A survey on computational models for predicting protein–protein interactions
Proteins interact with each other to play critical roles in many biological processes in cells. Although promising, laboratory experiments usually suffer from the disadvantages of being time-consuming and labor-intensive. The results obtained are often not robust and considerably uncertain. Due rece...
Saved in:
Published in | Briefings in bioinformatics Vol. 22; no. 5 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
02.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Proteins interact with each other to play critical roles in many biological processes in cells. Although promising, laboratory experiments usually suffer from the disadvantages of being time-consuming and labor-intensive. The results obtained are often not robust and considerably uncertain. Due recently to advances in high-throughput technologies, a large amount of proteomics data has been collected and this presents a significant opportunity and also a challenge to develop computational models to predict protein–protein interactions (PPIs) based on these data. In this paper, we present a comprehensive survey of the recent efforts that have been made towards the development of effective computational models for PPI prediction. The survey introduces the algorithms that can be used to learn computational models for predicting PPIs, and it classifies these models into different categories. To understand their relative merits, the paper discusses different validation schemes and metrics to evaluate the prediction performance. Biological databases that are commonly used in different experiments for performance comparison are also described and their use in a series of extensive experiments to compare different prediction models are discussed. Finally, we present some open issues in PPI prediction for future work. We explain how the performance of PPI prediction can be improved if these issues are effectively tackled. |
---|---|
AbstractList | Proteins interact with each other to play critical roles in many biological processes in cells. Although promising, laboratory experiments usually suffer from the disadvantages of being time-consuming and labor-intensive. The results obtained are often not robust and considerably uncertain. Due recently to advances in high-throughput technologies, a large amount of proteomics data has been collected and this presents a significant opportunity and also a challenge to develop computational models to predict protein-protein interactions (PPIs) based on these data. In this paper, we present a comprehensive survey of the recent efforts that have been made towards the development of effective computational models for PPI prediction. The survey introduces the algorithms that can be used to learn computational models for predicting PPIs, and it classifies these models into different categories. To understand their relative merits, the paper discusses different validation schemes and metrics to evaluate the prediction performance. Biological databases that are commonly used in different experiments for performance comparison are also described and their use in a series of extensive experiments to compare different prediction models are discussed. Finally, we present some open issues in PPI prediction for future work. We explain how the performance of PPI prediction can be improved if these issues are effectively tackled. Proteins interact with each other to play critical roles in many biological processes in cells. Although promising, laboratory experiments usually suffer from the disadvantages of being time-consuming and labor-intensive. The results obtained are often not robust and considerably uncertain. Due recently to advances in high-throughput technologies, a large amount of proteomics data has been collected and this presents a significant opportunity and also a challenge to develop computational models to predict protein-protein interactions (PPIs) based on these data. In this paper, we present a comprehensive survey of the recent efforts that have been made towards the development of effective computational models for PPI prediction. The survey introduces the algorithms that can be used to learn computational models for predicting PPIs, and it classifies these models into different categories. To understand their relative merits, the paper discusses different validation schemes and metrics to evaluate the prediction performance. Biological databases that are commonly used in different experiments for performance comparison are also described and their use in a series of extensive experiments to compare different prediction models are discussed. Finally, we present some open issues in PPI prediction for future work. We explain how the performance of PPI prediction can be improved if these issues are effectively tackled.Proteins interact with each other to play critical roles in many biological processes in cells. Although promising, laboratory experiments usually suffer from the disadvantages of being time-consuming and labor-intensive. The results obtained are often not robust and considerably uncertain. Due recently to advances in high-throughput technologies, a large amount of proteomics data has been collected and this presents a significant opportunity and also a challenge to develop computational models to predict protein-protein interactions (PPIs) based on these data. In this paper, we present a comprehensive survey of the recent efforts that have been made towards the development of effective computational models for PPI prediction. The survey introduces the algorithms that can be used to learn computational models for predicting PPIs, and it classifies these models into different categories. To understand their relative merits, the paper discusses different validation schemes and metrics to evaluate the prediction performance. Biological databases that are commonly used in different experiments for performance comparison are also described and their use in a series of extensive experiments to compare different prediction models are discussed. Finally, we present some open issues in PPI prediction for future work. We explain how the performance of PPI prediction can be improved if these issues are effectively tackled. |
Author | Hu, Pengwei Wang, Xiaojuan You, Zhu-Hong Hu, Lun Huang, Yu-An |
Author_xml | – sequence: 1 givenname: Lun surname: Hu fullname: Hu, Lun organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 830011, Urumqi, China – sequence: 2 givenname: Xiaojuan surname: Wang fullname: Wang, Xiaojuan organization: School of Computer Science and Technology, Wuhan University of Technology, 430070, Wuhan, China – sequence: 3 givenname: Yu-An surname: Huang fullname: Huang, Yu-An organization: College of Computer Science and Software Engineering, Shenzhen University, 518060, Shenzhen, China – sequence: 4 givenname: Pengwei surname: Hu fullname: Hu, Pengwei organization: IBM Research, 100193, Beijing, China – sequence: 5 givenname: Zhu-Hong surname: You fullname: You, Zhu-Hong organization: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 830011, Urumqi, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33693513$$D View this record in MEDLINE/PubMed |
BookMark | eNptkMtKxDAUhoOMOBdduZcuBalz0tza5TB4A9GNrkuSphJpkzFphdn5Dr6hT2KHqS7E1fkPfP_h8M3RxHlnEDrFcImhIEtl1VIpqYDwAzTDVIiUAqOTXeYiZZSTKZrH-AqQgcjxEZoSwgvCMJmhh1US-_Butol3ifbtpu9kZ72TTdL6yjQxqX1INsFUVnfWvQzRd8a6r4_PMSXWdSZIvWvFY3RYyyaak3Eu0PP11dP6Nr1_vLlbr-5TTRjr0oIWWBosckYZYFyoCgAXlQbF85xJyIXQggLWODdcYqWpwpnSeQXDJmtGFuh8f3d44q03sStbG7VpGumM72OZMQAiMuB8QM9GtFetqcpNsK0M2_LHwQBc7AEdfIzB1L8IhnJnuBwMl6PhgcZ_aG33yrogbfNv5xsNLoEr |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2024_108066 crossref_primary_10_1051_bioconf_20236101021 crossref_primary_10_1016_j_compbiomed_2024_108623 crossref_primary_10_1093_bib_bbad079 crossref_primary_10_1093_bioinformatics_btad662 crossref_primary_10_1093_bib_bbad034 crossref_primary_10_1093_bib_bbac021 crossref_primary_10_1093_bib_bbac384 crossref_primary_10_1093_bib_bbad076 crossref_primary_10_1093_bib_bbac184 crossref_primary_10_1186_s12864_024_10361_8 crossref_primary_10_1186_s12859_023_05592_7 crossref_primary_10_1186_s12859_023_05594_5 crossref_primary_10_1186_s12864_024_10251_z crossref_primary_10_1186_s12864_022_08687_2 crossref_primary_10_1186_s12864_024_10299_x crossref_primary_10_1109_TNNLS_2023_3273355 crossref_primary_10_1016_j_mcpro_2023_100607 crossref_primary_10_1016_j_gene_2025_149228 crossref_primary_10_3389_fgene_2024_1441558 crossref_primary_10_1186_s12859_023_05178_3 crossref_primary_10_1080_14789450_2024_2337004 crossref_primary_10_3389_fgene_2021_744334 crossref_primary_10_1109_TNSE_2021_3109880 crossref_primary_10_1038_s41598_024_72558_x crossref_primary_10_1142_S0219720022500238 crossref_primary_10_1186_s12859_022_04999_y crossref_primary_10_1042_BCJ20220380 crossref_primary_10_1038_s41598_021_03182_2 crossref_primary_10_1186_s12859_022_05004_2 crossref_primary_10_1186_s12859_022_04766_z crossref_primary_10_1016_j_cmpb_2023_107955 crossref_primary_10_1021_jacs_2c11098 crossref_primary_10_1016_j_compbiomed_2023_106807 crossref_primary_10_1109_TBDATA_2024_3375149 crossref_primary_10_1093_bib_bbad020 crossref_primary_10_1016_j_jtbi_2024_111850 crossref_primary_10_1093_bib_bbab515 crossref_primary_10_1186_s12859_023_05164_9 crossref_primary_10_1093_bib_bbab557 crossref_primary_10_2174_0929867330666230403100008 crossref_primary_10_2298_GSGD2402167D crossref_primary_10_1109_TMBMC_2023_3345145 crossref_primary_10_1109_TCBB_2022_3196336 crossref_primary_10_1186_s12859_022_04910_9 crossref_primary_10_1007_s41109_022_00508_5 crossref_primary_10_1016_j_csbj_2022_08_070 crossref_primary_10_1007_s12539_022_00501_7 crossref_primary_10_3390_math11183990 crossref_primary_10_1186_s12911_023_02229_w crossref_primary_10_1007_s11227_025_07076_2 crossref_primary_10_1093_bioinformatics_btae012 crossref_primary_10_1109_TCBB_2024_3381825 crossref_primary_10_1186_s12859_022_05096_w crossref_primary_10_1109_TCBB_2021_3095947 crossref_primary_10_1186_s12859_024_06021_z crossref_primary_10_1007_s42600_023_00273_z crossref_primary_10_1038_s41467_024_46808_5 crossref_primary_10_1093_bib_bbac159 crossref_primary_10_1093_bioinformatics_btad174 crossref_primary_10_1371_journal_pone_0289966 crossref_primary_10_1016_j_jconrel_2023_12_050 crossref_primary_10_1038_s41467_023_43526_2 crossref_primary_10_3390_molecules28135169 crossref_primary_10_1093_bib_bbad160 crossref_primary_10_1038_s42003_023_05718_w crossref_primary_10_1186_s12870_024_05580_w crossref_primary_10_1186_s12859_022_05069_z crossref_primary_10_1109_ACCESS_2022_3178091 crossref_primary_10_1016_j_compbiomed_2021_104889 crossref_primary_10_1109_JAS_2021_1004198 crossref_primary_10_1016_j_csbj_2024_06_032 crossref_primary_10_3390_ijms252212348 crossref_primary_10_1186_s12859_022_05062_6 crossref_primary_10_1007_s12539_022_00512_4 crossref_primary_10_1109_TCBB_2023_3339189 crossref_primary_10_1186_s12859_023_05216_0 crossref_primary_10_1016_j_asoc_2023_110153 crossref_primary_10_1038_s42003_022_03617_0 crossref_primary_10_1093_bib_bbac106 crossref_primary_10_1109_TCBB_2022_3196394 crossref_primary_10_1007_s00425_024_04543_7 crossref_primary_10_1038_s42003_023_04462_5 crossref_primary_10_1007_s10489_022_03733_8 crossref_primary_10_1186_s12859_023_05140_3 crossref_primary_10_1016_j_inffus_2023_101909 crossref_primary_10_3389_fmicb_2021_735329 crossref_primary_10_1016_j_ijbiomac_2025_140096 crossref_primary_10_1002_rmv_2517 crossref_primary_10_1109_TCBB_2023_3273567 |
Cites_doi | 10.1093/nar/gky1049 10.1016/j.sbi.2017.02.005 10.1126/science.1158684 10.1016/j.patrec.2005.10.010 10.1093/nar/gky949 10.1023/A:1010933404324 10.1016/j.physa.2015.10.016 10.1038/s41467-019-09177-y 10.1093/nar/gkg056 10.1109/BIBM.2017.8217632 10.1093/nar/29.1.199 10.1016/j.compbiolchem.2017.03.009 10.1109/TNB.2015.2429672 10.1016/j.neucom.2014.05.072 10.1016/j.sbi.2005.01.008 10.1038/ng776 10.1007/978-1-4939-7033-9_20 10.1016/S0968-0004(98)01274-2 10.1002/prot.25280 10.1038/35001009 10.1186/1471-2105-15-213 10.1093/nar/gkh039 10.1145/1143844.1143874 10.3390/molecules23081923 10.1093/bioinformatics/btp536 10.1007/978-3-030-60796-8_34 10.1093/bib/bby088 10.1016/j.jmb.2013.01.014 10.1016/j.datak.2013.05.008 10.1186/1471-2105-11-56 10.1016/j.crci.2015.12.004 10.1016/S0968-0004(00)01726-6 10.3389/fgene.2019.00535 10.1126/science.290.5500.2319 10.1093/nar/gkt1115 10.1021/pr100618t 10.1126/science.181.4096.223 10.1093/bioinformatics/btq510 10.1038/nrg3414 10.1093/protein/14.9.609 10.1093/bioinformatics/bty573 10.1093/nar/gkw1108 10.1093/nar/gkt1079 10.1385/1-59259-210-4:123 10.1093/nar/30.5.1163 10.1109/TKDE.2019.2914200 10.1093/bioinformatics/btg070 10.1016/0005-2795(75)90109-9 10.1007/BF00994018 10.1186/1751-0473-5-8 10.1038/nmeth968 10.1093/nar/27.1.39 10.1038/47056 10.1073/pnas.96.8.4285 10.1093/bioinformatics/btn640 10.1016/0168-9525(90)90012-U 10.1093/nar/gkn870 10.1093/bioinformatics/17.5.455 10.1126/science.aan0346 10.1007/978-3-030-60802-6_54 10.1109/TCBB.2016.2555304 10.1016/j.ygeno.2013.05.006 10.1186/1471-2105-7-S1-S2 10.1109/TCBB.2016.2520923 10.1021/acs.chemrev.5b00683 10.1038/nrm2208 10.1093/nar/gkg095 10.1093/bioinformatics/bts688 10.1109/TFUZZ.2018.2791951 10.1093/nar/30.1.303 10.1093/nar/gks553 10.1038/nbt.2831 10.1093/nar/gkt1046 10.1073/pnas.061034498 10.1038/415180a 10.1093/nar/gkr930 10.1016/j.copbio.2008.06.001 10.1093/nar/gks1231 10.1002/cpps.62 10.1126/science.aat0576 10.1093/bioinformatics/bts620 10.1093/nar/gkw1102 10.1186/1471-2105-11-562 10.1186/s12859-017-1700-2 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1093/bib/bbab036 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | 33693513 10_1093_bib_bbab036 |
Genre | Journal Article |
GroupedDBID | --- -E4 .2P .I3 0R~ 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAVAP AAVLN AAYXX ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHGBF AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 ADRIX AFXEN BCRHZ GROUPED_DOAJ M49 NPM ROX 7X8 |
ID | FETCH-LOGICAL-c355t-9491ae1785450119bd0019dc0b6885a0877c7401c18e6a1bc4b12bc8d06a1af53 |
ISSN | 1467-5463 1477-4054 |
IngestDate | Fri Jul 11 15:54:17 EDT 2025 Wed Feb 19 02:28:36 EST 2025 Tue Jul 01 03:39:33 EDT 2025 Thu Apr 24 22:59:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | performance evaluation protein–protein interaction biological databases computational prediction models |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c355t-9491ae1785450119bd0019dc0b6885a0877c7401c18e6a1bc4b12bc8d06a1af53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 33693513 |
PQID | 2500372066 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2500372066 pubmed_primary_33693513 crossref_primary_10_1093_bib_bbab036 crossref_citationtrail_10_1093_bib_bbab036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210902 |
PublicationDateYYYYMMDD | 2021-09-02 |
PublicationDate_xml | – month: 09 year: 2021 text: 20210902 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2021 |
References | Adrian (2021090815135368300_ref39) 2002; 415 Orchard (2021090815135368300_ref70) 2014; 42 (2021090815135368300_ref92) 2009; 10 Rajagopala (2021090815135368300_ref79) 2014; 32 Li (2021090815135368300_ref55) 2018; 23 Yildirim (2021090815135368300_ref101) 2008; 322 Piehler (2021090815135368300_ref76) 2005; 15 Andreeva (2021090815135368300_ref2) 2004; 32 Lai (2021090815135368300_ref85) 2017; 18 Garcia-Garcia (2021090815135368300_ref30) 2010; 11 Garavelli (2021090815135368300_ref29) 2001; 29 Xiaohan Li (2021090815135368300_ref58) 2018; 359 Breiman (2021090815135368300_ref14) 2001; 45 Serebriiskii (2021090815135368300_ref84) 2001 (2021090815135368300_ref71) 2005; 21 Hawe (2021090815135368300_ref35) 2019; 10 Huynen (2021090815135368300_ref22) 1998; 23 (2021090815135368300_ref104) 2012 Tilmann Bürckstümmer (2021090815135368300_ref15) 2006; 3 (2021090815135368300_ref45) 2020 Yoichi Murakami (2021090815135368300_ref68) 2017; 44 wwPDB consortium (2021090815135368300_ref96) 2019; 47 Alanis-Lobato (2021090815135368300_ref1) 2016 Pazos (2021090815135368300_ref73) 2001; 14 Blohm (2021090815135368300_ref11) 2014; 42 Liu (2021090815135368300_ref40) 2013; 29 Garcia-Garcia (2021090815135368300_ref31) 2012; 40 He (2021090815135368300_ref37) 2018; 26 Tenenbaum (2021090815135368300_ref89) 2000; 290 Hu (2021090815135368300_ref41) 2015; 14 Brian (2021090815135368300_ref63) 1975; 405 Licata (2021090815135368300_ref59) 2012; 40 Binkley (2021090815135368300_ref9) 2014; 42 Uetz (2021090815135368300_ref93) 2000; 403 Bader (2021090815135368300_ref4) 2003; 31 McDowall (2021090815135368300_ref64) 2009; 37 Aly (2021090815135368300_ref34) 2018; 34 Bakail (2021090815135368300_ref5) 2016; 19 George (2021090815135368300_ref32) 2001; 29 Chatr-Aryamontri (2021090815135368300_ref16) 2017; 45 Huang (2021090815135368300_ref57) 2018; 8 Bandyopadhyay (2021090815135368300_ref6) 2016; 14 Yu (2021090815135368300_ref18) 2020; 11 (2021090815135368300_ref90) 2002 Zhou (2021090815135368300_ref99) 2010; 26 Raught (2021090815135368300_ref33) 2007; 8 Mann (2021090815135368300_ref61) 2001; 26 Xiao (2021090815135368300_ref98) 2020 You (2021090815135368300_ref100) 2014; 145 Kovács (2021090815135368300_ref53) 2019; 10 Bitbol (2021090815135368300_ref62) 2019; 15 Ko (2021090815135368300_ref38) 2019; 50 Lei (2021090815135368300_ref54) 2013; 29 Ding (2021090815135368300_ref25) 2018; 93 (2021090815135368300_ref72) 2010; 9 Pedamallu (2021090815135368300_ref74) 2010; 5 (2021090815135368300_ref51) 2009 David Martin Powers (2021090815135368300_ref78) 2011 Srinivasa Rao (2021090815135368300_ref80) 2014 Barker (2021090815135368300_ref7) 1999; 27 Bock (2021090815135368300_ref12) 2001; 17 Sasaki (2021090815135368300_ref83) 2007 (2021090815135368300_ref97) 2002; 30 Zhang (2021090815135368300_ref105) 2012; 41 Cortes (2021090815135368300_ref21) 1995; 20 Claire (2021090815135368300_ref10) 2009; 25 (2021090815135368300_ref17) 2005; 35 Wang (2021090815135368300_ref95) 2020 Cathy (2021090815135368300_ref47) 2017 Mirabello (2021090815135368300_ref66) 2017; 85 Hayashizaki (2021090815135368300_ref81) 2002; 30 Michiel Vermeulen (2021090815135368300_ref94) 2008; 19 (2021090815135368300_ref43) 2020; 32 Valencia (2021090815135368300_ref24) 2013; 14 Hayashizaki (2021090815135368300_ref82) 2003; 19 Mantas (2021090815135368300_ref86) 2013; 87 (2021090815135368300_ref91) 2001 Martin (2021090815135368300_ref13) 2003; 31 Davis (2021090815135368300_ref23) 2006 Gursoy (2021090815135368300_ref52) 2016; 116 Tan (2021090815135368300_ref88) 2018; 359 Wang (2021090815135368300_ref56) 2019; 20 Anfinsen (2021090815135368300_ref3) 1973; 181 Huang (2021090815135368300_ref46) 2009; 25 Charles (2021090815135368300_ref65) 1978 Akiyama (2021090815135368300_ref36) 2018; 19 Ben-Hur (2021090815135368300_ref8) 2006 Pellegrini (2021090815135368300_ref75) 1999; 96 Akiyama (2021090815135368300_ref69) 2014; 21 Fields (2021090815135368300_ref28) 1994; 10 Ji (2021090815135368300_ref50) 2020 Zeng (2021090815135368300_ref103) 2016; 443 Fawcett (2021090815135368300_ref27) 2006; 27 Murakami (2021090815135368300_ref67) 2014; 15 Gene Ontology Consortium (2021090815135368300_ref19) 2017; 45 Jain (2021090815135368300_ref49) 2010; 11 UniProt Consortium (2021090815135368300_ref20) 2019; 47 Hu (2021090815135368300_ref44) 2017; 69 (2021090815135368300_ref102) 2013; 102 Zhao (2021090815135368300_ref106) 2017 Planas-Iglesias (2021090815135368300_ref77) 2013; 425 Damian Szklarczyk (2021090815135368300_ref87) 2017 Louche (2021090815135368300_ref60) 2017 (2021090815135368300_ref107) 2001 Hu (2021090815135368300_ref42) 2017; 14 Enright (2021090815135368300_ref26) 1999; 402 Ito (2021090815135368300_ref48) 2001; 98 |
References_xml | – year: 2020 ident: 2021090815135368300_ref45 article-title: Zhu-Hong You. Hiscf: leveraging higher-order structures for clustering analysis in biological networks publication-title: Bioinformatics – volume: 47 start-page: D506 issue: D1 year: 2019 ident: 2021090815135368300_ref20 article-title: Uniprot: a worldwide hub of protein knowledge publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1049 – volume: 44 start-page: 134 year: 2017 ident: 2021090815135368300_ref68 article-title: Network analysis and in silico prediction of protein–protein interactions with applications in drug discovery publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2017.02.005 – volume: 322 start-page: 104 issue: 5898 year: 2008 ident: 2021090815135368300_ref101 article-title: Tomoko Hirozane-Kishikawa, Fana Gebreab, Na Li, Nicolas Simonis, et al. High-quality binary protein interaction map of the yeast interactome network publication-title: Science doi: 10.1126/science.1158684 – volume: 27 start-page: 861 issue: 8 year: 2006 ident: 2021090815135368300_ref27 article-title: An introduction to roc analysis publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2005.10.010 – volume: 47 start-page: D520 issue: D1 year: 2019 ident: 2021090815135368300_ref96 article-title: Protein data bank: the single global archive for 3d macromolecular structure data publication-title: Nucleic Acids Res doi: 10.1093/nar/gky949 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 2021090815135368300_ref14 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 443 start-page: 537 year: 2016 ident: 2021090815135368300_ref103 article-title: Link prediction based on local information considering preferential attachment publication-title: Physica A: Statistical Mechanics and its Applications doi: 10.1016/j.physa.2015.10.016 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 2021090815135368300_ref53 article-title: Network-based prediction of protein interactions publication-title: Nat Commun doi: 10.1038/s41467-019-09177-y – volume: 31 start-page: 248 issue: 1 year: 2003 ident: 2021090815135368300_ref4 article-title: Christopher WV Hogue. Bind: the biomolecular interaction network database publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg056 – volume-title: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) year: 2017 ident: 2021090815135368300_ref106 article-title: Hiv1-human protein-protein interaction prediction based on interface architecture similarity doi: 10.1109/BIBM.2017.8217632 – volume: 29 start-page: 199 issue: 1 year: 2001 ident: 2021090815135368300_ref29 article-title: Stephens. The resid database of protein structure modifications and the nrl-3d sequence–structure database publication-title: Nucleic Acids Res doi: 10.1093/nar/29.1.199 – volume: 69 start-page: 202 year: 2017 ident: 2021090815135368300_ref44 article-title: Keith CC Chan. Efficiently predicting large-scale protein-protein interactions using mapreduce publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2017.03.009 – start-page: 1 volume-title: Teach Tutor Mater year: 2007 ident: 2021090815135368300_ref83 – volume: 14 start-page: 409 issue: 4 year: 2015 ident: 2021090815135368300_ref41 article-title: Chan. Discovering variable-length patterns in protein sequences for protein-protein interaction prediction publication-title: IEEE Trans Nanobiosci doi: 10.1109/TNB.2015.2429672 – volume: 145 start-page: 37 year: 2014 ident: 2021090815135368300_ref100 article-title: A mapreduce based parallel svm for large-scale predicting protein–protein interactions publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.05.072 – volume: 15 start-page: 4 issue: 1 year: 2005 ident: 2021090815135368300_ref76 article-title: New methodologies for measuring protein interactions in vivo and in vitro publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2005.01.008 – volume: 29 start-page: 482 issue: 4 year: 2001 ident: 2021090815135368300_ref32 article-title: Church, and Marc Vidal. Correlation between transcriptome and interactome mapping data from saccharomyces cerevisiae publication-title: Nat Genet doi: 10.1038/ng776 – volume-title: Bacterial Protein Secretion Systems year: 2017 ident: 2021090815135368300_ref60 article-title: Pull-down assays doi: 10.1007/978-1-4939-7033-9_20 – volume: 10 start-page: 217 issue: 3 year: 2009 ident: 2021090815135368300_ref92 article-title: Ruth Nussinov. A survey of available tools and web servers for analysis of protein–protein interactions and interfaces publication-title: Brief Bioinform – volume: 23 start-page: 324 issue: 9 year: 1998 ident: 2021090815135368300_ref22 article-title: Conservation of gene order: a fingerprint of proteins that physically interact publication-title: Trends Biochem Sci doi: 10.1016/S0968-0004(98)01274-2 – volume: 85 start-page: 1159 issue: 6 year: 2017 ident: 2021090815135368300_ref66 article-title: A pipeline to identify and model protein–protein interactions publication-title: Proteins doi: 10.1002/prot.25280 – volume: 403 start-page: 623 issue: 6770 year: 2000 ident: 2021090815135368300_ref93 article-title: Traci A Mansfield, Richard S Judson, James R Knight, Daniel Lockshon, Vaibhav Narayan, Maithreyan Srinivasan, Pascale Pochart, et al. A comprehensive analysis of protein–protein interactions in saccharomyces cerevisiae publication-title: Nature doi: 10.1038/35001009 – volume: 15 start-page: 213 issue: 1 year: 2014 ident: 2021090815135368300_ref67 article-title: Homology-based prediction of interactions between proteins using averaged one-dependence estimators publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-15-213 – volume: 32 start-page: D226 issue: suppl_1 year: 2004 ident: 2021090815135368300_ref2 article-title: Scop database in 2004: refinements integrate structure and sequence family data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh039 – volume-title: Proceedings of the 23rd International Conference on Machine Learning year: 2006 ident: 2021090815135368300_ref23 article-title: The relationship between precision-recall and roc curves doi: 10.1145/1143844.1143874 – year: 2012 ident: 2021090815135368300_ref104 – volume: 23 start-page: 1923 issue: 8 year: 2018 ident: 2021090815135368300_ref55 article-title: Deep neural network based predictions of protein interactions using primary sequences publication-title: Molecules doi: 10.3390/molecules23081923 – volume: 25 start-page: 3045 issue: 22 year: 2009 ident: 2021090815135368300_ref10 article-title: donovan, and Rolf Apweiler. Quickgo: a web-based tool for gene ontology searching publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp536 – volume-title: International Conference on Intelligent Computing year: 2020 ident: 2021090815135368300_ref50 article-title: A mapreduce-based parallel random forest approach for predicting large-scale protein–protein interactions doi: 10.1007/978-3-030-60796-8_34 – volume: 20 start-page: 2253 issue: 6 year: 2019 ident: 2021090815135368300_ref56 article-title: Control principles for complex biological networks publication-title: Brief Bioinform doi: 10.1093/bib/bby088 – volume: 425 start-page: 1210 issue: 7 year: 2013 ident: 2021090815135368300_ref77 article-title: Manuel A Marín-López, Elisenda Feliu, and Baldo Oliva. Understanding protein–protein interactions using local structural features publication-title: J Mol Biol doi: 10.1016/j.jmb.2013.01.014 – volume: 87 start-page: 226 year: 2013 ident: 2021090815135368300_ref86 article-title: From biological to social networks: Link prediction based on multi-way spectral clustering publication-title: Data Knowl Eng doi: 10.1016/j.datak.2013.05.008 – volume: 11 start-page: 56 issue: 1 year: 2010 ident: 2021090815135368300_ref30 article-title: Biana: a software framework for compiling biological interactions and analyzing networks publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-56 – volume: 19 start-page: 19 issue: 1–2 year: 2016 ident: 2021090815135368300_ref5 article-title: Targeting protein–protein interactions, a wide open field for drug design publication-title: C R Chim doi: 10.1016/j.crci.2015.12.004 – volume: 26 start-page: 54 issue: 1 year: 2001 ident: 2021090815135368300_ref61 article-title: Use of mass spectrometry-derived data to annotate nucleotide and protein sequence databases publication-title: Trends Biochem Sci doi: 10.1016/S0968-0004(00)01726-6 – volume: 10 start-page: 535 year: 2019 ident: 2021090815135368300_ref35 article-title: Inferring interaction networks from multi-omics data publication-title: Front Genet doi: 10.3389/fgene.2019.00535 – volume: 290 start-page: 2319 issue: 5500 year: 2000 ident: 2021090815135368300_ref89 article-title: Vin De Silva, and John C Langford. A global geometric framework for nonlinear dimensionality reduction publication-title: Science doi: 10.1126/science.290.5500.2319 – volume: 42 start-page: D358 issue: D1 year: 2014 ident: 2021090815135368300_ref70 article-title: Nancy H Campbell, Gayatri Chavali, Carol Chen, Noemi Del-Toro, et al. The mintact project-intact as a common curation platform for 11 molecular interaction databases publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1115 – volume: 21 start-page: 832 issue: 6 year: 2005 ident: 2021090815135368300_ref71 article-title: Irmtraud Dunger-Kaltenbach, Goar Frishman, Corinna Montrone, Pekka Mark, Volker Stümpflen, Hans-Werner Mewes, et al. The mips mammalian protein–protein interaction database publication-title: Bioinformatics – volume: 9 start-page: 4992 issue: 10 year: 2010 ident: 2021090815135368300_ref72 article-title: Hong-Bin Shen. Large-scale prediction of human protein–protein interactions from amino acid sequence based on latent topic features publication-title: J Proteome Res doi: 10.1021/pr100618t – volume: 181 start-page: 223 issue: 4096 year: 1973 ident: 2021090815135368300_ref3 article-title: Principles that govern the folding of protein chains publication-title: Science doi: 10.1126/science.181.4096.223 – volume: 26 start-page: 2744 issue: 21 year: 2010 ident: 2021090815135368300_ref99 article-title: Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq510 – volume: 14 start-page: 249 issue: 4 year: 2013 ident: 2021090815135368300_ref24 article-title: Emerging methods in protein co-evolution publication-title: Nat Rev Genet doi: 10.1038/nrg3414 – volume: 14 start-page: 609 issue: 9 year: 2001 ident: 2021090815135368300_ref73 article-title: Similarity of phylogenetic trees as indicator of protein–protein interaction publication-title: Protein Eng doi: 10.1093/protein/14.9.609 – volume: 34 start-page: i802 issue: 17 year: 2018 ident: 2021090815135368300_ref34 article-title: Khan, and Jinbo Xu. Predicting protein–protein interactions through sequence-based deep learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty573 – volume: 45 start-page: D331 issue: D1 year: 2017 ident: 2021090815135368300_ref19 article-title: Expansion of the gene ontology knowledgebase and resources publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1108 – volume: 42 start-page: D396 issue: D1 year: 2014 ident: 2021090815135368300_ref11 article-title: Negatome 2.0: a database of non-interacting proteins derived by literature mining, manual annotation and protein structure analysis publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1079 – volume-title: Two-Hybrid Systems year: 2001 ident: 2021090815135368300_ref84 article-title: Two-hybrid system and false positives doi: 10.1385/1-59259-210-4:123 – volume: 30 start-page: 1163 issue: 5 year: 2002 ident: 2021090815135368300_ref81 article-title: Interaction generality, a measurement to assess the reliability of a protein–protein interaction publication-title: Nucleic Acids Res doi: 10.1093/nar/30.5.1163 – volume: 32 start-page: 2115 issue: 11 year: 2020 ident: 2021090815135368300_ref43 article-title: Shengwu Xiong. A variational bayesian framework for cluster analysis in a complex network publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2019.2914200 – volume: 19 start-page: 756 issue: 6 year: 2003 ident: 2021090815135368300_ref82 article-title: Construction of reliable protein–protein interaction networks with a new interaction generality measure publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg070 – volume: 405 start-page: 442 issue: 2 year: 1975 ident: 2021090815135368300_ref63 article-title: Matthews. Comparison of the predicted and observed secondary structure of t4 phage lysozyme publication-title: Biochim Biophys Acta Prot Struct doi: 10.1016/0005-2795(75)90109-9 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 2021090815135368300_ref21 article-title: Support-vector networks publication-title: Mach Learn doi: 10.1007/BF00994018 – volume: 11 year: 2020 ident: 2021090815135368300_ref18 article-title: Protein interface complementarity and gene duplication improve link prediction of protein–protein interaction network publication-title: Front Genet – volume: 5 start-page: 8 issue: 1 year: 2010 ident: 2021090815135368300_ref74 article-title: Open source tool for prediction of genome wide protein-protein interaction network based on ortholog information publication-title: Source Code Biol Med doi: 10.1186/1751-0473-5-8 – volume: 3 start-page: 1013 issue: 12 year: 2006 ident: 2021090815135368300_ref15 article-title: Giulio Superti-Furga, and Angela Bauch. An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells publication-title: Nat Methods doi: 10.1038/nmeth968 – start-page: D408 volume-title: Nucleic Acids Res year: 2016 ident: 2021090815135368300_ref1 article-title: Hippie v2. 0: enhancing meaningfulness and reliability of protein–protein interaction networks – volume: 27 start-page: 39 issue: 1 year: 1999 ident: 2021090815135368300_ref7 article-title: John S Garavelli, Peter B McGarvey, Christopher R Marzec, Bruce C Orcutt, Geetha Y Srinivasarao, Lai-Su L Yeh, Robert S Ledley, Hans-Werner Mewes, Friedhelm Pfeiffer, et al. The pir-international protein sequence database publication-title: Nucleic Acids Res doi: 10.1093/nar/27.1.39 – volume: 402 start-page: 86 issue: 6757 year: 1999 ident: 2021090815135368300_ref26 article-title: Kyrpides, and Christos A Ouzounis. Protein interaction maps for complete genomes based on gene fusion events publication-title: Nature doi: 10.1038/47056 – volume: 96 start-page: 4285 issue: 8 year: 1999 ident: 2021090815135368300_ref75 article-title: Assigning protein functions by comparative genome analysis: protein phylogenetic profiles publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.96.8.4285 – volume: 25 start-page: 372 issue: 3 year: 2009 ident: 2021090815135368300_ref46 article-title: Precision and recall estimates for two-hybrid screens publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn640 – start-page: 2014 year: 2014 ident: 2021090815135368300_ref80 article-title: Protein–protein interaction detection: methods and analysis publication-title: Int J Proteomics – volume: 10 start-page: 286 issue: 8 year: 1994 ident: 2021090815135368300_ref28 article-title: The two-hybrid system: an assay for protein-protein interactions publication-title: Trends Genet doi: 10.1016/0168-9525(90)90012-U – year: 2002 ident: 2021090815135368300_ref90 – volume: 37 start-page: D651 issue: suppl_1 year: 2009 ident: 2021090815135368300_ref64 article-title: Pips: human protein–protein interaction prediction database publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn870 – volume: 17 start-page: 455 issue: 5 year: 2001 ident: 2021090815135368300_ref12 article-title: David A Gough. Predicting protein–protein interactions from primary structure publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.5.455 – volume: 359 start-page: 1170 issue: 6380 year: 2018 ident: 2021090815135368300_ref88 article-title: Ka Diam Go, Xavier Bisteau, Lingyun Dai, Chern Han Yong, Nayana Prabhu, Mert Burak Ozturk, Yan Ting Lim, Lekshmy Sreekumar, Johan Lengqvist, et al. Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells publication-title: Science doi: 10.1126/science.aan0346 – volume: 50 start-page: 4318 year: 2019 ident: 2021090815135368300_ref38 article-title: Keith CC Chan, and Yew-Soon Ong. Contextual correlation preserving multiview featured graph clustering publication-title: IEEE Trans Cybernet – volume-title: International Conference on Intelligent Computing year: 2020 ident: 2021090815135368300_ref95 article-title: A novel stochastic block model for network-based prediction of protein-protein interactions doi: 10.1007/978-3-030-60802-6_54 – volume: 14 start-page: 762 issue: 4 year: 2016 ident: 2021090815135368300_ref6 article-title: A new feature vector based on gene ontology terms for protein-protein interaction prediction publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2016.2555304 – volume: 102 start-page: 237 issue: 4 year: 2013 ident: 2021090815135368300_ref102 article-title: Morteza Mohammad-Noori, Reza Ebrahimpour, and Ali Masoudi-Nejad. Ppievo: Protein–protein interaction prediction from pssm based evolutionary information publication-title: Genomics doi: 10.1016/j.ygeno.2013.05.006 – volume-title: Nucleic Acids Res year: 2017 ident: 2021090815135368300_ref87 – volume-title: BMC Bioinformatics year: 2006 ident: 2021090815135368300_ref8 article-title: Choosing negative examples for the prediction of protein–protein interactions doi: 10.1186/1471-2105-7-S1-S2 – volume: 14 start-page: 155 issue: 1 year: 2017 ident: 2021090815135368300_ref42 article-title: Chan. Extracting coevolutionary features from protein sequences for predicting protein–protein interactions publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2016.2520923 – volume: 19 start-page: 61 issue: 4 year: 2018 ident: 2021090815135368300_ref36 article-title: Megadock-web: an integrated database of high-throughput structure-based protein–protein interaction predictions publication-title: BMC Bioinformatics – volume: 116 start-page: 4884 issue: 8 year: 2016 ident: 2021090815135368300_ref52 article-title: Predicting protein–protein interactions from the molecular to the proteome level publication-title: Chem Rev doi: 10.1021/acs.chemrev.5b00683 – year: 2017 ident: 2021090815135368300_ref47 – volume: 8 start-page: 645 issue: 8 year: 2007 ident: 2021090815135368300_ref33 article-title: Analysis of protein complexes using mass spectrometry publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2208 – volume: 15 issue: 10 year: 2019 ident: 2021090815135368300_ref62 article-title: Phylogenetic correlations can suffice to infer protein partners from sequences publication-title: PLoS Comput Biol – volume: 31 start-page: 365 issue: 1 year: 2003 ident: 2021090815135368300_ref13 article-title: Claire O’Donovan, Isabelle Phan, et al. The swiss-prot protein knowledgebase and its supplement trembl in 2003 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg095 – volume: 29 start-page: 355 issue: 3 year: 2013 ident: 2021090815135368300_ref54 article-title: A novel link prediction algorithm for reconstructing protein–protein interaction networks by topological similarity publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts688 – year: 2001 ident: 2021090815135368300_ref91 – volume: 26 start-page: 2785 issue: 5 year: 2018 ident: 2021090815135368300_ref37 article-title: Discovering fuzzy structural patterns for graph analytics publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2018.2791951 – volume: 30 start-page: 303 issue: 1 year: 2002 ident: 2021090815135368300_ref97 article-title: Xiaoqun Joyce Duan, Patrick Higney, Sul-Min Kim, and David Eisenberg. Dip, the database of interacting proteins: a research tool for studying cellular networks of protein interactions publication-title: Nucleic Acids Res doi: 10.1093/nar/30.1.303 – volume: 40 start-page: W147 issue: W1 year: 2012 ident: 2021090815135368300_ref31 article-title: Biana interolog prediction server. a tool for protein–protein interaction inference publication-title: Nucleic Acids Res doi: 10.1093/nar/gks553 – volume-title: Seminars in Nuclear Medicine year: 1978 ident: 2021090815135368300_ref65 article-title: Metz. Basic principles of roc analysis – volume: 32 start-page: 285 issue: 3 year: 2014 ident: 2021090815135368300_ref79 article-title: Jonathan Franca-Koh, Suman B Pakala, Sadhna Phanse, Arnaud Ceol, et al. The binary protein-protein interaction landscape of escherichia coli publication-title: Nat Biotechnol doi: 10.1038/nbt.2831 – volume: 42 start-page: D711 issue: D1 year: 2014 ident: 2021090815135368300_ref9 article-title: The candida genome database: the new homology information page highlights protein similarity and phylogeny publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1046 – volume: 98 start-page: 4569 issue: 8 year: 2001 ident: 2021090815135368300_ref48 article-title: A comprehensive two-hybrid analysis to explore the yeast protein interactome publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.061034498 – volume: 21 start-page: 766 issue: 8 year: 2014 ident: 2021090815135368300_ref69 article-title: Megadock: an all-to-all protein-protein interaction prediction system using tertiary structure data publication-title: Protein Pept Lett – volume: 415 start-page: 180 issue: 6868 year: 2002 ident: 2021090815135368300_ref39 article-title: Systematic identification of protein complexes in saccharomyces cerevisiae by mass spectrometry publication-title: Nature doi: 10.1038/415180a – volume: 35 start-page: 37 issue: 1–2 year: 2005 ident: 2021090815135368300_ref17 article-title: Mong Li Lee, and See-Kiong Ng. Discovering reliable protein interactions from high-throughput experimental data using network topology publication-title: Artif Intell Med – year: 2009 ident: 2021090815135368300_ref51 – volume: 40 start-page: D857 issue: D1 year: 2012 ident: 2021090815135368300_ref59 article-title: Mint, the molecular interaction database: 2012 update publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr930 – volume-title: Flinders Academic Commons year: 2011 ident: 2021090815135368300_ref78 article-title: Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 2021090815135368300_ref57 article-title: Similarity-based future common neighbors model for link prediction in complex networks publication-title: Sci Rep – volume: 19 start-page: 331 issue: 4 year: 2008 ident: 2021090815135368300_ref94 article-title: Hubner, and Matthias Mann. High confidence determination of specific protein–protein interactions using quantitative mass spectrometry publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2008.06.001 – volume: 41 start-page: D828 issue: D1 year: 2012 ident: 2021090815135368300_ref105 article-title: Preppi: a structure-informed database of protein–protein interactions publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1231 – volume: 93 start-page: e62 issue: 1 year: 2018 ident: 2021090815135368300_ref25 article-title: Computational methods for predicting protein-protein interactions using various protein features publication-title: Curr Protoc Protein Sci doi: 10.1002/cpps.62 – volume: 359 start-page: 1105 issue: 6380 year: 2018 ident: 2021090815135368300_ref58 publication-title: Science doi: 10.1126/science.aat0576 – volume: 29 start-page: 92 issue: 1 year: 2013 ident: 2021090815135368300_ref40 article-title: Human protein–protein interaction prediction by a novel sequence-based co-evolution method: co-evolutionary divergence publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts620 – year: 2020 ident: 2021090815135368300_ref98 – volume: 45 start-page: D369 issue: D1 year: 2017 ident: 2021090815135368300_ref16 article-title: Nadine K Kolas, Lara O’Donnell, Sara Oster, Chandra Theesfeld, Adnane Sellam, et al. The biogrid interaction database: 2017 update publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1102 – volume: 11 start-page: 562 issue: 1 year: 2010 ident: 2021090815135368300_ref49 article-title: An improved method for scoring protein-protein interactions using semantic similarity within the gene ontology publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-562 – volume: 18 start-page: 277 issue: 1 year: 2017 ident: 2021090815135368300_ref85 article-title: Sequence-based prediction of protein–protein interaction using a deep-learning algorithm publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1700-2 – year: 2001 ident: 2021090815135368300_ref107 |
SSID | ssj0020781 |
Score | 2.5925333 |
SecondaryResourceType | review_article |
Snippet | Proteins interact with each other to play critical roles in many biological processes in cells. Although promising, laboratory experiments usually suffer from... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
Title | A survey on computational models for predicting protein–protein interactions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33693513 https://www.proquest.com/docview/2500372066 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA96Ivgifnt-EeGelN41TZttHxe5Y5Hlzocu1qeStKmsSCu7jaJ_vTNJttuVCqcv2W02HZb5TdOZJPMbQk60SpJGc4HJMWkAb7w6yGrFg0hlYdgkVawc2-elWKzi90VS7AsX2uySXp1WvybzSv4HVegDXDFL9h-QHYRCB3wHfKEFhKG9Fsbzt1uz-Q5PdecOk5t-t7RnC9xYqgVkAagx78NmnXdY3DLwn5YrYuMyG7YHu7sQPze2nicMUuvOs6v2o5PxC2MjejPY1ke_8FysZffF7G1uYfwPn0wwbw9v_6Dbzz_0erzyEDF7tGq0GMni2QziT0cCfaon-vwMG0UjS0omJ25HaqXWClslVcgnCLIvr8qL1XJZ5udFfpPciiAywKktvyqGGBu5i2xCmf8bPiUTxJ-B8DMv-tAJ-UtkYT2M_B6560MDOnc43yc3dPuA3HbFQn8-JMs5dWjTrqUHaFOHNgWQ6B5t-gfadIz2I7K6OM_fLQJfCyOowCPsgyzOmNRsloLHizR9qkbnvK5CJdI0kUjrWGFxxYqlWkim4CFjkarSOoQr2ST8MTlqu1Y_JVQ0EhlC6zjGou5ZJgWDd1wU1lmM-6TimLzZKaesPFE81iv5WroDC7wETZZek8fkZBj8zfGjTA97vdNyCfMXbkrJVndmW4ILHmKlJAFjnjj1D4I4FxlPGH92jbufkzt7G31BjvqN0S_BX-zVK2shvwFbr28n |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+on+computational+models+for+predicting+protein-protein+interactions&rft.jtitle=Briefings+in+bioinformatics&rft.au=Hu%2C+Lun&rft.au=Wang%2C+Xiaojuan&rft.au=Huang%2C+Yu-An&rft.au=Hu%2C+Pengwei&rft.date=2021-09-02&rft.issn=1477-4054&rft.eissn=1477-4054&rft.volume=22&rft.issue=5&rft_id=info:doi/10.1093%2Fbib%2Fbbab036&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |