A survey on computational models for predicting protein–protein interactions

Proteins interact with each other to play critical roles in many biological processes in cells. Although promising, laboratory experiments usually suffer from the disadvantages of being time-consuming and labor-intensive. The results obtained are often not robust and considerably uncertain. Due rece...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 22; no. 5
Main Authors Hu, Lun, Wang, Xiaojuan, Huang, Yu-An, Hu, Pengwei, You, Zhu-Hong
Format Journal Article
LanguageEnglish
Published England 02.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Proteins interact with each other to play critical roles in many biological processes in cells. Although promising, laboratory experiments usually suffer from the disadvantages of being time-consuming and labor-intensive. The results obtained are often not robust and considerably uncertain. Due recently to advances in high-throughput technologies, a large amount of proteomics data has been collected and this presents a significant opportunity and also a challenge to develop computational models to predict protein–protein interactions (PPIs) based on these data. In this paper, we present a comprehensive survey of the recent efforts that have been made towards the development of effective computational models for PPI prediction. The survey introduces the algorithms that can be used to learn computational models for predicting PPIs, and it classifies these models into different categories. To understand their relative merits, the paper discusses different validation schemes and metrics to evaluate the prediction performance. Biological databases that are commonly used in different experiments for performance comparison are also described and their use in a series of extensive experiments to compare different prediction models are discussed. Finally, we present some open issues in PPI prediction for future work. We explain how the performance of PPI prediction can be improved if these issues are effectively tackled.
AbstractList Proteins interact with each other to play critical roles in many biological processes in cells. Although promising, laboratory experiments usually suffer from the disadvantages of being time-consuming and labor-intensive. The results obtained are often not robust and considerably uncertain. Due recently to advances in high-throughput technologies, a large amount of proteomics data has been collected and this presents a significant opportunity and also a challenge to develop computational models to predict protein-protein interactions (PPIs) based on these data. In this paper, we present a comprehensive survey of the recent efforts that have been made towards the development of effective computational models for PPI prediction. The survey introduces the algorithms that can be used to learn computational models for predicting PPIs, and it classifies these models into different categories. To understand their relative merits, the paper discusses different validation schemes and metrics to evaluate the prediction performance. Biological databases that are commonly used in different experiments for performance comparison are also described and their use in a series of extensive experiments to compare different prediction models are discussed. Finally, we present some open issues in PPI prediction for future work. We explain how the performance of PPI prediction can be improved if these issues are effectively tackled.
Proteins interact with each other to play critical roles in many biological processes in cells. Although promising, laboratory experiments usually suffer from the disadvantages of being time-consuming and labor-intensive. The results obtained are often not robust and considerably uncertain. Due recently to advances in high-throughput technologies, a large amount of proteomics data has been collected and this presents a significant opportunity and also a challenge to develop computational models to predict protein-protein interactions (PPIs) based on these data. In this paper, we present a comprehensive survey of the recent efforts that have been made towards the development of effective computational models for PPI prediction. The survey introduces the algorithms that can be used to learn computational models for predicting PPIs, and it classifies these models into different categories. To understand their relative merits, the paper discusses different validation schemes and metrics to evaluate the prediction performance. Biological databases that are commonly used in different experiments for performance comparison are also described and their use in a series of extensive experiments to compare different prediction models are discussed. Finally, we present some open issues in PPI prediction for future work. We explain how the performance of PPI prediction can be improved if these issues are effectively tackled.Proteins interact with each other to play critical roles in many biological processes in cells. Although promising, laboratory experiments usually suffer from the disadvantages of being time-consuming and labor-intensive. The results obtained are often not robust and considerably uncertain. Due recently to advances in high-throughput technologies, a large amount of proteomics data has been collected and this presents a significant opportunity and also a challenge to develop computational models to predict protein-protein interactions (PPIs) based on these data. In this paper, we present a comprehensive survey of the recent efforts that have been made towards the development of effective computational models for PPI prediction. The survey introduces the algorithms that can be used to learn computational models for predicting PPIs, and it classifies these models into different categories. To understand their relative merits, the paper discusses different validation schemes and metrics to evaluate the prediction performance. Biological databases that are commonly used in different experiments for performance comparison are also described and their use in a series of extensive experiments to compare different prediction models are discussed. Finally, we present some open issues in PPI prediction for future work. We explain how the performance of PPI prediction can be improved if these issues are effectively tackled.
Author Hu, Pengwei
Wang, Xiaojuan
You, Zhu-Hong
Hu, Lun
Huang, Yu-An
Author_xml – sequence: 1
  givenname: Lun
  surname: Hu
  fullname: Hu, Lun
  organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 830011, Urumqi, China
– sequence: 2
  givenname: Xiaojuan
  surname: Wang
  fullname: Wang, Xiaojuan
  organization: School of Computer Science and Technology, Wuhan University of Technology, 430070, Wuhan, China
– sequence: 3
  givenname: Yu-An
  surname: Huang
  fullname: Huang, Yu-An
  organization: College of Computer Science and Software Engineering, Shenzhen University, 518060, Shenzhen, China
– sequence: 4
  givenname: Pengwei
  surname: Hu
  fullname: Hu, Pengwei
  organization: IBM Research, 100193, Beijing, China
– sequence: 5
  givenname: Zhu-Hong
  surname: You
  fullname: You, Zhu-Hong
  organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 830011, Urumqi, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33693513$$D View this record in MEDLINE/PubMed
BookMark eNptkMtKxDAUhoOMOBdduZcuBalz0tza5TB4A9GNrkuSphJpkzFphdn5Dr6hT2KHqS7E1fkPfP_h8M3RxHlnEDrFcImhIEtl1VIpqYDwAzTDVIiUAqOTXeYiZZSTKZrH-AqQgcjxEZoSwgvCMJmhh1US-_Butol3ifbtpu9kZ72TTdL6yjQxqX1INsFUVnfWvQzRd8a6r4_PMSXWdSZIvWvFY3RYyyaak3Eu0PP11dP6Nr1_vLlbr-5TTRjr0oIWWBosckYZYFyoCgAXlQbF85xJyIXQggLWODdcYqWpwpnSeQXDJmtGFuh8f3d44q03sStbG7VpGumM72OZMQAiMuB8QM9GtFetqcpNsK0M2_LHwQBc7AEdfIzB1L8IhnJnuBwMl6PhgcZ_aG33yrogbfNv5xsNLoEr
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_108066
crossref_primary_10_1051_bioconf_20236101021
crossref_primary_10_1016_j_compbiomed_2024_108623
crossref_primary_10_1093_bib_bbad079
crossref_primary_10_1093_bioinformatics_btad662
crossref_primary_10_1093_bib_bbad034
crossref_primary_10_1093_bib_bbac021
crossref_primary_10_1093_bib_bbac384
crossref_primary_10_1093_bib_bbad076
crossref_primary_10_1093_bib_bbac184
crossref_primary_10_1186_s12864_024_10361_8
crossref_primary_10_1186_s12859_023_05592_7
crossref_primary_10_1186_s12859_023_05594_5
crossref_primary_10_1186_s12864_024_10251_z
crossref_primary_10_1186_s12864_022_08687_2
crossref_primary_10_1186_s12864_024_10299_x
crossref_primary_10_1109_TNNLS_2023_3273355
crossref_primary_10_1016_j_mcpro_2023_100607
crossref_primary_10_1016_j_gene_2025_149228
crossref_primary_10_3389_fgene_2024_1441558
crossref_primary_10_1186_s12859_023_05178_3
crossref_primary_10_1080_14789450_2024_2337004
crossref_primary_10_3389_fgene_2021_744334
crossref_primary_10_1109_TNSE_2021_3109880
crossref_primary_10_1038_s41598_024_72558_x
crossref_primary_10_1142_S0219720022500238
crossref_primary_10_1186_s12859_022_04999_y
crossref_primary_10_1042_BCJ20220380
crossref_primary_10_1038_s41598_021_03182_2
crossref_primary_10_1186_s12859_022_05004_2
crossref_primary_10_1186_s12859_022_04766_z
crossref_primary_10_1016_j_cmpb_2023_107955
crossref_primary_10_1021_jacs_2c11098
crossref_primary_10_1016_j_compbiomed_2023_106807
crossref_primary_10_1109_TBDATA_2024_3375149
crossref_primary_10_1093_bib_bbad020
crossref_primary_10_1016_j_jtbi_2024_111850
crossref_primary_10_1093_bib_bbab515
crossref_primary_10_1186_s12859_023_05164_9
crossref_primary_10_1093_bib_bbab557
crossref_primary_10_2174_0929867330666230403100008
crossref_primary_10_2298_GSGD2402167D
crossref_primary_10_1109_TMBMC_2023_3345145
crossref_primary_10_1109_TCBB_2022_3196336
crossref_primary_10_1186_s12859_022_04910_9
crossref_primary_10_1007_s41109_022_00508_5
crossref_primary_10_1016_j_csbj_2022_08_070
crossref_primary_10_1007_s12539_022_00501_7
crossref_primary_10_3390_math11183990
crossref_primary_10_1186_s12911_023_02229_w
crossref_primary_10_1007_s11227_025_07076_2
crossref_primary_10_1093_bioinformatics_btae012
crossref_primary_10_1109_TCBB_2024_3381825
crossref_primary_10_1186_s12859_022_05096_w
crossref_primary_10_1109_TCBB_2021_3095947
crossref_primary_10_1186_s12859_024_06021_z
crossref_primary_10_1007_s42600_023_00273_z
crossref_primary_10_1038_s41467_024_46808_5
crossref_primary_10_1093_bib_bbac159
crossref_primary_10_1093_bioinformatics_btad174
crossref_primary_10_1371_journal_pone_0289966
crossref_primary_10_1016_j_jconrel_2023_12_050
crossref_primary_10_1038_s41467_023_43526_2
crossref_primary_10_3390_molecules28135169
crossref_primary_10_1093_bib_bbad160
crossref_primary_10_1038_s42003_023_05718_w
crossref_primary_10_1186_s12870_024_05580_w
crossref_primary_10_1186_s12859_022_05069_z
crossref_primary_10_1109_ACCESS_2022_3178091
crossref_primary_10_1016_j_compbiomed_2021_104889
crossref_primary_10_1109_JAS_2021_1004198
crossref_primary_10_1016_j_csbj_2024_06_032
crossref_primary_10_3390_ijms252212348
crossref_primary_10_1186_s12859_022_05062_6
crossref_primary_10_1007_s12539_022_00512_4
crossref_primary_10_1109_TCBB_2023_3339189
crossref_primary_10_1186_s12859_023_05216_0
crossref_primary_10_1016_j_asoc_2023_110153
crossref_primary_10_1038_s42003_022_03617_0
crossref_primary_10_1093_bib_bbac106
crossref_primary_10_1109_TCBB_2022_3196394
crossref_primary_10_1007_s00425_024_04543_7
crossref_primary_10_1038_s42003_023_04462_5
crossref_primary_10_1007_s10489_022_03733_8
crossref_primary_10_1186_s12859_023_05140_3
crossref_primary_10_1016_j_inffus_2023_101909
crossref_primary_10_3389_fmicb_2021_735329
crossref_primary_10_1016_j_ijbiomac_2025_140096
crossref_primary_10_1002_rmv_2517
crossref_primary_10_1109_TCBB_2023_3273567
Cites_doi 10.1093/nar/gky1049
10.1016/j.sbi.2017.02.005
10.1126/science.1158684
10.1016/j.patrec.2005.10.010
10.1093/nar/gky949
10.1023/A:1010933404324
10.1016/j.physa.2015.10.016
10.1038/s41467-019-09177-y
10.1093/nar/gkg056
10.1109/BIBM.2017.8217632
10.1093/nar/29.1.199
10.1016/j.compbiolchem.2017.03.009
10.1109/TNB.2015.2429672
10.1016/j.neucom.2014.05.072
10.1016/j.sbi.2005.01.008
10.1038/ng776
10.1007/978-1-4939-7033-9_20
10.1016/S0968-0004(98)01274-2
10.1002/prot.25280
10.1038/35001009
10.1186/1471-2105-15-213
10.1093/nar/gkh039
10.1145/1143844.1143874
10.3390/molecules23081923
10.1093/bioinformatics/btp536
10.1007/978-3-030-60796-8_34
10.1093/bib/bby088
10.1016/j.jmb.2013.01.014
10.1016/j.datak.2013.05.008
10.1186/1471-2105-11-56
10.1016/j.crci.2015.12.004
10.1016/S0968-0004(00)01726-6
10.3389/fgene.2019.00535
10.1126/science.290.5500.2319
10.1093/nar/gkt1115
10.1021/pr100618t
10.1126/science.181.4096.223
10.1093/bioinformatics/btq510
10.1038/nrg3414
10.1093/protein/14.9.609
10.1093/bioinformatics/bty573
10.1093/nar/gkw1108
10.1093/nar/gkt1079
10.1385/1-59259-210-4:123
10.1093/nar/30.5.1163
10.1109/TKDE.2019.2914200
10.1093/bioinformatics/btg070
10.1016/0005-2795(75)90109-9
10.1007/BF00994018
10.1186/1751-0473-5-8
10.1038/nmeth968
10.1093/nar/27.1.39
10.1038/47056
10.1073/pnas.96.8.4285
10.1093/bioinformatics/btn640
10.1016/0168-9525(90)90012-U
10.1093/nar/gkn870
10.1093/bioinformatics/17.5.455
10.1126/science.aan0346
10.1007/978-3-030-60802-6_54
10.1109/TCBB.2016.2555304
10.1016/j.ygeno.2013.05.006
10.1186/1471-2105-7-S1-S2
10.1109/TCBB.2016.2520923
10.1021/acs.chemrev.5b00683
10.1038/nrm2208
10.1093/nar/gkg095
10.1093/bioinformatics/bts688
10.1109/TFUZZ.2018.2791951
10.1093/nar/30.1.303
10.1093/nar/gks553
10.1038/nbt.2831
10.1093/nar/gkt1046
10.1073/pnas.061034498
10.1038/415180a
10.1093/nar/gkr930
10.1016/j.copbio.2008.06.001
10.1093/nar/gks1231
10.1002/cpps.62
10.1126/science.aat0576
10.1093/bioinformatics/bts620
10.1093/nar/gkw1102
10.1186/1471-2105-11-562
10.1186/s12859-017-1700-2
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1093/bib/bbab036
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 33693513
10_1093_bib_bbab036
Genre Journal Article
GroupedDBID ---
-E4
.2P
.I3
0R~
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAVAP
AAVLN
AAYXX
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHGBF
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
ADRIX
AFXEN
BCRHZ
GROUPED_DOAJ
M49
NPM
ROX
7X8
ID FETCH-LOGICAL-c355t-9491ae1785450119bd0019dc0b6885a0877c7401c18e6a1bc4b12bc8d06a1af53
ISSN 1467-5463
1477-4054
IngestDate Fri Jul 11 15:54:17 EDT 2025
Wed Feb 19 02:28:36 EST 2025
Tue Jul 01 03:39:33 EDT 2025
Thu Apr 24 22:59:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords performance evaluation
protein–protein interaction
biological databases
computational prediction models
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c355t-9491ae1785450119bd0019dc0b6885a0877c7401c18e6a1bc4b12bc8d06a1af53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 33693513
PQID 2500372066
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2500372066
pubmed_primary_33693513
crossref_primary_10_1093_bib_bbab036
crossref_citationtrail_10_1093_bib_bbab036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210902
PublicationDateYYYYMMDD 2021-09-02
PublicationDate_xml – month: 09
  year: 2021
  text: 20210902
  day: 02
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2021
References Adrian (2021090815135368300_ref39) 2002; 415
Orchard (2021090815135368300_ref70) 2014; 42
(2021090815135368300_ref92) 2009; 10
Rajagopala (2021090815135368300_ref79) 2014; 32
Li (2021090815135368300_ref55) 2018; 23
Yildirim (2021090815135368300_ref101) 2008; 322
Piehler (2021090815135368300_ref76) 2005; 15
Andreeva (2021090815135368300_ref2) 2004; 32
Lai (2021090815135368300_ref85) 2017; 18
Garcia-Garcia (2021090815135368300_ref30) 2010; 11
Garavelli (2021090815135368300_ref29) 2001; 29
Xiaohan Li (2021090815135368300_ref58) 2018; 359
Breiman (2021090815135368300_ref14) 2001; 45
Serebriiskii (2021090815135368300_ref84) 2001
(2021090815135368300_ref71) 2005; 21
Hawe (2021090815135368300_ref35) 2019; 10
Huynen (2021090815135368300_ref22) 1998; 23
(2021090815135368300_ref104) 2012
Tilmann Bürckstümmer (2021090815135368300_ref15) 2006; 3
(2021090815135368300_ref45) 2020
Yoichi Murakami (2021090815135368300_ref68) 2017; 44
wwPDB consortium (2021090815135368300_ref96) 2019; 47
Alanis-Lobato (2021090815135368300_ref1) 2016
Pazos (2021090815135368300_ref73) 2001; 14
Blohm (2021090815135368300_ref11) 2014; 42
Liu (2021090815135368300_ref40) 2013; 29
Garcia-Garcia (2021090815135368300_ref31) 2012; 40
He (2021090815135368300_ref37) 2018; 26
Tenenbaum (2021090815135368300_ref89) 2000; 290
Hu (2021090815135368300_ref41) 2015; 14
Brian (2021090815135368300_ref63) 1975; 405
Licata (2021090815135368300_ref59) 2012; 40
Binkley (2021090815135368300_ref9) 2014; 42
Uetz (2021090815135368300_ref93) 2000; 403
Bader (2021090815135368300_ref4) 2003; 31
McDowall (2021090815135368300_ref64) 2009; 37
Aly (2021090815135368300_ref34) 2018; 34
Bakail (2021090815135368300_ref5) 2016; 19
George (2021090815135368300_ref32) 2001; 29
Chatr-Aryamontri (2021090815135368300_ref16) 2017; 45
Huang (2021090815135368300_ref57) 2018; 8
Bandyopadhyay (2021090815135368300_ref6) 2016; 14
Yu (2021090815135368300_ref18) 2020; 11
(2021090815135368300_ref90) 2002
Zhou (2021090815135368300_ref99) 2010; 26
Raught (2021090815135368300_ref33) 2007; 8
Mann (2021090815135368300_ref61) 2001; 26
Xiao (2021090815135368300_ref98) 2020
You (2021090815135368300_ref100) 2014; 145
Kovács (2021090815135368300_ref53) 2019; 10
Bitbol (2021090815135368300_ref62) 2019; 15
Ko (2021090815135368300_ref38) 2019; 50
Lei (2021090815135368300_ref54) 2013; 29
Ding (2021090815135368300_ref25) 2018; 93
(2021090815135368300_ref72) 2010; 9
Pedamallu (2021090815135368300_ref74) 2010; 5
(2021090815135368300_ref51) 2009
David Martin Powers (2021090815135368300_ref78) 2011
Srinivasa Rao (2021090815135368300_ref80) 2014
Barker (2021090815135368300_ref7) 1999; 27
Bock (2021090815135368300_ref12) 2001; 17
Sasaki (2021090815135368300_ref83) 2007
(2021090815135368300_ref97) 2002; 30
Zhang (2021090815135368300_ref105) 2012; 41
Cortes (2021090815135368300_ref21) 1995; 20
Claire (2021090815135368300_ref10) 2009; 25
(2021090815135368300_ref17) 2005; 35
Wang (2021090815135368300_ref95) 2020
Cathy (2021090815135368300_ref47) 2017
Mirabello (2021090815135368300_ref66) 2017; 85
Hayashizaki (2021090815135368300_ref81) 2002; 30
Michiel Vermeulen (2021090815135368300_ref94) 2008; 19
(2021090815135368300_ref43) 2020; 32
Valencia (2021090815135368300_ref24) 2013; 14
Hayashizaki (2021090815135368300_ref82) 2003; 19
Mantas (2021090815135368300_ref86) 2013; 87
(2021090815135368300_ref91) 2001
Martin (2021090815135368300_ref13) 2003; 31
Davis (2021090815135368300_ref23) 2006
Gursoy (2021090815135368300_ref52) 2016; 116
Tan (2021090815135368300_ref88) 2018; 359
Wang (2021090815135368300_ref56) 2019; 20
Anfinsen (2021090815135368300_ref3) 1973; 181
Huang (2021090815135368300_ref46) 2009; 25
Charles (2021090815135368300_ref65) 1978
Akiyama (2021090815135368300_ref36) 2018; 19
Ben-Hur (2021090815135368300_ref8) 2006
Pellegrini (2021090815135368300_ref75) 1999; 96
Akiyama (2021090815135368300_ref69) 2014; 21
Fields (2021090815135368300_ref28) 1994; 10
Ji (2021090815135368300_ref50) 2020
Zeng (2021090815135368300_ref103) 2016; 443
Fawcett (2021090815135368300_ref27) 2006; 27
Murakami (2021090815135368300_ref67) 2014; 15
Gene Ontology Consortium (2021090815135368300_ref19) 2017; 45
Jain (2021090815135368300_ref49) 2010; 11
UniProt Consortium (2021090815135368300_ref20) 2019; 47
Hu (2021090815135368300_ref44) 2017; 69
(2021090815135368300_ref102) 2013; 102
Zhao (2021090815135368300_ref106) 2017
Planas-Iglesias (2021090815135368300_ref77) 2013; 425
Damian Szklarczyk (2021090815135368300_ref87) 2017
Louche (2021090815135368300_ref60) 2017
(2021090815135368300_ref107) 2001
Hu (2021090815135368300_ref42) 2017; 14
Enright (2021090815135368300_ref26) 1999; 402
Ito (2021090815135368300_ref48) 2001; 98
References_xml – year: 2020
  ident: 2021090815135368300_ref45
  article-title: Zhu-Hong You. Hiscf: leveraging higher-order structures for clustering analysis in biological networks
  publication-title: Bioinformatics
– volume: 47
  start-page: D506
  issue: D1
  year: 2019
  ident: 2021090815135368300_ref20
  article-title: Uniprot: a worldwide hub of protein knowledge
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1049
– volume: 44
  start-page: 134
  year: 2017
  ident: 2021090815135368300_ref68
  article-title: Network analysis and in silico prediction of protein–protein interactions with applications in drug discovery
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2017.02.005
– volume: 322
  start-page: 104
  issue: 5898
  year: 2008
  ident: 2021090815135368300_ref101
  article-title: Tomoko Hirozane-Kishikawa, Fana Gebreab, Na Li, Nicolas Simonis, et al. High-quality binary protein interaction map of the yeast interactome network
  publication-title: Science
  doi: 10.1126/science.1158684
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 2021090815135368300_ref27
  article-title: An introduction to roc analysis
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2005.10.010
– volume: 47
  start-page: D520
  issue: D1
  year: 2019
  ident: 2021090815135368300_ref96
  article-title: Protein data bank: the single global archive for 3d macromolecular structure data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky949
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 2021090815135368300_ref14
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 443
  start-page: 537
  year: 2016
  ident: 2021090815135368300_ref103
  article-title: Link prediction based on local information considering preferential attachment
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2015.10.016
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 2021090815135368300_ref53
  article-title: Network-based prediction of protein interactions
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-09177-y
– volume: 31
  start-page: 248
  issue: 1
  year: 2003
  ident: 2021090815135368300_ref4
  article-title: Christopher WV Hogue. Bind: the biomolecular interaction network database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg056
– volume-title: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
  year: 2017
  ident: 2021090815135368300_ref106
  article-title: Hiv1-human protein-protein interaction prediction based on interface architecture similarity
  doi: 10.1109/BIBM.2017.8217632
– volume: 29
  start-page: 199
  issue: 1
  year: 2001
  ident: 2021090815135368300_ref29
  article-title: Stephens. The resid database of protein structure modifications and the nrl-3d sequence–structure database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/29.1.199
– volume: 69
  start-page: 202
  year: 2017
  ident: 2021090815135368300_ref44
  article-title: Keith CC Chan. Efficiently predicting large-scale protein-protein interactions using mapreduce
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2017.03.009
– start-page: 1
  volume-title: Teach Tutor Mater
  year: 2007
  ident: 2021090815135368300_ref83
– volume: 14
  start-page: 409
  issue: 4
  year: 2015
  ident: 2021090815135368300_ref41
  article-title: Chan. Discovering variable-length patterns in protein sequences for protein-protein interaction prediction
  publication-title: IEEE Trans Nanobiosci
  doi: 10.1109/TNB.2015.2429672
– volume: 145
  start-page: 37
  year: 2014
  ident: 2021090815135368300_ref100
  article-title: A mapreduce based parallel svm for large-scale predicting protein–protein interactions
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.05.072
– volume: 15
  start-page: 4
  issue: 1
  year: 2005
  ident: 2021090815135368300_ref76
  article-title: New methodologies for measuring protein interactions in vivo and in vitro
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2005.01.008
– volume: 29
  start-page: 482
  issue: 4
  year: 2001
  ident: 2021090815135368300_ref32
  article-title: Church, and Marc Vidal. Correlation between transcriptome and interactome mapping data from saccharomyces cerevisiae
  publication-title: Nat Genet
  doi: 10.1038/ng776
– volume-title: Bacterial Protein Secretion Systems
  year: 2017
  ident: 2021090815135368300_ref60
  article-title: Pull-down assays
  doi: 10.1007/978-1-4939-7033-9_20
– volume: 10
  start-page: 217
  issue: 3
  year: 2009
  ident: 2021090815135368300_ref92
  article-title: Ruth Nussinov. A survey of available tools and web servers for analysis of protein–protein interactions and interfaces
  publication-title: Brief Bioinform
– volume: 23
  start-page: 324
  issue: 9
  year: 1998
  ident: 2021090815135368300_ref22
  article-title: Conservation of gene order: a fingerprint of proteins that physically interact
  publication-title: Trends Biochem Sci
  doi: 10.1016/S0968-0004(98)01274-2
– volume: 85
  start-page: 1159
  issue: 6
  year: 2017
  ident: 2021090815135368300_ref66
  article-title: A pipeline to identify and model protein–protein interactions
  publication-title: Proteins
  doi: 10.1002/prot.25280
– volume: 403
  start-page: 623
  issue: 6770
  year: 2000
  ident: 2021090815135368300_ref93
  article-title: Traci A Mansfield, Richard S Judson, James R Knight, Daniel Lockshon, Vaibhav Narayan, Maithreyan Srinivasan, Pascale Pochart, et al. A comprehensive analysis of protein–protein interactions in saccharomyces cerevisiae
  publication-title: Nature
  doi: 10.1038/35001009
– volume: 15
  start-page: 213
  issue: 1
  year: 2014
  ident: 2021090815135368300_ref67
  article-title: Homology-based prediction of interactions between proteins using averaged one-dependence estimators
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-15-213
– volume: 32
  start-page: D226
  issue: suppl_1
  year: 2004
  ident: 2021090815135368300_ref2
  article-title: Scop database in 2004: refinements integrate structure and sequence family data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh039
– volume-title: Proceedings of the 23rd International Conference on Machine Learning
  year: 2006
  ident: 2021090815135368300_ref23
  article-title: The relationship between precision-recall and roc curves
  doi: 10.1145/1143844.1143874
– year: 2012
  ident: 2021090815135368300_ref104
– volume: 23
  start-page: 1923
  issue: 8
  year: 2018
  ident: 2021090815135368300_ref55
  article-title: Deep neural network based predictions of protein interactions using primary sequences
  publication-title: Molecules
  doi: 10.3390/molecules23081923
– volume: 25
  start-page: 3045
  issue: 22
  year: 2009
  ident: 2021090815135368300_ref10
  article-title: donovan, and Rolf Apweiler. Quickgo: a web-based tool for gene ontology searching
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp536
– volume-title: International Conference on Intelligent Computing
  year: 2020
  ident: 2021090815135368300_ref50
  article-title: A mapreduce-based parallel random forest approach for predicting large-scale protein–protein interactions
  doi: 10.1007/978-3-030-60796-8_34
– volume: 20
  start-page: 2253
  issue: 6
  year: 2019
  ident: 2021090815135368300_ref56
  article-title: Control principles for complex biological networks
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bby088
– volume: 425
  start-page: 1210
  issue: 7
  year: 2013
  ident: 2021090815135368300_ref77
  article-title: Manuel A Marín-López, Elisenda Feliu, and Baldo Oliva. Understanding protein–protein interactions using local structural features
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2013.01.014
– volume: 87
  start-page: 226
  year: 2013
  ident: 2021090815135368300_ref86
  article-title: From biological to social networks: Link prediction based on multi-way spectral clustering
  publication-title: Data Knowl Eng
  doi: 10.1016/j.datak.2013.05.008
– volume: 11
  start-page: 56
  issue: 1
  year: 2010
  ident: 2021090815135368300_ref30
  article-title: Biana: a software framework for compiling biological interactions and analyzing networks
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-56
– volume: 19
  start-page: 19
  issue: 1–2
  year: 2016
  ident: 2021090815135368300_ref5
  article-title: Targeting protein–protein interactions, a wide open field for drug design
  publication-title: C R Chim
  doi: 10.1016/j.crci.2015.12.004
– volume: 26
  start-page: 54
  issue: 1
  year: 2001
  ident: 2021090815135368300_ref61
  article-title: Use of mass spectrometry-derived data to annotate nucleotide and protein sequence databases
  publication-title: Trends Biochem Sci
  doi: 10.1016/S0968-0004(00)01726-6
– volume: 10
  start-page: 535
  year: 2019
  ident: 2021090815135368300_ref35
  article-title: Inferring interaction networks from multi-omics data
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00535
– volume: 290
  start-page: 2319
  issue: 5500
  year: 2000
  ident: 2021090815135368300_ref89
  article-title: Vin De Silva, and John C Langford. A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– volume: 42
  start-page: D358
  issue: D1
  year: 2014
  ident: 2021090815135368300_ref70
  article-title: Nancy H Campbell, Gayatri Chavali, Carol Chen, Noemi Del-Toro, et al. The mintact project-intact as a common curation platform for 11 molecular interaction databases
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1115
– volume: 21
  start-page: 832
  issue: 6
  year: 2005
  ident: 2021090815135368300_ref71
  article-title: Irmtraud Dunger-Kaltenbach, Goar Frishman, Corinna Montrone, Pekka Mark, Volker Stümpflen, Hans-Werner Mewes, et al. The mips mammalian protein–protein interaction database
  publication-title: Bioinformatics
– volume: 9
  start-page: 4992
  issue: 10
  year: 2010
  ident: 2021090815135368300_ref72
  article-title: Hong-Bin Shen. Large-scale prediction of human protein–protein interactions from amino acid sequence based on latent topic features
  publication-title: J Proteome Res
  doi: 10.1021/pr100618t
– volume: 181
  start-page: 223
  issue: 4096
  year: 1973
  ident: 2021090815135368300_ref3
  article-title: Principles that govern the folding of protein chains
  publication-title: Science
  doi: 10.1126/science.181.4096.223
– volume: 26
  start-page: 2744
  issue: 21
  year: 2010
  ident: 2021090815135368300_ref99
  article-title: Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq510
– volume: 14
  start-page: 249
  issue: 4
  year: 2013
  ident: 2021090815135368300_ref24
  article-title: Emerging methods in protein co-evolution
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3414
– volume: 14
  start-page: 609
  issue: 9
  year: 2001
  ident: 2021090815135368300_ref73
  article-title: Similarity of phylogenetic trees as indicator of protein–protein interaction
  publication-title: Protein Eng
  doi: 10.1093/protein/14.9.609
– volume: 34
  start-page: i802
  issue: 17
  year: 2018
  ident: 2021090815135368300_ref34
  article-title: Khan, and Jinbo Xu. Predicting protein–protein interactions through sequence-based deep learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty573
– volume: 45
  start-page: D331
  issue: D1
  year: 2017
  ident: 2021090815135368300_ref19
  article-title: Expansion of the gene ontology knowledgebase and resources
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1108
– volume: 42
  start-page: D396
  issue: D1
  year: 2014
  ident: 2021090815135368300_ref11
  article-title: Negatome 2.0: a database of non-interacting proteins derived by literature mining, manual annotation and protein structure analysis
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1079
– volume-title: Two-Hybrid Systems
  year: 2001
  ident: 2021090815135368300_ref84
  article-title: Two-hybrid system and false positives
  doi: 10.1385/1-59259-210-4:123
– volume: 30
  start-page: 1163
  issue: 5
  year: 2002
  ident: 2021090815135368300_ref81
  article-title: Interaction generality, a measurement to assess the reliability of a protein–protein interaction
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.5.1163
– volume: 32
  start-page: 2115
  issue: 11
  year: 2020
  ident: 2021090815135368300_ref43
  article-title: Shengwu Xiong. A variational bayesian framework for cluster analysis in a complex network
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2019.2914200
– volume: 19
  start-page: 756
  issue: 6
  year: 2003
  ident: 2021090815135368300_ref82
  article-title: Construction of reliable protein–protein interaction networks with a new interaction generality measure
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg070
– volume: 405
  start-page: 442
  issue: 2
  year: 1975
  ident: 2021090815135368300_ref63
  article-title: Matthews. Comparison of the predicted and observed secondary structure of t4 phage lysozyme
  publication-title: Biochim Biophys Acta Prot Struct
  doi: 10.1016/0005-2795(75)90109-9
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 2021090815135368300_ref21
  article-title: Support-vector networks
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
– volume: 11
  year: 2020
  ident: 2021090815135368300_ref18
  article-title: Protein interface complementarity and gene duplication improve link prediction of protein–protein interaction network
  publication-title: Front Genet
– volume: 5
  start-page: 8
  issue: 1
  year: 2010
  ident: 2021090815135368300_ref74
  article-title: Open source tool for prediction of genome wide protein-protein interaction network based on ortholog information
  publication-title: Source Code Biol Med
  doi: 10.1186/1751-0473-5-8
– volume: 3
  start-page: 1013
  issue: 12
  year: 2006
  ident: 2021090815135368300_ref15
  article-title: Giulio Superti-Furga, and Angela Bauch. An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells
  publication-title: Nat Methods
  doi: 10.1038/nmeth968
– start-page: D408
  volume-title: Nucleic Acids Res
  year: 2016
  ident: 2021090815135368300_ref1
  article-title: Hippie v2. 0: enhancing meaningfulness and reliability of protein–protein interaction networks
– volume: 27
  start-page: 39
  issue: 1
  year: 1999
  ident: 2021090815135368300_ref7
  article-title: John S Garavelli, Peter B McGarvey, Christopher R Marzec, Bruce C Orcutt, Geetha Y Srinivasarao, Lai-Su L Yeh, Robert S Ledley, Hans-Werner Mewes, Friedhelm Pfeiffer, et al. The pir-international protein sequence database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/27.1.39
– volume: 402
  start-page: 86
  issue: 6757
  year: 1999
  ident: 2021090815135368300_ref26
  article-title: Kyrpides, and Christos A Ouzounis. Protein interaction maps for complete genomes based on gene fusion events
  publication-title: Nature
  doi: 10.1038/47056
– volume: 96
  start-page: 4285
  issue: 8
  year: 1999
  ident: 2021090815135368300_ref75
  article-title: Assigning protein functions by comparative genome analysis: protein phylogenetic profiles
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.96.8.4285
– volume: 25
  start-page: 372
  issue: 3
  year: 2009
  ident: 2021090815135368300_ref46
  article-title: Precision and recall estimates for two-hybrid screens
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn640
– start-page: 2014
  year: 2014
  ident: 2021090815135368300_ref80
  article-title: Protein–protein interaction detection: methods and analysis
  publication-title: Int J Proteomics
– volume: 10
  start-page: 286
  issue: 8
  year: 1994
  ident: 2021090815135368300_ref28
  article-title: The two-hybrid system: an assay for protein-protein interactions
  publication-title: Trends Genet
  doi: 10.1016/0168-9525(90)90012-U
– year: 2002
  ident: 2021090815135368300_ref90
– volume: 37
  start-page: D651
  issue: suppl_1
  year: 2009
  ident: 2021090815135368300_ref64
  article-title: Pips: human protein–protein interaction prediction database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn870
– volume: 17
  start-page: 455
  issue: 5
  year: 2001
  ident: 2021090815135368300_ref12
  article-title: David A Gough. Predicting protein–protein interactions from primary structure
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.5.455
– volume: 359
  start-page: 1170
  issue: 6380
  year: 2018
  ident: 2021090815135368300_ref88
  article-title: Ka Diam Go, Xavier Bisteau, Lingyun Dai, Chern Han Yong, Nayana Prabhu, Mert Burak Ozturk, Yan Ting Lim, Lekshmy Sreekumar, Johan Lengqvist, et al. Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells
  publication-title: Science
  doi: 10.1126/science.aan0346
– volume: 50
  start-page: 4318
  year: 2019
  ident: 2021090815135368300_ref38
  article-title: Keith CC Chan, and Yew-Soon Ong. Contextual correlation preserving multiview featured graph clustering
  publication-title: IEEE Trans Cybernet
– volume-title: International Conference on Intelligent Computing
  year: 2020
  ident: 2021090815135368300_ref95
  article-title: A novel stochastic block model for network-based prediction of protein-protein interactions
  doi: 10.1007/978-3-030-60802-6_54
– volume: 14
  start-page: 762
  issue: 4
  year: 2016
  ident: 2021090815135368300_ref6
  article-title: A new feature vector based on gene ontology terms for protein-protein interaction prediction
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2016.2555304
– volume: 102
  start-page: 237
  issue: 4
  year: 2013
  ident: 2021090815135368300_ref102
  article-title: Morteza Mohammad-Noori, Reza Ebrahimpour, and Ali Masoudi-Nejad. Ppievo: Protein–protein interaction prediction from pssm based evolutionary information
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2013.05.006
– volume-title: Nucleic Acids Res
  year: 2017
  ident: 2021090815135368300_ref87
– volume-title: BMC Bioinformatics
  year: 2006
  ident: 2021090815135368300_ref8
  article-title: Choosing negative examples for the prediction of protein–protein interactions
  doi: 10.1186/1471-2105-7-S1-S2
– volume: 14
  start-page: 155
  issue: 1
  year: 2017
  ident: 2021090815135368300_ref42
  article-title: Chan. Extracting coevolutionary features from protein sequences for predicting protein–protein interactions
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2016.2520923
– volume: 19
  start-page: 61
  issue: 4
  year: 2018
  ident: 2021090815135368300_ref36
  article-title: Megadock-web: an integrated database of high-throughput structure-based protein–protein interaction predictions
  publication-title: BMC Bioinformatics
– volume: 116
  start-page: 4884
  issue: 8
  year: 2016
  ident: 2021090815135368300_ref52
  article-title: Predicting protein–protein interactions from the molecular to the proteome level
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.5b00683
– year: 2017
  ident: 2021090815135368300_ref47
– volume: 8
  start-page: 645
  issue: 8
  year: 2007
  ident: 2021090815135368300_ref33
  article-title: Analysis of protein complexes using mass spectrometry
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2208
– volume: 15
  issue: 10
  year: 2019
  ident: 2021090815135368300_ref62
  article-title: Phylogenetic correlations can suffice to infer protein partners from sequences
  publication-title: PLoS Comput Biol
– volume: 31
  start-page: 365
  issue: 1
  year: 2003
  ident: 2021090815135368300_ref13
  article-title: Claire O’Donovan, Isabelle Phan, et al. The swiss-prot protein knowledgebase and its supplement trembl in 2003
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg095
– volume: 29
  start-page: 355
  issue: 3
  year: 2013
  ident: 2021090815135368300_ref54
  article-title: A novel link prediction algorithm for reconstructing protein–protein interaction networks by topological similarity
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts688
– year: 2001
  ident: 2021090815135368300_ref91
– volume: 26
  start-page: 2785
  issue: 5
  year: 2018
  ident: 2021090815135368300_ref37
  article-title: Discovering fuzzy structural patterns for graph analytics
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2018.2791951
– volume: 30
  start-page: 303
  issue: 1
  year: 2002
  ident: 2021090815135368300_ref97
  article-title: Xiaoqun Joyce Duan, Patrick Higney, Sul-Min Kim, and David Eisenberg. Dip, the database of interacting proteins: a research tool for studying cellular networks of protein interactions
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.1.303
– volume: 40
  start-page: W147
  issue: W1
  year: 2012
  ident: 2021090815135368300_ref31
  article-title: Biana interolog prediction server. a tool for protein–protein interaction inference
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks553
– volume-title: Seminars in Nuclear Medicine
  year: 1978
  ident: 2021090815135368300_ref65
  article-title: Metz. Basic principles of roc analysis
– volume: 32
  start-page: 285
  issue: 3
  year: 2014
  ident: 2021090815135368300_ref79
  article-title: Jonathan Franca-Koh, Suman B Pakala, Sadhna Phanse, Arnaud Ceol, et al. The binary protein-protein interaction landscape of escherichia coli
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2831
– volume: 42
  start-page: D711
  issue: D1
  year: 2014
  ident: 2021090815135368300_ref9
  article-title: The candida genome database: the new homology information page highlights protein similarity and phylogeny
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1046
– volume: 98
  start-page: 4569
  issue: 8
  year: 2001
  ident: 2021090815135368300_ref48
  article-title: A comprehensive two-hybrid analysis to explore the yeast protein interactome
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.061034498
– volume: 21
  start-page: 766
  issue: 8
  year: 2014
  ident: 2021090815135368300_ref69
  article-title: Megadock: an all-to-all protein-protein interaction prediction system using tertiary structure data
  publication-title: Protein Pept Lett
– volume: 415
  start-page: 180
  issue: 6868
  year: 2002
  ident: 2021090815135368300_ref39
  article-title: Systematic identification of protein complexes in saccharomyces cerevisiae by mass spectrometry
  publication-title: Nature
  doi: 10.1038/415180a
– volume: 35
  start-page: 37
  issue: 1–2
  year: 2005
  ident: 2021090815135368300_ref17
  article-title: Mong Li Lee, and See-Kiong Ng. Discovering reliable protein interactions from high-throughput experimental data using network topology
  publication-title: Artif Intell Med
– year: 2009
  ident: 2021090815135368300_ref51
– volume: 40
  start-page: D857
  issue: D1
  year: 2012
  ident: 2021090815135368300_ref59
  article-title: Mint, the molecular interaction database: 2012 update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr930
– volume-title: Flinders Academic Commons
  year: 2011
  ident: 2021090815135368300_ref78
  article-title: Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 2021090815135368300_ref57
  article-title: Similarity-based future common neighbors model for link prediction in complex networks
  publication-title: Sci Rep
– volume: 19
  start-page: 331
  issue: 4
  year: 2008
  ident: 2021090815135368300_ref94
  article-title: Hubner, and Matthias Mann. High confidence determination of specific protein–protein interactions using quantitative mass spectrometry
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2008.06.001
– volume: 41
  start-page: D828
  issue: D1
  year: 2012
  ident: 2021090815135368300_ref105
  article-title: Preppi: a structure-informed database of protein–protein interactions
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1231
– volume: 93
  start-page: e62
  issue: 1
  year: 2018
  ident: 2021090815135368300_ref25
  article-title: Computational methods for predicting protein-protein interactions using various protein features
  publication-title: Curr Protoc Protein Sci
  doi: 10.1002/cpps.62
– volume: 359
  start-page: 1105
  issue: 6380
  year: 2018
  ident: 2021090815135368300_ref58
  publication-title: Science
  doi: 10.1126/science.aat0576
– volume: 29
  start-page: 92
  issue: 1
  year: 2013
  ident: 2021090815135368300_ref40
  article-title: Human protein–protein interaction prediction by a novel sequence-based co-evolution method: co-evolutionary divergence
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts620
– year: 2020
  ident: 2021090815135368300_ref98
– volume: 45
  start-page: D369
  issue: D1
  year: 2017
  ident: 2021090815135368300_ref16
  article-title: Nadine K Kolas, Lara O’Donnell, Sara Oster, Chandra Theesfeld, Adnane Sellam, et al. The biogrid interaction database: 2017 update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1102
– volume: 11
  start-page: 562
  issue: 1
  year: 2010
  ident: 2021090815135368300_ref49
  article-title: An improved method for scoring protein-protein interactions using semantic similarity within the gene ontology
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-562
– volume: 18
  start-page: 277
  issue: 1
  year: 2017
  ident: 2021090815135368300_ref85
  article-title: Sequence-based prediction of protein–protein interaction using a deep-learning algorithm
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1700-2
– year: 2001
  ident: 2021090815135368300_ref107
SSID ssj0020781
Score 2.5925333
SecondaryResourceType review_article
Snippet Proteins interact with each other to play critical roles in many biological processes in cells. Although promising, laboratory experiments usually suffer from...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
Title A survey on computational models for predicting protein–protein interactions
URI https://www.ncbi.nlm.nih.gov/pubmed/33693513
https://www.proquest.com/docview/2500372066
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA96Ivgifnt-EeGelN41TZttHxe5Y5Hlzocu1qeStKmsSCu7jaJ_vTNJttuVCqcv2W02HZb5TdOZJPMbQk60SpJGc4HJMWkAb7w6yGrFg0hlYdgkVawc2-elWKzi90VS7AsX2uySXp1WvybzSv4HVegDXDFL9h-QHYRCB3wHfKEFhKG9Fsbzt1uz-Q5PdecOk5t-t7RnC9xYqgVkAagx78NmnXdY3DLwn5YrYuMyG7YHu7sQPze2nicMUuvOs6v2o5PxC2MjejPY1ke_8FysZffF7G1uYfwPn0wwbw9v_6Dbzz_0erzyEDF7tGq0GMni2QziT0cCfaon-vwMG0UjS0omJ25HaqXWClslVcgnCLIvr8qL1XJZ5udFfpPciiAywKktvyqGGBu5i2xCmf8bPiUTxJ-B8DMv-tAJ-UtkYT2M_B6560MDOnc43yc3dPuA3HbFQn8-JMs5dWjTrqUHaFOHNgWQ6B5t-gfadIz2I7K6OM_fLQJfCyOowCPsgyzOmNRsloLHizR9qkbnvK5CJdI0kUjrWGFxxYqlWkim4CFjkarSOoQr2ST8MTlqu1Y_JVQ0EhlC6zjGou5ZJgWDd1wU1lmM-6TimLzZKaesPFE81iv5WroDC7wETZZek8fkZBj8zfGjTA97vdNyCfMXbkrJVndmW4ILHmKlJAFjnjj1D4I4FxlPGH92jbufkzt7G31BjvqN0S_BX-zVK2shvwFbr28n
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+on+computational+models+for+predicting+protein-protein+interactions&rft.jtitle=Briefings+in+bioinformatics&rft.au=Hu%2C+Lun&rft.au=Wang%2C+Xiaojuan&rft.au=Huang%2C+Yu-An&rft.au=Hu%2C+Pengwei&rft.date=2021-09-02&rft.issn=1477-4054&rft.eissn=1477-4054&rft.volume=22&rft.issue=5&rft_id=info:doi/10.1093%2Fbib%2Fbbab036&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon