataset-255, respectively. The proposed method is effective and can be applied to realistic use. Abstract With the aim of developing an accurate pathological brain detection system, we proposed a novel automatic computer-aided diagnosis (CAD) to detect pathological brains from normal brains obtained by magnetic resonance imaging (MRI) scanning. The problem still remained a challenge for technicians and clinicians, since MR imaging generated an exceptionally large information dataset. A new two-step approach was proposed in this study. We used wavelet entropy (WE) and Hu moment invariants (HMI) for feature extraction, and the generalized eigenvalue proximal support vector machine (GEPSVM) for classification. To further enhance classification accuracy, the popular radial basis function (RBF) kernel was employed. The 10 runs of k-fold stratified cross validation result showed that the proposed “WE + HMI + GEPSVM + RBF” method was superior to existing methods w.r.t. classification accuracy. It obtained the average classification accuracies of 100%, 100%, and 99.45% over Dataset-66, Dataset-160, and Dataset-255, respectively. The proposed method is effective and can be applied to realistic use. |
Author | Zhang, Yudong Wang, Shuihua Phillips, Preetha Sun, Ping |
Author_xml | – sequence: 1 givenname: Yudong surname: Zhang fullname: Zhang, Yudong email: zhangyudong@njnu.edu.cn organization: School of Natural Sciences and Mathematics – sequence: 2 givenname: Shuihua surname: Wang fullname: Wang, Shuihua email: wangshuihua@njnu.edu.cn organization: School of Natural Sciences and Mathematics – sequence: 3 givenname: Ping surname: Sun fullname: Sun, Ping organization: School of Natural Sciences and Mathematics – sequence: 4 givenname: Preetha surname: Phillips fullname: Phillips, Preetha organization: School of Natural Sciences and Mathematics |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26405888$$D View this record in MEDLINE/PubMed |
BookMark | eNptkMtOwzAQRS0EouWx4QOQdyCkgB0njr0EVB5SeSxgbdnOtAQldrEdUP-eoLYb1NWMRudeac4B2nXeAUInlFyynLGrm6dJRkta5HwHjamoRMY4lbtoTGQps1wKOUIHMX4SQgrO2D4a5bwgpRBijJ5fdfrwrZ83VrfYBN04XEMCmxrvsNERajwsP_obWkgYXAp-scTa1fihx53vhgtu3LcOjXYpHqG9mW4jHK_nIXq_m7zdPmTTl_vH2-tpZllZpkzn0gjIK2lpTY0pZgUwQQ0HEBKY0ZJyy1lhagHSEk3lzIClBZdAS7DcsEN0vupdBP_VQ0yqa6KFttUOfB8VraggVcWJGNDTNdqbDmq1CE2nw1JtHAwAWQE2-BgDzJRtkv77Pw06WkWJ-tOsBs1qpXmIXPyLbFq3wmcrOOo5qE_fBzeo2Ub-AgGXiXw |
CitedBy_id | crossref_primary_10_1515_bmt_2021_0044 crossref_primary_10_3390_s23177614 crossref_primary_10_1007_s11042_016_4242_0 crossref_primary_10_1109_ACCESS_2016_2620996 crossref_primary_10_3233_JIFS_233883 crossref_primary_10_1007_s00034_018_0755_2 crossref_primary_10_1080_0952813X_2015_1132274 crossref_primary_10_3390_e17127877 crossref_primary_10_3390_jimaging9030070 crossref_primary_10_1016_j_asoc_2020_106266 crossref_primary_10_1109_ACCESS_2017_2736014 crossref_primary_10_3390_e18030077 crossref_primary_10_1007_s10916_016_0525_2 crossref_primary_10_3390_info7010010 crossref_primary_10_3390_app6060169 crossref_primary_10_1007_s00779_019_01294_1 crossref_primary_10_1109_ACCESS_2016_2628407 crossref_primary_10_1007_s11227_022_04420_8 crossref_primary_10_1177_0037549716629227 crossref_primary_10_1080_03772063_2020_1792360 crossref_primary_10_1016_j_neucom_2017_12_030 crossref_primary_10_1145_3492865 crossref_primary_10_1109_ACCESS_2024_3519806 crossref_primary_10_1002_asi_23977 crossref_primary_10_1186_s40064_015_1523_4 crossref_primary_10_1016_j_bbe_2019_08_005 crossref_primary_10_3390_s17010018 crossref_primary_10_1111_exsy_12146 crossref_primary_10_1093_mnras_stad3233 crossref_primary_10_1007_s11042_016_4283_4 crossref_primary_10_1007_s11042_021_11169_4 crossref_primary_10_1016_j_neucom_2016_02_061 crossref_primary_10_1109_ACCESS_2016_2611530 crossref_primary_10_1007_s11042_016_3958_1 crossref_primary_10_1111_coin_70007 crossref_primary_10_3390_math10142503 crossref_primary_10_1109_TII_2020_3007152 crossref_primary_10_1007_s10845_016_1274_2 crossref_primary_10_1007_s11630_020_1375_2 crossref_primary_10_1109_ACCESS_2020_3015285 crossref_primary_10_1117_1_JEI_26_2_023007 crossref_primary_10_1016_j_compbiomed_2018_03_008 crossref_primary_10_1016_j_eswa_2017_06_038 crossref_primary_10_3389_fncom_2016_00106 crossref_primary_10_1007_s00500_018_3602_2 crossref_primary_10_1007_s11042_021_10937_6 crossref_primary_10_1007_s10278_023_00828_7 crossref_primary_10_1007_s11042_016_3719_1 crossref_primary_10_3390_e17106663 crossref_primary_10_3390_s16010054 crossref_primary_10_3389_fimmu_2023_1140395 crossref_primary_10_1080_02533839_2019_1584764 crossref_primary_10_1007_s13369_020_04758_2 crossref_primary_10_1007_s11042_017_5281_x crossref_primary_10_1007_s11042_016_4171_y |
ContentType | Journal Article |
Copyright | IOS Press and the authors. |
Copyright_xml | – notice: IOS Press and the authors. |
DBID | AFRWT AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.3233/BME-151426 |
DatabaseName | Sage Journals GOLD Open Access 2024 CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: AFRWT name: Sage Journals GOLD Open Access 2024 url: http://journals.sagepub.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1878-3619 |
EndPage | S1290 |
ExternalDocumentID | 26405888 10_3233_BME_151426 10.3233_BME-151426 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K 0R~ 1B1 23N 36B 4.4 53G 5GY AAEJI AAGLT AAPII AAQXI ABDBF ABJNI ABJZC ABUBZ ABUJY ACGFS ACIWK ACPQW ACPRK ACUHS ADEBD ADZMO AEJQA AENEX AFRAH AFRHK AFRWT AFYTF AHDMH AJGYC AJNRN ALIRC ALMA_UNASSIGNED_HOLDINGS APPIZ ARTOV CAG COF DU5 EAD EAP EBD EBS EJD EMB EMK EMOBN EPL EST ESX F5P H13 HZ~ I-F IHE IL9 IOS J8X M41 MET MIO MK~ ML~ MV1 NGNOM NQ- O9- P2P Q1R ROL RPZ SAUOL SCNPE SFC SV3 TUS AAYXX CITATION AAFNC CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c355t-a29b8e279c1d1bb4f4e381b6ee89e3ba916c634bd8e9c0a19fbec1469e15ec6b3 |
IEDL.DBID | AFRWT |
ISSN | 0959-2989 |
IngestDate | Thu Jul 10 23:49:35 EDT 2025 Mon Jul 21 05:50:01 EDT 2025 Wed Aug 13 23:55:28 EDT 2025 Thu Apr 24 23:02:13 EDT 2025 Sun Aug 10 06:46:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1_suppl |
Keywords | magnetic resonance imaging radial basis function support vector machine computer-aided diagnosis Wavelet entropy Hu’s moment invariant |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC 4.0) License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c355t-a29b8e279c1d1bb4f4e381b6ee89e3ba916c634bd8e9c0a19fbec1469e15ec6b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://journals.sagepub.com/doi/full/10.3233/BME-151426?utm_source=summon&utm_medium=discovery-provider |
PMID | 26405888 |
PQID | 1718077608 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_1718077608 pubmed_primary_26405888 crossref_citationtrail_10_3233_BME_151426 crossref_primary_10_3233_BME_151426 sage_journals_10_3233_BME_151426 |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: Netherlands |
PublicationTitle | Bio-medical materials and engineering |
PublicationTitleAlternate | Biomed Mater Eng |
PublicationYear | 2015 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
SSID | ssj0004633 |
Score | 2.425633 |
Snippet | Abstract
With the aim of developing an accurate pathological brain detection system, we proposed a novel automatic computer-aided diagnosis (CAD) to detect... With the aim of developing an accurate pathological brain detection system, we proposed a novel automatic computer-aided diagnosis (CAD) to detect pathological... |
SourceID | proquest pubmed crossref sage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | S1283 |
SubjectTerms | Algorithms Brain - pathology Brain Diseases - pathology Entropy Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Magnetic Resonance Imaging - methods Pattern Recognition, Automated - methods Reproducibility of Results Sensitivity and Specificity Support Vector Machine Wavelet Analysis |
Title | Pathological brain detection based on wavelet entropy and Hu moment invariants |
URI | https://journals.sagepub.com/doi/full/10.3233/BME-151426 https://www.ncbi.nlm.nih.gov/pubmed/26405888 https://www.proquest.com/docview/1718077608 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ba9RAFD7UFsQ-iFar66WM6IsP02Yyucw8SVe7LMIWkRb7FuZylgputrSJ0n_vOZtkaW3BtxCGTDiX-c6cK8CHHH2ZRF9Ka5SWhLdG-qjmUqWlConH0kYuTp4dF9PT7OtZfrYB50MtTE_Bq31Oq6I_Wh3WrN3sjWYV16nWB-PZkSSoInT51DaLqvNzD-M0-A0HptsFx7QDZ0Jey6Gu7QFspWWRkwpvHU6-_zi5UUM5jJ23kruSd61M_9ntNnjdsUhvZYOtAGryBB73lqU47EThKWxgvQPbN_oN7sDDWR9JfwbH31yzPviE50ERImKzSsyqBWNbFPTwx_FgikawD3h5cS1cHcW0FQvu29CIn_VvumpzJs1zOJ0cnXyeyn62ggxkYTTSpdYbTEsbVFTeZ_MMCbt9gWgsau_IagyFznw0aEPilJ0Ts-lUtahyDIXXu7BZL2t8CaKIGBPMMz3XJsPCWO9IlUMMRsdEuWIEHweiVaFvPM7zL35VdAFhAldE4Koj8Ajer9dedO027l31bqB9RdrAIQ5X47K9qhRBLTcoSswIXnRMWX-HTL8kpwv_CARzqRpE7Z4NXv1_yWt4RLZT3nlj3sBmc9niW7JPGr9HojX-Mp7s9SL2FyxC5Gg |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LTxsxEB6VRCpwQC1QSF-4ggsH03W8D_sIFVFKkwihILit_JhISLCJYAPi3zPObiJeUm978HpXM7a_z_bMNwB7Cdos8jbjWgnJCW8Vt16MuGhnwkUWM-1DcnJ_kHbP45PL5LLO4w65MLUF7w5CWBX90Wyxrme3bEv5-6h_zAmlCFiWoBkHuGpA87BzdjF8lg45ryCveRAYr1RJX739EofekMsXgV0zrOl8grWaJLLDyquf4QMW67D6TDpwHT7260vxDRicmnKxhjEbaj4wj-UsxqpgAaY8o4cHE2pMlCwc544nj8wUnnWn7CZIMJTsqrinXXMIitmE887x8E-X12USuCOyUHLT1lZhO9NOeGFtPIqRYNimiEqjtIYIoEtlbL1C7SIj9Ij8RgukRpGgS638Ao1iXOA2sNSjjzCJ5UiqGFOlraFZ6bxT0kfCpC3Ynxstd7WGeChlcZ3TXiIYOCcD55WBW7C7aDuplDPebfVrbvucBna4rTAFjqd3uSDUDFpDkWrBVuWURT_E4qKE9u4tYMFL-XzUvPOBr_9vsgPL3WG_l_f-Dv59gxWiREl1yPIdGuXtFH8Q7Sjtz3qYPQF94dBf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LTxsxEB6VICF6qCh9kD6N6KUHt-t4H_YRClGgTYQqULmt_JiVkGATlU2r_vvOZDcRtEjc9uD1rmbG_j7b428APmToiyT6QlqjtCS8NdJHVUk1KFRIPBY28uXk8SQfnacnF9lFt3XBd2E6C9584rQq-qPFZM2jexYrHuF6oPXng_GRJKQicFmD9TQlUOzB-v7w-4-zW1cil1XkrWSR8VaZ9J-372LRfwTzTnLXAm-GW_CkI4piv_XsU3iE9TY8viUfuA0b4-5g_BlMTl2zmseE57oPImKzyLOqBUNVFPTw23GdiUbwlu509ke4OorRXFyzDEMjLutftHLmxJjncD48Ovsykl2pBBmIMDTSDaw3OChsUFF5n1YpEhT7HNFY1N4RCQy5Tn00aEPilK3IdzRJWlQZhtzrF9CrpzXugMgjxgSzVFfapJgb6x2NzBCD0TFRLu_Dx6XRytDpiHM5i6uS1hNs4JIMXLYG7sPequ2sVc-4t9Xu0vYlBTefWLgap_ObUhFyst5QYvrwsnXKqh9icklG6_c-CPZSuYycez7w6uEm72Hj9HBYfjuefH0Nm8SKsnaf5Q30mp9zfEvMo_Hvuij7C6ob0W8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathological+brain+detection+based+on+wavelet+entropy+and+Hu+moment+invariants&rft.jtitle=Bio-medical+materials+and+engineering&rft.au=Zhang%2C+Yudong&rft.au=Wang%2C+Shuihua&rft.au=Sun%2C+Ping&rft.au=Phillips%2C+Preetha&rft.date=2015-01-01&rft.eissn=1878-3619&rft.volume=26+Suppl+1&rft.spage=S1283&rft.epage=S1290&rft_id=info:doi/10.3233%2FBME-151426&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-2989&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-2989&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-2989&client=summon |